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Ab initio thermodynamics of metals: Al and W
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We present aab initio pseudopotential calculation of thermodynamic properties of aluminum and tungsten.
The difference of almost one order of magnitude of the experimental linear thermal expansion coefficients of
these materials is well reproduced by our calculations and explained in terms of microscopic quantities. The
specific heat is reported and compared with available experimental data. Modeisgn parameters, Debye
temperature, and temperature dependence of isothermal and adiabatic bulk modulus as well as the pressure
dependence of compressibility complete the work.
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[. INTRODUCTION The procedure we used takes into account in a simple
self-consistent way the thermal expansion of the lattice. We
The implementation of perturbation theory into a densityderived expressions that are based on zero-temperature quan-

functional framework has permitted, in the last decade, théities and that permit an accurate computation of the thermal
ab initio calculation of the phonon dispersion of e€xpansion as well as other thermodynamic properties up to
semiconductors and metal$. The success of these calcula- Very high temperaturéroughly about four times the Debye
tions has also driven increasing interest into lattice propertief€mperaturk o _
that cannot be described by the harmonic approximation as, N this work we present amb initio calculation of the
e.g., the thermal expansion of a sdlithe phonon lifetimé, thermodynamical properties of aluminum, one of .the most
or the shiff of phonon frequencies when the temperature iscommonly used metals, and of tungsten, which is largely
changed. These calculations, in good agreement with exper@Mployed in high-technology devic&The latter presents at
mental data, are performed using norm-conserving pseudé0m temperature one of the smallest thermal expansion co-
potentials, that improves the description of electronic bond&fficients among metallic elemeritSyhereas, at the same
in different environment Compared to Semiempirica] pseudolemperature, the value for aluminum is more than five times

potentials used in previous calculation of dynamical properi@rger. _ _ _
ties (for a review see, e.g., Ref).7 The paper is organized as follows. In Sec. Il we give a

While in principle the temperature dependence of the phobrief description of the theory to state the approximations we
non frequency depends on phonon anharmonic contributioH@f'ive us_ed a_nd to introduce _notatlons and formulas for fL_thh_er
as well as electronic oné<, the thermodynamic properties discussion; in Sec. Ill we give an account of the technicali-
of solids are commonly studied within the quasiharmonicties used to compute the dynamical matrix, within the den-
approximatiorf The change of phonon frequencies due tosity functional framewprk mtrodu_ced by Baroni, Giannozzi,
thermal expansion of the lattice was studied in Ref. 4 withinand Testa and used in successive developmetsse, for
the quasi-harmonic approximation to compute thér@isen ~ €xample, Ref. 2 Finally, in Sec. IV we present the results
parameter and the linear thermal expansion coefficient of€ have obtained by implementing the perturbation theory of
semiconductors. The same approximation was used to calc€¢: Il for aluminum and tungsten and compare them with
late the dependence of the lattice parameter on the isotopRvailable experimental data.
composition of simpl2 and compound semiconductthts
with good agreement with experimental ditaln these II. THEORY
works the phonon frequencies and their derivatives were ) ) o
computed at zero temperature and the thermal expansion co- In the quasiharmonic approximation the Helmholtz free
efficient is calculated by varying only the temperature of theEN€rgy at a given volume and temperaturd is given by
thermal occupation number in the corresponding formula.

This approach can provide accurate results compared to the F(V,T)=Un(V)+F,jp(V,T), 1)
experimental data up to above the room temperdtfi8. ) ) )
Recently the thermodynamic properties of silfavere com- whereU(V) is the zero-temperature classical energy, while
puted solving the equation of state at different temperatures L

to find the equilibrium volume; the various ingredients nec- e

essary to evgluate the thermal properties we?e obtained peEv‘b(V’T): 2 r% frw(n,q) +keT % In(1—etenalen)
forming ab initio calculations at different volumes. In the 2)
present work we computed only dynamical quantities at the

zero temperature volume, as done in Refs. 6 and 10; howepresents the vibrational contributionkoThe frequency of
ever, the procedure adopted here describes satisfactorily tliee nth mode,w(n,q), depends on the unit-cell volume and
thermodynamic properties far above room temperaturé¢he masses of the constituent atoms. From the definition of
where the simplest approximation of Refs. 6 and 10 fails. pressur& we obtain the equation of state
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N () pend only on the volume, we obtain two coupled equations
that can be easily solved.

which, for a given temperature and pressure, produces an In the present computation we assume that the phonon

implicit expression for the equilibrium volume. In order to frequencies, in the range of the temperature we are inter-

obtain a simple expression for the temperature dependené&sted, can be well approximated by a Taylor expansion up to

of volume (since we are interested only in the case wherghe second order on the volume:

P=0, in the following we will drop the pressure indewe

¢9|:) quasiharmonic approximation the latter are assumed to de-
T

introduce the linear thermal expansion coefficient V—-Vo| 1
P w(Nn,q)=wu(n,q) 1—7o(n,q)( v )_Eﬁo(n,Q)
T 1 9V . 0
a( )—3—\/&—-'-- (4)

X (10

sl
By differentiating Eq(3) with respect to the temperature it is Vo

easy to obtain the expression for the linear thermal expansiofhere the subscript 0 denotes the quantitieFa0. With
coefficient at constant pressure: this approximation the Gneisen parameter becomes

1 3
()=~ B mviTT 2 "M OV Tgosh ynay= gD
(5) VOw(nrq)

V-V,
YO(naQ)"‘,Bo(n,Q)( Vo ”
(11

These expressions are functions only of zero-temperature

where we have defined

fhw(n,q) quantities that can be computed once and for all. The only
= kB—T’ other ingredient is the linear thermal expansion coefficient
) that can be calculated through E@S) and(9).
and the Graeisen parameter of modeq is As a by-product we can easily obtain the specific heat
V. dw(ng) at constant volume (pressurg defined as Cy
y(n,q) = — iy 6) =—T((92_F/(9T2)|V [Cp=—T(d?FI3T?)|p]. From Eq. (1)
o(n,g) Vv we obtain

where V is the unit-cell volume at temperatuiie and the
isothermal bulk moduluB=V(J°F/dV?)|1 is given by

1 he?
5 —VaZUO—iE hw(n,q) L) Cvz—kBEnE’q T—coshé’ (12)
T=VVZ T 2V & coshe—1tY (M
+ B(n,q)sinh¢], (7)  while the specific heat at constant pressure can be obtained
_ _ using the relatiot?
where we have introduced the concavity parameter
2 52
Bng=— — 7 o(na) @® Cp=Cy+9a?B,VT. (13)

o(n,g)  gv?

which is proportional to the second derivative of the phonorin order to compute correctly the specific heat at low tem-
frequencies and which describes the deviation from the lineap€rature we have to take into account that, approaching to
behavior of the volume dependence of the frequenc}}he absolute Z€ero, Only the acoustic phononS close to the
w(n'q). At T=0 K the second term in the square bracketsBrillouin-Zone center contribute tﬁ:v In this I’egion the
of Eq. (7) gives the zero-point energy contribution to the acoustic branches are linear with respect the wave vector,
bulk modulus(while the first is vanishing w(n,q)=c(n,q)q (Whereq=q/|q|). We define the average

In the quasiharmonic approximation the phonon frequenef the inverse third power of the long-wavelength phase ve-
cies are functions of the temperature only through their voldocities of the three acoustic modes over the solid afiyyle
ume dependence. From the definitifeg. 4] of the linear
thermal expansion coefficient the unit-cell volume at tem-

: 11 dQ 1
peratureT can be written as ==3 ngl o)

(14)

, 9 To the lowest order in temperature the expression for the

.
V=V, exp{:%f a(THdT'
0 specific heat per unit volume®is

where V indicates the zero-temperature unit-cell volume. ) 3
From Eq.(5) a(T) depends only on the volume and on the &: Zi kB_T (15)
phonon frequenciegand their derivatives since in the Vv 5 "Bl ac)
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FIG. 1. One phonon density of states and phonon dispersion

relation of aluminum along some high-symmetry directions of the ~FIG. 3. Concavity parametes(n,q) of aluminum along some
Brillouin zone at absolute zero. Diamonds denote experimental datigh-symmetry directions of the Brillouin zone. Note the the dis-
atT=80 K (from Ref. 24. continuity at thel™ point.

which gives the correct power behavior for vanishing tem- . .
perature. The Debye temperature can be obtained through ti$8S€ one has to consider the volume as the independent
relation variable. At a given volume the pressure is obtained from

Eqg. (3).

e
0= k*(677p)1’3, (16) Ill. COMPUTATIONAL DETAILS
B

We have performed our first-principles calculation by us-
wherep is the inverse of the unit cell volume. ing the adiabatic approximation within a plane-wave pseudo-
Finally, since the bulk modulus is often obtained from thepotential scheme. The phonon-dispersion curves are obtained
measure of the elastic constants, it is useful to introduce thpy finding the eigenvalues of the dynamical matrix that is
adiabatic bulk modulus that can be obtained from the fOI’-C()mputed from the linear response to a phonon displacement
mula employing the density functional perturbation thebfyThe
first and second derivatives of the phonon frequencies with
P respect to the volume are computed by using perturbation
Bs=Br—- (17 theory according to the scheme proposed in Ref. 10.
v We used separable norm-conserving pseudopotetitiils

Once the quantities are computedTat 0 K, the tempera- generated in a similar way as thosg of Ref. 3 and 19 to
ture as well as the pressure dependence of the above quarﬁﬁlcmate phonon frequencies of aluminum and tungsten, re-

ties at a given temperatufecan be obtained. In the latter spect|v_ely. !n our calculations we have used the local-density
approximation for the exchange and correlation energy cal-

30 culated by Monte Carlo techniques by Ceperley and Afder,
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FIG. 2. Mode-Grueisen parameter of aluminum along some
high-symmetry directions of the Brillouin zone. Note the the dis- FIG. 4. Same as Fig. 1 but for tungsten with experimental data
continuity at thel’ point. atT=296 K from Ref. 25.
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as interpolated by Perdew and ZungeOur basis set was
truncated to a kinetic energy cutoff of 16 Ry for aluminum
and to 28 Ry for tungsten. The Brillouin-zone integration
over electronic states necessary to compute the dynamic
matrix was performed using the special-point and smearing
techniques:*>?®We used 146 special points for aluminum
and 55 for tungsten in the irreducible wedge of the Brillouin
zone, to ensure the convergence of the dynami
properties''® The reciprocal space integration over phonon
stateqthe g points appearing in Eqs5), (7), and(12)] was
performed by using 408 special points for aluminum and 24
for tungsten. The volume dependence of the total energy
appearing in Eq(7) is obtained by fitting the first-principles
results by the Murnagan equation of state.

FIG. 7. Linear thermal expansion coefficient in aluminum. The
results obtained witlfwithout) the thermal expansion of the unit-
cell volume are denoted by a solidashed line. Diamonds indicate

perimental data from Ref. 14.

arametersy and B8 of aluminum are generally larger in

agnitude than those of tungsten. Approaching the Brillouin
zone center the acoustic branches vanish linearly with a
slope that depends on the direction. As a consequence the

runeisen parametey as well as the concavity paramejer
are discontinuous at thE point. The phonon branches re-
produce those in Refs. 3 and 19 obtained by the same
method. Our results for the Guaisen parameter of alumi-
num differ in a significant way from those obtained using an
IV. RESULTS empirical pseudopotentiaf. This difference can be attributed

Aluminum and tungsten are metals that crystallize in abY the fact we use norm-conserving pseudopotential that pro-

face-centered cubic structure and a body-centered cubides @ better description of the valence states.
structure, respectively. We have computed their thermody- Our results for the linear thermal expansion coefficient of

namic properties according to the scheme exposed in Sec. Il.

Figures 1, 2, and 3 display, respectively, the phonon dis- 8 ' ' '
persion relation, the mode Qraisen parameters, and the
beta parameters at zero temperature of aluminum along som
high-symmetry directions in the Brillouin zone. Figures 4, 5, | x« ¥
and 6 show the corresponding quantities for tungsten. The . x ®
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-5.0 H N P N T H p T FIG. 8. Same as Fig. 7 but for tungsten. Diamonds, stars, tri-

angles up and down indicate experimental data from Ref. 14, Ref.
FIG. 6. Same as Fig. 3 but for tungsten. 27, Ref. 28, and Ref. 29, respectively.
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FIG. 9. Temperature dependence of specific heat of aluminum.

The specific heat at constant volume is denoted by a solid line; the FIG. 10. Same as Fig. 9 but for tungsten. Triangles up and down

specific heat at constant pressure is denoted by a dashed line. THenote experimental dateespectively from Ref. 31 and Ref. B0
result of the Debye model is denoted by a dotted line. Triangles up

and down denote experimental data®f (respectively from Ref. 7

and Ref. 30. The horizontal line is th€, classical value. K, it gives an underestimation of the linear thermal expan-

sion coefficient at high temperature.

The difference in the magnitude of the linear thermal ex-
aluminum and tungsten are displayed in Figs. 7 and 8. Th@ansion coefficient of aluminum and tungsten can be attrib-
solid line is our theoretical result obtained according to theited to two different mechanisms according to the results
procedure exposed in Sec. Il and compared with the experfXposed above. One is the contribution due to microscopic
mental data from Ref. 14 denoted by diamonds. Our resultdynamical quantitiegphonon frequencies, Gneisen, and
describe the thermal expansion coefficient up to high temSoncavity parametersi.e., the contribution of the terms in
perature. For aluminum there is no appreciable differencd® sum in Eq(S). The magnitude of the Gneisen param-
between theory and experiment over the whole range of tenflers of alumlr_1um IS Iarge_r than that of tungsten. Further the
peratures where the experimental data are available; for tun honon energies of a'“.”.“”“m are, on average, smaller than

L . ! hose of tungsten. At finite temperature this fact favors the
sten a deviation of the experimental data can be noticed on%ermal occuDAi . ; :

; : . pation of phonons in aluminum with respect to
above 1500 K, when hlgher-order terms in the eXp"’ms'Ongngsten. As a consequence the microscopic contribution is
(10) and (11) and other anharmonic processes are expectefh yor in aluminum than tungsten. The other mechanism re-
to become important. _ sponsible for the difference of the linear thermal expansion

To show the contribution of the self-consistent procedurggefficient is related to the product between bulk modulus
we have performed a calculation using the same zerozng unit-cell volume by which the right-hand side of E5).
temperature quantities but with the temperature dependenge givided. At zero temperature the produg¢T)V(T) of
given only by the Bose-Einstein factor, as done in Ref. 10, tqungsten is about three times that of aluminum. The combi-
compute the linear thermal expansion coefficient up to roonhation of these two contributions is responsible for the dif-
temperature. The results are displayed in Figs. 7 and 8 ggrent magnitude of the linear thermal expansion coefficient
dashed lines. While this approximation is accurate up to 30@f the two materials.

TABLE I. Calculated bulk modulus, lattice constant, and Debye temperatufe=& K, and elastic constants at room temperature.

Values in parentheses denote experimental data from Ref. 30 unless explicitly statedajiei®! is the derivative of the lattice parameter
with respect to the atomic mass.

Compound B0) ag (C] j_aMO Cu Ci (O
(Kbar) (a.u) (K) (10°° amu!) (10" N/m?) (10" N/m?) (10" N/m?)

Al 794 (783 7.50(7.63 462 (429 2 1.15(1.07 0.52(0.60 0.32(0.28

W 3200(3142 ° 6.05(5.97) 387(400 2 —-1.56 4.68(5.22 2.18(2.09 2.04(1.61)

3 rom Reference 14.
bFrom Reference 32.
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FIG. 12. Pressure dependence of unit-cell volume of aluminum
0.85 A AN . (solid line and tungsten(dashed ling at room temperature\{,
0 500 1000 1500

denote the volume at zero pressur@€ircles and diamonds denote

Temperature (K) aluminum experimental dai@om Ref. 14.

FIG. 11. Temperature dependence of isothertsalid line) and
adiabatic(dashed ling bulk modulus of aluminum and tungsten. . ] ) ] .
BUEV(,;ZU/,;VZ) is the contribution of the zero-temperature clas- semiconductors, we have |nvest|gated this effect in the met-

sical energy to the bulk modulus. The deviation from unityTat als we have considered. While aluminum does not have

=0 is the contribution due to zero-point motion. Circles, diamonds,stable isotopes, natural tungsten is a mixture of five different

and dotted line denote tungsten experimental dftan Refs. 33,  isotopes,®%W (isotopic abundance 0.13%3%AW (26.3%),

32, and 34 respectivelyTriangles denote aluminum experimental 183V (14.3%), 84 (30.67%), and*®W (28.6%). We

data(from Ref. . have computed the derivative of the lattice constant with
respect to the atomic mass. The result is reported in Table |
and is about three orders of magnitude smaller than in zinc-

In Figs. 9 and 10 we display the specific heat of aluminurrPlende sem_iconducto_?sl.0 This is due to the presence in the
and tungsten, respectively. The solidashedl line is our latter materials of optical branches that give the largest con-

result for the specific heat at constant voluifpeessurg ~ Uibution to the change of the lattice constat, .
while triangles denote experimental dataf. ¥ The hori- It is well known that the elastic constants of a material are

zontal line is the classical value 6f,=24.9 J mof K1 related to the slope of the acoustic phonon modes near the

We have also performed a calculation of the specific heafone centef;so we can obtain the former guantities and their
using a Debye model and the experimental data of Table {temperature dependence from our database. However, at the

the results underestimate the experimental data and this dig- point the acoustic frequ'e.nC|es are vanishing, so they are
crepancy is significant for tungsten. In contrast, our first-eXp_eCtEd to be more sensitive to the convergence and 0 nu-
principles results agree well with experiment for aluminum,mer'ca_I errors than the phonon branphes far fror_n the
while for tungsten the agreement is less satisfactory at higﬁ)nlloum—zone center. For this reason this procedure is less

temperature, where the quasiharmonic approximation is eaccurate for th? computation of thg elastic constants t_)y
pected to fail. straining the unit cell, as done, e.g., in Ref. 35. The elastic

The Debye temperature, computed according to (E6) constants at room temperature are displayed in Table. | with

is reported in Table I. Due to the larger Debye temperature oﬁaxpﬁ_rlmental dgta. The dev;qanons_ from rt]he experiment gr_e,
aluminum, the specific heat of this material vanishes fastefl (NS case, about two to three times the ones reported in

than that of tungsten when approaching the absolute zero. ef. 35. . .
The computed bulk modulus at zero temperature is dis- To test the capability of the theory to predict the change

played in Table | for both materials. The bulk modulus in- of volume under pressure we have computed the compress-

cludes the zero point motion contribution that is found to belPlity: I-€., the inverse of the bulk modulus, at different pres-

of a few percent for aluminum (1.8%) but negligible for sure. Our results are _d|sp|ay_ed_ in Fig. 12; as uStrdey are
tungsten (0.3%). Figure 11 displays the temperature depeﬁgported as the relqtlve variation of the unit-cell volume to
dence of the isothermdkolid line) and adiabatiqdashed compare with experimental data.
line) bulk modulus of aluminum and tungsten. The experi-
mental data of the adiabatic bulk modulus of tungsten are
also reported. The percentage variation of the bulk modulus
with respect the zero-temperature value is bigger in alumi-
num than expected since this material presents a larger ther- In this paper we have seen how, performing only first-
mal expansion coefficient than tungsten. principles calculation al =0, it is possible to compute the
Since, to the best of our knowledge, the dependence of themperature dependence of several thermodynamic quantities
lattice parameter on atomic mass is known only for fewwithin the quasiharmonic approximation requiring a small

V. CONCLUSIONS
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