
PHYSICAL REVIEW B, VOLUME 63, 064305
Ab initio thermodynamics of metals: Al and W

A. Debernardi, M. Alouani, and H. Dreysse´
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~Received 13 March 2000; revised manuscript received 31 July 2000; published 23 January 2001!

We present anab initio pseudopotential calculation of thermodynamic properties of aluminum and tungsten.
The difference of almost one order of magnitude of the experimental linear thermal expansion coefficients of
these materials is well reproduced by our calculations and explained in terms of microscopic quantities. The
specific heat is reported and compared with available experimental data. Mode-Gru¨neisen parameters, Debye
temperature, and temperature dependence of isothermal and adiabatic bulk modulus as well as the pressure
dependence of compressibility complete the work.
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I. INTRODUCTION

The implementation of perturbation theory into a dens
functional framework has permitted, in the last decade,
ab initio calculation of the phonon dispersion o
semiconductors1,2 and metals.3 The success of these calcul
tions has also driven increasing interest into lattice proper
that cannot be described by the harmonic approximation
e.g., the thermal expansion of a solid,4 the phonon lifetime,5

or the shift6 of phonon frequencies when the temperature
changed. These calculations, in good agreement with exp
mental data, are performed using norm-conserving pseu
potentials, that improves the description of electronic bo
in different environment compared to semiempirical pseu
potentials used in previous calculation of dynamical prop
ties ~for a review see, e.g., Ref. 7!.

While in principle the temperature dependence of the p
non frequency depends on phonon anharmonic contribut
as well as electronic ones,6,7 the thermodynamic propertie
of solids are commonly studied within the quasiharmo
approximation.8 The change of phonon frequencies due
thermal expansion of the lattice was studied in Ref. 4 wit
the quasi-harmonic approximation to compute the Gru¨neisen
parameter and the linear thermal expansion coefficien
semiconductors. The same approximation was used to ca
late the dependence of the lattice parameter on the isot
composition of simple9 and compound semiconductors10

with good agreement with experimental data.11 In these
works the phonon frequencies and their derivatives w
computed at zero temperature and the thermal expansion
efficient is calculated by varying only the temperature of
thermal occupation number in the corresponding formu
This approach can provide accurate results compared to
experimental data up to above the room temperature.4,6,10

Recently the thermodynamic properties of silver12 were com-
puted solving the equation of state at different temperatu
to find the equilibrium volume; the various ingredients ne
essary to evaluate the thermal properties were obtained
forming ab initio calculations at different volumes. In th
present work we computed only dynamical quantities at
zero temperature volume, as done in Refs. 6 and 10; h
ever, the procedure adopted here describes satisfactorily
thermodynamic properties far above room temperat
where the simplest approximation of Refs. 6 and 10 fails
0163-1829/2001/63~6!/064305~7!/$15.00 63 0643
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The procedure we used takes into account in a sim
self-consistent way the thermal expansion of the lattice.
derived expressions that are based on zero-temperature q
tities and that permit an accurate computation of the ther
expansion as well as other thermodynamic properties u
very high temperature~roughly about four times the Deby
temperature!.

In this work we present anab initio calculation of the
thermodynamical properties of aluminum, one of the m
commonly used metals, and of tungsten, which is larg
employed in high-technology devices.13 The latter presents a
room temperature one of the smallest thermal expansion
efficients among metallic elements,14 whereas, at the sam
temperature, the value for aluminum is more than five tim
larger.

The paper is organized as follows. In Sec. II we give
brief description of the theory to state the approximations
have used and to introduce notations and formulas for fur
discussion; in Sec. III we give an account of the technica
ties used to compute the dynamical matrix, within the de
sity functional framework introduced by Baroni, Giannoz
and Testa1 and used in successive developments~see, for
example, Ref. 2!. Finally, in Sec. IV we present the resul
we have obtained by implementing the perturbation theory
Sec. II for aluminum and tungsten and compare them w
available experimental data.

II. THEORY

In the quasiharmonic approximation the Helmholtz fr
energy at a given volumeV and temperatureT is given by

F~V,T!5U0~V!1Fv ib~V,T!, ~1!

whereU0(V) is the zero-temperature classical energy, wh

Fv ib~V,T!5
1

2 (
n,q

\v~n,q!1kBT (
n,q

ln~12e2\v(n,q)/kBT!

~2!

represents the vibrational contribution toF. The frequency of
the nth mode,v(n,q), depends on the unit-cell volume an
the masses of the constituent atoms. From the definition
pressure15 we obtain the equation of state
©2001 The American Physical Society05-1
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P52S ]F

]VD
T

, ~3!

which, for a given temperature and pressure, produces
implicit expression for the equilibrium volume. In order
obtain a simple expression for the temperature depend
of volume ~since we are interested only in the case wh
P50, in the following we will drop the pressure index! we
introduce the linear thermal expansion coefficient

a~T!5
1

3V

]V

]T
. ~4!

By differentiating Eq.~3! with respect to the temperature it
easy to obtain the expression for the linear thermal expan
coefficient at constant pressure:

a~T!52
1

6BT~T!V~T!T (
n,q

\v~n,q!g~n,q!
j

12coshj
,

~5!

where we have defined

j5
\v~n,q!

kBT
,

and the Gru¨neisen parameter of moden,q is

g~n,q!52
V

v~n,q!

]v~n,q!

]V
, ~6!

where V is the unit-cell volume at temperatureT and the
isothermal bulk modulusBT[V(]2F/]V2)uT is given by

BT5V
]2U0

]V2 2
1

2V (
n,q

\v~n,q!

coshj21
@jg2~n,q!

1b~n,q!sinhj#, ~7!

where we have introduced the concavity parameter

b~n,q![2
V2

v~n,q!

]2v~n,q!

]V2
, ~8!

which is proportional to the second derivative of the phon
frequencies and which describes the deviation from the lin
behavior of the volume dependence of the freque
v(n,q). At T50 K the second term in the square brack
of Eq. ~7! gives the zero-point energy contribution to th
bulk modulus~while the first is vanishing!.

In the quasiharmonic approximation the phonon frequ
cies are functions of the temperature only through their v
ume dependence. From the definition@Eq. 4# of the linear
thermal expansion coefficient the unit-cell volume at te
peratureT can be written as

V5V0 expF3E
0

T

a~T8!dT8G , ~9!

where V0 indicates the zero-temperature unit-cell volum
From Eq.~5! a(T) depends only on the volume and on t
phonon frequencies~and their derivatives!; since in the
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quasiharmonic approximation the latter are assumed to
pend only on the volume, we obtain two coupled equatio
that can be easily solved.

In the present computation we assume that the pho
frequencies, in the range of the temperature we are in
ested, can be well approximated by a Taylor expansion u
the second order on the volume:

v~n,q!5v0~n,q!F12g0~n,q!S V2V0

V0
D2

1

2
b0~n,q!

3S V2V0

V0
D 2G . ~10!

where the subscript 0 denotes the quantities atT50. With
this approximation the Gru¨neisen parameter becomes

g~n,q!5
Vv0~n,q!

V0v~n,q! Fg0~n,q!1b0~n,q!S V2V0

V0
D G .

~11!

These expressions are functions only of zero-tempera
quantities that can be computed once and for all. The o
other ingredient is the linear thermal expansion coeffici
that can be calculated through Eqs.~5! and ~9!.

As a by-product we can easily obtain the specific h
at constant volume ~pressure! defined as CV
52T(]2F/]T2)uV @CP52T(]2F/]T2)uP#. From Eq. ~1!
we obtain

CV52kB

1

2 (
n,q

\j2

12coshj
, ~12!

while the specific heat at constant pressure can be obta
using the relation15

CP5CV19a2BTVT. ~13!

In order to compute correctly the specific heat at low te
perature we have to take into account that, approachin
the absolute zero, only the acoustic phonons close to
Brillouin-zone center contribute toCV . In this region the
acoustic branches are linear with respect the wave vec
v(n,q)5c(n,q̂)q ~whereq̂[q/uqu). We define the average
of the inverse third power of the long-wavelength phase
locities of the three acoustic modes over the solid angleV:

1

c3 [
1

3 (
n51

3 E dV

4p

1

c~n,q̂!
. ~14!

To the lowest order in temperature the expression for
specific heat per unit volume is8

CV

V
5

2p2

5
kBS kBT

\c D 3

, ~15!
5-2
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which gives the correct power behavior for vanishing te
perature. The Debye temperature can be obtained throug
relation

Q5
\c

kB
~6pr!1/3, ~16!

wherer is the inverse of the unit cell volume.
Finally, since the bulk modulus is often obtained from t

measure of the elastic constants, it is useful to introduce
adiabatic bulk modulus that can be obtained from the f
mula

BS5BT

CP

CV
. ~17!

Once the quantities are computed atT50 K, the tempera-
ture as well as the pressure dependence of the above qu
ties at a given temperature16 can be obtained. In the latte

FIG. 1. One phonon density of states and phonon disper
relation of aluminum along some high-symmetry directions of
Brillouin zone at absolute zero. Diamonds denote experimental
at T580 K ~from Ref. 24!.

FIG. 2. Mode-Gru¨neisen parameter of aluminum along som
high-symmetry directions of the Brillouin zone. Note the the d
continuity at theG point.
06430
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case one has to consider the volume as the indepen
variable. At a given volume the pressure is obtained fr
Eq. ~3!.

III. COMPUTATIONAL DETAILS

We have performed our first-principles calculation by u
ing the adiabatic approximation within a plane-wave pseu
potential scheme. The phonon-dispersion curves are obta
by finding the eigenvalues of the dynamical matrix that
computed from the linear response to a phonon displacem
employing the density functional perturbation theory.1,2 The
first and second derivatives of the phonon frequencies w
respect to the volume are computed by using perturba
theory according to the scheme proposed in Ref. 10.

We used separable norm-conserving pseudopotentials17,18

generated in a similar way as those of Ref. 3 and 19
calculate phonon frequencies of aluminum and tungsten,
spectively. In our calculations we have used the local-den
approximation for the exchange and correlation energy
culated by Monte Carlo techniques by Ceperley and Alde20

n
e
ta

-

FIG. 3. Concavity parameterb(n,q) of aluminum along some
high-symmetry directions of the Brillouin zone. Note the the d
continuity at theG point.

FIG. 4. Same as Fig. 1 but for tungsten with experimental d
at T5296 K from Ref. 25.
5-3
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as interpolated by Perdew and Zunger.21 Our basis set was
truncated to a kinetic energy cutoff of 16 Ry for aluminu
and to 28 Ry for tungsten. The Brillouin-zone integrati
over electronic states necessary to compute the dynam
matrix was performed using the special-point and smea
techniques.3,22,23 We used 146 special points for aluminu
and 55 for tungsten in the irreducible wedge of the Brillou
zone, to ensure the convergence of the dyna
properties.3,19 The reciprocal space integration over phon
states@the q points appearing in Eqs.~5!, ~7!, and~12!# was
performed by using 408 special points for aluminum and 2
for tungsten. The volume dependence of the total energyU0
appearing in Eq.~7! is obtained by fitting the first-principle
results by the Murnagan equation of state.

IV. RESULTS

Aluminum and tungsten are metals that crystallize in
face-centered cubic structure and a body-centered c
structure, respectively. We have computed their thermo
namic properties according to the scheme exposed in Se

Figures 1, 2, and 3 display, respectively, the phonon
persion relation, the mode Gru¨neisen parameters, and th
beta parameters at zero temperature of aluminum along s
high-symmetry directions in the Brillouin zone. Figures 4,
and 6 show the corresponding quantities for tungsten.

FIG. 5. Same as Fig. 2 but for tungsten.

FIG. 6. Same as Fig. 3 but for tungsten.
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parametersg and b of aluminum are generally larger in
magnitude than those of tungsten. Approaching the Brillo
zone center the acoustic branches vanish linearly wit
slope that depends on the direction. As a consequence
Grüneisen parameterg as well as the concavity parameterb
are discontinuous at theG point. The phonon branches re
produce those in Refs. 3 and 19 obtained by the sa
method. Our results for the Gru¨neisen parameter of alumi
num differ in a significant way from those obtained using
empirical pseudopotential.26 This difference can be attribute
by the fact we use norm-conserving pseudopotential that
vides a better description of the valence states.

Our results for the linear thermal expansion coefficient

FIG. 7. Linear thermal expansion coefficient in aluminum. T
results obtained with~without! the thermal expansion of the unit
cell volume are denoted by a solid~dashed! line. Diamonds indicate
experimental data from Ref. 14.

FIG. 8. Same as Fig. 7 but for tungsten. Diamonds, stars,
angles up and down indicate experimental data from Ref. 14, R
27, Ref. 28, and Ref. 29, respectively.
5-4
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Ab initio THERMODYNAMICS OF METALS: AL AND W PHYSICAL REVIEW B 63 064305
aluminum and tungsten are displayed in Figs. 7 and 8.
solid line is our theoretical result obtained according to
procedure exposed in Sec. II and compared with the exp
mental data from Ref. 14 denoted by diamonds. Our res
describe the thermal expansion coefficient up to high te
perature. For aluminum there is no appreciable differe
between theory and experiment over the whole range of t
peratures where the experimental data are available; for t
sten a deviation of the experimental data can be noticed
above 1500 K, when higher-order terms in the expansi
~10! and ~11! and other anharmonic processes are expe
to become important.

To show the contribution of the self-consistent proced
we have performed a calculation using the same ze
temperature quantities but with the temperature depend
given only by the Bose-Einstein factor, as done in Ref. 10
compute the linear thermal expansion coefficient up to ro
temperature. The results are displayed in Figs. 7 and 8
dashed lines. While this approximation is accurate up to

FIG. 9. Temperature dependence of specific heat of alumin
The specific heat at constant volume is denoted by a solid line;
specific heat at constant pressure is denoted by a dashed line
result of the Debye model is denoted by a dotted line. Triangles
and down denote experimental data ofCP ~respectively from Ref. 7
and Ref. 30!. The horizontal line is theCV classical value.
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K, it gives an underestimation of the linear thermal expa
sion coefficient at high temperature.

The difference in the magnitude of the linear thermal e
pansion coefficient of aluminum and tungsten can be att
uted to two different mechanisms according to the res
exposed above. One is the contribution due to microsco
dynamical quantities~phonon frequencies, Gru¨neisen, and
concavity parameters!, i.e., the contribution of the terms in
the sum in Eq.~5!. The magnitude of the Gru¨neisen param-
eters of aluminum is larger than that of tungsten. Further
phonon energies of aluminum are, on average, smaller
those of tungsten. At finite temperature this fact favors
thermal occupation of phonons in aluminum with respect
tungsten. As a consequence the microscopic contributio
larger in aluminum than tungsten. The other mechanism
sponsible for the difference of the linear thermal expans
coefficient is related to the product between bulk modu
and unit-cell volume by which the right-hand side of Eq.~5!
is divided. At zero temperature the productB(T)V(T) of
tungsten is about three times that of aluminum. The com
nation of these two contributions is responsible for the d
ferent magnitude of the linear thermal expansion coeffici
of the two materials.

.
e
he
p

FIG. 10. Same as Fig. 9 but for tungsten. Triangles up and do
denote experimental data~respectively from Ref. 31 and Ref. 30!.
re.
r

TABLE I. Calculated bulk modulus, lattice constant, and Debye temperature atT50 K, and elastic constants at room temperatu
Values in parentheses denote experimental data from Ref. 30 unless explicitly stated. Hereda0 /dM is the derivative of the lattice paramete
with respect to the atomic mass.

Compound B~0! a0 Q
da0

dM
C11 C12 C44

~Kbar! ~a.u.! ~K! (1029 amu21) (1011 N/m2) (1011 N/m2) (1011 N/m2)

Al 794 ~783! 7.50 ~7.63! 462 ~428! a 1.15 ~1.07! 0.52 ~0.60! 0.32 ~0.28!
W 3200~3142! b 6.05 ~5.97! 387 ~400! a 21.56 4.68~5.22! 2.18 ~2.04! 2.04 ~1.61!

aFrom Reference 14.
bFrom Reference 32.
5-5
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In Figs. 9 and 10 we display the specific heat of alumin
and tungsten, respectively. The solid~dashed! line is our
result for the specific heat at constant volume~pressure!,
while triangles denote experimental data ofCP .7,30 The hori-
zontal line is the classical value ofCV524.9 J mol21 K21.
We have also performed a calculation of the specific h
using a Debye model and the experimental data of Tabl
the results underestimate the experimental data and this
crepancy is significant for tungsten. In contrast, our fir
principles results agree well with experiment for aluminu
while for tungsten the agreement is less satisfactory at h
temperature, where the quasiharmonic approximation is
pected to fail.

The Debye temperature, computed according to Eq.~16!
is reported in Table I. Due to the larger Debye temperatur
aluminum, the specific heat of this material vanishes fa
than that of tungsten when approaching the absolute zer

The computed bulk modulus at zero temperature is
played in Table I for both materials. The bulk modulus i
cludes the zero point motion contribution that is found to
of a few percent for aluminum (1.8%) but negligible fo
tungsten (0.3%). Figure 11 displays the temperature de
dence of the isothermal~solid line! and adiabatic~dashed
line! bulk modulus of aluminum and tungsten. The expe
mental data of the adiabatic bulk modulus of tungsten
also reported. The percentage variation of the bulk modu
with respect the zero-temperature value is bigger in alu
num than expected since this material presents a larger
mal expansion coefficient than tungsten.

Since, to the best of our knowledge, the dependence o
lattice parameter on atomic mass is known only for f

FIG. 11. Temperature dependence of isothermal~solid line! and
adiabatic~dashed line! bulk modulus of aluminum and tungsten
BU[V(]2U/]V2) is the contribution of the zero-temperature cla
sical energy to the bulk modulus. The deviation from unity atT
50 is the contribution due to zero-point motion. Circles, diamon
and dotted line denote tungsten experimental data~from Refs. 33,
32, and 34 respectively!. Triangles denote aluminum experiment
data~from Ref. 7!.
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semiconductors, we have investigated this effect in the m
als we have considered. While aluminum does not h
stable isotopes, natural tungsten is a mixture of five differ
isotopes,180W ~isotopic abundance 0.13%),182W (26.3%),
183W (14.3%), 184W (30.67%), and186W (28.6%). We
have computed the derivative of the lattice constant w
respect to the atomic mass. The result is reported in Tab
and is about three orders of magnitude smaller than in z
blende semiconductors.9,10 This is due to the presence in th
latter materials of optical branches that give the largest c
tribution to the change of the lattice constant.10

It is well known that the elastic constants of a material a
related to the slope of the acoustic phonon modes near
zone center;8 so we can obtain the former quantities and th
temperature dependence from our database. However, a
G point the acoustic frequencies are vanishing, so they
expected to be more sensitive to the convergence and to
merical errors than the phonon branches far from
Brillouin-zone center. For this reason this procedure is l
accurate for the computation of the elastic constants
straining the unit cell, as done, e.g., in Ref. 35. The ela
constants at room temperature are displayed in Table. I w
experimental data. The deviations from the experiment
in this case, about two to three times the ones reporte
Ref. 35.

To test the capability of the theory to predict the chan
of volume under pressure we have computed the compr
ibility, i.e., the inverse of the bulk modulus, at different pre
sure. Our results are displayed in Fig. 12; as usual,14 they are
reported as the relative variation of the unit-cell volume
compare with experimental data.

V. CONCLUSIONS

In this paper we have seen how, performing only fir
principles calculation atT50, it is possible to compute the
temperature dependence of several thermodynamic quan
within the quasiharmonic approximation requiring a sm

,

FIG. 12. Pressure dependence of unit-cell volume of alumin
~solid line! and tungsten~dashed line! at room temperature (V0

denote the volume at zero pressure!. Circles and diamonds denot
aluminum experimental data~from Ref. 14!.
5-6



a
pr
c

ig

in

a
as

I

Ab initio THERMODYNAMICS OF METALS: AL AND W PHYSICAL REVIEW B 63 064305
amount of extra computations. Our results agree with av
able experimental data up to very high temperature and
vide useful predictions where the experimental data are la
ing. This scheme can be also applied to compute the h
pressure thermodynamic behaviors. We have given
realistic prediction of the effect of isotopic substitution
metals with one atom per unit cell.
hy

ity
io

. B

n
lt-

th
c

06430
il-
o-
k-
h-
a

ACKNOWLEDGMENTS

We thank S. de Gironcoli for useful discussions and
critical reading of the manuscript. The computer time w
granted by IDRIS on the IBM RS6000~Project No. 001266!
and by Universite´ Louis Pasteur of Strasbourg on the SG
Origin-2000 supercomputer.
at
1S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett.58, 1861
~1987!.

2P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, P
Rev. B43, 7231~1991!.

3S. de Gironcoli, Phys. Rev. B51, 6773~1995!.
4P. Pavone, ‘‘Lattice dynamics of semiconductors from dens

functional perturbation theory,’’ Ph.D. thesis, Scuola Internaz
nale Superiore di Studi Avanzati, Trieste, Italy, 1991~unpub-
lished!.

5A. Debernardi, S. Baroni, and E. Molinari, Phys. Rev. Lett.75,
1819 ~1995!.

6A. Debernardi, Solid State Commun.113, 1 ~2000!.
7D. C. Wallace,Thermodynamics of Crystals~Dover, New York,

1972!.
8See, e.g., N. W. Ashcroft and N. D. Mermin,Solid State Physics

~Holt-Saunders, Tokyo, 1981!.
9P. Pavone and S. Baroni, Solid State Commun.90, 295 ~1994!.

10A. Debernardi and M. Cardona, Phys. Rev. B54, 11 305~1996!.
11A. Kazimirov, J. Zegenhagen, and M. Cardona, Science282, 930

~1998!.
12J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, Phys. Rev

59, 965 ~1999!.
13Numerical Data and Functional Relationships in Science a

Technology, edited by K.-H. Hellwege and J.L. Olsen, Lando
Börnstein, New Series, Group III, Vol. 13, Pt. a~Springer-
Verlag, Berlin, 1981!.

14D.E. Gray,American Institute of Physics Handbook~McGraw-
Hill, New York, 1972!.

15See, e.g., H. Callen,Thermodynamic~Wiley and Sons, New
York, 1960!.

16For metals this approximation is expected to be valid as far as
change of the Fermi surface caused by tuning the pressure
be neglected.
s.

-
-

d

e
an

17G.B. Bachelet, D.R. Hamann, and M. Schlu¨ter, Phys. Rev. B26,
4199 ~1982!.

18L. Kleinman and D.M. Bylander, Phys. Rev. Lett.48, 1425
~1982!.

19C. Bungaro, S. de Gironcoli, and S. Baroni, Phys. Rev. Lett.77,
2491 ~1996!.

20D.M. Ceperley and B.J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
21J. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
22A. Baldereschi, Phys. Rev. B7, 5212 ~1973!; D.J. Chadi and

M.L. Cohen, ibid. 8, 5747 ~1973!; D.J. Chadi,ibid. 16, 1746
~1977!.

23H.J. Monkhorst and J.D. Pack, Phys. Rev. B13, 5188~1976!.
24See Ref. 13, p. 11.
25See Ref. 13, p. 164.
26D.C. Wallace, Phys. Rev.187, 991 ~1969!; D.C. Wallace, Phys.

Rev. B1, 3963~1970!.
27A.P. Miiller and A. Cezairliyan, Int. J. Thermophys.11, 619

~1990!.
28J.S. Shah and M.E. Straumanis, J. Appl. Phys.42, 3288~1971!.
29F.C. Nix and D. McNair, Phys. Rev.61, 74 ~1942!; R.J. Corruc-

cini and J.J. Gniewek, ‘‘Thermal expansion of technical solids
low temperature,’’ Natl. Bur. Stand.~U.S.! Circ. No. 29 ~U.S.
GPO, Washington, D.C., 1960!, pp. 2 and 8.

30D.R. Lide,CRC Handbook of Chemistry and Physics~CRC press,
New York, 1998!.

31V.B. Fedorov, High Temp.13, 608 ~1975!.
32F.H. Featherston and J.R. Neighbours, Phys. Rev.130, 1324

~1963!.
33D.I. Bolef and J. de Klerk, J. Appl. Phys.33, 2311~1962!.
34R. Lowrie and A.M. Gonas, J. Appl. Phys.38, 4505~1967!.
35M. Alouani, R.C. Albers, and M. Methfessel, Phys. Rev. B43,

6500 ~1991!.
5-7


