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Interaction of collinear transverse acoustic waves in cubic crystals

J.-Y. Duquesne and B. Perrin
LMDH, UniversitéPierre et Marie Curie \ CNRS (UMR 7603), Boıˆte 86, 4, place Jussieu, 75252 Paris Cedex 05, France

~Received 7 June 2000; published 23 January 2001!

In isotropic solids, transverse acoustic waves propagate undistorted and the interaction of collinear trans-
verse waves is forbidden. We stress here that transverse waves behave differently in anisotropic solids and we
give experimental evidence for the interaction of transverse acoustic waves propagating along the threefold
axis of a cubic crystal.

DOI: 10.1103/PhysRevB.63.064303 PACS number~s!: 62.65.1k, 43.25.1y
tic
as
es
t
re
te

rs
s
o
h

ob

ts
a
e
r

uc
rs
no
o

er
r

si
io
o
tw
ga

i
ul

st
io
s
io

ex-

lid
ese
nlin-
ves
all

der

ce

out
. A

oes
be-
ans-
of

olid
se
ns-

ion

ian
I. INTRODUCTION

It is well known that longitudinal and transverse acous
waves exhibit different nonlinear properties in isotropic el
tic solids. A longitudinal wave distorts as it propagat
~second-harmonic generation! and collinear waves interac
~production of harmonic waves with sum and difference f
quencies!. On the contrary, a transverse wave propaga
without distortion and the interaction of collinear transve
waves is forbidden.1 In anisotropic solids, the situation i
somewhat different. A transverse wave can produce a sec
harmonic2 and collinear transverse waves can interact. T
nonlinear propagation of longitudinal waves has been
served for a long time in liquids and solids~for a review see
Refs. 3–5! but, to our knowledge, very few experimen
about the nonlinear propagation of transverse waves h
been reported. Second-harmonic generation by transv
waves has been observed in isotropic solids, in cases whe
was in principle forbidden and was then attributed to str
tural defects.6,7 Second-harmonic generation by transve
waves has also been observed in ac-cut quartz but the
linear coupling parameter was found to depend strongly
the sample so that impurities or dislocation effects w
suspected.8 Recently, we observed second-harmonic gene
tion by transverse waves in an icosahedral quasicrystal.9 In
the present paper, we report experiments performed in
con which show evidence for the intrinsic nonlinear behav
of transverse waves propagating in a cubic crystal. We
served the production of sum frequency waves when
transverse acoustic waves with different frequency propa
simultaneously along a threefold axis. This behavior is
good agreement with our theoretical analysis and res
from the intrinsic nonlinearities of the solid.

II. THEORY

Let us consider the nonlinear propagation of an acou
plane wave along a given direction. The equations of mot
are conveniently expressed in a set of rectangular Carte
coordinate axes which includes the propagation direct
Let us callxyz such a coordinate set, wherex is the propa-
gation direction. The equations of motion are then

ru1,tt2C118 u1,xx2C168 u2,xx2C158 u3,xx5 f ~u1,x ,u2,x ,u3,x!,
~1!
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ru2,tt2C168 u1,xx2C668 u2,xx2C568 u3,xx5g~u1,x ,u2,x ,u3,x!,
~2!

ru3,tt2C158 u1,xx2C568 u2,xx2C558 u3,xx5h~u1,x ,u2,x ,u3,x!,
~3!

where ui are the displacement components,r is the mass
density andCi j8 are the second-order elastic constants,
pressed in thexyzcoordinate axes. The right-hand termsf, g,
andh arise from the intrinsic nonlinear properties of the so
and depend on the higher-order elastic constants. Th
source terms can, under due circumstances, induce a no
ear behavior of the acoustic waves: the interaction of wa
and production of second-harmonic waves. They are sm
and Appendix A gives their expressions in a second-or
approximation. Approximate solutions of Eqs.~1!–~3! can be
obtained by a perturbation method.10,11 The displacement
field is writtenu5u[ I ]1u[ II ] , whereu[ I ] is the primary dis-
placement field~i.e., the solution when the nonlinear sour
terms are neglected!, and whereu[ II ] is a small correction. In
Eqs. ~1!–~3!, u[ II ] is then substituted tou on the left-hand
side andu[ I ] is substituted tou on the right-hand side. In this
paper, we only consider primary transverse waves:u1

[ I ]50.
In the following, the source terms will then bef (0,u2,x

[ I ] ,u3,x
[ I ] ),

g(0,u2,x
[ I ] ,u3,x

[ I ] ), and h(0,u2,x
[ I ] ,u3,x

[ I ] ). In isotropic solids, theg
andh source terms vanish because the elastic constantsC158 ,
C168 , C568 , C1568 , C5558 , C5568 , C5668 and C6668 are equal to
zero. Then, a primary transverse wave propagates with
distortion and collinear transverse waves do not interact
harmonic longitudinal fieldu1

[ II ] is produced because thef
source term does not vanish. However, its amplitude d
not grow but oscillates along the propagation direction
cause of the phase mismatch between longitudinal and tr
verse waves.1 We stress here that the nonlinear behavior
transverse waves may be different in an anisotropic s
since theg and h source terms may be nonzero. In tho
cases, the possibility for the production of harmonic tra
verse fields must be considered.

To be specific, let us consider the nonlinear propagat
of transverse acoustic waves along the threefold axis@111# of
a cubic crystal. We use the following rectangular Cartes
coordinate axes:x5@111#, y5@112̄#, z5@ 1̄10#. The equa-
tions of motion are then~see Appendixes A and B!
©2001 The American Physical Society03-1
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ru1,tt
[ II ]2C118 u1,xx

[ II ] 5
]

]x H 1

2
~C118 1C1558 !@~u2,x

[ I ] !21~u3,x
[ I ] !2#J ,

~4!

ru2,tt
[ II ]2C558 u2,xx

[ II ] 5
]

]x H 1

2
C6668 @~u2,x

[ I ] !22~u3,x
[ I ] !2#

2C5558 u2,x
[ I ] u3,x

[ I ] J , ~5!

ru3,tt
[ II ]2C558 u3,xx

[ II ] 5
]

]x H 2
1

2
C5558 @~u2,x

[ I ] !22~u3,x
[ I ] !2#

2C6668 u2,x
[ I ] u3,x

[ I ] J . ~6!

The primary transverse waves are degenerate, with po
izations in theyzplane, and the source terms in Eqs.~5! and
~6! do not vanish. Then a transverse wave will distort a
propagates and collinear primary transverse waves will in
act. Let us consider two primary collinear transverse wav
propagating along@111#, in the same direction, with circula
frequencyv1 andv2 and polarization anglesf1 andf2 in
the yz plane. The primary acoustic field is

S u1
[ I ]

u2
[ I ]

u3
[ I ]
D 5S 0

a cosf1

a sinf1

D cosV11S 0

b cosf2

b sinf2

D cosV2 ,

~7!

where

V i5v i t2kix1u i , ~8!

ki
2C558 5rv i

2 , ~9!

k1k2.0. ~10!

The source terms will produce a harmonic transverse fi
with 2v1 , 2v2 , (v11v2), and (v12v2) components. Let
us only consider thev11ev2 components (e561). We get

u2
[ II ]5eAx cos~F2f12f2!cos~V11eV2!, ~11!

u3
[ II ]5eAx sin~F2f12f2!cos~V11eV2!, ~12!

where

A52
abk1k2

4

AC55582 1C66682

C558
, ~13!

sinF5
C5558

AC55582 1C66682
, ~14!

cosF5
2C6668

AC55582 1C66682
. ~15!
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Then primary transverse waves propagating in a cu
crystal along a threefold axis@111# with polarization angles
f1 and f2 do interact and produce harmonic transve
waves which grow linearly with the propagation distancex.
The polarization anglec of the harmonic waves in theyz
plane is given by the relation

c5F2f12f2 . ~16!

Of course, this law is consistent with the threefold sy
metry around@111#. For cubic crystals in them3m, 4̄3m,
and 432 classes, the expressions further simplify sinceC5558
50 and the relation~16! becomes independent of the elas
constants

c52~f11f2!. ~17!

Table I gives the polarization of the harmonic transve
waves versus selected polarizations of the primary transv
waves for cubic crystals in them3m, 4̄3m, and 432 classes
In the same way, for second-harmonic generation, we
(c522f), wheref is the primary wave polarization angle
Then, the angle between the polarizations of the prim
wave and its second harmonic can exhibit a range of va
between 0 andp. In particular, a primary wave polarize
parallel to@1̄10# and its second harmonic will have perpe
dicular polarizations, whereas a primary wave polariz
normal to @1̄10# and its second harmonic will have parall
polarizations.

Using the same method, it is easy to study the nonlin
propagation of transverse waves in a cubic crystal alon
@100# or along a@110# axis ~see Appendixes A and B for th
relevant elastic constants!. Transverse waves propagatin
along a@100# axis do not interact and do not distort as th
propagate because the source terms vanish. The behavi
transverse waves propagating along a@110# axis depends on
the cubic class. In them3m, 4̄3m, and 432 classes, they d
not interact and do not distort as they propagate because
source terms vanish. In the less symmetricalm3 or 23
classes, the source terms do not vanish. However, wa
polarized along@ 1̄10# or @001# have different velocities so
that phase mismatching must be considered. We find
only transverse waves polarized along@ 1̄10# do interact and
distort as they propagate~the harmonic field is polarized
along @ 1̄10#).

TABLE I. Polarization of the harmonic transverse waves vers
selected polarizations of the primary transverse waves for cu

crystals in them3m, 4̄3m, and 432 classes. All waves propaga
along the@111# direction.

Primary
wave (v1)

Primary
wave (v2)

Harmonic
wave (v11ev2)

Polarization @112̄# @112̄# @112̄#

Polarization @112̄# @ 1̄10# @ 1̄10#

Polarization @ 1̄10# @ 1̄10# @112̄#
3-2
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INTERACTION OF COLLINEAR TRANSVERSE . . . PHYSICAL REVIEW B 63 064303
III. EXPERIMENTS

We have studied the interaction of collinear transve
waves in silicon (m3m cubic point group!. The samples are
single crystals with a low impurity content~room-
temperature resistivity.100 V cm). Two samples are use
in order to compare the interaction of collinear transve
waves propagating along a threefold axis@111# and along a
fourfold axis@100#. On both samples, two oriented faces a
polished, flat and parallel: respectively, two~111! and two
~100! faces. Both samples are cylinders with a lengthd equal
to 10.0 mm and a diameter equal to 18 mm. The transv
waves transducers are LiNbO3 plates (163° rotated, Y cut!.
Two transducersT1 and T2 are glued on both faces of
given sample with salol. Their polarizations are well co
trolled. The size of the electrodes is 2 mm33 mm. The
same set of transducers is used for both samples.

Figure 1 is a sketch of the setup used to detect the p
sible transverse harmonic waves. TheT1 andT2 transducers
are driven by separate high-frequency pulsed sources aF1
545 MHz andF25117 MHz, respectively. TheP1 and P2
amplifiers are 50-V broadband power amplifiers. They d
liver 7 and 1 W, respectively~on a 50V load!. T2 is also
able to detect waves at (F11F2)5162 MHz. Then,T2 is
both the source for theF2 primary wave and the receiver fo
possible (F11F2) harmonic waves. An electronic switchSw
selects the mode of operation ofT2. The excitation pulses ar
delayed with respect to one another to ensure the simu
neous propagation of theF1 andF2 acoustic pulses. For tha
purpose, theF1 acoustic pulse is emitted when theF2 acous-
tic pulse arrives atT1. Then, the emittedF1 acoustic pulse
and the reflectedF2 acoustic pulse propagate simultaneou
from one face to the other. The received signal is filtered
recorded by a digital scope, triggered by synchronousF1
1F2) electric pulses. Averaging is performed to improve t
signal-to-noise ratio.

In Si@100#, the polarizations of the transducers~and then
of the acoustic waves! are set parallel to an arbitrary direc

FIG. 1. Sketch of the setup. The transducersT1 and T2 are
driven by two pulsed high-frequency sources. The delay gener
D synchronizes the emission of the acoustic pulses with freque
F1 andF2. An electronic switchSw selects the operation mode o
T2 ~transmitter or receiver!. S1 ,S2 are high-frequency synthetizer
~pulse modulated!. P1 ,P2 are power amplifiers.BP3 andBP1 are
band-pass filters at 160 and 45 MHz, respectively.Sc is a digital
scope.M is a mixer.F1545 MHz,F25117 MHz.
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tion and the transducers are face to face. In the case
Si@111#, the internal conical refraction must be considered
is well known that the power flow of transverse waves pro
gating along@111# is deflected from@111#. The Poynting
vector rotates about a cone when the polarization is rota
in the plane normal to@111#.12 The semiangle of this cone i
13° in Si. Then, because of the finite size of the transduc
acoustic beams propagating in the same direction al
@111# but with different polarizations will only overlap in a
restricted volume. In such a case, the expected interactio
the waves will occur only in this restricted volume and t
benefit from cumulative effects will be lost. Then, in o
experiment, it is desirable that the primary waves have
same polarization angle:f1[f2 @p#. Let us call f this
common polarization. An additional restriction arises fro
the polarization angle22f of the expected harmonic wave
To benefit from a cumulative effect, the power flow of th
harmonic must be in the same direction as the power flow
the fundamental waves. Then the harmonic and the fun
mental waves should have the same polarization anglef
[22f@p#. Optimal conditions for the experiment are the
obtained forf equal to2p/3, 0, or 1p/3. Indeed those
conditions are equivalent because of the threefold symm
around@111#. The present experiments in Si@111# were per-
formed with f50: the polarizations of the transducers a
set parallel to@112̄#, i.e., normal to a twofold axis. More
over, the transducers are shifted with respect to one ano
along @112̄# to take into account the power flow deviatio
Figure 2 is a sketch of the configuration.

It is important in the experiments that the acoustic pow
of the fundamental waves are as closed as possible in
samples. We compared then the electromechanical con
sion factors K of the transducers successively glued
Si@111# and Si@100#. For that purpose, we measured the ma
nitude of the first echo in the reflexion mode, for ea
sample and each transducer~in that case, the transducer op

or
cy

FIG. 2. Position and orientation of the transducersT1 and T2

used in the study of Si@111#. The double arrows show the polariza

tion of the transducers~parallel to@112̄#). a is the angular devia-
tion of the power flow from the@111# axis. In Si:a513°.
3-3
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J.-Y. DUQUESNE AND B. PERRIN PHYSICAL REVIEW B63 064303
erates either as a transmitter or as a receiver!. The ratio of the
conversion factors was then deduced. We observed tha
conversion factor of a given transducer was nearly const
within a few dB, in the experiments on both samples. Ta
II gives our results.

Figure 3 displays the signals which were observed suc
sively in Si@111# and Si@100#. Pulses were observed at (F1
1F2)5162 MHz. They are large in Si@111# and, on the con-
trary, small in Si@100#. The amplitude ratio is 26 dB~first
pulses!. We swapped several times the Si@111# and Si@100#
samples. Qualitatively, the same observation was perform
Figure 4 displays, in Si@111#, log10E versus log10A1A2,
whereE is the amplitude of the first pulse at (F11F2), and
whereA1 andA2 are the amplitudes of the first pulses atF1
andF2, respectively. We observe thatE is proportional to the
productA1A2.

Clearly, the (F11F2) pulses result from some nonlinea
processes. The comparison of the results in both sam
shows that the nonlinear processes are more efficient w
using the Si@111# sample than when using the Si@100#
sample. Since the setups are otherwise identical, we sug
that the pulses observed when using Si@111# are mainly due
to a nonlinear process located inside the sample. Our re
are in good agreement with the theoretical analysis: tra
verse waves propagating along@111# interact and produce
sum frequency waves, whereas transverse waves propag
along @100# do not. The large difference in the pulse amp
tudes in Si@111# and Si@100# cannot be accounted for b

TABLE II. Ratio of the electromechanical coupling factorK
~one conversion! of the transducersT1 andT2 when glued succes
sively on Si@111# and Si@100#.

Transducer T1 T2 T2

Frequency 45 MHz 117 MHz 162 MHz
K@111#/K@100# 2.4 dB -1 dB -2.7 dB

FIG. 3. Harmonic signals observed in Si@111# and Si@100#. The
inset is the power spectrum of the first pulse in Si@111# ~between 4
and 6ms).
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different power levels of the primary acoustic waves in bo
samples since the conversion factors of the transducers
very closed when glued successively on both samples~Table
II !. For the same reason, it cannot be accounted for by
ferent sensitivities of the receiver. No interaction is expec
in Si@100# and the small pulses that are observed there
most likely due to a nonlinear characteristic of the transd
ers. We have checked that the order of magnitude of the
(F11F2) pulse in Si@111# was in agreement with the valu
derived from Eq.~13! ~whereF andf11f2 vanish!, using
estimates of the electromechanical conversion factors an
the electrical power inputs, as well as published values of
elastic constants.13 Then, we believe that our experiment
results show that the intrinsic nonlinearities of silicon indu
an interaction of collinear transverse acoustic waves pro
gating along@111#.

IV. CONCLUSION

We have analyzed in detail the nonlinear propagation
transverse acoustic waves along symmetry axes of c
crystals. The equations of motion show that transverse wa
propagating along a threefold axis distort as they propag
and interact. This behavior is qualitatively different fro
what happens in isotropic solids. We have performed exp
ments in silicon in order to investigate the interaction
transverse waves. We observed that two transverse w
with frequencyF1 andF2, propagating simultaneously alon
a threefold axis and polarized normal to a twofold axis, p
duce a transverse harmonic wave with frequency (F11F2).
This shows evidence that the intrinsic nonlinearities of
anisotropic solid can induce an interaction of collinear tra
verse acoustic waves.

FIG. 4. log10 E versus log10 A1A2 in Si@111#. E, A1, andA2 are
the amplitudes of the first harmonic pulse~at F11F2) and of the
first fundamental pulses~at F1 andF2), respectively. Different ar-
bitrary units are used forE andA1A2. Black dots:A2 is kept con-
stant andA1 varies. White dots:A1 is kept constant andA2 varies.
White triangles:A1 is kept constant~previousA1 level minus 7 dB!
andA2 varies.
3-4
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APPENDIX A

Equations~A1!–~A3! give the expressions of the source terms in Eqs.~1!–~3! in a second-order approximation. The elas
constants are expressed in arbitrary Cartesian coordinates axesxyz. Ci j8 are the second-order elastic constants.Ci jk8 are the
Brugger third-order elastic constants.

f ~a,b,g!5
]

]x H 1

2
~3C118 1C1118 !a21

1

2
~C118 1C1668 !b21

1

2
~C118 1C1558 !g2

1~C168 1C1168 !ab1~C158 1C1158 !ag1C1568 bg
J , ~A1!

g~a,b,g!5
]

]x H 1

2
~C168 1C1168 !a21

1

2
~3C168 1C6668 !b21

1

2
~C168 1C5568 !g2

1~C118 1C1668 !ab1C1568 ag1~C158 1C5668 !bg
J , ~A2!

h~a,b,g!5
]

]x H 1

2
~C158 1C1158 !a21

1

2
~C158 1C5668 !b21

1

2
~3C158 1C5558 !g2

1C1568 ab1~C118 1C1558 !ag1~C168 1C5568 !bg
J . ~A3!
d
st
ia

y t

sian

-
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APPENDIX B

Tables III, IV, and V give the expressions of the secon
order elastic constants and the Brugger third-order ela
constants, in the cubic system, in three different Cartes
coordinates axes:

Coordinates axes No. 1:@100#,@010#,@001# ~standard coor-
dinates axes!.

Coordinates axes No. 2:@110#,@ 1̄10#,@001#
Coordinates axes No. 3:@111#,@112̄#, @ 1̄10#
These three sets of coordinate axes are useful to stud
06430
-
ic
n

he

acoustic propagation in the@100#, @110#, and @111# direc-
tions, respectively. Only the constants relevant to Eqs.~1!–
~3! are given. The elastic constants in the standard Carte
coordinate axes are labeledCi j andCi jk . Those in the arbi-
trary Cartesian coordinate axes are labeledCi j8 and Ci jk8 .
Table III gives the second-order elastic constants~valid for
all cubic classes!. Tables IV and V give the third-order elas
tic constants in the low-symmetry cubic classes (m3 and 23)
and high-symmetry cubic classes (m3m, 4̄3m, or 432), re-
spectively. Table V is derived from Table IV with the add
tional properties: (C1125C113) and (C1555C166).
astic
TABLE III. Second-order elastic constantsCi j8 in various coordinates systems versus second-order el
constantsCi j in the standard coordinate axes. Cubic system.

Coordinate axes No. 1 Coordinate axes No. 2 Coordinate axes No. 3

C118 C11
1
2 (C111C1212C44)

1
3 (C1112C1214C44)

C158 0 0 0
C168 0 0 0
C558 C44 C44

1
3 (C112C121C44)

C568 0 0 0
C668 C44

1
2 (C112C12)

1
3 (C112C121C44)
3-5
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TABLE IV. m3 and 23 cubic classes. Third-order Brugger elastic constantsCi jk8 in various coordinates
systems versus third-order Brugger elastic constantsCi jk in the standard coordinate axes.

Coordinate axes No. 1 Coordinate axes No. 2 Coordinate axes No. 3

C1118 C111
1

8 S 2C11113C11213C113

112C155112C166
D 1

9 S C11113C11213C113

12C123112C144112C155

112C166116C456

D
C1158 0 0 0

C1168 0
1

8 S 2C1121C113

14C15524C166
D 0

C1558 C155
1

4 S 2C1441C155

1C16614C456
D 1

9 S C1112C12323C144

13C15513C16622C456
D

C1568 0 0 0

C1668 C166 1

8
~2C1112C1122C113!

C1558

C5558 0 0
A6

12 S C1122C113

2C1551C166
D

C5568 0
1

4
~2C1551C166!

A2

36 S 2C11123C11223C113

14C12316C14423C155

23C16624C456

D
C5668 0 0 2C5558

C6668 0 3

8
~C1122C113!

2C5568

TABLE V. m3m, 4̄3m, and 432 cubic classes. Third-order Brugger elastic constantsCi jk8 in various
coordinates systems versus third-order Brugger elastic constantsCi jk in the standard coordinate axes.

Coordinate axes No. 1 Coordinate axes No. 2 Coordinate axes No. 3

C1118 C111
1

4
~C11113C112112C155!

1

9 S C11116C11212C123

112C144124C155116C456
D

C1158 0 0 0

C1168 0 0 0

C1558 C155
1

2
~C1441C15512C456!

1

9 S C1112C12323C144

16C15522C456
D

C1568 0 0 0

C1668 C155 1

4
~C1112C112!

C1558

C5558 0 0 0

C5568 0 0
A2

18 S C11123C11212C123

13C14423C15522C456D
C5668 0 0 0

C6668 0 0 2C5568
064303-6
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