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Interaction of collinear transverse acoustic waves in cubic crystals
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In isotropic solids, transverse acoustic waves propagate undistorted and the interaction of collinear trans-
verse waves is forbidden. We stress here that transverse waves behave differently in anisotropic solids and we
give experimental evidence for the interaction of transverse acoustic waves propagating along the threefold
axis of a cubic crystal.
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. INTRODUCTION pUott— Ci6ul)<x_ Cé6u2,xx_ Cé6u3,xx: g(ul,x yUox !u3,x):

@

It is well known that longitudinal and transverse acoustic
waves exhibit different nonlinear properties in isotropic elas-
tic solids. A longitudinal wave distorts as it propagates
(second-harmonic generatioand collinear waves interact
(production of harmonic waves with sum and difference fre-
guencies On the contrary, a transverse wave propagates
without distortion and the interaction of collinear transversewhere u; are the displacement componengsjs the mass
waves is forbidden.In anisotropic solids, the situation is density andC/. are the second-order elastic constants, ex-
somewhat different. A transverse wave can produce a secorﬁ}essed in thellyzcoordinate axes. The right-hand terfng,
harmonié and collinear transverse waves can interact. The,ndp arise from the intrinsic nonlinear properties of the solid
nonlinear propagation of longitudinal waves has been obanq depend on the higher-order elastic constants. These
served for a long time in liquids and solidr a review see o, 0o terms can, under due circumstances, induce a nonlin-
Refs. 35 but, to our knowledge, very few experiments g, pehayior of the acoustic waves: the interaction of waves
about the nonlinear propagation of transverse waves haV&nd production of second-harmonic waves. They are small
been reported. Second-harmonic generation by transversg, g Appendix A gives their expressions in a second-order

waves has been observed in isotropic solids, in cases whereJp ;. imation. Aoproximate solutions of Ed&)—(3) can be
was in principle forbidden and was then attributed to struc- bp - HPP 4%)—(3)

4 _ : obtained by a perturbation meth&®4! The displacement
tural defect®:’ Second-harmonic generation by transverse&a g is writtenu=ul'l + ul"!. whereu!"! is the primary dis-
waves has glso been observed in ac-cut quartz but the no lacement fieldi.e., the solution when the nonlinear source
linear coupling parameter was founq to de.pend strongly o erms are neglectgdand wherail"l is a small correction. In
the sample so that impurities or dislocation effects wereEqS_ (1)—@3), ul'l is then substituted tai on the left-hand
suspected Recently, we observed second-harmonic 9ENeragie andul'l is substituted tai on the right-hand side. In this

tion by transverse waves in an |cos_ahedral qua5|cr§’/slt_al. _paper, we only consider primary transverse wawé@.:o.
the present paper, we report experiments performed in silic

: : I I

con which show evidence for the intrinsic nonlinear behavion" the“f]ollc[J:/]vmg, the sou[rlc]e tﬁ]rms W'_" then _tb(ao,u%}( u[3>]< ’

of transverse waves propagating in a cubic crystal. We ob9(0Uzx:Usx), andh(Ouz,,uz;). In isotropic solids, they

served the production of sum frequency waves when tw@ndh source terms vanish because the elastic cons@jts

transverse acoustic waves with different frequency propagate1s: Css» Cisss Csss: Csser Cses and Cege are equal to

simultaneously along a threefold axis. This behavior is inzero. Then, a primary transverse wave propagates without

good agreement with our theoretical analysis and resultgistortion and collinear transverse waves do not interact. A

from the intrinsic nonlinearities of the solid. harmonic longitudinal fie|d,l[1”] is produced because tle
source term does not vanish. However, its amplitude does
not grow but oscillates along the propagation direction be-

Il. THEORY cause of the phase mismatch between longitudinal and trans-

verse waves.We stress here that the nonlinear behavior of

Let us consider the nonlinear propagation of an acousti% . . . . .
; o ) - _Transverse waves may be different in an anisotropic solid
plane wave along a given direction. The equations of motion

. . . since theg and h source terms may be nonzero. In those
are conveniently expressed in a set of rectangular Cartesiar)

coordinate axes which includes the propagation direction= 2> the possibility for the production of harmonic trans-

. ; verse fields must be considered.
Let us callxyzsuch a coordinate set, whexas the propa- To be specific, let us consider the nonlinear propagation
gation direction. The equations of motion are then P — propag
of transverse acoustic waves along the threefold [dxi4] of

a cubic crystal. We use the following rectangular Cartesian
pU1 s~ C1qUp x— Clgloxx— CisUazxx= f(Upx,Upx ,Usx), coordinate axesx=[111], y=[112], z=[110]. The equa-
(1)  tions of motion are thesee Appendixes A and)B

' ' ' _
pUz— C15u1)<x_ C56u2,xx_ C55u3)<x_ h(ul,x yUo x ,U3)(),
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J (1 TABLE I. Polarization of the harmonic transverse waves versus
pu[l"{t]—Cilu[l'v'x]f ﬁ—xlz(ciﬁ Ci55)[(u[2"}<)2+(u[3')]()2]], selected polarizations of the primary transverse waves for cubic
(4) crystals in them3m, 43m, and 432 classes. All waves propagate
along the[111] direction.

[ 1o — I 11 [11y2 [11y2 Prima Primar Harmonic
puz,tt_c55u2,xx_(?_x Ec%d:(uz,x) —(Uzx)°] Y y
wave (w;) wave (w,) wave (w,+ ew,)
, Polarization 0T 2] 2]
_C555U[2|,>]<Ug,>]<]' (5) o [112] [112] [112]
Polarization [112] [110] [110]

Polarization [110] [110] [112]

J 1
I ’ 1 ’ | |
puliyl — Coubl = ﬁ_x[ - ECsss[(U[z,]x)z— (U]
Then primary transverse waves propagating in a cubic
—c! [I]u[ll] (6)  crystal along a threefold ax{4.11] with polarization angles
666U2xUsx( - . )
¢, and ¢, do interact and produce harmonic transverse

) . waves which grow linearly with the propagation distamxce
. The primary transverse waves are degene_rate, with polafpe polarization angley of the harmonic waves in thgz
izations in theyz plane, and the source terms in E¢®. and plane is given by the relation

(6) do not vanish. Then a transverse wave will distort as it
propagates and collinear primary transverse waves will inter- J=D—pi—bs. (16)
act. Let us consider two primary collinear transverse waves,

propagating alon§111], in the same direction, with circular  of course, this law is consistent with the threefold sym-
frequencyaw; andw, and polarization angleg,; and ¢ in metry around[111]. For cubic crystals in then3m, 43m,

theyzplane. The primary acoustic field is and 432 classes, the expressions further simplify sg
u[l'] 0 0 =0 and the relatior§16) becomes independent of the elastic
” constants
us acose; | cos);+| bcose, | cosQ,,

uf! asing, b sing, b=—(p1t d2). (17)

(7 . o .
Table | gives the polarization of the harmonic transverse
where waves versus selected polarizations of the primary transverse

waves for cubic crystals in th@3m, 43m, and 432 classes.
Q= wit—kix+6;, ) In the same way, for second-harmonic generation, we get
5, ) (¥=—2¢), whered is the primary wave polarization angle.
kiCss=poyi, (9 Then, the angle between the polarizations of the primary
wave and its second harmonic can exhibit a range of values
kikp>0. (100 between 0_andr. In particular, a primary wave polarized
parallel to[110] and its second harmonic will have perpen-
The source terms will produce a harmonic transverse ﬁel@iCL"ar po'_arizationsl whereas a primary wave po'arized
With 2wy, 2w;, (01+ wy), and (@;—wy) components. Let  normal to[110] and its second harmonic will have parallel
us only consider the; + ew, components{=+1). We get  polarizations.
1 Using the same method, it is easy to study the nonlinear
uy ' =eAxcog P — ¢~ ¢p)cod it e€dy), (1) propagation of transverse waves in a cubic crystal along a
[100] or along g 110] axis (see Appendixes A and B for the
u§'l=€eAxsin(®— ¢~ py)cod 0+ €Q,), (12 relevant elastic constantsTransverse waves propagating
along a[100] axis do not interact and do not distort as they

where propagate because the source terms vanish. The behavior of
; ; transverse waves propagating alongL&0] axis depends on
abkgk, VCiz+Chi : n
A=— L2 7% TO%0 (13)  the cubic class. In thei3m, 43m, and 432 classes, they do
4 Css not interact and do not distort as they propagate because the

source terms vanish. In the less symmetrica® or 23
Céss classes, the source terms do not vanish. However, waves

sind = W (14 polarized anng[TlO] or [001] have different velocities so
555" 666 that phase mismatching must be considered. We find that

¢ only transverse waves polarized aIc{rﬁlO] do interact and
cosh = —0%6 (15)  distort as they propagatéhe harmonic field is polarized

VCi&+Cds along[110]).
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FIG. 1. Sketch of the setup. The transduc&isand T, are
driven by two pulsed high-frequency sources. The delay generator
D synchronizes the emission of the acoustic pulses with frequency
F, andF,. An electronic switchiSw selects the operation mode of
T, (transmitter or receiver S;,S, are high-frequency synthetizers
(pulse modulated P, ,P, are power amplifiersBP; andBP; are
band-pass filters at 160 and 45 MHz, respectiv8lg.is a digital

[110]

FIG. 2. Position and orientation of the transduc€&sand T,

scopeM is a mixer.F,=45 MHz,F,= 117 MHz used in the study of §111]. The double arrows show the polariza-
’ tion of the transducer&arallel to[ 112]). « is the angular devia-
. EXPERIMENTS tion of the power flow from th¢111] axis. In Si:a=13°.

We have studied the interaction of collinear transversdion and the transducers are face to face. In the case of
waves in silicon ('n3m cubic point group The Samp|es are Sl[lll], the internal conical refraction must be considered. It
single crystals with a low impurity conten{room- is well known that the power flow of transverse waves propa-
temperature resistivity- 100 Q2 cm). Two samples are used 9ating along[111] is deflected from[111]. The Poynting
in order to compare the interaction of collinear transverse/€ctor rotates about a cone when the polarization is rotated
waves propagating along a threefold aji41] and along a in the plane normal t9111].22 The semiangle of this cone is
fourfold aXlS[lOO] On both Samp|esl two oriented faces are13° in Si. Then, because of the finite size of the tranSducerS,
polished, flat and parallel: respectively, twbll) and two acoustic beams propagating in the same direction along
(100 faces. Both samples are cylinders with a lengggual ~ [111] but with different polarizations will only overlap in a
to 10.0 mm and a diameter equal to 18 mm. The transverséestricted volume. In such a case, the expected interaction of
waves transducers are L|NQ®|ateS (163° rotated’ Y C)Jt the W.aVeS will occur .Only in this I‘(?Stl’icted volume and the
Two transducersT; and T, are glued on both faces of a benef!t from_cymula’qve effects will b_e lost. Then, in our
given sample with salol. Their polarizations are well con-€xperiment, it is desirable that the primary waves have the
trolled. The size of the electrodes is 2 @ mm. The Same polarization angle;=¢, [7]. Let us call ¢ this
same set of transducers is used for both samples. common polarization. An additional restriction arises from

Figure 1 is a sketch of the setup used to detect the poghe polarization angle-2¢ of the expected harmonic wave.
sible transverse harmonic waves. TheandT, transducers 10 benefit from a cumulative effect, the power flow of this
are driven by separate high-frequency pulsed sourc&s at harmonic must be in the same direction as Fhe power flow of
=45 MHz andF,= 117 MHz, respectively. Th®, and P, the fundamental waves. Then the harmomc_ an_d the funda-
amplifiers are 5@ broadband power amplifiers. They de- Mental waves should have the same polarization angle:
liver 7 and 1 W, respectivelyon a 50Q load). T, is also E—_qu[fr]. Optimal conditions for the experiment are then
able to detect waves afF(+F,)=162 MHz. Then,T, is obtalpgd forg equ.al to—#/3, 0, or + /3. Indeed those
both the source for thE, primary wave and the receiver for conditions are equivalent becau;e of th_e threefold symmetry
possible £, + F,) harmonic waves. An electronic swit§w ~ around[111]. The present experiments in[$11] were per-
selects the mode of operationBf. The excitation pulses are formed with ¢=0: the polarizations of the transducers are
delayed with respect to one another to ensure the simultsset parallel tgf 112], i.e., normal to a twofold axis. More-
neous propagation of tife, andF, acoustic pulses. For that over, the transducers are shifted with respect to one another
purpose, thé=; acoustic pulse is emitted when thg acous-  along[112] to take into account the power flow deviation.
tic pulse arrives al;. Then, the emittedr, acoustic pulse Figure 2 is a sketch of the configuration.
and the reflecte&, acoustic pulse propagate simultaneously It is important in the experiments that the acoustic powers
from one face to the other. The received signal is filtered andf the fundamental waves are as closed as possible in both
recorded by a digital scope, triggered by synchrondeas ( samples. We compared then the electromechanical conver-
+F,) electric pulses. Averaging is performed to improve thesion factorsK of the transducers successively glued on
signal-to-noise ratio. Si[111] and Sj100]. For that purpose, we measured the mag-

In Si[100], the polarizations of the transducéend then nitude of the first echo in the reflexion mode, for each
of the acoustic wavesare set parallel to an arbitrary direc- sample and each transdudar that case, the transducer op-
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TABLE Il. Ratio of the electromechanical coupling factir 1.0 T T T |
(one conversionof the transducer¥; and T, when glued succes- o
sively on Sj111] and Sj100]. ®
08 O .
Transducer Ty T, T, 0 d
Frequency 45 MHz 117 MHz 162 MHz E 0.6 - o. 4
K[111]/K[100] 2.4 dB -1dB -2.7dB ~ 00
.§0 0.4 - o0 _
erates either as a transmitter or as a recgivére ratio of the Oé
conversion factors was then deduced. We observed that the ¢
conversion factor of a given transducer was nearly constant, 021 éo )
within a few dB, in the experiments on both samples. Table o
Il gives our results. 0009 . . .
Figure 3 displays the signals which were observed succes- 0.0 0.2 0.4 0.6 0.8 1.0
sively in S[111] and Sj100]. Pulses were observed &f log. (A1A2 )
+F,)=162 MHz. They are large in 8il11] and, on the con- 10

trary, small in §i100]. The amplitude ratio is 26 dBfirst
pulses. We swapped several times thg 13i1] and Sj100]
samples. Qualitatively, the same observation was performe

Figure 4 displays, in $111], logioE versus 10goAAz  pitrary units are used foE andA,A,. Black dots:A, is kept con-
whereE is the amplitude of the first pulse & {+F>), and  stant andA, varies. White dotsA, is kept constant anék, varies.

whereA; andA, are the amplitudes of the first pulsesFat  white trianglesA, is kept constantpreviousA, level minus 7 dB
andF,, respectively. We observe thits proportional to the  andA, varies.
productA;A,.

Clearly, the £,+F;) pulses result from some nonlinear iferent power levels of the primary acoustic waves in both
processes. The comparison of the results in both samplegmples since the conversion factors of the transducers are
shows that the nonlinear processes are more efficient Wh%ry closed when glued successively on both samlable
using the §i111] sample than when using the[800] ||y "For the same reason, it cannot be accounted for by dif-

sample. Since the setups are otherwise identical, we sugg&ghent sensitivities of the receiver. No interaction is expected
that the pulses observed when usinflL$1] are mainly due i 5j100] and the small pulses that are observed there are
to a nonlinear process located inside the sample. Our resultgost Jikely due to a nonlinear characteristic of the transduc-
are in good agreement with the theoretical analysis: ransss. \we have checked that the order of magnitude of the first
verse waves propagating alofigll] interact and produce (F,+F,) pulse in Si111] was in agreement with the value
sum frequency waves, wherea; transverse waves propaggtiagrived from Eq(13) (where® and ¢ + ¢, vanish, using
along[100] do not. The large difference in the pulse ampli- ggtimates of the electromechanical conversion factors and of
tudes in Si111] and Sf100] cannot be accounted for by i a alectrical power inputs, as well as published values of the

elastic constants Then, we believe that our experimental

FIG. 4. log,E versus logyA/A, in Si[111]. E, A, andA, are
%m amplitudes of the first harmonic pul&s F;+F,) and of the
rst fundamental pulse@t F, andF,), respectively. Different ar-

~ 0 results show that the intrinsic nonlinearities of silicon induce
11 % an interaction of collinear transverse acoustic waves propa-
T 0 gating along111].
~ 5
.>E i £ o) il IV. CONCLUSION
~ 0 100 200 300 ’
-qg’ -1 1 { Frequency (MHz) We have analyzed in detail the nonlinear propagation of
= » L= transverse acoustic waves along symmetry axes of cubic
E" [ crystals. The equations of motion show that transverse waves
< 27 \Si[m] propagating along a threefold axis distort as they propagate
__—sino and interact. This behavior is qualitatively different from
' .‘ what happens in isotropic solids. We have performed experi-
<1 ments in silicon in order to investigate the interaction of
! T . . . T . transverse waves. We observed that two transverse waves

0 2 4 6 8 10 12 14 with frequencyF, andF,, propagating simultaneously along
Time ( ps ) a threefold axis and polarized normal to a twofold axis, pro-
duce a transverse harmonic wave with frequerfey«F»).
FIG. 3. Harmonic signals observed i B11] and Sf100]. The  This shows evidence that the intrinsic nonlinearities of an
inset is the power spectrum of the first pulse ifl$i] (between 4  anisotropic solid can induce an interaction of collinear trans-
and 6 us). verse acoustic waves.
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APPENDIX A

EquationgA1)—(A3) give the expressions of the source terms in Efjs-(3) in a second-order approximation. The elastic
constants are expressed in arbitrary Cartesian coordinate&me@i’j are the second-order elastic constam§k are the
Brugger third-order elastic constants.

1 1 1
d | 5(3Ci3+Ciya’+ 5(Cy+Cleg B2+ 5(Ciy+Cisd ¥
fla.y)=7-1 2 2 2 ! (A1)
+(Cigt Clig@B+(Cist Cyg)ay+CiseBy

1 1 1
d | 5(CigtCiiga®+ 5 (3Cis+ Che B2+ 5 (Clgt Cise) ¥
9(a.B,y) =51 2 2 2 , (A2)
+(Ci1+Cleg @B+ Cisery+ (Cist+ Cie By

l ! ! 2 1 ! ! 2 1 ! ! 2
E(C15+ Cuga™+ §(C15+ Csee B+ 5(3(:15"' Csss) Y

h(a.B,y)=— (A3)

+C1s62B+(Ciy 1+ Cisg) @y +(Ciat Cis By

APPENDIX B acoustic propagation in thgl00], [110], and [111] direc-

. . tions, respectively. Only the constants relevant to Efjs-
dTabIels I, IV, and V g'V%thﬁ expressmnio(; thz Sec?ndﬁg) are given. The elastic constants in the standard Cartesian
order elastic constants and the Brugger third-order elastity jinate axes are label€}; andC;j. Those in the arbi-

constants, in the cubic system, in three different Carteslat&ary Cartesian coordinate axes are Iabe(e’g and Ci’jk-

coordmatgs axes. Table Il gives the second-order elastic constantdid for
_ Coordinates axes No. [100],[010],[001] (standard coor- g cybjc classes Tables IV and V give the third-order elas-

dinates axgs _ tic constants in the low-symmetry cubic classes(and 23)

Coordinates axes No. £110],[110],[001] and high-symmetry cubic classes3m, 43m, or 432), re-
Coordinates axes No. $111],[112], [110] spectively. Table V is derived from Table IV with the addi-

These three sets of coordinate axes are useful to study thenal properties: C;1,=C119 and (Cis5= C1gg)-

TABLE Ill. Second-order elastic constar(y; in various coordinates systems versus second-order elastic
constants<C;; in the standard coordinate axes. Cubic system.

Coordinate axes No. 1 Coordinate axes No. 2 Coordinate axes No. 3
Cu Cu % (C11+Cy21+2Cy) % (C111+2C1,+4Cyy)
Cis 0 0 0
Cle 0 0 0
Css Cus Cus % (C11—C121+Cyuy)
Csg 0 0 0
Ces Cus 3 (C1—Cy) % (C11—C121+Cuy)
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TABLE IV. m3 and 23 cubic classes. Third-order Brugger elastic cons(a’msin various coordinates
systems versus third-order Brugger elastic const@nisin the standard coordinate axes.

Coordinate axes No. 1

Coordinate axes No. 2

Coordinate axes No. 3

!
CllS
’
C116
’
C155
!
ClSS

’
c 166

!
C555

’
0556

’
C566

’
C666

Clll

Ciss

Cies

1(2C;111+3C115+3Cy13
8 +12C 55+ 12C g6
0
1 —Ci10+Cy13
8\ +4C 55— 4C146
1 2Cy44+Ciyss
4\ +Cyget+4Cuse
0

1
) (2C111~ Cr15~ Ca1d)

B

(—=Cis5+ Cage)

0

3
8 (Cr12-C11a)

1 C111173Cy15+3Cyy3
S| T2C15112C 144+ 12Cy55
+12C g6+ 16Cys56

0

1

9

C111—Caoa— 3C144)
+3Cy551T3C 166~ 2Cyse
0

!
c 155

\/E ( C112_ C113

12\ — Cy551 Cygg

\/E 2Cy113—3Cy15-3Cyy3
36 +4C 13+ 6C144—3C1s55
—3C166~4Cys6

!
- C555

!
- 0556

TABLE V. m3m, 43m, and 432 cubic classes. Third-order Brugger elastic consfé,-msin various
coordinates systems versus third-order Brugger elastic consIgpts the standard coordinate axes.

Coordinate axes No. 1

Coordinate axes No. 2

Coordinate axes No. 3

’
CllS

’
c 116
’

c 155
’

c 156
’

c 166
’
0555
’
C556

!
0566

’
C666

Clll

0
0

Ciss

Ciss

1
1 (C11173C115+12Cy59)

0
0

1
> (Ca44t Cys5t2Cys6)
0
1
2 (C111—C112)
0

0

1
9

C111+6Cy15+2C 53 )
+12C 1447+ 24C 155+ 16C 456
0
0
Ci11— Cuaa— 3C144)
+6C155~2Cys6
0

’
c 155

1

9

0

V2 [ Ci11=3Cy1p+2Cy 3
18| 73C144—3C155—2Cys6
0

!
B C556
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