PHYSICAL REVIEW B, VOLUME 63, 064302

Excess modes in the vibrational spectrum of disordered systems and the boson peak
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We study a disordered vibrational model system, where the spring constetshosen from a distribution
P(k)o<1/k above a cut-off valu&,,,>0. We can motivate this distribution by the presence of free volume in
glassy materials. We show that the model system reproduces several important features of the boson peak in
real glassedi) a low-frequency excess contribution to the Debye density of staitethe hump of the specific
heatc,(T) including the power-law relation between height and position of the hump(iihthe transition
to localized modes well above the boson peak frequency.
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The vibrational spectrum and the corresponding thermaharmonic oscillators with random scalar spring constants be-
properties of a large number of disordered materials exhibitween nearest-neighbor masses. The spring constants were
two characteristic anomaliég. While the anomalous linear chosen from a truncated Gaussian distribution with a lower
low-temperature specific heat can be described well by theut-off valuek,,,. As a result of the disorder, a hump in the
model of two-level system$the origin of the second impor- scaled DOSZ(w)/w? occurs at relatively high frequencies.
tant anomaly, the boson peak, is still under discussion. It i8Vhen shiftingk,,;, towards negative valugsvhich imposes
not clear, if both anomalies are relattdhe boson peak some unrealistic instability to all infinite latticethe hump is
refers to an excess contribution to the usual Debye density afhifted towards frequencies about-3 times smaller than
states(DOS) at low frequencie$:° In silicate and ger- wp, which is still far from the frequency range where the
manate glasses, for example, the boson peak frequepgy  boson peak occurs. Model systems with homogeneous distri-
was reported between 4.5 and 13.5 THz, about46times  butions of positive spring constantsee below yield
below the upper band edge:-.2° In silicate glassés**®and  maxima in the same frequency range as the Gaussian model
polybutadiene and polysterene glastethe peaks occur at  system.
frequencies about49 times smaller than the corresponding In this work we also consider a disordered vibrational
Debye frequencyop . model system. The scalar spring constdn#se chosen from

The boson peak also shows up as a small hump in tha power-law distributiorP (k)< 1/k above a positive cut-off
scaled specific heat,(T)/T® in the temperature range 2 valuek,,,. We can motivate®(k) by assuming a distribu-
—30 K.124-811The humps for different materials have a tion of the free volume. We find that a low-frequency peak
common shape. Position and height follow a power-law deoccurs in the DOS ab,c,, in a frequency range comparable
pendence, to the one of the boson peak of real glasses. We expect that

in our model system external pressure will shift the peak
3 x towards larger frequencies, an effect which has also been
SV(Thump) Thumg™ Thump: (1) observed experimentally. Investigating the localization prop-
erties of our model system we find that the modes around the
with x close to 2(Ref. 11 [see Fig. 80)]. The hump in the peak are extended. Localized modes occur above a crossover
specific heat is more pronounced for strong and intermediatiequencyw ~3w,eq This interesting property seems to be
than for fragile glasseb.Apart from molecular dynamics in line with experiments in real glasses. The peak gty is
simulations on relatively small systems that do not yet give also visible inc,(T) as a small hump, which shows similar
clear picture of the origin of the boson pekrelaxational features as the boson peak in real systems, among them the
and vibrational models have been proposed. Many experpower-law dependendd).
ments indicate that the relaxation-type soft potential middel ~ To be specific, we chose the spring constants from a nor-
is appropriate for fragile glasses, while vibrational modelsmalized distribution function
are more appropriate for strong and intermediate gld&es
(see also Ref. 16

In this paper, we do not wish to enter the controversial P(k)=
discussion of the microscopic origin of the boson peak. In- IN(Kmax/ Kin)
stead, we concentrate on an idealized disordered vibrational
model system that can be solved by standard numerical pravherek,/Kmin, the only parameter in the distribution, con-
cedures. We show that the model system is able to reprodudeols the amount of small spring constants. The form of Eq.
several important features of the boson peak in glassy maté2) can be motivated as follows: Consider a disordered sys-
rials. tem, where the neighbor distancag between the particles

Our starting point is the same as the one of Schirmachedire in the interval a,in,amax- The limits a,,;, and a,,., are
et al,!” who considered a simple cubic lattice of coupledrelated to the size of the particles and the maximum diameter

1
K K e [Kmin:Kmaxl» 2

0163-1829/2001/68)/0643024)/$15.00 63 064302-1 ©2001 The American Physical Society



JAN W. KANTELHARDT, STEFANIE RUSS, AND ARMIN BUNDE PHYSICAL REVIEW B63 064302

of holes in the system, respectively, and thus characterize t¢ o[ y ' ] ' 05Fs -
some extent the distribution of the free volume in the system. 3 T
For simplicity, we assume that the distances are distributec> T . E
homogeneously between,;, anda,.x. When the distances % 1 . :O
a;; between two neighboring massesindj fluctuate, the S t * ;2 8
spring constantk;; between them also fluctuate. We assume ! + (L -a, | \é
that the kj; decay roughly exponentially withe;;, k;; 10 ‘?L - *
~Kmin X (amax—&;)/@* ] with a characteristic decay length b +
a*, which might be a reasonable assumption in a strong ol ! 1 0
intermediate glass with covalent bindifigand negligible # 110
charge separations. Combining both assumptions, we arrivi { ; :
at Eq.(2), with the control parameter (a) (D) . -
10)67 10" Il 10 | 100 10" g/ 10° 10’
Kmax! Kmin=€X{ (8max— @min)/a* ]. ©) (,0/0)0 (D/(DO

FIG. 1. (a) Density of state4DOS) Z(w/w,) and (b) rescaled
DOS Z(w/ wo)/(wl wg)? versusw/ wg for our model system cé(z)
=Kmax/M). The symbols correspond i, /Knax=10"° (A), 1074
(¢), 1073 (O), and 102 (O). The numerical results for an ho-
mogeneous distributiok € [0k, are also showiidashed curves
with + symbolg. In the inset, the frequency positiongea/ wq Of
the maxima ofZ(w/wy)!/(w/wy)? are shown versus the relative
maximum size of holesa(,a— amin)/@* =IN(Kmnax/Kmin)-

Note that the distribution(2) is equivalent to an homoge-
neous distribution of the logarithm of spring constants,
P(logk)=const.

We have calculated numerically the DOS of this model
system, where in a simple cubic lattice unit massest
nearest-neighbor sitésandj are connected by springs;
chosen fromP (k). Assuming scalar coupling constars,
the different components of the displacements decouple and

we obtain the same equations of motion Whenk,i,/Knax 1S €nhanced, the maximum #{ ) tends

to higher frequencies. Since in our model system /Kmax IS
d2u (1) related to the free volume parameteg,t—amin) via Eq.(3),
12 22 Kij[ui(t)—u(t)], (4)  the peak is shifted towards higher frequencies, whap.(

dt : —anmin) IS reduced. We can imagine that,(5—ami,) can be

for all spatial components of;. The sum runs over the reduced by applying external pressure to the system. Indeed,
nearest-neighbor sites of site j. The ansatzu(t)  ©xPerimentson glasses indicate that the boson peak is shifted

= yfexp(-iw,) leads to an homogeneous system of equal® higher frequencies, W.he'n 'the' gIas;es were permanently
tions for theN unknown ¢, from which theN real eigen- desified under pressuféhis is in line with the results of our

2o ; : model system.
E’Z'fes wl;a) Oa_aln d taecagog;ezg?er;?;?r?e d elgenvectors Next we consider the specific hegf(T), which is related
19 YN/ Ty ey .

To calculate the vibrational properties and the related spet—0 Z(w) by:

cific heatc, of the model system, we have employed the

0 2 howlkgT
method of Wiliams and Marl§ and the Lanczos CV(T):kBJ dwz(w)<h_w) L' (5)
algorithm?® In Fig. 1 we show the DOZ(w/w), With w, 0 kgT/ (ef@/keT—1)2

=Kma/m, and the rescaled DOZ(w/wo)/(w/wgy)? for

several values df i, /knax betWeen 102 and 10°° (Ref. 20 Figure 2a) showsc(T)/T2 versus temperaturBfor sev-

and system sizes of up to ¥5nasses. For all values of eral values okyi,/knax @s Well as for the homogeneous dis-
Kmin/kmax, DOth quantities show a broad maximum at fre-tribution of spring constants. As expected from the behavior
quencieswpea, Which become smaller, Kpyin/knax is de-  of Z(w), a maximum inc,(T)/T* occurs aflyymp, Which is
creased. Well belowb .., We observe the conventional De- shifted towards lower temperatures and increases in height,
bye behaviorZ(w) = »?. For comparison we also calculated Whenk»/kyax decreases. For testing for a common shape of
the DOS of a vibrational model system with an homoge-the hump, we have pIotte{otV(T)/T3]/[cV(Thqu/Tﬁump] in
neous distribution of spring constarke [ 0.k, where the  Fig. 2(b) as a function ofT/Ty,m, and compared the results
maximum in the DOS simply results from a broadening ofwith the experimental curves for several vitreous sifitét.

the van Hove singularity. The systems with power-law dis-is interesting that the results for our model system at inter-
tributedk;; have their maxima in the low-frequency regime, mediatek i, /knax values agree reasonably well with the ex-
where also the boson peak in glasses is observed. Estimatipgrimental data. No fitting parameter was involved. The fig-
the Debye frequencyp from the plateaux in the scaled ure shows also that major deviations from the common shape
DOS [Fig. 1(b)], we find for the maxima irZ(w)/w? the  occur for the homogeneous model system in the low-
values wp/wpea=3 for Kyin=10"2, wp/wpe=4.5 for  temperature range.

kmm:1o—3, andwp / wpeae=7 for kmin=10—4 and still larger To see, if the specific heat also satisfies the power-law
values for smallek,,. In contrast, the peak for the homo- relation(1) we have pIotteatV(ThumF)/Tﬁumpas a function of
geneous distribution, shows up at frequenaigg,only @ Thymp in @ double-logarithmic fashion. The result, shown in
factor of 2 belowwp . Fig. 3(a@), agrees surprisingly well with the experimental data
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ik 12 k 12 T/T, ) aA-2 ) _10-3 .
Tlnk  lkym™] hump Kin Kax=10"2 and(b) K /Knax=10"3. Jo(w,N) is shown versus

3 wlw, for different system sizedl. Values of Jg~JiVane= 0 637
FIG. 2. (a) Rescaled specific heat,(T)/T* versus temperature indicate extended modes, whillg~JE?**= 1 indicates localized
T for Knin/knax=3%10"° (0), 10°* (O), 3x10°* (A), 10  modes. In the insets, magnifications of the transition regions are

(V), 3x1072 (¢©), and 102 (+) and for an homogeneous dis- shown, which allow to determine the transition frequenaiggrom
tributionk € [0 kmad (X). In (b) the results fron{a) are rescaled by  the intersection of the curves.

dividing T by Ty, ympand cy(T)/T3 by cV(Thqu/Tﬁump. Deviations

from the common shape occur for the smallest and the largest Pag o . L
e : nderson localization of quantum particles in disordered sol-
rameter as well as for the homogeneous distribution of spring con-

stants. The experimental values for several silica glasteege ![?]S (Seed alsp Tﬁfs' 21kand _)Zan? ﬁ [stlntaresthg tg Zee, I'ft
symbols, redrawn from Fig. 1 of Ref. ] Jare also shown. € modes in the peak regime fall into the extended or into
the localized range.

for a large number of glassy and amorphous solids, shown in TO estimate the ratio betweefyey and e, we have
Fig. 3(b). The basic power-lawl) is reproduced with an employe_d the method_ of level statlstl?és!_evel s'_tatlstlcs
exponentx that is, within the error bars, identical with the (With a fixed system sizehave been applied earlier to the
one of real glasses. Note that both, Fig&) 2nd 3b), show Qaygsmn model systethjndicating exten.ded modes in the
the same range for theandy axes. Again, no fitting param- vicinity of wpea- In the method, one first calculates the
eter was involved. It is interesting to note that also for crys-eigenvaluesw? of the vibrational equation and then deter-
talline systems the same power-law behavior has been foundines the eigenvalue spacing§=(wi— wi_l)/A, where
experimentally. An explanation of this is beyond the scopeA is the mean eigenvalue spacing in the frequency range
of this paper. considered. The dependence of the mean squared eigenvalue

Finally we turn to the localization behavior of the vibra- spacing(s?) on the system siz8l indicates the localization
tional modes in our model system. By general arguments, wbehavior. With increasing system sizk=3(s?) tends to
can expect extended phonons for small frequengiesw,  J3'9"*'~0.637 for extended modes, while it approaches
and localized modes for high frequencies .. The local- ~ 3F°'ss° 1 for |ocalized modes. Figure 4 shows the results of
ization mechanism for vibrations is quite similar to the this analysis folk,/kna=10"2 and 10°3. From the figure
we can deducew.~1.3wy for Kmin/Knax=10"2 and w,

@ | ) o ~0.7w, for km@n/Knax:10_3- For kmin/kmx=10‘.4 we ob-

h e | !t‘ %0 tain w.~0.4wg in an analogous way. A comparison with the

32
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position of the peaktaken from the inset of Fig.(h)] yields
0 ~2.7Wpeaky ©c~3.1wpeay,  aANA 0 ~3.9wpeq  fOr
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it - N 10" Experimentally, it is not settled whether the frequency
E homogeneous H wpeax Of the boson peak is close to the localization delocal-

S o 4 & izaton fre Il below. Scatteri i

= . ‘ S quencyw. or well below. Scattering experiments

£ 001 0.1 3 10 50 109 on vitreous silica have been discussed controversially. One

3 T [hkmaxm/kBm”z] Ty (K] interpretation yields localized modes at the boson peak fre-

quencywpea=6-9 THz,** while others indicate the pres-

2(a) versus the positiond,m, of the maxima. In the log-log plot ence of propagating modes updg~ 20 THz_(Ref. 25 \_/veII

the data fall onto a straight line described by a power IaW:above the boson peak. Very recent scattering experiments on
U Thump) Tams T With X~ 2.1 (dotted ling. (b) Experimental ~ 912SSY glycerol yield extended modes up to at least
results for several glasses and amorphous so@jsds well as for ~ ~2-9@peak. " The results from Refs. 25 and 26 are in line
some crystalline materialg(), redrawn after Fig. 2 of Ref. 11. The With the results of our model system. .

data for the glasses and the amorphous solids are consistent with [N summary we have considered an idealized disordered
our theoretical resultg~2.1 (dotted ling. If also crystalline sys- Vibrational model system, consisting of a simple cubic lattice
tems are included, one obtains a smaller exponent. Note that tHef coupled harmonic oscillators with random scalar spring
scales of both axes are only changed by constant factdey Bnd ~ constants between neighbors. The spring constants were cho-
(b), so the range is exactly the same. sen from a power-law distributioR(k)=<1/k above a posi-

FIG. 3. (a) The values of the maxima af,(T)/T® from Fig.
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tive cut-off valueky,,. We have motivated the model by the odd phenomenon—in particular as no single fit parameter
presence of free volume in glassy materials. Since the mod#Yas involved.

describegsurprisingly well several nontrivial features of the

boson peak in glassy systems, we believe that despite its We would like to thank Professor Michael Klinger for
simplicity it may capture essential parts of the physics of thislluminating discussions on the subject.
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