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Excess modes in the vibrational spectrum of disordered systems and the boson peak
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~Received 3 November 2000; published 22 January 2001!

We study a disordered vibrational model system, where the spring constantsk are chosen from a distribution
P(k)}1/k above a cut-off valuekmin.0. We can motivate this distribution by the presence of free volume in
glassy materials. We show that the model system reproduces several important features of the boson peak in
real glasses:~i! a low-frequency excess contribution to the Debye density of states,~ii ! the hump of the specific
heatcV(T) including the power-law relation between height and position of the hump, and~iii ! the transition
to localized modes well above the boson peak frequency.
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The vibrational spectrum and the corresponding ther
properties of a large number of disordered materials exh
two characteristic anomalies.1,2 While the anomalous linea
low-temperature specific heat can be described well by
model of two-level systems,3 the origin of the second impor
tant anomaly, the boson peak, is still under discussion.
not clear, if both anomalies are related.4 The boson peak
refers to an excess contribution to the usual Debye densit
states ~DOS! at low frequencies.5–10 In silicate and ger-
manate glasses, for example, the boson peak frequencyvpeak
was reported between 4.5 and 13.5 THz, about 16240 times
below the upper band edgevE.8,9 In silicate glasses4,5,10and
polybutadiene and polysterene glasses,10 the peaks occur a
frequencies about 429 times smaller than the correspondin
Debye frequencyvD .

The boson peak also shows up as a small hump in
scaled specific heatcV(T)/T3 in the temperature range
230 K.1,2,4–6,11The humps for different materials have
common shape. Position and height follow a power-law
pendence,

cV~Thump!/Thump
3 ;Thump

2x , ~1!

with x close to 2~Ref. 11! @see Fig. 3~b!#. The hump in the
specific heat is more pronounced for strong and intermed
than for fragile glasses.4 Apart from molecular dynamics
simulations on relatively small systems that do not yet giv
clear picture of the origin of the boson peak,12 relaxational
and vibrational models have been proposed. Many exp
ments indicate that the relaxation-type soft potential mod13

is appropriate for fragile glasses, while vibrational mod
are more appropriate for strong and intermediate glasses14,15

~see also Ref. 16!.
In this paper, we do not wish to enter the controvers

discussion of the microscopic origin of the boson peak.
stead, we concentrate on an idealized disordered vibrati
model system that can be solved by standard numerical
cedures. We show that the model system is able to reprod
several important features of the boson peak in glassy m
rials.

Our starting point is the same as the one of Schirmac
et al.,17 who considered a simple cubic lattice of coupl
0163-1829/2001/63~6!/064302~4!/$15.00 63 0643
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harmonic oscillators with random scalar spring constants
tween nearest-neighbor masses. The spring constants
chosen from a truncated Gaussian distribution with a low
cut-off valuekmin . As a result of the disorder, a hump in th
scaled DOSZ(v)/v2 occurs at relatively high frequencies
When shiftingkmin towards negative values~which imposes
some unrealistic instability to all infinite lattices! the hump is
shifted towards frequencies about 223 times smaller than
vD , which is still far from the frequency range where th
boson peak occurs. Model systems with homogeneous di
butions of positive spring constants~see below! yield
maxima in the same frequency range as the Gaussian m
system.

In this work we also consider a disordered vibration
model system. The scalar spring constantsk are chosen from
a power-law distributionP(k)}1/k above a positive cut-off
value kmin . We can motivateP(k) by assuming a distribu-
tion of the free volume. We find that a low-frequency pe
occurs in the DOS atvpeak, in a frequency range comparab
to the one of the boson peak of real glasses. We expect
in our model system external pressure will shift the pe
towards larger frequencies, an effect which has also b
observed experimentally. Investigating the localization pro
erties of our model system we find that the modes around
peak are extended. Localized modes occur above a cross
frequencyvc'3vpeak. This interesting property seems to b
in line with experiments in real glasses. The peak atvpeak is
also visible incV(T) as a small hump, which shows simila
features as the boson peak in real systems, among them
power-law dependence~1!.

To be specific, we chose the spring constants from a n
malized distribution function

P~k!5
1

ln~kmax/kmin!

1

k
kP@kmin ,kmax#, ~2!

wherekmax/kmin , the only parameter in the distribution, con
trols the amount of small spring constants. The form of E
~2! can be motivated as follows: Consider a disordered s
tem, where the neighbor distancesai j between the particles
are in the interval@amin ,amax#. The limits amin andamax are
related to the size of the particles and the maximum diam
©2001 The American Physical Society02-1
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of holes in the system, respectively, and thus characteriz
some extent the distribution of the free volume in the syste
For simplicity, we assume that the distances are distribu
homogeneously betweenamin andamax. When the distances
ai j between two neighboring massesi and j fluctuate, the
spring constantski j between them also fluctuate. We assu
that the ki j decay roughly exponentially withai j , ki j
'kmin exp@(amax2aij)/a* # with a characteristic decay lengt
a* , which might be a reasonable assumption in a strong
intermediate glass with covalent binding15 and negligible
charge separations. Combining both assumptions, we a
at Eq.~2!, with the control parameter

kmax/kmin5exp@~amax2amin!/a* #. ~3!

Note that the distribution~2! is equivalent to an homoge
neous distribution of the logarithm of spring constan
P(logk)5const.

We have calculated numerically the DOS of this mod
system, where in a simple cubic lattice unit massesm at
nearest-neighbor sitesi and j are connected by springski j
chosen fromP(k). Assuming scalar coupling constantski j ,
the different components of the displacements decouple
we obtain the same equations of motion

m
d2uj~ t !

dt2
5(

i
ki j @ui~ t !2uj~ t !#, ~4!

for all spatial components ofuj . The sum runs over the
nearest-neighbor sitesi of site j. The ansatz uj (t)
5c j

aexp(2ivat) leads to an homogeneous system of eq
tions for theN unknownc j

a , from which theN real eigen-
values va

2>0 and the corresponding eigenvecto
(c1

a , . . . ,cN
a), a51, . . . ,N can be determined.

To calculate the vibrational properties and the related s
cific heat cV of the model system, we have employed t
method of Williams and Maris18 and the Lanczos
algorithm.19 In Fig. 1 we show the DOSZ(v/v0), with v0

[Akmax/m, and the rescaled DOSZ(v/v0)/(v/v0)2 for
several values ofkmin /kmax between 1022 and 1025 ~Ref. 20!
and system sizes of up to 653 masses. For all values o
kmin /kmax, both quantities show a broad maximum at fr
quenciesvpeak, which become smaller, ifkmin /kmax is de-
creased. Well belowvpeak, we observe the conventional De
bye behavior,Z(v)}v2. For comparison we also calculate
the DOS of a vibrational model system with an homog
neous distribution of spring constantskP@0,kmax# where the
maximum in the DOS simply results from a broadening
the van Hove singularity. The systems with power-law d
tributedki j have their maxima in the low-frequency regim
where also the boson peak in glasses is observed. Estim
the Debye frequencyvD from the plateaux in the scale
DOS @Fig. 1~b!#, we find for the maxima inZ(v)/v2 the
values vD /vpeak'3 for kmin51022, vD /vpeak'4.5 for
kmin51023, andvD /vpeak'7 for kmin51024 and still larger
values for smallerkmin . In contrast, the peak for the homo
geneous distribution, shows up at frequenciesvpeak only a
factor of 2 belowvD .
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Whenkmin /kmax is enhanced, the maximum inZ(v) tends
to higher frequencies. Since in our model systemkmin /kmax is
related to the free volume parameter (amax2amin) via Eq.~3!,
the peak is shifted towards higher frequencies, when (amax
2amin) is reduced. We can imagine that (amax2amin) can be
reduced by applying external pressure to the system. Ind
experiments on glasses indicate that the boson peak is sh
to higher frequencies, when the glasses were permane
desified under pressure.9 This is in line with the results of our
model system.

Next we consider the specific heatcV(T), which is related
to Z(v) by:

cV~T!5kBE
0

`

dv Z~v!S \v

kBTD 2 e\v/kBT

~e\v/kBT21!2
. ~5!

Figure 2~a! showscV(T)/T3 versus temperatureT for sev-
eral values ofkmin /kmax as well as for the homogeneous di
tribution of spring constants. As expected from the behav
of Z(v), a maximum incV(T)/T3 occurs atThump, which is
shifted towards lower temperatures and increases in he
whenkmin /kmax decreases. For testing for a common shape
the hump, we have plotted@cV(T)/T3#/@cV(Thump)/Thump

3 # in
Fig. 2~b! as a function ofT/Thump and compared the result
with the experimental curves for several vitreous silica.11 It
is interesting that the results for our model system at in
mediatekmin /kmax values agree reasonably well with the e
perimental data. No fitting parameter was involved. The fi
ure shows also that major deviations from the common sh
occur for the homogeneous model system in the lo
temperature range.

To see, if the specific heat also satisfies the power-
relation~1! we have plottedcV(Thump)/Thump

3 as a function of
Thump in a double-logarithmic fashion. The result, shown
Fig. 3~a!, agrees surprisingly well with the experimental da

FIG. 1. ~a! Density of states~DOS! Z(v/v0) and ~b! rescaled
DOS Z(v/v0)/(v/v0)2 versusv/v0 for our model system (v0

2

[kmax/m). The symbols correspond tokmin /kmax51025 (n), 1024

(L), 1023 (h), and 1022 (s). The numerical results for an ho
mogeneous distributionkP@0,kmax# are also shown~dashed curves
with 1 symbols!. In the inset, the frequency positionsvpeak/v0 of
the maxima ofZ(v/v0)/(v/v0)2 are shown versus the relativ
maximum size of holes (amax2amin)/a*5ln(kmax/kmin).
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for a large number of glassy and amorphous solids, show
Fig. 3~b!. The basic power-law~1! is reproduced with an
exponentx that is, within the error bars, identical with th
one of real glasses. Note that both, Figs. 3~a! and 3~b!, show
the same range for thex andy axes. Again, no fitting param
eter was involved. It is interesting to note that also for cr
talline systems the same power-law behavior has been fo
experimentally. An explanation of this is beyond the sco
of this paper.

Finally we turn to the localization behavior of the vibr
tional modes in our model system. By general arguments
can expect extended phonons for small frequenciesv,vc
and localized modes for high frequenciesv.vc . The local-
ization mechanism for vibrations is quite similar to th

FIG. 2. ~a! Rescaled specific heatcV(T)/T3 versus temperature
T for kmin /kmax5331025 (h), 1024 (s), 331024 (n), 1023

(,), 331023 (L), and 1022 (1) and for an homogeneous dis
tribution kP@0,kmax# (3). In ~b! the results from~a! are rescaled by
dividing T by Thump andcV(T)/T3 by cV(Thump)/Thump

3 . Deviations
from the common shape occur for the smallest and the larges
rameter as well as for the homogeneous distribution of spring c
stants. The experimental values for several silica glasses~large
symbols, redrawn from Fig. 1 of Ref. 11!, are also shown.

FIG. 3. ~a! The values of the maxima ofcV(T)/T3 from Fig.
2~a! versus the positionsThump of the maxima. In the log-log plot
the data fall onto a straight line described by a power la
cV(Thump)/Thump

3 ;Thump
2x with x'2.1 ~dotted line!. ~b! Experimental

results for several glasses and amorphous solids (d) as well as for
some crystalline materials (n), redrawn after Fig. 2 of Ref. 11. Th
data for the glasses and the amorphous solids are consistent
our theoretical resultsx'2.1 ~dotted line!. If also crystalline sys-
tems are included, one obtains a smaller exponent. Note tha
scales of both axes are only changed by constant factors in~a! and
~b!, so the range is exactly the same.
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Anderson localization of quantum particles in disordered s
ids ~see also Refs. 21 and 22! and it is interesting to see, i
the modes in the peak regime fall into the extended or i
the localized range.

To estimate the ratio betweenvpeak and vc , we have
employed the method of level statistics.23 Level statistics
~with a fixed system size! have been applied earlier to th
Gaussian model system,17 indicating extended modes in th
vicinity of vpeak. In the method, one first calculates th
eigenvaluesva

2 of the vibrational equation and then dete
mines the eigenvalue spacingssa5(va

22va21
2 )/D, where

D is the mean eigenvalue spacing in the frequency ra
considered. The dependence of the mean squared eigen
spacing^s2& on the system sizeN indicates the localization
behavior. With increasing system size,J0[ 1

2 ^s2& tends to
J0

Wigner'0.637 for extended modes, while it approach
J0

Poisson51 for localized modes. Figure 4 shows the results
this analysis forkmin /kmax51022 and 1023. From the figure
we can deducevc'1.3v0 for kmin /kmax51022 and vc
'0.7v0 for kmin /kmax51023. For kmin /kmax51024 we ob-
tain vc'0.4v0 in an analogous way. A comparison with th
position of the peak@taken from the inset of Fig. 1~b!# yields
vc'2.7vpeak, vc'3.1vpeak, and vc'3.9vpeak for
kmin /kmax51022, 1023, and 1024, respectively.

Experimentally, it is not settled whether the frequen
vpeak of the boson peak is close to the localization deloc
ization frequencyvc or well below. Scattering experiment
on vitreous silica have been discussed controversially. O
interpretation yields localized modes at the boson peak
quencyvpeak'629 THz,24 while others indicate the pres
ence of propagating modes up tovc'20 THz~Ref. 25! well
above the boson peak. Very recent scattering experiment
glassy glycerol yield extended modes up to at leastvc
'2.5vpeak.

26 The results from Refs. 25 and 26 are in lin
with the results of our model system.

In summary we have considered an idealized disorde
vibrational model system, consisting of a simple cubic latt
of coupled harmonic oscillators with random scalar spr
constants between neighbors. The spring constants were
sen from a power-law distributionP(k)}1/k above a posi-

a-
n-

:

ith

he

FIG. 4. Level statistics results for our model system with~a!
kmin /kmax51022 and~b! kmin /kmax51023. J0(v,N) is shown versus
v/v0 for different system sizesN. Values of J0'J0

Wigner50.637
indicate extended modes, whileJ0'J0

Poisson51 indicates localized
modes. In the insets, magnifications of the transition regions
shown, which allow to determine the transition frequenciesvc from
the intersection of the curves.
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tive cut-off valuekmin . We have motivated the model by th
presence of free volume in glassy materials. Since the m
describes~surprisingly! well several nontrivial features of th
boson peak in glassy systems, we believe that despite
simplicity it may capture essential parts of the physics of t
s.

hy
.

s.

s.

.
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odd phenomenon—in particular as no single fit parame
was involved.

We would like to thank Professor Michael Klinger fo
illuminating discussions on the subject.
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