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Low-temperature lattice excitation of icosahedral Al-Mn-Pd quasicrystals
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We suggest a theoretical method for dealing with the contribution of phasons to the lattice vibration of
quasicrystals. Based on this, we derive the density of vibrational 2@¥S) and specific-heat expressions
of the icosahedral Al-Mn-Pd quasicrystal, and obtain corresponding numerical solutions which are in agree-
ment with the experimental data measured byitiAa al. [Phys. Rev. B57, 10 504(1998]. This consistency
shows that the contribution of the phasons to either the DOVS or specific heat cannot be neglected at low
temperature. Our theory would be also helpful to study further the thermal conductivity of the icosahedral
quasicrystal.
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I. INTRODUCTION gins of the deviation in specific heat yet. In the present ar-
ticle we suggest an alternative explanation, even though in
Quasicrystals are a form of solids different from boththe present stage it is also a phenomenological treatment. We
crystals and glasses by possessing long-range noncrystallnete that in the works of the above two groups they consid-
graphical orientational order and a type of long-range transered only the contribution of acoustic phonons to the DOVS
lational order, quasiperiodicity The icosahedral quasicrys- andC,, of the icosahedral quasicrystal. As we know, besides
tals studied intensively are quasiperiodic in all threethe phonon, the phason is one of the main features which
dimensions. They display some very unusual physical propdistinguish quasicrystals from crystals, so it must be of in-
erties: a very low electrical conductivity, a negative temperafluence on the physical properties of quasicrystals such as the
ture coefficient of resistivity, a low electronic contribution to DOVS, specific heat, thermal conductivity, etc. About the
the specific heat, and so ér* Another experimentexhibits  phason, there are a few kinds of different points of view.
the fact that icosahedral quasicrystals possess a small anis@tecording to the unit-cell pictur&® the phason in quasicrys-
ropy of the temperature dependence of magnetoresistivitytals is regarded as rearrangements of atoms from one lattice
which is different from the current theory proving that icosa- pattern to another, so it should be equivalent to the local
hedral quasicrystals have isotripic physical properties. Abovelefects with only short-range correlation. According to
all, recent experiments' on the heat capacities discovered Lubenskyet al,'” the phason modes represent the relative
that there exist excess heat capacities in quasicrystals at lomiotion of the constituent density waves. Based on the fact
temperature. Some of them are the stable icosahedral Athat V-w is not a scalar under the icosahedral group, they
Mn-Pd and Al-Cu-Fe quasicrystals which do not show a phaclaimed that phasons are diffusive with very large diffusion
son broadening of the Bragg peaks even in the nonannealeitnes. According to Bak® the phason describes particular
states>*3 Structure analysis indicates that it forms an or-structural disorders or structure fluctuations in quasicrystals,
dered icosahedral state. In studying its lattice excitationsand it can be formulated based on a six-dimensional space
Jasjauniaet al!* and Witi et al'®found that the cubic-iff  description. For the icosahedral quasicrystals, the structure
term coefficient of the low-temperature lattice specific heatfluctuations can be characterized by three bulk translation
Cpn(T), is considerably higher than the Debye acoustic phomodes and three relative phase-shift modes associated with
non contribution. Above 5 K, the ratiﬁ:r,h/T3 increases internal atomic position rearrangements. These modes are,
rapidly with increasingT. To explain the experimental re- respectively, described in parallel and the perpendicular
sults, Lasjauniast al'* and Witi et al'® considered that the spaces. Spatially varying displacements in the parallel space
deviations from the Debye model could be treated by puttingare described by the phonon fieldwhile that in the perpen-
in an additional term a$T®> which corresponds to an in- dicular space by the phason field Spatially uniform dis-
crease of the density of vibrational statB®VS) more rapid  placements in both spaces leave the system free energy in-
than w?, so g(w)=aw’+bw*+---, and thenC,,=BT*>  variant. Since there are six continuous symmetries, there
+ 8T°. For further treatment, the above two groups had dif-exist six hydrodynamic vibration modes. In this paper, we
ferent ideas. Lasjaunia al. suggested a new power law of follow Bak's argument to describe the phonons and phasons
specific heat ag3® (or T39 for AICuFe,, s (or AICuFg,)  in quasicrystals and assume that the phason fluctuations can
over one decade of temperature. In another wayitivéaal.  produce long-wavelength elastic waves and the waves can
kept theT® term, but by the use of experiment data fit the propagate in real space. Along this line, Jeong and
coefficients 8 and 8. Their treatments, certainly, use phe- Steinhardt’ proved that in the unlocked phase, the phasons
nomenological theory and have not revealed the physical orihave a thermal excitation analogous to phonons and calcu-
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lated the elastic constants corresponding the phason strains E=utw 1)
by using Monte Carlo simulations. In 1999, Nauratsal ° ’

showed that a random phason producedzﬁi:_n hyperspace leadiferey andw are refered to as the phonon field and phason
to a coherent phason field in real space. Faalculated the  fio|4 respectively. Withi, ,u,,u, denoting the displacement
phonon velocities in a plane field and phason velocities in ar&omponents of the phonon field and w, ,w,,ws denoting

antiplane field of one-dimensional hexagonal quasicrystals[ ose of the phason field, respectively, we have
Then, based on our equivalent assumption of phonons ang ' '

phasons, we will use the quasicrystal continuous model and
linear elastic theory to calculate the phonon and phason Ui=Ui(Xg,X2,X3;t)  (1=1,2,3),
phase velocities of the icosahedralgg®dMngPd,, ¢ quasi-
crystal. By adding the phason velocities into the DOVS ex-
pression, we explain the DOVS and specific-heat experiment

performed on the icosahedral EMNoPdy, 5 quasicrystal. yyherex; (i=1,2,3) are the Cartesian coordinates of physical

Our results show that only acoustic phonons are not enougS ace. According to Lubenslet al, !’ the phason represents
o describe the thermodynamical properties of quaSiCrystalSr'e}:)lativ.e motion (?f the Constituentﬂ densitp waves 20 it must
In other words, the contribution of the phason excitations tqb Y '

the DOVS or specific heat cannot be neglected at low teme® correlated with the physical space. The phonon-strain ten-
perature sor is the spatial gradient of the phonon field while the

We organize our paper as follows: Section Il present hason-strain tensor is the spatial gradient of the phason field

linear elasticity theory, the elastic wave propagating model,0 the physical space, i.e.,
and an approach calculated effective elasticity constant of the
icosahedral quasicrystals. In Sec. Ill we derive these expres- 1

Wi:Wi(Xl!X21X3;t) (i:1!213)1 (2)

du; aUJ

IX; X

sions of the phase velocities, DOVS, and lattice specific heat. Eij 2

Besides this, we numerically calculate the phase velocities

and the coefficients of the DOVS and lattice specific heat in

the icosahedral Al MngPd,, g quasicrystals. In Sec. IV, we IW;

compare our theoretical results with the experimental data Wiizﬁ

measured by Wil et alX® Section V gives a brief summary. :
For the icosahedral quasicrystal, the generalized Hooke
law?>2® can be written as

) (1,j=1,2,3),

(i,j=1,2,3. 3

II. LINEAR ELASTICITY THEORY AND CONTINUOUS

MODEL OF ICOSAHEDRAL QUASICRYSTALS
Ti;=Ciju B+ Riju Wi, Hij=RijEx+ Kijg Wi (4)

We now use the projection method to describe a phonon
and a phason, and calculate their phase velocities by usingf
linear elasticity theory. According to the projection method,

an icosahedral quasicrystal can be obtained by projecting a
L i o . ! . T [C] [R]||E
six-dimensional periodic lattice onto a three-dimensional = , (5)
(3D) physical subspacé? Letting £ be a displacement HI L[R'] [K]
vector in the six-dimensional spaaeandw be two compo- ith
nents ofé in the parallel subspadee., 3D physical subspace w
V|) and perpendicular subspagee., 3D complementary
subspaceé/, ), respectively, then Cijki =\ 6ij 6+ m( 8 81 + 61 6jk), (6)
|
"K; O 0 0 K, 0 K, 7
0 K, © 0 -K, 0 K2 0
0 O Ki+K, 0 0 0 0 0 0
0 O 0 Ki—K, 0 K, 0 0 -K5
[K]=| Kz —K; 0 0 Ki-K; 00 0 o |, ™
0 O 0 K, 0 K, -K, 0 0
0 O 0 0 0 -K, K;—=K, 0 -K,
K, K, 0 0 0 0 0 Ki—K, 0
L 0 0 O - K2 0 O - K2 0 Kl o

and
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r1 1 1
-1 -1 1
o 0 -2
o 0 0
[RI=R| 1 -1 0
0o 0 0
0o 0 0
1 -1 0
L0 0 0

whereT;; andH;; are the stresses corresponding=p and
respectivelyCjj; andK;j the elastic constants in the p

Wijl

phonon field and phason field, respectively, &g, the

PHYSICAL REVIEW B 63 064203

phonon-phason coupling elastic constants. Substituting Egs.

(6)—(8) into Eq.(5), we can rewrite the stress-strain relations

as follows:

T11=N0+2pE 1+ R(Wqq+Woot Wast+Wy5),
T22=N0—2uE 2~ R(Wyy+Woo—Waz+Wiy),
Tog=\ O+ 2 E 33— 2R W3,

T23= 2 uE o3+ R(Wao— W= Woy) = Tgp,

T31= 2Bz + R(Wy3—Woot Wy =Ty,

T12= 2B 12+ R(Wp1—Wo3—Wip) =Ty,
H11=R(Eq1— Egpt 2E3y) + K Wy + Kop(Way+ W),
H2o=R(E11— E2p—2E3)) + KjWopt Kp(Wig—Way),
Hss= R(Eq1+ Ezp— 2E35) + (K +Kp)Wag,
Has= —2REjo+ (K1 = Kp) Wogt+ Ky (Wip—Way),
Ha1= 2REg;+ Kp(Wiy—Wap) + (K — Kp) Way,
H1= = 2R(Egzt+ Eqp) + Ky Wipt+ Kp(Wast+Wsy),
H3o= 2R Epat (K — K2) Wap— Kp(Wipt+Way),
H13= R(E11— Ezp) + Ko(Wigt Wop) + (K1 —Kz)Wyg,

H1,=2R(E 15— Ep3) — Ky(Wpst+ W3p) + Ky Wy,

where §=E;+E,,+ E33. The wave equations are

Py _ 9Ty, 9Tio T3
atz 0X1 &Xz (9X3 '

p

Uy, 9Ty Ty dTg
= + +
51:2 (7X1 (9X2 (9X3

p

9

0 0 0 0 1 0 1
0 0 0 0 -1 O
0 0 O 0 0 0
0 0 -1 1 0 -1
0O 10 00 O, )
-1 0 -1 0 O 1
0 0 -1 1 0 -1
0 1 O 0 O 0
-1 0 -1 00 1 |
[
Fu aT31+ aT32+aT33
gt2_6xl &Xz O"X3,
Pw,  oH 9H IH
P Zl: 11+ 12+ 13,
at &Xl L?XZ aX3
Pw,  IH dH,, H
o 22: 21+ 22+ 23,
(9t &Xl (?XZ (9X3
Pws  IH dHa, H
o 3: 31+ 32+ 33’ (10)

Xy Xy 0%y

at?

where p is the mean mass density of the quasicrystal. As-

suming that the propagation of vibration is in the directjon
of physical subspace and usihgn, andn as the direction

cosines ofp, we have

@ =IX;+Mmx;+nXs, (17
whereg is the length ofp. Then Eq.(3) becomes
au, AU, dug
Bl BamMyy Bemig:
duz  duy du;  dug
2E,;=m—+n——, 2E n—-+I1—
23 (9((0 &SO, 13 ( agg &\@ ’
du;  duy W, W,
2E;,=m I . W= ’ = ,
12 ) 9p u='- 22 99
W3 AW, W3
Wss—n%a 23= N7 31-'%1
W, W3 W,
WmmGg Wermaer Wamnge
i 12
=l (12
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Substituting Eq(12) into Eq.(9), and then into Eq(10),
we can obtain

d%u, d%u 7%u, 9%ug %Wy
p—— =lun——S+l—+l— +ly—
at I op
92w, 92wy
+Ts 167 5
Uy J%uy 2u, 2ug 97w,
P =Ip——+I'» 2 Tl +1' 2
9w, 9?Wy
tlos——+T6—,
dp
9%Ug 9%u, 2u, 2ug %Wy
P =I3 302 Tl + T +T'3—
3wy Wy
%W, d%u, d%u, 9%Ug 9%,
p— =la—— TS+l +lu—7
ot [ 9 9
r 9%, 9%y
45 46 :
2 992
%W, 9%u, U Ug 9%y
P ZFSlagJZ Tl +lss—— +Tss—
9*W, 9°Ws
+ 155 56 5
Jd
Wy é%uy éu, 89Uy 8wy
P =Ie1 2 Tleo— tl'ea—— +laa 2
9%, 9?wWy
+T6s 66 5 (13
where
T = N2+ um?+ un?+2ul?, Ty=(A+w)Im
11 M M sl 21 M )

TFo=+p)m, Typ=Am?+ ul?+ un?—2um?,
Pig=(N+wp)In,  Toz=(N+p)mn, (14

I',=RIP—Rm+2RIn, T,=-2RIm—2Rmn

I')s==2RIm—2Rmn T ,s=—2Rn?—2RlIn,

F16:2R|n, F26:2Rmn
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Iy =(A+w)In, T,4=RIP—Rn?+2RIn,

Iy=(AN+p)mn, T ,=2RIm—2Rmn

F33=)\n2+,u|2+,um2+2,un2, F43:R|2_anz,

(15)

I';,=RI?>-Rn?,

' 4= K12+ Km?+ (K, — K,)n?+ 2K,ln,
I'35=—2RIm, I',5=2K,mn,

I'3=RIP+Rm—2Rr?, T 4=K,l2+K,m?
I's;=2RIm—2Rmn TI's;=2RIn,
I's,=RIP-Rm?—2RIn, Tg=2Rmn
I's;=—2RIm, T'g=RI>+Rnm?—2Rr?,
I's,=2K,mn, Tg=K,l2—K,m?, (16)
Iee=K (124 m?) + (K;—K,)n?—2K,ln, Tgs=—2K,Im,
I'sg=2K5Im,

F66:(Kl_ K2)|2+(K1_K2)m2+(K1+ Kz)nz.

With & denoting elastic displacement vector resulting from

the wave propagation along the direction andp,q,r,p’,

g’, r’ denoting its direction cosines in the six-dimensional

superspace, we have

ulngv Uzzqu u3:r§1 Wl:p’§1
Wo=q'¢, wa=r'§,
§=pul+qu2+ru3+p'W1+q’W2+I”W3, (17)

where £ is the length ofé. Substituting Eq.(17) into Eq.
(13), the latter can be reduced to the wave equation

5% P&
—=C*—, (18
P2 dp?

where C* is the effective elastic constant and satisfies the

following equations:
Plyg+al o+ 1T+ p' T+ q' Tistr'Tig=pC*,
PIo1+ 0l oot 1T g+ p'Iogt Q' Iost1'I=qC*,
PLa1+ QL st rgs+ p'I'ggtq' Iast 1 I'ge=rC*,
Pl s+l 4o+ 1T g3+ p Tyt ' Tystr'Tye=p’C*,
P51+ Qs+ szt p'I'sg+ 0 Tss 1 I'sg=q' C*,

Ple1t 0l gt rTgstp' I'eat Q' Tgst ' Tgg=1"C*.
(19

The condition that Eq(19) have a solution leads to
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I=C* Ty I'is I'1q I'is I
Iz I'2p=C* T3 I'24 I'as I'26
I3 I'sp I'33—=C* TI'zy I'ss I'3s
. =0. (20)
L Lpp L3 = C* Tys P13
I'sy I's I's3 I'sq I'ss—C*  TI'se
Ie1 I's2 L3 Ieq Lgs I'es—C*

To calculate the effective elastic constant, we must first getulated with the transfer-matrix method by Newman and
the values of’;; . However,[';; are determined by the elastic Henley?® K,/K,;=—0.60+0.02 obtained by Capitast al.
constant and direction cosine of the propagating direction, s@iith x-ray diffuse scattering from the icosahedral
we first calculate the direction cosine by the projectionAlss MngPdy, g quasicrystaf‘.o In this paper, we choosk

method. According to the result of Elsgrwe have =0.81K,=—0.50 (162 dyn/cnf). On the phonon-phason
~ coupling constant, Zhu and Henféyproved its magnitude
(h1hahshsNshe) Q) == (x1,X2,X3), (2D relative to the phonon and phason elastic constants of order
with 1/10 and calculatedR=0.0066 (16? dyn/cnt) for the Al-
Mn-Pd quasicrystal. For the fivefold axi§,0,0,0,0,0 direc-
T 0 1 tion, substitutingh,;=1 and h,=hz=h,=hs=hg=0 into
r 0 -1 Eqg. (21) and then into Eq(23), we havel = 7/(y/1+ ), m
=0, n=1/(J1+7?), where 7=(1+5)/2 is the golden
- 1 —7 . . . ! .
QH—lza , (22)  mean of the Fibonacci lattice. Further, inserting the values of
-1 70 I,m,n andC;; ,Ky,K, into Egs.(14)—(16) and then into Eq.
0 1 7 (20), we can work out the effective elastic modulG§ (i
1 s 0 =1,2,...,6). According to v;=+/C*/p, we have v,
) =6352.28, v,=v3=3576.71, v,=2501.56, v5=5240.84,
where hy,h;,h3,Ns,hs,he and xy,x;,x5 are coordinates  andy=4893.35(m/s), wherev; (i=1,...,6) are the six
based on the basic vectdi (i=1,2,...,6) ofV| of six-  phase velocities of wave propagation along th®,0,0,0,0

dimensional superspace and Cartesian coordinatég,afe-  girection of the icosahedral & MnoPdy, gquasicrystal. The

spectively; a=1/y2(1+7°). Thus the direction cosine . stands for a phase velocity of the longitudinal acoustic

(I,m,n) of physical space can be written as phonon modep, andv are phase velocities of two trans-

versal acoustic phonon modes;,vs,vg are the phase ve-

_ X1 m= X2 locities of three acoustic phason modes. Similarily, we can
2,2, 2 (2. 2.2 calculate the phase velocities of waves propagating along the
SRR SRR twofold (1,—1,0,0,0,0) and threefold (1:21,1,1~1) di-

X5 rections and have listed them in Table I, where the coeffi-
n=——o- (23)  cient parameter is taken from Ref. 15. From Table I, we
VXE+X5+X5 note thatv; (i=1,2,3) of our theoretical results are in good

agreement with the results of the resonant ultrasound spec-
troscopy experimertt. In addition, we also find from Table |
hat the phase velocities of acoustic phonons and phasons
possess small anisotropy. This might be the reason that the
icosahedral quasicrystals have the small anisotropy of the
temperature dependence of the magnetoresisfivity.

Combining Eqs(14)—(16) we can obtain the solution of Eq.
(20) and then calculate the phase velocities of wave prop
gation along any direction.

Ill. LOW-TEMPERATURE LATTICE EXCITATION OF
THE ICOSAHEDRAL Al g5 MngPd,, s QUASICRYSTAL

A. Phase velocities of phonons and phasons

. L. B. Density of vibrational states
We now concentrate on investigating the phonon and pha-

son velocities in the icosahedral dbMngPd,, ¢ quasicrystal Debye” regarded a crystal as a continuous elastic me-
along the fivefold(1,0,0,0,0,0, twofold (1,—1,0,0,0,0), and dium. We now extend the Debye hypothesis to quasicrystals.
threefold (1,15-1,1,1- 1) directions, respectively. Here the That is, we can regard an icosahedral quasicrystal as a con-
experimentally determined daja=5.1 gcm ® was usetf  tinuous elastic medium. Witko denoting the atom vibra-
and the low-temperature values=0.75,.=0.65 (132 tional angular frequency and(w) denoting the frequency
dyn/cnt) of the elastic moduliC;; obtained using resonant distribution function, i.e., the density of vibrational states, we
ultrasound spectroscopy were tak8rk,=0.8~1.1 is cal-  have, by following the argument of Waet al,*®
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TABLE |. Coefficient parameters and velocities of the acoustic phonons and phasons of the icosahedral
Algg MngPd,, g quasicrystal in the ranglg|<0.35 A1,

U1 77)(10717 %] U3 Uy Usg Ug
AXxis Direction (m/s) (m®/s) (m/s) (m/s) (m/s) (m/s) (m/s)
5 (1,0,0,0,0,0 6352.3 —-3.9 3576.9 3576.9 2501.6 5240.8 4893.4
2 (1,-1,0,0,0,0 6340.0 -3.9 3570.0 3570.0 24655 5068.2 5068.2
3 1,1-1,11-1) 6352.6 -3.9 3577.1 3577.1 2508.7 5256.0 4874.4
2 4 6 6
aw“+bw” for w=wy, 1 1 15M 1 i
g(w)= : (24) g 5 b=- 62 5 (@8
“ 3 =
for w>wj 2 p6i=1y: 2m2p 651 !

We should note that the phason modes, although they do

exist, do not create new degrees of freedom, so the 10tg}arem andp represent the molar mass and mass density of
freedom number remains 3 times the number of partljcles,the icosahedral Ak MnoPdh, s quasicrystal, respectively.
l.e., there are B, simple harmonic vibrations in the quasi- We note that the coefficiens and b contain contributions
gg:;z?]lé(\;\:gtlerd\lA _stan?sl er the number of atoms in 1 mol from both the phonons and phasons since six phase velocities
quasicrystal, 1.e., are involved. According to neutron-scattering experiments
for other icosahedral quasicrystals, the parametersi
=1,2,3) are of comparable magnitutfeTherefore, we take
n,=mn. For the phasons, we also assume thgt (i
=4,5,6). Substituting the velocities ang parameters of
Table | into the Eg. (28, we obtain a=3.00
x 10™Y'$¥/rad® mol, b=2.38x10"** $/rad® mol which are
close to the experimental data=3.27x 10" 7 s*/racf mol,
b=2.37x10"* $/raP mol measured by W etall®
wever, their theoretical valubs a=1.8x10""7
/ra® mol, b=0.65<10"* </raP mol are distinctly
smaller than their experimental data. Comparing our theoret-
ical formula with those used by Waet al, we can see that
wi(q)=v;q+ 7,63+0(q®) (i=1,...,6), (27) the d.ifference is mainly caused by their n_eglecting the con-
tribution of phasons to the DOVS. Inserting our results of
where the parameter, and 7; data in the wave vector range a,b into Eq. (26), we havew,=3.155x< 10* rad/s.
|g|<0.35 A are given in Table I. In the acoustic limit, the
dispersion relationo(q) for the quasicrystal with an icosa-
hedral point-group symmetry depends only on the absolute
value ofq, leading to a DOVS of the acoustic modes of the
form described by Eq24), where the coefficient parameters
satisfy

fwg(w)deSNA. (25)
0

The substitution of Eq(24) into Eq. (25) leads to

b 5

a 3
3NA:§(1)0+
Based on the assumption of phason-propagating modes, t
dispersion relation of acoustic excitationgq) can be ex-
panded in a power series of the form

C. Lattice specific heat

In the harmonic approximation, the lattice specific heat
Cpn(T) depends on the DOVE(w):

TABLE II. The coefficients of the DOVS an@,, of the icosahedral A MnyPd,, ¢ quasicrystal ob-
tained from the experimental measurem@ef. 15 and theoretical calculation, where the theoretical value
1 (theor. 3 (Ref. 15 represents the results only containing the contribution of acoustic phonons. The
theoretical values 2—4 represent the results containing the contributions of acoustic phonons, acoustic pha-
sons, and phonon-phason coupling to the DOVS and lattice specific heat by using the phase velocities along
the fivefold, twofold, and threefold axis directions, respectively.

DOVS Cph 0p(K)
a(s®racmol) b(s’/racPmol) B(J/mol K*) 8 (J/mol K8)
Expt. dat& 3.27x10° Y 2.37x10° 4 2.63x10°° 9.2x10 8 420
Theor. 1 1.&%10°Y7 0.65<10° 43 1.63x10°5 2.5x10°8 492
Theor. 2 3.0x10° Y 2.38x 10743 2.43x10°° 9.27x10°8 431
Theor. 3 3.0x10° Y 2.56x10 % 2.44x10°° 9.96x10°8 430
Theor. 4 3.0x10° Y 2.38x10° % 2.43x10°° 9.26x10°8 431

%Reference 15.
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@ (fhwlksT)2expiw/KgT)
Cph:j g(w)ks o—do. (29
0 [exp(fiw/kgT)—1]
Substituting Eq(24) into Eq.(29), then integrating E¢(29) - —v—PPC
with considering Eq(26), (28), we obtain ra “ —o— PC
! ]
Cph=BT3+6T°, (30 F'T:
where g
mv
ks |\° 3b ,[kg)|®] dkgm = s
B_ gNA(ﬁ_wO) _E(DO ? 15 (31) OQ '—D—D——D—D—DAD—D{!»D-DDDU
and 10° - —
1 10
s=enb| | 8T 32
=67b| 7] &3 32 T(K)
Inserting our calculated,b, andw, into Egs.(31) and(32), FIG. 1. The lattice specific heat of 4l MngPdy, g is plotted as

we have 3=2.43<10° Jmol *K 4 and §=9.27x10 8 Cpn/T? vs T. The solid circles exhibit the experimental results, the

Jmol K8, which corresponds to the Debye temperatureopen triangles the theoretical values containing the contributions of

430 K. the acoustic phonons, phasons, and phonon-phason coupling, and
the open squares the theoretical results only containing the contri-

bution of acoustic phonons.
IV. DISCUSSION AND CONCLUSION

In order to further compare our theoretical results with thestates would no longer increase by the rate?+bw* but
experimental data, we have calculated the coefficient paranapproach a constant, and then decrease to*Zaiith tem-
eters of the DOVS and lattice specific-heat expression byerature increase. The second one might be that the phonon
using the phase velocities along the fivefold, twofold, andexcitation modes would increase so that the accuracy of the
threefold directions, respectively, and listed them in Table Il.continuous elastic model would decrease.

From Table I, we can see that all of the theoretical results

containing the contributions of phonons and phasons and the

phonon-phason coupling are in agreement Wiﬂ; the experi- V. SUMMARY

mental data, in which the coefficient of tla¢ or T> term is In this paper, we first suggest a method to deal with the

a little smaller than the experimental data but that of e ibuti £'oh d oh h i h
or T° term is almost equal to the experimental data. How-Contrl ut|%n|s orp ason_? a?] P ofnon—p. ason lcouplmg to the
ever, the theoretical valuEsneglecting the contribution of DOVS and lattice specific heat of quasicrystals at low tem-
the phason are much smaller than the experimental data, Rlerature. We h_ave. calcglated the six phase velocmeslof
waves propagating in the icosahedral quasicrystal. By adding

which the coefficient of thev? or T2 term is almost half of " \
the experimental data, as well as that of thtor T° term the phason phase velocities to the average velocity expres-
' sion, we succeed in explaining the DOVS and lattice

being about one-fifth of the experimental data. These results ecific-heat experiments performed on an  icosahedral

show that the contribution of phasons cannot be neglecte [I) MnyPd, L?asicr stal bpelow 15 K. Our results show

The higher the order of the DOVS or specific-heat term is h68- h 9 2-?bq . ¥ he oh h 4

the stronger the affection is. ‘t_z_itt e contribution of the phasons to the DOVS and spe-
cific heat cannot be neglected at low temperature. The con-

Now, we show a double logarithmic plot @f,,/T3 vs T . ; . .
. e Ph sistency of our theoretical results with the experimental data
in Fig. 1. The solid circles represent the experimental CUNVE, - - onstrates that our equivalent assumption of phonons and
(EC) measured by W4 et al,'° the open triangletPPQ are q P P

. . ) AN phasons would be plausible for dealing with the vibrational
our theoretical results including the contributions of the . .
acoustic phonons and phasons and the phonon-phason ¢ roperties of quasicrystals at low temperature. Even though

pling to the lattice specific heat, and the open SqUARES N the present stage this is a phenomenological treatment, we

are the theoretical results only considering the contributionbe“eve that it might reveal the intrinsic properties of quasi-

of the acoustic phonons. Itis clear from Fig. 1 that the value crystals. Thus, we believe that our theory should be helpful

; . . explain the thermal, electrical, and optical properties

of the PPC curve are in agreement with the experimental , . :

o which are related to the phasons of quasicrystals at low tem-
data measured by Waet al. below 15 K, but those of the erature
PC curve are distinctly smaller than the experimental datd’ '
Above 15 K, the EC curve increases slowly with increasing
temperature and passes over a broad maximum centered at ACKNOWLEDGMENTS
approximately 25 K, and then starts to decrease. The PPC
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