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Frequency dependent response of a Thue-Morse aperiodic lattice
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We present an exact calculation for the dynamic structure factor of a Thue-Morse aperiodic lattice using a
real space renormalization-group~RSRG! method proposed by S. N. Karmakar, A. Chakrabarti, and R. K.
Moitra @Phys. Rev. B46, 3660~1992!#. However, the ordering inherent in a Thue-Morse sequence prohibits a
direct application of the RSRG method. We overcome this difficulty by observing that the Thue-Morse lattice
can be obtained from a more general deterministic structure that is constructed using a four-letter substitution
rule. This general deterministic sequence has the advantage that, first, both the aperiodic Thue-Morse sequence
as well as the quasiperiodic period-doubling sequence can be extracted from it at two different limits, and
second, within a decimation renormalization technique, it can be split into two equivalent self-similar sublat-
tices. This facilitates the application of the renormalization method. Exact recursion relations for the Hamil-
tonian parameters for these sublattices are provided. Results are given both for this general nonperiodic
structure and the Thue-Morse lattice as its special case. In addition, within the same framework we calculate
the average density of states of the Thue-Morse lattice. Some features in the response of the aperiodic chains
are found to be compatible with experiments on real quasicrystals.
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I. INTRODUCTION

After the discovery of icosahedral symmetry in melt-sp
alloys of aluminum and manganese by Shectmanet al.,1 ex-
tensive research on various properties of qusicrystals h
enriched the literature. In particular, one-dimensional qu
periodic lattices have attracted most of the attention.2–15 The
interest in one-dimensional problems really shot up after
success of Merlinet al.16 in growing model systems wher
quasiperiodic order is built by depositing GaAs and AlA
layers in a Fibonacci sequence using the molecular b
epitaxy technique. X-ray and neutron scattering experime
were performed and the positions of the Bragg peaks w
identified. The recent nanostructure technology has re
been successful in providing ‘‘testing ground’’ for the the
ries. A calculation even in one dimension has thus beco
meaningful from the standpoint of an experimentalist. T
pioneering work of Kohmotoet al.2 has triggered vigorous
research activity in the field of electron and phonon spe
of one dimensional quasiperiodic and other aperiodic
tices, though some other aspects of these systems have
been investigated.17,18Studies of electron states and the ph
non spectrum in these systems are mostly concerned with
calculation of the respective densities of states and the c
acterization of the wave functions. Unlike a randomly dis
dered system, the wave functions in a quasicrystal in
dimension is, in general, power-law localized.2–4 The energy
spectrum is a cantor set with zero Lebesgue measure
exhibits a multifractal character in most of the cases.2–15

However, the presence of positional correlation between
constituents in certain class of one-dimensional quasip
odic lattices is shown to be responsible for the existence
extended ‘‘Blochlike’’ eigenstates.19–21

Apart from the electronic and other properties mention
above, comparatively less effort has been given to study
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dynamic response of these sytems. The main obstacle is
derstandably, the absence of periodicity. An important qu
tity is the dynamic structure factorS(q,v), which can be
directly related to the inelastic neutron scattering cross s
tion and also gives information about the excitation modes
the system.22,23 Experiments on quasicrystals have provid
important information in this regard.23 Over the past years
there have been a few theoretical studies onS(q,v) for dis-
ordered and quasiperiodic lattices.24–27Although most of the
work concerns the calculation of spin dynamics on a qua
periodic lattice, the extension to the phonon problem is qu
straightforward. The behavior of the phonon modes, as
tained from such calculations, may be tested by inela
neutron scattering experiments.

Patel and Sherrington24 worked outS(q,v) for a system
of ferromagnetically coupled spins on a finite~2D! Penrose
lattice. Well-defined propagating spin waves with isotrop
dispersion close to the zone centers were found. For the
Fibonacci sequence Ashraff and Stinchcombe25 and Ashraff,
Luck, and Stinchcombe26 derived an analytical expressio
for S(q,v) using a generating function approach. Th
showed that the magnon dispersion consists of a main bra
along with many satellite branches of much weaker intens
One finds26 propagating modes at small wave vector, se
rated by a set of gaps from stripes of dispersionless mode
higher frequencies. Benoit, Poussigue, and Azougarh27 used
the spectral moments method28 to rediscover similar feature
in a Fibonacci quasilattice. Karmakar, Chakrabarti, a
Moitra29 developed a real space renormalization-gro
~RSRG! method for calculating the dynamic structure fact
S(q,v) for phonons on a Fibonacci chain. Subsequen
Ghosh and Karmakar30 calculated S(q,v) for a period-
doubling lattice.31 Compared to the 1D quasiperiodic F
bonacci chain, no attempt has been made so far to calcu
the dynamic response of the 1D aperiodic lattices.6 A typical
©2001 The American Physical Society01-1
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FIG. 1. ~a! Portion of an infinite Thue-Morse chain illustrating the decimation scheme.~b! Splitting of aG lattice into two equivalent
sublatticesG1 andG2.
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example of an aperiodic chain is the Thue-Morse~TM!
lattice,31 which is generated using a two-letter substituti
rule, viz. L→LS and S→SL, L being the seed. Hence th
first few generations look likeG05L, G15LS, G2
5LSSL, G35LSSLSLLSand so on. The essential diffe
ence between a TM sequence and the classical Fibon
sequence is the existence of positional correlations betw
the constituents in the former that enables an infinite T
sequence to sustain a countable infinity of extend
eigenmodes32 though there is no translational periodicit
These eigenstates have profound influence on the trans
properties of such lattices.

In this paper, we calculate the dynamic structure facto
an infinite TM lattice, since such calculations in the case
aperiodic lattices, to the best of our knowledge and belief
really lacking. Our motivation behind this work is twofold
First, we think it would be rather interesting to see the eff
of the positional correlation in a TM lattice that makes t
energy spectrum of such structures radically different fr
the canonical case of a Fibonacci quasicrystal, on the
sponse characteristics. Second, recent experiments on a
quasicrystals reveal several interesting characteristics
one might ask, to what extent such features represent in a
structure. We will follow essentially the method develop
in Ref. 29. However, it is important to note that a straig
forward application of the RSRG decimation scheme29,30 is
not possible in a TM lattice. This is because the sche
relies heavily on the splitting of the original lattice into tw
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equivalent self-similar lattices, each of which is an exa
replica of the parent lattice. This is true for a Fibonacci l
tice as well as a quasiperiodic period-doubling30 ~PD! lattice
but cannot be achieved for a TM lattice@see Fig. 1~a!#. We
give a prescription for making the scheme work for a T
lattice as well. It is shown that both the TM and the P
sequence can be obtained as special cases of a more ge
four-letter substitutional sequence. The growth rule for t
latter sequence is proposed by us. This four-letter seque
can be shown to split under renormalization into two se
similar sublattices, each of which now becomes an ex
replica of the parent lattice. The application of the RSR
scheme now becomes possible. ThenS(q,v) both for the
TM and the PD lattices~as well as the nonperiodic lattic
proposed by us! can be obtained within the same formalis
just by tuning the initial conditions suitably. However,
what follows, we explicitly discussS(q,v) for a TM lattice,
and in some cases present the results for its parent lattic

In Sec. II we describe the models. In Sec. III the meth
of calculation is described and the results are given in S
IV. We conclude in Sec. V.

II. THE MODEL

We consider a spring-mass model system in one dim
sion, where two types of springs ‘‘L ’’ and ‘‘ S’’ and having
spring constantskL and kS , respectively, are arranged fo
lowing a TM sequence described earlier. Point massesma ,
1-2
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FREQUENCY DEPENDENT RESPONSE OF A THUE- . . . PHYSICAL REVIEW B 63 064201
mb , mg , and md are attached to the vertices flanked
springs of typeL-L, L-S, S-L, and S-S, respectively. The
lattice is shown in Fig. 1~a!. WhenkL5kS , ma5mg5mA ,
and mb5md5mB we get back the standard onsite mod
whereas, forma5mb5mg5md andkL5” kS the bond or the
transfer model results.

In Fig. 1~a! we also show a decimation renormalization
such a TM structure resulting in a scaled version of the or
nal lattice (V). The latticeV is obtained by using the TM
growth rule in the opposite sense, i.e., by folding anLS pair
into a newL and anSL pair into a newS. In this process, a
set of sites is eliminated. The decimated sites themse
form an aperiodic structure (G), which clearly does not re
semble a TM sequence. In terms of the original TM chain
G lattice is found to be composed of the pairs of springsSS,
LS, LL, andSL. We rename these asA, B, C, andD, respec-
tively. TheG lattice then represents a deterministic seque
of ‘‘bonds,’’ which is completely different from a TM se
quence, having four letters as its constituents. We h
worked out a rule that generates theG sequence. The rule i
A→AB, B→CA, C→CD, and D→AC. The seed isA.
Naturally, using this set of rules backward one can renorm
ize a G lattice as well. In Fig. 1~b! we show the renormal
ization formalism. Most interestingly we find that both th
sublatticesG1 and G2 exactly resemble theG lattice. Not
only that, as special cases, if we chooseA5D andB5C, we
get back the TM sequence, whereas a choiceA5C and B
5D generates the quasiperiodic period-doubling latti
Thus we have been able to generate a nonperiodic deter
istic sequence that gives rise to a quasiperiodic and an
riodic sequence at suitable limits. The property of theG lat-
tice as discussed above enables us to calculate theS(q,v)
for this lattice in a straightforward manner using our earl
RSRG method.29 We present the calculation for the TM la
tice. The results presented for the TM lattice have been
tained by using the RSRG recursion relations for theG lat-
tice with suitable initial values of the parameters. Some
the results for theG lattice itself have been presented for
comparative study.

III. CALCULATION OF S„q,v… FOR G

AND THUE-MORSE LATTICES

The dynamic structure factor that we are going to cal
late is defined by

S~q,v!5 lim
d→0

lim
N→`

Im GN~q,v2 id!, ~1!

where

GN~q,v!5~1/N!(
l ,l 8

eiq(r l2r l 8)Gll 8~v!, ~2!

r l being the position of thel th site andN the number of sites
Here Gll 8(v) are the single-site Green’s functions that s
isfy the equations of motions,

2e iGi j 52d i j 1ki ,i 11Gi 11,j1ki ,i 21Gi 21,j ~3!
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in the harmonic approximation, wheree i5miv
22ki ,i 11

2ki ,i 21 , mi being the mass of thei th mass point, andki j is
the spring constant between thei th and j th atom. The basic
spirit of the RSRG calculation lies in splitting the sum i
volved in Eq.~2! into a sum over two self-similar sublattice
These sublattices are obtained from the original lattice
decimating a chosen subset of sites. Once these sublat
are formed we can express the summmation in Eq.~2! as a
combination of two independent sums over these two sub
tices. The terms connecting these two sublattices can
eliminated by the use of the Green’s function equations
motion written above. The method works in a straightfo
ward manner for Fibonacci and the period-doubling lattic
as has already been shown in the literature.29,30

In order to calculate the dynamic structure factor of theG
lattice, we need to define six values ofe i corresponding to
the six varieties of sites in aG lattice, depending on the
nearest-neighbor environment. These are@Fig. 1~b!# ea , eb ,
eg , ed , em , and en located between the pairs of ‘‘bonds
A-B, B-C, C-A, A-C, C-D, and D-A, respectively. The
spring constants for the bondsA, B, C, andD are denoted by
kA , kB , kC , and kD . Now as one implements the RSR
decimation technique on theG lattice using the Green’s
function equations of motion, an additional factorf l appears
in front of each term in the summation. To handle the
factors we rewrite Eq.~2! as

GN~q,v!5~1/N!(
l ,l 8

f lGl l 8~q,v!, ~4!

where

Gl l 85eiq(r l2r l 8)Gll 8 . ~5!

All the f l ’s are equal to one at the beginning, and grow as
renormalization progresses. To facilitate the RSRG proc
we need to specify six values for the factorsf l corresponding
to the six sites we have already defined. Thef l ’s are desig-
nated asf a , f b , f g , f d , f m , and f n , respectively. We have
been able to derive recursion relations for each of these
tors, as will be presented shortly. The sum in Eq.~2! is now
partitioned as

GN~q,v!5~1/N!F (
l PG1 ,l 8PG1

f lGl l 81 (
l PG2 ,l 8PG2

f lGl l 8

1 (
l PG1 ,l 8PG2

f lGl l 81 (
l PG2 ,l 8PG1

f lGl l 8G . ~6!

The last two terms in the above equation can be expres
completely in terms of the first two terms by using the set
Eq. ~3!. Now we are left with two sums, for one of which th
indices run over theG1 sublattice only, while for the othe
sum the indices belong entirely to theG2 sublattice. The sum
looks like
1-3
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GN~q,v!5p1F1/~NG1
!(

l l 8
~ f l !G1

Gl l 8G
1p2F1/~NG2

!(
l l 8

~ f l !G2
Gl l 8G , ~7!

where (f l)G1
and (f l)G2

are the new coefficients for the sub

lattices G1 and G2, respectively. Here, both the factorsp1
and p2 are equal to 1/2. Since each of the resulting sub
tices is a replica of the originalG lattice, we can carry on the
same splitting procedure for each of them. The RSRG p

FIG. 2. S(q,v) vs q for a Thue-Morse lattice for different fixed
values of v ~a! On-site model:ma5mb5md51, mg5mm5mn

52, kA5kB5kC5kD51, and v51.104 18.~b! Transfer model:
mi51 for i 5a, b, g, d, m, and n, kA5kD51, kB5kC52. ~c!
Mixed model: ma5mb5md51, mg5mm5mn , kA5kD51, kB

5kC52, andv51.174 59. In each case the respective values ov
correspond to delocalized modes in infinite chain.
06420
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cess can be viewed as a branching ‘‘genealogical tree’’ w
each branch splitting up into aG1-G2 pair with the progress
of renormalization. The sum is then evaluated in the lim
when the spring constantski flow to zero under iteration. The
recursion relations for theG1 sublattice are given by:

ea85eb1kC
2 /~2eg!1kB

2/~2ea!,

eb85ed1kC
2 /~2em!1kA

2/~2eg!,

eg85en1kA
2/~2ea!1kD

2 /~2em!,

ed85eb1kC
2 /~2em!1kB

2/~2ea!,

em8 5en1kA
2/~2ed!1kD

2 /~2em!,

FIG. 3. S(q,v) for ~a! the G lattice with ma51, mb52, mg

52.5, md51, mm5mn52, kA51, kB52, kC52.5, andkD51.5
and~b! the on-site model of the Thue-Morse lattice. The parame
are the same as in Fig. 2~a!.
1-4
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FIG. 4. Dispersion relation for~a! Thue-Morse lattice: on-site model,~b! TM transfer model, and~c! mixed model. In each case th
parameters are the same as in Figs. 2~a!–~c!. ~d! G lattice with the parameters same as in Fig. 3~a!.
en85eg1kA
2/~2ea!1kC

2 /~2ed!,

f a85 f b1 f gkCe2 iqaC/~2eg!1 f akBeiqaB/~2ea!,

f b85 f d1 f mkCe2 iqaC/~2em!1 f gkAeiqaA/~2eg!,

f g85 f n1 f akAe2 iqaA/~2ea!1 f mkDeiqaD/~2em!,

f d85 f b1 f mkCe2 iqaC/~2em!1 f akBeiqaB/~2ea!,

f m8 5 f n1 f dkAe2 iqaA/~2ed!1 f mkDeiqaD/~2em!,

f n85 f g1 f akAe2 iqaA/~2ea!1 f dkCeiqaC/~2ed!,

kA85kBkA /~2ea!,

kB85kCkA /~2eg!,

kC8 5kCkD /~2em!,

kD8 5kAkC /~2ed!,

aA85aA1aB ,

aB85aA1aC ,

aC8 5aC1aD ,
06420
aD8 5aC1aA . ~8!

Similarly, for theG2 sublattice the recursion relations are

ea85eg1kA
2/~2ed!1kC

2 /~2eb!,

eb85em1kD
2 /~2en!1kC

2 /~2ed!,

eg85ea1kB
2/~2eb!1kA

2/~2en!,

ed85em1kD
2 /~2en!1kC

2 /~2eb!,

em8 5ed1kC
2 /~2eg!1kA

2/~2en!,

en85ea1kB
2/~2eb!1kA

2/~2eg!,

f a85 f g1 f dkAe2 iqaA/~2ed!1 f bkCeiqaC/~2eb!,

f b85 f m1 f nkDe2 iqaD/~2en!1 f dkCeiqaC/~2ed!,

f g85 f a1 f bkBe2 iqaB/~2eb!1 f nkAeiqaA/~2en!,

f d85 f m1 f nkDe2 iqaD/~2en!1 f bkCeiqaC/~2eb!,

f m8 5 f d1 f gkCe2 iqaC/~2eg!1 f nkAeiqaA/~2en!,

f n85 f a1 f bkBe2 iqaB/~2eb!1 f gkAeiqaA/~2eg!,

kA85kCkB /~2eb!,
1-5
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kB85kAkC /~2ed!,

kC8 5kDkA /~2en!,

kD8 5kCkA /~2eg!,

aA85aB1aC ,

aB85aA1aC ,

aC8 5aD1aA ,

aD8 5aC1aA . ~9!

In the above set of equationse i5miv
22ki ,i 112ki ,i 21, andi

stands fora, b, g, d, m, andn. The symbolsaj refer to the
bond lengths withj 5A, B, C, andD, respectively. It is to be
noted that once we set the parameters in the originalG chain
to represent a TM lattice, the renormalized versionG1 pre-
serves the TM ordering. We continue with the splitting pr
cess and in the limitki→0, the sum in Eq.~7! typically looks
like

GN~q,v!52 (
all paths

p(path) (
i 5a,b,g,d,m,n

xiFi*

e i*
. ~10!

The ‘‘*’’ refers to the fixed point values of the respectiv
quantities andxi is the concentration of thei th type of site,
where i stands fora, b, g, d, m, and n. The summation
above is over all possible paths in the genealogical tree f
given number of branching. Thus, with the help of Eqs.~1!
and ~10!, we finally determine the dynamic structure fact
S(q,v) for the G as well as the TM chain. It is equall
straightforward to calculateS(q,v) for a PD chain. How-
ever, the detailed results for the latter are presen
elsewhere,30 and we skip that discussuion here. The disp
sion relation is almost trivially obtained fromS(q,v) by
noting that, for every nonzero value ofS(q,v) one comes
across a set ofv andq values. This set constitutes the di
persion curves when scanned over the entire regime in
v-q plane.

IV. RESULTS AND DISCUSSION

In Figs. 2~a!–2~c!, we plot S(q) againstq for three dif-
ferent models of the TM chain for three different freque
cies. In each case we start with theG lattice with proper
initial conditions so as to reproduce three different models
the TM lattice. The on-site model correspods to the c
where ma5mb5md , mg5mm5mn , and kA5kB5kC
5kD ; for the transfer modelma5mb5mg5md5mm5mn

andkA5kD andkB5kC and the mixed model has the com
bination ma5mb5md , mg5mm5mn , kA5kD , and kB
5kC . It is now well known that an infinite TM lattice sup
ports a countable infinity of extended eigenstates. Results
both the electronic as well as the phonon cases are avail
We pick up three eigenfrequencies corresponding to th
different extended modes from the available results.32,33

These eigenfrequencies can be evaluated exactly. In
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case the periodic behavior ofS(q) againstq is clearly seen.
The fractal character ofS(q) can be revealed on scanning th
values ofq between any two intervals in finer details. In Fi
3 we show the three-dimensional plots forS(q,v) for G and
TM lattices. In Figs. 4~a!–4~c!, we show the dispersion
curves of the TM on-site, transfer, and the mixed mode
respectively, while, Fig. 4~d! shows the dispersion relatio
for the general model of aG lattice for comparision. For this
case we choosema , mb , etc. as well askA , kB , kC , and
kD in a completely arbitrary fashion. In each case the disp
sion relation reveals that at very low and very highq values,
i.e., when the wavelength of the incident radiation is too b
or too small compared to the lattice parameters, the sca
ing is insensitive to the aperiodic ordering, and features si
lar to a periodic case are reproduced. For intermediate va

FIG. 5. Average density of states for the TM lattice:~a! on-site
model, ~b! transfer model, and~c! bond model. The parameters i
each case are the same as those used in Fig. 2.
1-6
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of q the aperiodicity comes into play. This is reflected by t
occurence of numerous pseudogaps. In each case the d
sion curves consist of a main branch on which infinite nu
ber of satellite branches are superimposed. For the on
model @Fig. 4~a!#, the acoustic branch peaks near what o
may call a ‘‘pseudo’’ Brillouin-zone boundary,34 which re-
sembles that of an ordered chain. For the transfer and
mixed models, such boundaries are hard to locate. The o
cal branch in each case exhibits a fragmented but practic
dispersionless character. It is interesting to note that s
dispersionless features are also present in case of
quasicrystal.34,35

It is well known36 that flat ~dispersionless! optical modes
may occur in the vibrational spectrum of a periodic line
chain of atoms, or even in a 3D model. This happens if
intracellular interactions are much stronger than those
tween the cells. In such cases, independent ‘‘molecular’’
bration takes place in each primitive cell, independent
wavelength of the normal mode.

An infinite TM lattice can be built up by higher an
higher order periodic approximants. By renormalizing annth
order periodic approximantn21 times we can map the lat
tice onto a binary ‘‘ordered’’ sequence of bondsLSLS•••
and so on. One can now calculate the effective coup
constantskL andkS by using the recursion relations~8! and
~9!. This helps in offering a possible explanation to the e
istence of flat optical branches, viz., those values ofV for
which the intramolecular couplingkS becomes much greate
than the intermolecular couplingkL are likely to constitute
the dispersionless modes. For all these frequencies, the e
lattice vibrates in segments~which form the ‘‘molecules’’!
and there is a very weak coupling between any two conse
tive segments. If we deal with an infinite lattice, then t
entire lattice is likely to execute a collective ‘‘molecular
vibration.

As the band structure of such lattices is highly fra
mented, cantorlike, it is really difficult to predict a sha
separation between the acoustic and the optical branc
However, we have checked our prediction for a few valu
of the frequency, and it seems that our explanation wo
well. For example, in the on-site model, the frequency 1
falls in the dispersionless optical mode. The ratio of t
renormalized coupling constantskS /kL is of the order of 100
e

er
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from the third stage of renormalization onwards, which su
ports our conjecture.

The density of states

The RSRG method used in the calculation ofS(q,v) can
be used straightaway to find out the local density of sta
~LDOS! and the average density of states~ADOS! of such an
aperiodic lattice. The ADOS is given by

r~v!52
1

p
lim
d→0

ImF 1

N (
i

Gii ~v2 id!G . ~11!

This sum does not include any off-diagonal matrix elemen
We therefore set allFi equal to unity at each stage of th
renormalization. To calculate the LDOS at any specific s
of the TM chain~or even theG lattice!, one must take into
account the successive sequence of branching, i.e., of
sequence ofV, G1, and G2 through which the chosen sit
evolves under renormalization. At every stage the appro
ate set of recursion relations Eq.~8!, or Eq. ~9! has to be
used. The LDOS is obtained from the local Green’s funct
G0051/e i* in the limit whenki ’s flow to zero under iteration.
However, we show in Fig. 5 the ADOS for the TM sequen
for the on-site, the transfer, and the mixed models, resp
tively.

V. CONCLUSIONS

In conclusion, we have presented the computation of
dynamic structure factor of a general substitutional seque
that reproduces the Thue-Morse ordering at special lim
The difficulty involved in dealing directly with the TM struc
ture is thus bypassed. The dispersion curves for both the
lattice as well as its parent (G) lattice are presented. Th
dispersion curves reveal the presence of infinite numbe
gaps in both the acoustic and the optical branches. The o
cal branches exhibit a dispersionless feature which is c
mon even to the real quasicrystals. As a by-product of
scheme we calculate the average density of states for var
models of a Thue-Morse lattice.
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