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Frequency dependent response of a Thue-Morse aperiodic lattice
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We present an exact calculation for the dynamic structure factor of a Thue-Morse aperiodic lattice using a
real space renormalization-groiBSRG method proposed by S. N. Karmakar, A. Chakrabarti, and R. K.
Moitra [Phys. Rev. B46, 3660(1992]. However, the ordering inherent in a Thue-Morse sequence prohibits a
direct application of the RSRG method. We overcome this difficulty by observing that the Thue-Morse lattice
can be obtained from a more general deterministic structure that is constructed using a four-letter substitution
rule. This general deterministic sequence has the advantage that, first, both the aperiodic Thue-Morse sequence
as well as the quasiperiodic period-doubling sequence can be extracted from it at two different limits, and
second, within a decimation renormalization technique, it can be split into two equivalent self-similar sublat-
tices. This facilitates the application of the renormalization method. Exact recursion relations for the Hamil-
tonian parameters for these sublattices are provided. Results are given both for this general nonperiodic
structure and the Thue-Morse lattice as its special case. In addition, within the same framework we calculate
the average density of states of the Thue-Morse lattice. Some features in the response of the aperiodic chains
are found to be compatible with experiments on real quasicrystals.
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[. INTRODUCTION dynamic response of these sytems. The main obstacle is, un-
derstandably, the absence of periodicity. An important quan-
After the discovery of icosahedral symmetry in melt-spuntity is the dynamic structure factd®(q,w), which can be
alloys of aluminum and manganese by Shectraial,! ex-  directly related to the inelastic neutron scattering cross sec-
tensive research on various properties of qusicrystals hav@n and also gives information about the excitation modes of
enriched the literature. In particular, one-dimensional quasithe systenf??? Experiments on quasicrystals have provided
periodic lattices have attracted most of the attentidiThe  important information in this regard. Over the past years
interest in one-dimensional problems really shot up after théhere have been a few theoretical studiesS¢q, w) for dis-
success of Merliret al® in growing model systems where ordered and quasiperiodic lattic&s?’ Although most of the
quasiperiodic order is built by depositing GaAs and AlAswork concerns the calculation of spin dynamics on a quasi-
layers in a Fibonacci sequence using the molecular bearperiodic lattice, the extension to the phonon problem is quite
epitaxy technique. X-ray and neutron scattering experimentstraightforward. The behavior of the phonon modes, as ob-
were performed and the positions of the Bragg peaks wertained from such calculations, may be tested by inelastic
identified. The recent nanostructure technology has realljeutron scattering experiments.
been successful in providing “testing ground” for the theo-  Patel and Sherringtéfiworked outS(q, ) for a system
ries. A calculation even in one dimension has thus becomef ferromagnetically coupled spins on a fini2D) Penrose
meaningful from the standpoint of an experimentalist. Theattice. Well-defined propagating spin waves with isotropic
pioneering work of Kohmoteet al? has triggered vigorous dispersion close to the zone centers were found. For the 1D
research activity in the field of electron and phonon spectr&ibonacci sequence Ashraff and Stinchcofitzed Ashraff,
of one dimensional quasiperiodic and other aperiodic latLuck, and Stinchcomi3& derived an analytical expression
tices, though some other aspects of these systems have afso S(q,w) using a generating function approach. They
been investigatetf:'® Studies of electron states and the pho-showed that the magnon dispersion consists of a main branch
non spectrum in these systems are mostly concerned with tt@dong with many satellite branches of much weaker intensity.
calculation of the respective densities of states and the cha®ne find$® propagating modes at small wave vector, sepa-
acterization of the wave functions. Unlike a randomly disor-rated by a set of gaps from stripes of dispersionless modes at
dered system, the wave functions in a quasicrystal in onéigher frequencies. Benoit, Poussigue, and Azoudarsed
dimension is, in general, power-law localiz&d.The energy  the spectral moments mettf@do rediscover similar features
spectrum is a cantor set with zero Lebesgue measure anil a Fibonacci quasilattice. Karmakar, Chakrabarti, and
exhibits a multifractal character in most of the ca%és. Moitra®® developed a real space renormalization-group
However, the presence of positional correlation between thERSRG method for calculating the dynamic structure factor
constituents in certain class of one-dimensional quasiperiS(q,w) for phonons on a Fibonacci chain. Subsequently,
odic lattices is shown to be responsible for the existence oGhosh and Karmakat calculated S(q,w) for a period-
extended “Blochlike” eigenstate¥ 2 doubling lattice®> Compared to the 1D quasiperiodic Fi-
Apart from the electronic and other properties mentionedonacci chain, no attempt has been made so far to calculate
above, comparatively less effort has been given to study ththe dynamic response of the 1D aperiodic lattitéstypical
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FIG. 1. (a) Portion of an infinite Thue-Morse chain illustrating the decimation schébeSplitting of al” lattice into two equivalent
sublatticed™; andT’,.

example of an aperiodic chain is the Thue-MorSeM) equivalent self-similar lattices, each of which is an exact

lattice 3! which is generated using a two-letter substitutionreplica of the parent lattice. This is true for a Fibonacci lat-

rule, viz. L—LS and S—SL, L being the seed. Hence the tice as well as a quasiperiodic period-doubffh@PD) lattice

first few generations look likeGy=L, G;=LS, G, but cannot be achieved for a TM lattifsee Fig. 1a)]. We

=LSSL G3;=LSSLSLLSand so on. The essential differ- give a prescription for making the scheme work for a TM

ence between a TM sequence and the classical Fibonadeittice as well. It is shown that both the TM and the PD

sequence is the existence of positional correlations betweesequence can be obtained as special cases of a more general

the constituents in the former that enables an infinite TMfour-letter substitutional sequence. The growth rule for this

sequence to sustain a countable infinity of extendedatter sequence is proposed by us. This four-letter sequence

eigenmode¥ though there is no translational periodicity. can be shown to split under renormalization into two self-

These eigenstates have profound influence on the transpaimilar sublattices, each of which now becomes an exact

properties of such lattices. replica of the parent lattice. The application of the RSRG
In this paper, we calculate the dynamic structure factor oscheme now becomes possible. TH&, ) both for the

an infinite TM lattice, since such calculations in the case offM and the PD latticegsas well as the nonperiodic lattice

aperiodic lattices, to the best of our knowledge and belief, iproposed by yscan be obtained within the same formalism

really lacking. Our motivation behind this work is twofold. just by tuning the initial conditions suitably. However, in

First, we think it would be rather interesting to see the effectwhat follows, we explicitly discusS(q, ) for a TM lattice,

of the positional correlation in a TM lattice that makes theand in some cases present the results for its parent lattice.

energy spectrum of such structures radically different from In Sec. Il we describe the models. In Sec. Il the method

the canonical case of a Fibonacci quasicrystal, on the resf calculation is described and the results are given in Sec.

sponse characteristics. Second, recent experiments on actldl We conclude in Sec. V.

quasicrystals reveal several interesting characteristics and

one might ask, to what extent such features represent in a 1D Il. THE MODEL

structure. We will follow essentially the method developed

in Ref. 29. However, it is important to note that a straight- We consider a spring-mass model system in one dimen-

forward application of the RSRG decimation schéhifis  sion, where two types of springs.” and * S” and having

not possible in a TM lattice. This is because the schemespring constant&,_ and kg, respectively, are arranged fol-

relies heavily on the splitting of the original lattice into two lowing a TM sequence described earlier. Point massgs
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mg, m,, and m;s are attached to the vertices flanked byin the harmonic approximation, wherazmiwz—ki,iﬂ

springs of typeL-L, L-S, S-L, andS-S, respectively. The —k;; 1, m; being the mass of theh mass point, an¥;; is

lattice is shown in Fig. (). Whenk, =ks, m,=m,=mj,, the spring constant between th andjth atom. The basic

and mg=ms=mg we get back the standard onsite model,spirit of the RSRG calculation lies in splitting the sum in-

whereas, fom,=mz=m,=m; andk_#ks the bond or the volved in Eq.(2) into a sum over two self-similar sublattices.

transfer model results. These sublattices are obtained from the original lattice by
In Fig. 1(a) we also show a decimation renormalization ondecimating a chosen subset of sites. Once these sublattices

such a TM structure resulting in a scaled version of the origi-are formed we can express the summmation in(Epas a

nal lattice (0). The latticeQ) is obtained by using the TM combination of two independent sums over these two sublat-

growth rule in the opposite sense, i.e., by foldingle®pair  tices. The terms connecting these two sublattices can be

into a newL and anSL pair into a newS. In this process, a eliminated by the use of the Green’s function equations of

set of sites is eliminated. The decimated sites themselvenotion written above. The method works in a straightfor-

form an aperiodic structurel’), which clearly does not re- ward manner for Fibonacci and the period-doubling lattices,

semble a TM sequence. In terms of the original TM chain theas has already been shown in the literafdr&.

I' lattice is found to be composed of the pairs of sprieg In order to calculate the dynamic structure factor of fhe

LS, LL, andSL. We rename these #s B, C, andD, respec- lattice, we need to define six values gf corresponding to

tively. TheT lattice then represents a deterministic sequencéhe six varieties of sites in & lattice, depending on the

of “bonds,” which is completely different from a TM se- nearest-neighbor environment. These [&ig. 1(b)] €,, €4,

quence, having four letters as its constituents. We have,, €5, €,, ande, located between the pairs of “bonds”

worked out a rule that generates fiesequence. The rule is A-B, B-C, C-A, A-C, C-D, and D-A, respectively. The

A—AB, B—CA, C—CD, and D—AC. The seed isA. spring constants for the bonés B, C, andD are denoted by

Naturally, using this set of rules backward one can renormalka, kg, kc, andkp. Now as one implements the RSRG

ize al lattice as well. In Fig. (b) we show the renormal- decimation technique on thE lattice using the Green’s-

ization formalism. Most interestingly we find that both the function equations of motion, an additional facterappears

sublatticesI'; and I', exactly resemble thé&' lattice. Not in front of each term in the summation. To handle these

only that, as special cases, if we chodseD andB=C, we factors we rewrite Eq(2) as

get back the TM sequence, whereas a chdiceC and B

=D generates the quasiperiodic period-doubling lattice.

Th_us we have been qble to generate a nonperiodic determin- Gn(a,@)=(1N)Y, £,Gy (g, ), (4)

istic sequence that gives rise to a quasiperiodic and an ape- 1’

riodic sequence at suitable limits. The property of Ehéat-

tice as discussed above enables us to calculatSihigw)  where

for this lattice in a straightforward manner using our earlier

RSRG method® We present the calculation for the TM lat- _

tice. The results presented for the TM lattice have been ob- Gy =€9=nIG, . ©)

tained by using the RSRG recursion relations for khéat-

tice with suitable initial values of the parametel’s. Some OfA” the fl’s are equa' to one at the beginning, and grow as the
the results for thd™ lattice itself have been presented for a renormalization progresses. To facilitate the RSRG process

comparative study. we need to specify six values for the factéysorresponding
to the six sites we have already defined. Tkie are desig-
lll. CALCULATION OF S(q,w) FORT nated asf,, fg, f,, fs, f,, andf,, respectively. We have

AND THUE-MORSE LATTICES been able to derive recursion relations for each of these fac-

, ) tors, as will be presented shortly. The sum in E2).is now
The dynamic structure factor that we are going to Calcu'partitioned as

late is defined by

S(g,w)=Ilim Iim ImGy(q,w—iJ), 1
(@) 50 N n(d. o ) @) Gn(g,0)=(1/N) > fiG+ 2 f1Gu
|EF1,|,EF1 |EF2,|/EF2
where
+ > {6+ > fG6l.
. _ |Er1,|,EF2 |EF2,|,EF1
Gn(g,@)=(1N) >, €917 1)Gy (), )

1,17
_ - ) ] The last two terms in the above equation can be expressed
r, being the position of théth site andN the number of sites.  completely in terms of the first two terms by using the set of
Here G;;/(w) are the single-site Green’s functions that sat-gq. (3). Now we are left with two sums, for one of which the

isfy the equations of motions, indices run over thd'; sublattice only, while for the other
sum the indices belong entirely to the sublattice. The sum
—€Gjj=—0tKii+1Gj 11Tk i-1Gj_1; (3 looks like
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FIG. 2. S(q,) vs g for a Thue-Morse lattice for different fixed
values ofw (a) On-site model:m,=mg=m,=1, m,=m,=m,
=2, ka=kg=kc=kp=1, and w=1.104 18.(b) Transfer model:
m=1 fori=a, B, v, 6, n, andv, ka=kp=1, kg=kc=2. (¢
Mixed model: m,=mgz=ms=1, m,=m,=m,, Ka=kp=1, kg
=kc=2, andw=1.17459. In each case the respective values of
correspond to delocalized modes in infinite chain.

Gn(d,w)=p1 1/(Nr1)2 (for, G
K

: ()

+P2

U(Np) > (f)r,Gn
I’

where (ﬁ)rl and (f|)r2 are the new coefficients for the sub-

latticesI"; and I',, respectively. Here, both the factopsg

and p, are equal to 1/2. Since each of the resulting sublat-

tices is a replica of the origindl lattice, we can carry on the

same splitting procedure for each of them. The RSRG pro-
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FIG. 3. S(q,w) for (&) the I' lattice withm,=1, mgz=2, m,
=25 ms=1,m,=m,=2, ka=1, kg=2, kc=2.5, andkp=1.5
and(b) the on-site model of the Thue-Morse lattice. The parameters
are the same as in Fig(&.

cess can be viewed as a branching “genealogical tree” with
each branch splitting up into B;-I", pair with the progress
of renormalization. The sum is then evaluated in the limit
when the spring constanits flow to zero under iteration. The
recursion relations for thE; sublattice are given by:
r_ 2 2
€,=€gTKe/(—€,) +Kgl(—€,),
ep= €T ke (—€,)+KA(—€,),
r_ 2 2
€,=€,TKal(—€,) tKp/(—€,),

€s=egtkal(—€,)Tk3/(—€,),

€,= €, Ka/(—€5) TkBI(—€,),
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FIG. 4. Dispersion relation fofa) Thue-Morse lattice: on-site moddl) TM transfer model, andc) mixed model. In each case the
parameters are the same as in Figs)-2c). (d) I" lattice with the parameters same as in Fi(p)3

€= €, Ki/(—€,)+ K& (—€y), aj,=ac+a. (8)
f;:fﬁ+f7kce*iq30/(—ey)+fakBeian/(—ea), Similarly, for theI', sublattice the recursion relations are
_ _ € =€, +Kil(—es)+KE(—€p),

Fr=f o+ f koo 199/ (— €,) + L kae928/ (— €,), vt o7

_ _ 5= €, Tkbl(—€,)+kE/(—€s),
f/=1,+f.kae 9%/ (—€,)+ 1, ,kp€'9%0/(—¢,),

€, =€, tkal(—ep) +Ki(—¢,),

fl=f,+f kce '9%c/(—¢e,)+f kge'9%/(—¢,),
T g 5= €, K5/ (—€,)+KE/(—€p),
f!=f,+fkae 9%/ (— €5+, kp€'9®/(—€,),
# A (o)t Tuko # e, =estk2l(— )+ K3 (—e,),
f/=f +f,kae 93/ (—¢,)+ f jkcel9%c/(— e),
v = Ty T TaKa8 (—€q)+fskee (—€5) 6;:6a+ké/(—65)+ki/(—67),

kA: kBkA/(_ Ea)v f(;:fy_kf&kAefiqu/(_ E§)+ fﬁkceiqacl(_ E,B)v

kg=kcka/(—e€,), fr=1,+f kpe 199/ (— €,)+ f e/ (— ),

ke=kckp/(—€,), f1=f,+f gkee 19%8/(— )+ f kel 9/ (—¢,),

kp=Kakc/(—€5), fr="f,+f kpe 19%/(—€,)+f gkeel9c/(— ep),
ap=aat+ag, £/ =f5+f,kee 9%/ (—e,) +f kae'9®/ (—¢,),
ap=aa+ac, fl="f,+fskae 938/ (— €p) +f kne'9%/(—€,),
ac=ac+ap, ka=Kckg/(—€p),
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|
ol Ll ull

ap=ac+aa- (9) ®
2

kg=Kakc/(—€5), 2

k(’::kaA/(_ €,),

1.5

kp=Kcka/(—€,),

p(w)

ap=ag+ac,

ag=aptac, 05

ac=aptaa,

In the above set of equatiols= m;w’— Kiit1—Kii—q1, andi

stands fora, B, v, 6, u, andv. The symbolsy; refer to the

bond lengths withj = A, B, C, andD, respectively. It is to be 15
noted that once we set the parameters in the oridinethain

to represent a TM lattice, the renormalized versionpre- R
serves the TM ordering. We continue with the splitting pro- € 1
cess and in the limit;— 0, the sum in Eq(7) typically looks

like

(b)

0.5

*

X F?
Gn(q,w)=— Ehsp(path)i: > I*l- (10)

all pat a,B,7,8,mv € 0

1 |||||| |H\ al \ml‘u 1 n‘u|h L
1 1.5

2 25 3

The “*” refers to the fixed point values of the respective 2
guantities and; is the concentration of thigh type of site,
wherei stands fore, B, vy, 6, u, andv. The summation
above is over all possible paths in the genealogical tree fore 15
given number of branching. Thus, with the help of E(S.
and (10), we finally determine the dynamic structure factor
S(q,w) for the I' as well as the TM chain. It is equally
straightforward to calculat&(q,w) for a PD chain. How-
ever, the detailed results for the latter are presented
elsewheré? and we skip that discussuion here. The disper-
sion relation is almost trivially obtained fro8(q,w) by
noting that, for every nonzero value &q,») one comes 0
across a set ob andq values. This set constitutes the dis-
persion curves when scanned over the entire regime in the
w-q plane. FIG. 5. Average density of states for the TM latti¢a} on-site

model, (b) transfer model, angdc) bond model. The parameters in
IV. RESULTS AND DISCUSSION each case are the same as those used in Fig. 2.

p(w)

L i |||\
o] 0.5 1 1.5 2 25
[

In Figs. 2a)—2(c), we plot S(q) againstq for three dif- case the periodic behavior 8 q) againstq is clearly seen.
ferent models of the TM chain for three different frequen-The fractal character @&(q) can be revealed on scanning the
cies. In each case we start with tiielattice with proper values ofq between any two intervals in finer details. In Fig.
initial conditions so as to reproduce three different models o8 we show the three-dimensional plots &(t, w) for I" and
the TM lattice. The on-site model correspods to the casdM lattices. In Figs. 4a)—4(c), we show the dispersion
where m,=mgz=m;, m,=m,=m,, and Ka=Kkg=Kc curves of the TM on-site, transfer, and the mixed models,
=kp; for the transfer modein,=mgz=m,=ms;=m,=m,  respectively, while, Fig. @) shows the dispersion relation
andky=kp andkg=kc and the mixed model has the com- for the general model of B lattice for comparision. For this
bination m,=mgz=m;s, m,=m,=m,, kKa=Kkp, and kg case we choosm,, mg, etc. as well ak,, kg, k¢, and
=Kkc. It is now well known that an infinite TM lattice sup- kg in a completely arbitrary fashion. In each case the disper-
ports a countable infinity of extended eigenstates. Results faion relation reveals that at very low and very higkalues,
both the electronic as well as the phonon cases are availabliee., when the wavelength of the incident radiation is too big
We pick up three eigenfrequencies corresponding to threer too small compared to the lattice parameters, the scatter-
different extended modes from the available restifS. ing is insensitive to the aperiodic ordering, and features simi-
These eigenfrequencies can be evaluated exactly. In eaddr to a periodic case are reproduced. For intermediate values

064201-6



FREQUENCY DEPENDENT RESPONSE OF A THUE. . PHYSICAL REVIEW B 63 064201

of g the aperiodicity comes into play. This is reflected by thefrom the third stage of renormalization onwards, which sup-
occurence of numerous pseudogaps. In each case the dispports our conjecture.

sion curves consist of a main branch on which infinite num-
ber of satellite branches are superimposed. For the on-site
model [Fig. 4@)], the acoustic branch peaks near what one The RSRG method used in the calculatiorS¢f], ») can
may call a “pseudo” Brillouin-zone boundar{f,which re-  be used straightaway to find out the local density of states
sembles that of an ordered chain. For the transfer and théDOS) and the average density of stat@DOS) of such an
mixed models, such boundaries are hard to locate. The opt@periodic lattice. The ADOS is given by

cal branch in each case exhibits a fragmented but practically

The density of states

. . S . 1 1
dispersionless character. It is interesting to note that such plw)=—=lim Im/ = 2 G“(w—iﬁ)} (12)
dispersionless features are also present in case of real T 50 N 4
H 4,35
quasicrystar. This sum does not include any off-diagonal matrix elements.

It is well knowr® that flat (dispersionlessoptical modes  \yg therefore set alF; equal to unity at each stage of the
may occur in the vibrational spectrum of a periodic linearrenormalization. To calculate the LDOS at any specific site
chain of atoms, or even in a 3D model. This happens if theyf the TM chain(or even thel lattice), one must take into
intracellular interactions are much stronger than those besccount the successive sequence of branching, i.e., of the
tween the cells. In such cases, independent “molecular” visequence of), T';, andI', through which the chosen site
bration takes place in each primitive cell, independent ofeyolves under renormalization. At every stage the appropri-
wavelength of the normal mode. ate set of recursion relations E(B), or Eq. (9) has to be

An infinite TM lattice can be built up by higher and ysed. The LDOS is obtained from the local Green’s function
higher order periodic approximants. By renormalizingwim G =1/e* in the limit whenk;’s flow to zero under iteration.
order periodic approximam—1 times we can map the lat- However, we show in Fig. 5 the ADOS for the TM sequence

tice onto a binary “ordered” sequence of bondSLS - for the on-site, the transfer, and the mixed models, respec-
and so on. One can now calculate the effective couplingjyely.

constantsk; andkg by using the recursion relatiori8) and
(9). This helps in offering a possible explanation to the ex- V. CONCLUSIONS
istence of flat optical branches, viz., those value<lofor
which the intramolecular couplings becomes much greater
than the intermolecular couplingy are likely to constitute

the dispersionless modes. For all these frequencies, the enti Iy . . ) : ;
lattice vibrates in segmentsvhich form the “molecules’ e difficulty involved in dealing directly with the TM struc-

and there is a very weak coupling between any two consecm{yr‘_a is thus bypass_ed. The dispers?on curves for both the TM
tive segments. If we deal with an infinite lattice, then the attice as well as its parent) lattice are prgsgnted. The
entire lattice is likely to execute a collective “molecular” dispersion curves reveal the presence of infinite number of

vibration gaps in both the acoustic and the optical branches. The opti-
As thé band structure of such lattices is highly frag-cal branches exhibit a dispersionless feature which is com-

mented, cantorlike, it is really difficult to predict a sharp MON €ven to the real quasicrystals. As a by-product of our

separation between the acoustic and the optical branche%?heme we calculate the average density of states for various

However, we have checked our prediction for a few vaIue§nOdGIS of a Thue-Morse lattice.
of the frequency, and it seems that our explanation works
well. For example, in the on-site model, the frequency 1.78
falls in the dispersionless optical mode. The ratio of the We thank Debades Bandopadhyay for helping us with
renormalized coupling constarkg/k, is of the order of 100 some of the graphics.

In conclusion, we have presented the computation of the
dynamic structure factor of a general substitutional sequence
at reproduces the Thue-Morse ordering at special limit.
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