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Coherent quasielastic neutron scattering: A theorem about total neutron scattering functions
for rotational jump diffusion of molecules on a lattice

Gerrit Coddens
Laboratoire des Solides Irradie´s, Ecole Polytechnique, F-91128-Palaiseau Cedex, France

~Received 16 June 2000; published 23 January 2001!

We derive a theorem about thecoherentquasielastic neutron-scattering signal from a lattice ofN molecules
that are undergoing rotational jump diffusion. If no correlations between the molecular jumps exist then the
coherent quasielastic scattering signal is justN times that of a single molecule. The elastic contribution is just
the diffraction diagram of the system. This implies, among others, that between the Bragg peaks there is no
coherent elastic contribution, i.e., between the Bragg peaks the coherent signal is purely quasielastic. These
results for coherent scattering are in marked contrast to those in the case of incoherent scattering where one
also can find elastic scattering outside the Bragg peaks.
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I. INTRODUCTION

Quasielastic neutron scattering1,2 is a powerful tool to
study relaxational motions within the realms of condens
matter physics, chemistry and biology. On consulting
few existing monographs1,2 on this subject, the reader wi
soon notice that study cases and examples dealing within-
coherentquasielastic neutron scattering abound, while ap
cations within the domain ofcoherentscattering have re
mained very few and far between. In a concern to palli
this shortage of means in modeling, we have outlined i
series of previous papers3 a method to calculatetotal neutron
scattering functionsS(Q,v), by reformulating the problem
in terms of configurations. The whole system is represen
by an abstract single particle that moves in a configura
space. Each site in this configuration space correspond
one configuration of the system. The basic idea is the follo
ing. According to Van Hove,4 the coherent and incoheren
double-differential scattering cross sections are given by
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where we have introduced the incoherent and total scatte
functions Sinc(Q,v) and S(Q,v). A comparison between
the two equations reveals that in the case of incoherent s
tering one must keep track of the history of one single p
ticle ~as manifested by the occurrence of a single indexj ),
while in the case of coherent scattering one has to follow
the simultaneous evolution of all particles~as transpires
0163-1829/2001/63~6!/064105~7!/$15.00 63 0641
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through the occurrence oftwo indicesj ,k) within the system
under investigation. The latter demand appears as a sig
cant increase in theoretical complexity, which may be co
sidered as the culprit of the aforementioned scantiness
literature on coherent quasielastic scattering. The te
( j ,kbj* bk ^ eıQ•[ rk(t)2r j (0)]& th in Eq. ~2! can be rewritten as

K S (
j

bj eıQ•r j (0)D * S (
k

bk eıQ•rk(t)D L
th

5^@FC(0)~Q! #* @FC(t)~Q!#& th , ~3!

where FC(t)(Q)5(kbk eıQ•rk(t) is the Fourier transform
~weighted by the coherent scattering lengths of the nuclei! of
the configurationC(t) of the atomic positions at timet. In the
previous lines, the sums are over all the atoms in the sys
The scattering lengthsbj ,bk to be plugged into the equation
are the incoherent ones in Eq.~1! and the coherent ones i
Eq. ~2!. The preceding lines already show that in order
describe a coherent scattering signal, it is much bette
describe the system in terms of configurations. The te
(kbk eıQ•rk(t) are invariant under the exchange of two ide
tical particles. Hence, coherent scattering does not dis
guish individual particles and sees only configurations. C
herent scattering corresponds to the wave behavior of
neutron, while incoherent scattering, which does distingu
between individual particles, corresponds to the particle
havior of the neutron. This has been made intuitive
Feynman.5

It is our aim to illustrate the potential of our approach
applying it to a number of representative cases as a guid
our methodology that eventually should enable a gen
readership to acquire enough autonomy to put it to profi
his own possible systems of interest. The main point we w
to make is that, although very often the size of the config
ration space may look daunting, there do exist technical
pedients to solve the problem in full generality that also
experimentalist should not find too difficult to master. In t
present paper, we demonstrate the method by derivin
theorem about the total scattering function of a system oN
rotating molecules, which we will be able to app
©2001 The American Physical Society05-1
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GERRIT CODDENS PHYSICAL REVIEW B 63 064105
afterwards, e.g., to calculate the coherent neutron-scatte
signal of the nonadecane molecules inside an urea inclu
compound,6 a system that has received much current inter
The incentive for our calculation has been a request ema
ing from Toudic and his collaborators,7 who have made an
experimental study of the urea inclusion compound by
herent and incoherent quasielastic neutron scattering
NMR.8 It is assumed that the lattice defined by the ba
centers of the molecules is periodic and thatthe molecules
are rotating independently. Their rotation axes and their ori
entations are all parallel~in the sense that when two mo
ecules find themselves in an orientation that carries a labj,
then they are strictly parallelly oriented! but the details of the
rotational diffusion of the single molecules are, up to a c
tain extent, immaterial: it can be continuous or jump diff
sion, and in the latter case the rotation axis may have a
trary symmetry, e.g.,nPN ~where we may add the
conventionn5` for continuous diffusion, which is obtaine
from the case with finiten by taking the limitn→`). The
jump model with finiten is based on the usual assumptio
in the white-noise approximation:~1! The duration of a jump
is so short that it can be neglected;~2! jumps occur only
between first-neighbor orientations and the time between
such 2p/n jumps follows an exponential distribution chara
terized by a so-called relaxation timet; ~3! due to the van-
ishing duration of a jump and the absence of any corre
tions, we can assume that two jumps never oc
simultaneously. Calling the total number of molecules with
the sampleN, one’s educated guess will then probably
that we can takeN times the coherent signal of a sing
molecule in order to describe the full system. This intuiti
idea has been put here on a firm footing by a rigorous m
ematical proof based on the assumptions outlined ab
Moreover, our approach also tells something about the e
tic contribution. Furthermore, it indicates the path one w
have to follow in order to tackle more involved situatio
where the molecular jumps no longer remain totally unc
related. The theorem derived says that the resulting sig
contains two contributions, viz., an elastic one, which
nothing else than the~Bragg! diffraction diagram of the sys
tem, and a quasielastic one, which is justN times the coher-
ent quasielastic scattering signal for a single rotating parti
06410
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This immediately implies that there is no elastic signal b
tween the Bragg peaks as in the case for incoherent sca
ing, where it has become common practice to define an e
tic incoherent structure factor~EISF! after Lechner’s
pioneering work.9 The advantage of introducing this conce
is that it allows one to get rid of the necessity to determ
the Debye-Waller factor. If we want to render the analysis
the coherent quasielastic scattering signal insensitive to
Debye-Waller factor in a similar way, then we will have
compare the quasielastic intensities to those of the Br
peaks. The importance of this finding for the studies of u
inclusion compounds is obvious. The coherent quasiela
signal for the rotational diffusion of a single alkane molecu
can be calculated rigorously, for arbitrary values ofn, such
that a comparison with the experimental data will teach
unambiguously if the rotations of the nonadecane molecu
are correlated or otherwise. Since there must exist some
relations if we are unable to reproduce the experimental
sults with some value ofn. Surprisingly, the coherent dat
are compatible with a description based on the premise
total absence of correlations, while the incoherent data
not. A theoretical treatment of the coherent data allowing
some correlations will thus be required in the future. For o
thing, the coherent neutron-scattering signals have indeed
vealed themselves as being purely quasielastic in the reg
in between the Bragg peaks. The circumstance that corr
tions do occur is beyond any possible doubt, the one
open-mind curiosity should be inclined to prefer, since
renders the subject matter actually much more rich and th
ing. In fact, the general method we developed can even t
be put to use to calculate coherent signals in such syste
which leads to the unprecedented situation, where one wo
be able to gain access to a wealth of information about
namical correlations between rotating molecules.

II. ROTATIONAL DIFFUSION OF A SINGLE MOLECULE

The rotational jumps for a single moleculem around an
n-fold axis are governed byn coupled rate equations:1

d

dt
P (m)5

1

t
M (m) P(m), ~4!

where then3n jump matrixM (m) is given by
M (m)51
22 1 0 0 0 0 ••• 0 0 0 0 1

1 22 1 0 0 0 ••• 0 0 0 0 0

0 1 22 1 0 0 ••• 0 0 0 0 0

0 0 1 22 1 0 ••• 0 0 0 0 0

A A A A A A A A A A A

0 0 0 0 0 0 ••• 1 22 1 0 0

0 0 0 0 0 0 ••• 0 1 22 1 0

0 0 0 0 0 0 ••• 0 0 1 22 1

1 0 0 0 0 0 ••• 0 0 0 1 22

2 ~5!
5-2
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COHERENT QUASIELASTIC NEUTRON SCATTERING: . . . PHYSICAL REVIEW B 63 064105
andt is the relaxation time for a nearest-neighbor jump~i.e.,
over an angle 2p/n). The n31 column matrix P (m)

5@ p1
(m)(t),p2

(m)(t),•••,pj (t),•••,pn
(m)(t) #Á contains the

probabilitiespj
(m)(t) that the molecule with labelm has the

orientation j P@1,n#ùN at time t. The rate Eqs.~4! and ~5!
can be rewritten as

d

dt
pj

(m)5
1

t
@ pj 21

(m) 22pj
(m)1pj 11

(m) #, ~6!

where all lower indices have be takenmodulo n. Each orien-
tation or configurationj has the same type of relation with i
nearest neighborsj 21 and j 11, such that our problem ha
translational invariance. It is impossible to tell from th
structure of the relation at a given orientation which partic
lar valuej takes, as the structure is identical for allj. This has
been pointed out previously3 by drawing the attention of the
reader to the fact that the matrixM (m) is the same as the on
that occurs in the phonon problem of a monoatomic perio
linear chain ofn atoms with cyclic boundary conditions, pro
vided one makes allowance for the fact that 1/t must be
replaced byk/m, wherek is the force constant andm the
mass of the atom.~Of course the system of coupled diffe
ential equations is of the second order in the phonon pr
lem, but in any case, the mathematical solution of the eq
tions also here boils down to the diagonalization of t
matrix M .) In the phonon problem the eigenvectorsV(q) are
immediately given by the Bloch ansatz (V(q)) j
5exp@ı (2p/n) (q21) (j21)# which is a mere offshoot of the
underlying translational invariance. The corresponding
genvalueslq are obtained by operatingM (m) on V(q):

lq524 sin2 Fpn ~q21!G ;qP@1,n#ùN. ~7!

III. FORMULATION OF THE PROBLEM WITH TWO
MOLECULES

If two moleculesm andn are rotating independently, the
the joint probabilityPj ; k that moleculem has orientationj
and moleculen has orientationk will be given by Pj ; k

5pj
(m) pk

(n) . By combining

@3 pk
(n) #:t

d

dt
pj

(m)5pj 21
(m) 22 pj

(m)1pj 11
(m)

; j P$1,2, . . . ,n%,

~8!

@3 pj
(m) #:t

d

dt
pk

(n)5pk21
(n) 22 pk

(n)1pk11
(n)

;kP$1,2, . . . ,n%

we obtain exactly
06410
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Pj ; k5Pj 21; k1Pj 11; k1Pj ; k211Pj ; k1124 Pj ; k

;~ j ,k!P$1,2, . . . ,n%2. ~9!

If in the analogon of the phonon problem we go from t
problem of a linear chain to a two-dimensional lattice, w
know that instead of eigenvectorsV(q) with components
(V(q)) j5exp@ı(2p/n) (q21) (j21)# we will have to take
Bloch waves of the type (V(qx ; qy)) where (V(qx ; qy)) j x ; j y

5exp$ 2pı@(qx21) (jx21)1(qy21) (jy21)#%. The eigenvec-
tors (V(qx ; qy)) are given two indices@corresponding to a
two-dimensional wave vector (qx ;qy)], since there will now
ben3n of them~there aren3n atoms on a square lattice o
linear dimensionsn3n). The dynamical matrix for the pho
non problem has then alson3n lines, which is why we also
use double indices (j x , j y). The order of enumeration of th
latter indices inside an eigenvector of the dynamical ma
(V(qx ;qy)) is not important, provided one takes care to sti
to the same convention throughout. This indicates that
eigenvectors and eigenvalues for a two-dimensional case
be constructed from those of the one-dimensional case
making products. The product that comes into play is
so-called Kronecker product of matrices. The eigenvect
will be

V(qx ; qy)5V(qx)
^ V(qy) ~10!

and the corresponding eigenvalues will be

lqx ; qy
5lqx

1lqy

524 sin2Fpn ~qx21!G24 sin2Fpn ~qy21!G .
~11!

Equation~9! is now exactly the same as the one for the jum
diffusion of a single particle on a two-dimensional lattice
n3n sites and cyclic boundary conditions, the site with i
dices (j ,k) having four neighbors (j 21,k), ( j 11,k), ( j ,k
21), and (j ,k11). In fact, it has two neighbors (j 21,k)
and (j 11,k) along thex direction and two neighbors (j ,k
21) and (j ,k11) along they direction. The configuration
space is thus the Cartesian product of the configura
spaces of the two molecules. These heuristic arguments
purely mathematical and one should not try to give them
physical interpretation. By noticing a formal analogy b
tween our jump problem and the problem of phonons o
two-dimensional lattice, we are able to find the eigenvect
of the jump matrix defined in Eq.~9!, but the translational
symmetry we exploit in configuration space has nothing
do with any periodicity in the physical space that harbors
two molecules.

IV. GENERAL FORMULATION FOR N MOLECULES

This can be generalized to an arbitrary numberN of inde-
pendently rotating molecules m1 ,m2 , . . . ,m l , . . . ,
mN21 ,mN . We end up with the jump diffusion of a singl
abstract particle~our configuration! on a hypercubic lattice
5-3
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GERRIT CODDENS PHYSICAL REVIEW B 63 064105
of dimensionN ~our configuration space!, due to the rule for
the derivative of a product. Here each site will have 2N
neighbors, viz., two along each coordinate axisxl of the
hypercubic lattice inRN. In N dimensions we will have prob
abilities

Pj 1 ; j 2 ; ••• j l ;••• j N21 ; j N

5pj 1

(m1) pj 2

(m2)
••• pj

l

(m l )•••pj N21

(mN21) pj N

(mN)

;~ j 1 , j 2 ,••• j N21 , j N!P$1,2,••• ,n%N. ~12!

The eigenvectors will be

V(q1 q2 ••• ql ••• qN21 qN)5V(q1)
^ V(q2)

^ ••• ^ V(ql ) ^ •••

^ V(qN21)
^ V(qN), ~13!

;(q1 ,q2 , . . . ,ql , . . . ,qN21 ,qN)P$1,2, . . . ,n%N and the
corresponding eigenvalues will be

lq1 ; q2 ; . . . ; ql ; . . . ; qN21 ; qN
5lq1

1lq2
1•••lql

1•••

1lqN21
1lqN

, ~14!

where, more explicitly, the right hand side reads

24 sin2Fpn ~q121!G24 sin2Fpn ~q221!G•••
24 sin2Fpn ~ql21!G•••24 sin2Fpn ~qN2121!G
24 sin2Fpn ~qN21!G . ~15!

In such a problem, a site with coordinate
( j 1 , j 2 , . . . j N21 , j N) within the interior of the set
$1,2, . . . ,n%N will have 2N neighbors. This will also be true
for the points on the boundary of this set due to the cyc
boundary conditions, and the corresponding jump matrixM
~where we have labeled the moleculesm l canonically byl
P@1,N#ùN) will then have 2N11 nonzero entries on eac
line and in each column, 2N with the value 1 and one with
the value22N. In more condensed form we can write th
probabilities asPj , with jP(@1,n# ù N)N. ThenN eigenvec-
tors are then

V(q)5 ^ l 51
N V(ql ), ~16!

with qP(@1,n# ù N)N. This means that thesenN eigenvec-
tors arenN31 column matrices, whose elements are defin
by

~V(q)! j5
1

AnN )
l 51

N

expF ı
2p

n
~ j l21! ~ql21! G

5
1

AnN
expF ı

2p

n (
l 51

N

~ql21 ! ~ j l21! G . ~17!
06410
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This equation illustrates the meaning of the matrix Kr
necker product̂ that we used in the preceding lines. Th
term 1/AnN is the normalization factor for the eigenvecto
The corresponding eigenvalues are

lq5(
l 51

N

24 sin2Fpn ~ql21!G . ~18!

The jump matrixM is a nN3nN matrix.

V. CALCULATION OF THE TOTAL SCATTERING
FUNCTION

The jump model can be solved by usingM5SL S21

whereL is a diagonal matrix whose elements are the eig
values given in Eq.~18! andS is obtained by juxtaposition o
the eigenvectors given in Eqs.~16! and~17!, within the same
order as their corresponding eigenvalues on the diagona
L. It can be shown thatS215S†, such that the solution of

d

dt
P5

1

t
M P ~19!

becomes

P~ t !5SeLt/t S†P~0!, ~20!

where thenN31 column matrixP(0) contains the initial
conditions. When we calculate thermal averages, we hav
consider all possible initial conditions and average over th
according to their relative probabilities~i.e., thermal occupa-
tion factors!. The initial conditionP(0) just tells us in which
configuration the system was at time 0. That could have b
configuration 1, configuration 2, etc., up to configurati
nN. These initial configurations are represented by thenN

column matrices @1,0,0, . . . ,0,0#Á, @0,1,0, . . . ,0,0#Á,
. . . ,@0,0,0, . . . ,1,0#Á, @0,0,0, . . . ,0,1#Á, The configura-
tion j has all its entries zero, except on the line that cor
sponds to the indexj , where the matrix contains a 1. I
principle, we can give all these configurations the same eq
weight, 1/nN. Each initial configurationj will correspond
then to anN31 column vector that contains zeroes on
lines, except on linej where it will contain 1/nN. The juxta-
position of thesenN column vectors of initial conditions will
yield thenI/nN such that

S~Q,v!5
1

nN F S F~ eLt/t! S† I F†, ~21!

where F is the 13nN row matrix that contains the spatia
Fourier transformsF j of the configurationsj obtained by
putting a Dirac measure of weightbx at the position of each
atom of typex @bx is its coherent scattering length~see Sec.
I!#:

F j5Fj 1
eıQ"r11Fj 2

eıQ"r21•••

1Fj l
eıQ"r l1•••1Fj N21

eıQ"rN211Fj N
eıQ"rN

5(
l 51

N

Fj l
eıQ"r l. ~22!
5-4
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HereFj l
is this Fourier transform~weighted by the appropi

ate coherent scattering lengths! of molecule l if it were
placed at the origin, in one of itsn possible orientationsj l ,
while r l is the position vector of its center of gravity. Henc
when we enumerate the configurationsj in lexicographical
order,

F5@F (1,1, . . . ,1),F (1,1, . . . ,2), . . . ,F (1,1, . . . ,n) ,

. . . ,F (n,n, . . . ,n)#. ~23!

Writing the temporal Fourier transformF(eLt/t)5L (v), we
obtain

S~Q,v!5
1

nN F S L~v! S† F†. ~24!

The elements of the diagonal matrixL (v) are Dirac mea-
suresd(v), when the eigenvaluelq is zero. In the other
cases they are LorentziansL(\lq /t,v) of width \lq /t.
n

ct

06410
„Here L(\G,v)5(1/p)@G/(G21v2)#…. It will be conve-
nient to split the term 1/nN over the left- and right-hand sid
of Eq. ~24! and introduce the definition of thenN31 matrix
G:

G5
1

AnN
F S, ~25!

which leads to

S~Q,v!5G L ~v! G† ~26!

and

Gq5
1

AnN (
j

F j Sj ; q, ~27!

which more explicitly reads as
Gq5
1

AnN (
j 151

n

(
j 251

n

••• (
j l51

n

••• (
j N2151

n

(
j N51

n

F j 1 ; j 2 ; . . . j l ; . . . j N21 ; j N
Sj 1 ; j 2 ; . . . j l ; . . . j N21 ; j N ; q1 ; q2 ; . . . qk ; . . . qN21 ; qN

.

~28!

HereF j 1 ; j 2 ; . . . j l ; . . . j N21 ; j N
is given by Eq.~22!, while Sj 1 ; j 2 ; . . . j l ; . . . j N21 ; j N ; q1 ; q2 ; . . . qk ; . . . qN21 ; qN

is given by Eq.~17!:

Gq1 ; q2 ; •••qk ; •••qN21 ; qN
5

1

nN (
j 151

n

(
j 251

n

••• (
j l51

n

••• (
j N2151

n

(
j N51

n F (
v51

N

Fj v
eıQ"rv G F )

k51

N

eı(2p/n) ( j k21) (qk21) G . ~29!

We will first of all perform the sum overv. The general term in this sum can be decomposed as

1

nN F(
j v

Fj v
eı(2p/n) ( j v21) (qv21) eıQ"rv G F (

j 151

n

(
j 251

n

••• (
j v2151

n

(
j v1151

n

••• (
j N2151

n

(
j N51

n

)
kÞv

eı(2p/n) ( j k21) (qk21) G , ~30!
e
where the term between the second pair of brackets ca
factorized as

)
kÞv

F (
j k51

n

eı(2p/n) ( j k21) (qk21) G . ~31!

Only the term inv is missing here. Each term of this produ
has the same mathematical structure. Ifqk51, all exponen-
tials in the sum overj k become equal to 1. As there aren of
them, we getn for the sum, while

;qkÞ1: (
j k51

n

eı(2p/n)( j k21)(qk21)5
eı2p(qk21)21

eı(2p/n)(qk21)21
50.

~32!
beIndeed, whenqkÞ1, the denominator is not zero, while th
numerator is. Hence Eq.~31! is seen to yield

nN21 dq1 ; 1 dq2 ; 1 ••• dqv21 ; 1 dqv11 ; 1 ••• dqN21 ; 1 dqN ; 1 .
~33!

Thus we obtain

Gq1 ; q2 ; . . . qk ; . . . qN21 ; qN

5
1

n (
v51

N

(
j v51

n

Fj v
eı(2p/n) ( j v21) (qv21) eıQ"rv

3dq1 ; 1 dq2 ; 1 ••• dqv21 ; 1 dqv11 ; 1 ••• dqN21 ;1 dqN ; 1 .

~34!
5-5
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As Eq. ~26! shows, the LorentzianL(\lq /t,v) will be as-
sociated withu Gq u 2, such that the normalization prefacto
becomesn22 , which is independent ofN and already fore-
et

o

is
tio
-
p

itu
tte

06410
shadows the fact that in the end we will haven2 different
Lorentzians.u Gq u 2 will give rise to N terms of the type (v
5w):
1

n2 U (
j v51

n

Fj v
eı(2p/n)( j v21)(qv21)eıQ"rv U 2

dq1 ; 1 dq2 ; 1 ••• dqv21 ; 1 dqv11 ; 1 ••• dqN21 ; 1 dqN ; 1 , ~35!

andN(N21) cross products of the type (vÞw)

1

n2 (
j w51

n

Fj w
eı(2p/n)( j w21)(qw21)eıQ"rw dq1 ; 1 dq2 ; 1 ••• dqw21 ; 1 dqw11 ; 1 ••• dqN21 ; 1 dqN ; 1

3 (
j v51

n

Fj v
* e2ı(2p/n)( j v21)(qv21)e2ıQ"rv dq1 ; 1 dq2 ; 1 ••• dqv21 ; 1 dqv11 ; 1 ••• dqN21 ; 1 dqN ; 1 . ~36!
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In the latter expression every termdql ; 1 occurs at least once

; l P@1,n# ù N, sincevÞw. As such it yields

1

n2 (
j w51

n

Fj w
eıQ"rw (

j v51

n

F j v
* e2ıQ"rv dq ; ~1,1,•••,1!

5
1

n2 U (
j w51

n

Fj w
U 2

1

n2 eıQ"(rw2rv) dq ; ~1,1,•••,1!. ~37!

Since we suppose that all molecules explore the same s
n different orientations, we can rewrite

U (
j w51

n

Fj w
U 2

5U(
j 51

n

Fj U 2

. ~38!

There are now two cases to be distinguished:

~; wP@1,n# ù N! qw51,
~39!

~'!wP@1,n# ù N ! qwÞ1.

The first case collectsN contributions from Eq.~35! and
N(N21) contributions of the type Eq.~38!, which sum up to

1

n2 U(
j 51

n

Fj U 2U (
w51

N

eıQ"rw U 2

5
1

n2 U(
j 51

n

Fj U 2

3 S~Q! latt ice ,

~40!

which becomes a prefactor ofd(v). Here (1/n2) u( j 51
n Fj u 2

can be considered as an averaged form factor of the m
ecule, while S(Q) latt ice is the diffraction diagram of the
~Bravais! lattice defined by the molecular positions. Th
shows that the elastic term is nothing else than the diffrac
diagram of the sample~if we do not consider the host lat
tice!. It also implies that there is no elastic intensity exce
the Bragg peaks that stands in marked contrast to the s
tion normally encountered in the case of incoherent sca
ing. In the second case, the notation'!w means that there
exists a uniquew. This implies that onlyn21 eigenvalues
24 sin2 @(p/n) (q21)#;q52,3, . . .n21,n have a nonzero
of

l-

n

t
a-
r-

form factor. In other words, in Eq.~14! all lql
except one

must be zero. The same nonzero eigenvalue can occu
positionl 51, l 52, . . . , l 5N in the sum, such that the sam
final result24 sin2 @(p/n) (q21)# can be obtained inN dis-
tinct ways. Therefore, the form factor of the Lorentzia
L(\lq /t,v) will be

N

n2 U(
j 51

n

Fj eı(2p/n)( j 21)(q21) U 2

, ~41!

which is nothing else thanN times the form factor of the
same Lorentzian in the coherent quasielastic neutron sca
ing from a single isolated molecule. This ends the proof
our theorem

S~Q,v!5d~v!3
1

n2 U (
j 51

n

Fj U 2

S~Q! latt ice

1 (
q52

n

LF4 \

t
sin2 S p

n
~q21! D ,vG

3
N

n2 U (
j 51

n

Fj eı(2p/n)( j 21)(q21) U 2

. ~42!

VI. FINAL CONCLUSIONS

It may be noted that our derivation remains valid if th
lattice of molecular positions is not periodic, although we
not have a real-world application of this particular possibil
in mind, especially since we have assumed that all molec
orientations are parallel. Nevertheless, this remark is ins
mental to elucidate that the essential feature that enable
to fall back onto the Bloch ansatz inRN is not the periodicity
of the physical lattice inR3, but the cyclic character of the
configuration space for the rotational motion of a single m
ecule. The gist of our method, crystallized within Eqs.~12–
5-6
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14!, is also of sufficient generality to accomodate other s
ations, e.g., rotational diffusion in fullerenes.7 The point is
that in the absence of correlations, the eigenvectors for
secular matrix that describe the simultaneous time evolu
of several particles are just Kronecker products of the eig
vectors that one comes across in the rate equations f
single particle. The eigenvalues of the many-particle pr
lem are sums of those for the single-particle problem. Hen
if one knows to diagonalize the relevant matrix in the sing
particle problem, then one should in principle be apt to d
also for the many-particle problem, even if at first sight th
might look as a real feat of ingenuity. It might be wor
making the reader aware of the fact that we even do not h
to bother about writing down the secular matrix explicitl
since one can move on to the determination of the re
useful objects, which are its eigenvectors and eigenval
immediately. It is one of those aesthetic joys of mathema
that one can diagonalize huge matrices~of arbitrary size! in
one’s head even without ever considering to write th
down onto paper. Skipping this step represents an impor
economy of efforts in problems with many particles. T
configuration space of the many-particle problem is a Ca
-

M

06410
-

e
n

n-
a

-
e,
-
it

ve

ly
s,
s

nt

-

sian product of configuration spaces of the single-part
problems. Actually the product at stake is more than jus
Cartesian product, since it also involves the connectivities
the configuration spaces. We do not know the well-defin
mathematical terminology for such a product. In future co
tributions we will also try to make contact with situation
where there do exist correlations between molecular moti
on a lattice. Correlations tend to spoil the initial simplicity
a game considerably. We have already touched upon co
lations in Ref. 3, and it can be seen from the example trea
there~taken from the field of quasicrystals! that the strategy
based on the use of a Kronecker product will in general b
a loss in situations where correlations come into play. F
ther illustrations of our method will also follow in other do
mains: the rotational jump diffusion of a CH3D or a CD3H
molecule, and the translational jump diffusion ofn identical
particles on a periodicd-dimensional (d<3) lattice of Nd

sites~with Nd.n). In the latter case, the ‘‘fermionic’’ con-
dition that two particles cannot share the same site seve
complicates the solution of a problem that otherwise wo
have been straightforward.
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