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Coherent quasielastic neutron scattering: A theorem about total neutron scattering functions
for rotational jump diffusion of molecules on a lattice
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We derive a theorem about tiseherentquasielastic neutron-scattering signal from a lattic&l afiolecules
that are undergoing rotational jump diffusion. If no correlations between the molecular jumps exist then the
coherent quasielastic scattering signal is Mdimes that of a single molecule. The elastic contribution is just
the diffraction diagram of the system. This implies, among others, that between the Bragg peaks there is no
coherent elastic contribution, i.e., between the Bragg peaks the coherent signal is purely quasielastic. These
results for coherent scattering are in marked contrast to those in the case of incoherent scattering where one
also can find elastic scattering outside the Bragg peaks.
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I. INTRODUCTION through the occurrence ofvo indicesj,k) within the system
under investigation. The latter demand appears as a signifi-
Quasielastic neutron scatterirfgis a powerful tool to  cant increase in theoretical complexity, which may be con-
study relaxational motions within the realms of condensedsidered as the culprit of the aforementioned scantiness of
matter physics, chemistry and biology. On consulting thditerature on coherent quasielastic scattering. The term
few existing monographs on this subject, the reader will =; b¥ by ( €O~ in Eq. (2) can be rewritten as
soon notice that study cases and examples dealingindth
coherentguasielastic neutron scattering abound, while appli-

cations within the domain o€oherentscattering have re- *
. . alQ:rj(0 Q-r(t
mained very few and far between. In a concern to palliate <(§J: b; €' i )> (; by €% ))>
this shortage of means in modeling, we have outlined in a th
series of previous papéra method to calculat®tal neutron =([Fe)(Q) * [ Fey(Q Dt (3)

scattering functionsS(Q, w), by reformulating the problem

in terms of configurations. The whole system is represented

by an abstract single particle that moves in a configurationwhere F¢)(Q) =X yby e'®"® is the Fourier transform

space. Each site in this configuration space corresponds tweighted by the coherent scattering lengths of the nuofei

one configuration of the system. The basic idea is the followthe configuratiorC(t) of the atomic positions at timee In the

ing. According to Van Hové,the coherent and incoherent previous lines, the sums are over all the atoms in the system.

double-differential scattering cross sections are given by The scattering lengthis; ,b, to be plugged into the equations
are the incoherent ones in E@.) and the coherent ones in

d?o ki 1 ot 2 ) O-[ri(—r: (O] Eqg. (2). The preceding lines already show that in order to
[m _ :Emﬁme EJ: b (=10 50 dt describe a coherent scattering signal, it is much better to
inc describe the system in terms of configurations. The terms

ko 1 > b € QK are invariant under the exchange of two iden-
:EmS‘”C(Q’w)’ (1 tical particles. Hence, coherent scattering does not distin-

: guish individual particles and sees only configurations. Co-
5 herent scattering corresponds to the wave behavior of the

[ d°o neutron, while incoherent scattering, which does distinguish
dQdE; coh between individual particles, corresponds to the particle be-

. 1 havior OrfF the neutron. This has been made intuitive by

_f ” —lwt * 1Q-[ry(t)—r;(0 Feynma .

Tk 27k %e % by (e @O0, dt It is our aim to illustrate the potential of our approach by
applying it to a number of representative cases as a guide to

ke 1 our methodology that eventually should enable a general
Tk WS(Q"")’ 2) readership to acquire enough autonomy to put it to profit in

his own possible systems of interest. The main point we want
where we have introduced the incoherent and total scattering make is that, although very often the size of the configu-
functions §,.(Q,w) and S(Q,w). A comparison between ration space may look daunting, there do exist technical ex-
the two equations reveals that in the case of incoherent scgpedients to solve the problem in full generality that also an
tering one must keep track of the history of one single parexperimentalist should not find too difficult to master. In the
ticle (as manifested by the occurrence of a single inflex present paper, we demonstrate the method by deriving a
while in the case of coherent scattering one has to follow ugheorem about the total scattering function of a syster of
the simultaneous evolution of all particldas transpires rotating molecules, which we will be able to apply
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afterwards, e.g., to calculate the coherent neutron-scatteririthis immediately implies that there is no elastic signal be-
signal of the nonadecane molecules inside an urea inclusidieen the Bragg peaks as in the case for incoherent scatter-
compound a system that has received much current interestnd, where it has become common practice to define an elas-

The incentive for our calculation has been a request emanall€ incoherent structure facto(EISF) after Lechner's
ing from Toudic and his collaboratofsyho have made an pioneering work® The advantage of introducing this concept

experimental study of the urea inclusion compound by cols that it allows one to get rid of the necessity to determine

herent and incoherent quasielastic neutron scattering ar{ﬁg Egﬁgree_ﬂal:Jea:;iaé?;grti;f;;\t’ﬁm tosirer?glei;tsheengirtlslgstlg ?f:e
NMR.2 It is assumed that the lattice defined by the bary- d g sig

centers of the molecules is periodic and tta molecules Debye-Waller factor in a similar way, then we will have to

tating ind dent\Their rotati d their ori compare the quasielastic intensities to those of the Bragg
are rotating independen yTheir rotation axes and their ori- peaks. The importance of this finding for the studies of urea
entations are all paralldin the sense that when two mol-

, i ; . ) inclusion compounds is obvious. The coherent quasielastic
ecules find themselves in an orientation that carries a jabel gjgn4) for the rotational diffusion of a single alkane molecule
then they are strictly parallelly orientgtut the details of the 51 pe calculated rigorously, for arbitrary valuesnpiuch
rotational diffusion of the single molecules are, up to a cerpat 5 comparison with the experimental data will teach us
tain extent, immaterial: it can be continuous or jump diffu- ynambiguously if the rotations of the nonadecane molecules
sion, and in the latter case the rotation axis may have arbiare correlated or otherwise. Since there must exist some cor-
trary symmetry, e.g.,.nelN (where we may add the relations if we are unable to reproduce the experimental re-
conventionn= for continuous diffusion, which is obtained sylts with some value ofi. Surprisingly, the coherent data
from the case with finiten by taking the limitn—c). The  are compatible with a description based on the premise of
jump model with finiten is based on the usual assumptionstotal absence of correlations, while the incoherent data are
in the white-noise approximatioiil) The duration of ajump not. A theoretical treatment of the coherent data allowing for
is so short that it can be neglecte@) jumps occur only  some correlations will thus be required in the future. For one
between first-neighbor orientations and the time between twehing, the coherent neutron-scattering signals have indeed re-
such 2r/n jumps follows an exponential distribution charac- vealed themselves as being purely quasielastic in the regions
terized by a so-called relaxation time (3) due to the van- in between the Bragg peaks. The circumstance that correla-
ishing duration of a jump and the absence of any correlations do occur is beyond any possible doubt, the one an
tions, we can assume that two jumps never occubpen-mind curiosity should be inclined to prefer, since it
simultaneously. Calling the total number of molecules withinrenders the subject matter actually much more rich and thrill-
the sampleN, one’s educated guess will then probably being. In fact, the general method we developed can even then
that we can takeN times the coherent signal of a single be put to use to calculate coherent signals in such systems,
molecule in order to describe the full system. This intuitivewhich leads to the unprecedented situation, where one would
idea has been put here on a firm footing by a rigorous mathbe able to gain access to a wealth of information about dy-
ematical proof based on the assumptions outlined aboveamical correlations between rotating molecules.

Moreover, our approach also tells something about the elas-

tic contribution. Furthermore, it indicates the path one will Il. ROTATIONAL DIFFUSION OF A SINGLE MOLECULE

have to follow in order to tackle more involved situations Th tational i f inal | q

where the molecular jumps no longer remain totally uncor- € rotational jJumps for a singie mo ecule a}roﬁtjsr? an
related. The theorem derived says that the resulting sign£|'fOIOI axis are governed by coupled rate equations:

contains two contributions, viz., an elastic one, which is d 1

nothing else than théBragg diffraction diagram of the sys- mP("“E;MW) pl), (4)

tem, and a quasielastic one, which is jdktimes the coher-

ent quasielastic scattering signal for a single rotating particlewhere thenx n jump matrixM ) is given by

-2 1 0 0 0 0 0 0 0 0 1

-2 1 0 0 0 0 0 0 0 0

1 -2 1 0 0 0 0 0 0 0

0 0 1 -2 1 0 0 0 0 0 0

M (#) = : : : : : : : : : : : (5)

0 0 0 0 0 0 1 -2 1 0
0 0 0 0 0 0 0 1 -2 1
0 0 0 0 0 0 0 0 1 -2

1 0 0 0 0 0 0 0 0 1 -2
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andr is the relaxation time for a nearest-neighbor jutne., d

over an angle @/n). The nx1 column matrix P Tqih i k= Pkt Pkt Prik-1t Pk =4 Pk

=[ p{(0),pF(1),- - -,pj(t),---,pi¥(t) ]T contains  the

probabilitiesp*)(t) that the molecule with labek has the V(j,kel{l,2 ... n2 (9)
orientationj e[1,n]NN at timet. The rate Eqs(4) and (5)

can be rewritten as If in the analogon of the phonon problem we go from the

problem of a linear chain to a two-dimensional lattice, we
q . know that instead of eigenvectol® with components
—pW="1p —2p®ypr 6 (V@) =exdi(2m/n) (q—1) —1)] we will have to take
atPi T[ Pi=1— 2P Pt ] (6) Bloch waves of the type\( %)) where (\/(qx:qy))jx;jy
=exp 2m[(a—1) (jx—1)+(a,—1) (j,—1)]}. The eigenvec-
wh_ere all Iow_er ind_icgs have be takerodulo n Eaph ori.en-_ tors ?\{/(‘Z ?[gcyli() a)réJ Xgivén (?V)\IIO i)n(cjiiycei)(]:irrespond?ng to a
tation or configuration has the same type of relation with its .o Jimensional wave vectony;q,)], since there will now

nearest neighbors—1 andj +1, such that our problem has 1o\ 1 of them(there arenx n atoms on a square lattice of

translational invariance. It is impossible to tell from the ;- dimensions x n). The dynamical matrix for the pho-
structure of the relation at a given orientation which particu-norl problem has then él$1><n lines, which is why we also

lar valuej takes, as the structure is identical forjalThis has use double indicesj(,j.). The order of enumeration of the
; i : . )
been pointed out previouslpy drawing the attention of the latter indices inside an eigenvector of the dynamical matrix

o (1) . . . . .
trﬁatder to the f‘t"tht thr?t the mattr)nlit |fs the sam(ta as the O.nz.év(qx*qy)) is not important, provided one takes care to stick
at occurs in the phonon problém ot a monoatomic periodiG, e same convention throughout. This indicates that the

Ilndea(; chain ofnkatomlf with cyc]lc|c bt(r)]un?arty %ogdﬁon?,é)ro- eigenvectors and eigenvalues for a two-dimensional case can
vided oné makes aflowance for the fact thar Must be o constrycted from those of the one-dimensional case by

replace? ny/m, ngreK IS thhe force con?tant alnxéh ghf? making products. The product that comes into play is the
mass o t € ato”.‘(- course the system.o coupied diter~ g4 cajled Kronecker product of matrices. The eigenvectors
ential equations is of the second order in the phonon prob; pa

lem, but in any case, the mathematical solution of the equa-
tions also here boils down to the diagonalization of the V(Ax dy) = \/ (90 & \/(ay) (10)
matrix M.) In the phonon problem the eigenvectatd) are o _

immediately given by the Bloch ansatz V(@) and the corresponding eigenvalues will be
=exd!(2#/n) (q—1) (j—1)] which is a mere offshoot of the

underlying translational invariance. The corresponding ei- qx;qy:)‘qxﬂ\qy
genvalues\, are obtained by operating ) on V(®: - -
=—4 sir? ﬁ(qx—l)} —4 sirf 5 (ay- 1)}.
a
Nq=—4 sir? S(@=1)| Vge[1n]NN. (7) (1)

Equation(9) is now exactly the same as the one for the jump

diffusion of a single particle on a two-dimensional lattice of

lll. FORMULATION OF THE PROBLEM WITH TWO nXn sites and cyclic boundary conditions, the site with in-
MOLECULES dices (,k) having four neighborsj1k), (j+1Kk), (j,k
If two moleculesu andv are rotating independently, then —1), and (,k+1). In fact, it has two neighborsj {-1k)
the joint probability ;.  that moleculeu has orientatioj ~ a@nd (+1k) along thex direction and two neighborsj

and moleculev has orientationk will be given by 7., —1) and (,k+1) along they direction. The configuration
=pj(") p”). By combining ’ space is thus the Cartesian product of the configuration

spaces of the two molecules. These heuristic arguments are
purely mathematical and one should not try to give them a
[ X plf”)]:rip“‘):p-(i’“)l—Zp»(")+p-("‘} physical inj[erpretation. By noticing a formal analogy be-
dt™ ! ! I tween our jump problem and the problem of phonons on a
two-dimensional lattice, we are able to find the eigenvectors
Vje{l2 ...n}, of the jump matrix defined in Eq9), but the translational
symmetry we exploit in configuration space has nothing to
(8)  do with any periodicity in the physical space that harbors the
two molecules.

W1 (M= _ (v) (v)
[X pj ]-Tdtpk PkZ1— 2P+ Py IV. GENERAL FORMULATION FOR N MOLECULES
This can be generalized to an arbitrary numiesf inde-
Vke{1,2,...n} pendently  rotating  molecules wq, o, ..y, ...,
MUNn—1,MN- We end up with the jump diffusion of a single
we obtain exactly abstract particlgour configuration on a hypercubic lattice
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of dimensionN (our configuration spagedue to the rule for This equation illustrates the meaning of the matrix Kro-
the derivative of a product. Here each site will havl 2 necker producty that we used in the preceding lines. The
neighbors, viz., two along each coordinate axjsof the  term 1A/hN is the normalization factor for the eigenvector.
hypercubic lattice iRN. In N dimensions we will have prob- The corresponding eigenvalues are

abilities

N

T
o Ng=2, —4sif|—(q—1)|. 18
Piiiig: i ineaiin q ;1 n(ql )} (18

N 075 BN 077 ) IS (AT ) BN 071) . . . No <N .
Pt Py pjl(m) S The jump matrixM is an™xn" matrix.
L . . V. CALCULATION OF THE TOTAL SCATTERING
V(JllJZI"' ]N—_‘]_,JN)E{]-,Z,"' vn}N' (12) FUNCTION

The eigenvectors will be The jump model can be solved by usidj=SA S !

V(L @ A1) = () @ (@) g . g V@ g whereA is a diagonal matrix whose elements are the eigen-
values given in Eq(18) andSis obtained by juxtaposition of
@VIN-1 g VN, (13)  the eigenvectors given in Eq4.6) and(17), within the same
N order as their corresponding eigenvalues on the diagonal of
V(1,92 - G5 - On-1,00) €412, nptand the A 1t can be shown tha 1= ST, such that the solution of
corresponding eigenvalues will be
Ngyiaps iapoanonay = Nag At Ng e aib- FMP (19
+ )\qu1+ )\qN, (14 becomes
where, more explicitly, the right hand side reads P(t)=Se*'" S'P(0), (20
where thenVx 1 column matrixP(0) contains the initial
— 4 sir? Z(ql_ 1)} — 4 sir? Z(qz_l)}. . conditions. When we calculate thermal averages, we have to
n n consider all possible initial conditions and average over them
- - according to their relative probabiliti€se., thermal occupa-
—4 sirt| —(q,— 1)} oo —4sirt| —(qn_1— 1)} tion factorg. The initial conditionP(0) just tells us in which
n n configuration the system was at time 0. That could have been
configuration 1, configuration 2, etc., up to configuration

z(q,\,—l)}. (150 n". These initial configurations are represented by riffe
n column matrices [1,0,0...,0,0]", [0,10Q...,0,0]",
...[0,0Q...,1,01", [0,0Q...,0,1]7, The configura-
In such a problem, a site with coordinates tionj has all its entries zero, except on the line that corre-
(j1.J2, -+ - in—1.Jn) Wwithin the interior of the set sponds to the index, where the matrix contains a 1. In
{1,2,... niN will have 2N neighbors. This will also be true principle, we can give all these configurations the same equal
for the points on the boundary of this set due to the cyclioweight, 1hN. Each initial configuratiorj will correspond
boundary conditions, and the corresponding jump maitix then to an™x1 column vector that contains zeroes on all
(where we have labeled the molecules canonically byl lines, except on ling where it will contain 1AN. The juxta-
e[1N]JNN) will then have N+1 nonzero entries on each position of these" column vectors of initial conditions will
line and in each column, with the value 1 and one with vyield thenl/nN such that
the value—2N. In more condensed form we can write the
probabilities as?;, with j e ([1,n] N N)N. Then™ eigenvec-
tors are then

—4 sir?

1
S(Q,w)= n—NFS FeMny stTFT, (21)

V(q):®IN_lV(q|), (16) whereF is the 1xnN row matrix that contains the spatial
- Fourier transforms-; of the configurationg obtained by
with ge ([1,n] N N)N. This means that thes@" eigenvec- putting a Dirac measure of weighy, at the position of each
tors arenVx 1 column matrices, whose elements are defined‘:;t]om of typex [b, is its coherent scattering lengthee Sec.
by D

N

E=F eQntF Q...
(q)) 1 H ox J J1 Iz
V § = —

( j \/W|=l p

2
I—(j;—1 -1
n (Jl )(ql )} +fj| e,Q.r|+ L +J,:.jN71e|Q.rN71+JTjNe|Q.rN

1

= ﬁexp

2 N N
) <q|—1><j|—1)} an -3 Feon (22

I_
n =1
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Here 7}, is this Fourier transforntweighted by the appropi- (Here L(4I",w)= (1/7)[T/(I'?*+ »?)]). It will be conve-
ate coherent scattering lengthsf molecule| if it were  nient to split the term BN over the left- and right-hand side
placed at the origin, in one of its possible orientation§,  of Eq. (24) and introduce the definition of the'x 1 matrix
while r; is the position vector of its center of gravity. Hence, G:

when we enumerate the configuratigng lexicographical

order, L
G=—=FS (25
N
F=[Fu1. oFar. .20 Fas..  ns V¥
Fon ...l (23) which leads to
Writing the temporal Fourier transforti(e®’") =L (w), we ;
obtain S(Q,w)=GL(w)G (26)
and
SQw)= FS L(w) S'FT. (24)
1 .
The elements of the diagonal matilix w) are Dirac mea- \/ﬁ ; FiS:a, (27)

sures§(w), when the eigenvalua, is zero. In the other
cases they are Lorentziang7\,/7,0) of width iNy/7.  which more explicitly reads as

1 n n n n n
Gq: nN j12:1 ].22:1 “.jgl “.jNE:l J.NEzl Fil;iz; S ---jN,l;J'NSJ'l;jz; P TIPS N T IV FTPC PR DR NI IV

(28)

HereF it is given by Eq(22), whiIeSjl;jZ; it G2 Gt G - Oy O is given by Eq(17):

1 n n n N N
_ 27/n) (je—1) (g—1
qu;Q2:"'qk;"'qN—DqN_n_NjE:l 2: 2 E 1 21 Z ]: eIQr kE[ el(wn)(Jk . )} (29)
1=1 J2 iN-1=1 N v= 1

We will first of all perform the sum oves. The general term in this sum can be decomposed as

1
"N

E f] e|(27-r/n) (J,—1) (qvfl)elQ-rU
n Ty v

2 Z E E . E E I1 u(zﬂv/n)(ikl)(qkl)}, (30)

i1=1 jp=1 JvllJv+ll JN11JN1K¢U

where the term between the second pair of brackets can Hadeed, wherg,# 1, the denominator is not zero, while the
factorized as numerator is. Hence E@31) is seen to yield

N—-1
" n 5C|1:15q2:1"' 5%,1:15(1“1;1"' 5qN71?15qN;1'

3 @@ (=D @D | (31) (33)
k#v | jk=1
Thus we obtain
Only the term inv is missing here. Each term of this product
has the same mathematical structuregJf 1, all exponen-
tials in the sum ovef, become equal to 1. As there aref qu; Api - Oyi - -Oy_1: Oy
them, we gen for the sum, while

1 N n
— 2 2 F e'(27/n) (j,~1) (4,-1) glQ-T,
ny=1 j,=1 ly
. e'2m(a—1)_ 1 % . .
qug&l 2 I(Zw/n)(Jk_l)(qk_l):mzo q1;15q2;]_ 5qv71;16qv+1;1 5qN*1;l 6qN;l'

jk=1
(32 (34)
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As EQg. (26) shows, the Lorentziah(%\4/7,w) will be as-  shadows the fact that in the end we will hane different
sociated with| G | 2 such that the normallzatlon prefactor Lorentzians| G | 2 will give rise to N terms of the type

becomesn 2 wh|ch is independent dil and already fore- =w):
|
1 n 2
2 2 Fi, e/, =@, = ey a1 Oqp:17 77 Oq, 1:10q,, 017 Pay_ 41 0qy: 1 (35

Ivy=

andN(N—1) cross products of the type ¢ w)

8

qul;lb‘qN;l

n
- |2 ) (jy—1 —1)alQr .
Z @ain)(jw=1)(aw—1g!lQTw 5q1; 1 5q2; 1 5%,71? 1 5qw+1; 1

n

XJZl ]:kv e~ '@ (j,~1)(@,~Dg—1Q, 5 .1 5q2; 1o 5%71; 1 5%“; 1 5qu1; 1 5qN;l' (36)

In the latter expression every terfly ., occurs at least once form factor. In other words, in Eq.14) all Aq, except one

Vlie[1,n] NN, sincev#w. As such it yields must be zero. The same nonzero eigenvalue can occur at
. . positionl=1,1=2,...,I=N in the sum, such that the same
1 final result—4 sirf[(#/n) (q—1)] can be obtained iN dis-
- AlQer * A—1QeT, . i
Fj%l Fiu® szl at S (11, -1) tinct ways. Therefore, the form factor of the Lorentzian

L(fiNg/7,®) will be

n 2

1
n2

2

Tw

1

e ) 5 @7

2€ S(11,--,1)-
= n q;( ) N
_2

2 fel(Zw/n)(] 1)(q—1) (4]_)

Since we suppose that all molecules explore the same set of
n different orientations, we can rewrite

2 which is nothing else thal times the form factor of the

2
é | = é Tz 39) same Lorentzian in the coherent quasielastic neutron scatter-
j=y T w =) ing from a single isolated molecule. This ends the proof of
our theorem
There are now two cases to be distinguished:
(Y we[1ln]NN)qg,=1, 1|2 2
(39) S(Qw)=d(w)X—| 2 Fj| S(Qatice
(Ftwe[1n] N N) gy #1. =1
The first case collect® contributions from Eq.(35) and n é L ﬁsinz z( ~1)
N(N— 1) contributions of the type E¢38), which sum up to =2 q
n 2| N 2 n 2 n 2
2|2 F| |2 e =5 2 F| X S(Qatice Xoa| 2 FeCrmina-nl 4
n*jji=1 w=1 =1 n“|/=1 7!
(40)

which becomes a prefactor 6{w). Here (1h%) |S]_,; F; | 2

can be considered as an averaged form factor of the mol-
ecule, while S(Q)atice IS the diffraction diagram of the It may be noted that our derivation remains valid if the
(Bravaig lattice defined by the molecular positions. This lattice of molecular positions is not periodic, although we do
shows that the elastic term is nothing else than the diffractiomot have a real-world application of this particular possibility
diagram of the sampléf we do not consider the host lat- in mind, especially since we have assumed that all molecular
tice). It also implies that there is no elastic intensity exceptorientations are parallel. Nevertheless, this remark is instru-
the Bragg peaks that stands in marked contrast to the situaental to elucidate that the essential feature that enables us
tion normally encountered in the case of incoherent scattetto fall back onto the Bloch ansatz RI' is not the periodicity

ing. In the second case, the notatiihw means that there of the physical lattice ifk3, but the cyclic character of the
exists a uniquev. This implies that onlyn—1 eigenvalues  configuration space for the rotational motion of a single mol-
—4 sirf[(w/n) (—1)1;,0=2,3,...n—1,n have a nonzero ecule. The gist of our method, crystallized within E¢g2—

VI. FINAL CONCLUSIONS
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14), is also of sufficient generality to accomodate other situsian product of configuration spaces of the single-particle
ations, e.g., rotational diffusion in fullerenéghe point is  problems. Actually the product at stake is more than just a
that in the absence of correlations, the eigenvectors for th€artesian product, since it also involves the connectivities of
secular matrix that describe the simultaneous time evolutiofhe configuration spaces. We do not know the well-defined
of several particles are just Kronecker products of the eigenmathematical terminology for such a product. In future con-
vectors that one comes across in the rate equations for @putions we will also try to make contact with situations
single particle. The eigenvalues of the many-particle probynere there do exist correlations between molecular motions
lem are sums of those for the single-particle problem. Hencey, 3 |attice. Correlations tend to spoil the initial simplicity of
if one knows to diagonalize the relevant matrix in the single-4 game considerably. We have already touched upon corre-
particle problem, then one should in principle be apt to do it in Ref. 3, and it can be seen from the example treated
al_so for the many-particle prok_JIem, even if at_ first sight thisthere(taken fror%l the field of quasicrystalthat the strategy
o oL o genay, IO, e Wrl s on e use of s Kronckerprodct il general e
a loss in situations where correlations come into play. Fur-
)}her illustrations of our method will also follow in other do-

useful objects, which are its eigenvectors and eigenvalue@ains; the rotational jump diffusion of a GB or a CD;H

immediately. It is one of those aesthetic joys of mathematicgnolecule, and the translational jump dlffu5|onrpfdent|c%|

that one can diagonalize huge matri¢efarbitrary siz¢ in ~ Particles on a periodic-dimensional §<3) lattice of N

one’s head even without ever considering to write thensites(with N°>n). In the latter case, the “fermionic” con-
down onto paper. Skipping this step represents an importastition that two particles cannot share the same site severely
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