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Instability of plastic deformation as a self-organizing fractal
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The collective dynamics of plastic deformation is investigated using a field approach. A correlation function
of displacement field fluctuations in a Cosserat-like continuum model is calculated via the renormalization
group method. The dynamics of the correlation length and mean-squared deviation of displacement field
fluctuations are parameterized by a dimensionless strain-hardening rate. The value of the critical index was
obtained experimentally from the surface profiles of steel and copper specimens measured during plastic
tension. The results allow one to predict the point of plastic flow instability at given conditions.

DOI: 10.1103/PhysRevB.63.064103 PACS nuniber62.20.Fe, 83.50:v, 46.05:+b, 46.15.Ff

I. INTRODUCTION Il. MODEL AND SOLUTION

The struct f | pol all terial during th We consider a solid under stress as the three-dimensional
€ structure of real polycrystaline material durng the, o Q4; the system of external forces applies to its

plastic deformz_ition process _evolves_ on different Iengtrboundary. The aref  is subdivided intdN small cubic cells
scale_s sequentlallyfrom the microscopic up to the macro- v; ; for each of them a field of displacemeky(u=1,2,3) is
scopic scalp and simultaneously. There exist "basic yefined as a displacement of site from initial r; to the

d_efects —plgsuc flow carriers—of various sizes: disloca- stressed-state position:A,=r,—r/ . Since the initial state
tions are microstructural elements, dislocation superstruc,

. . T . and local properties are unknown aNdis huge ¢;<Qg),
tures(including disclinationsrepresent a mesoscopic length we will use a statistical approach to solve the problem. The

scale, and plastic and rotational modes are of a macroscopig -dimensional distributiorf (A ,(i)) for N—oc is present-

scale. _ _ _ _ able as
Concentration and coupling of defects increase during

plastic deformation of the initial structufeThe emergence f[AM]:e\A/[Aﬂ], (1)

of new degrees of freedoittarriers of the next, “higher”

level) is a result of the self-organization of previous level whereW[A ] can be called the generating functional of an
carriers? The process of plastic deformation is accompanied®Peén system.

by microfracturing and followed by macroscopic failure. ~We will limit our consideration to such a class of media
Fracture processes, on the other hand, can be treated as {R Which the state in the vicinity of point; at timet; is
appearance and development of some “basic objects,” formdetermined by spatial derivatives of the displacement field

ing the whole hierarchy of defects: microcracks, voids, facet$‘» SPecified for any time; beingto< 7 <t;, wheret, is the
start of evolution. Barely taking inertial terms into account,

of the grain boundary fracture, and so on. Microcracks join 1 wain the t | derivativeot ter th
up under stress to form mesoscopic defects and, finally, 9. (1) may contain the temporal derva '@0 greater than
at of the first orderof a displacement field.

single macroscopic crack suppressing the development o . . . .
g P PP 9 P For a macroscopically isotropic and homogeneous solid

others. . . by initial conditions, i.e., no external strg¢sthe generating
Some thgoreucal argunjen.ts and expgnmental facts enab finctional can be expressed, in general, as a functional poly-
us to describe self-organization in plastically deformed an omial

fractured structures in a unified way. We propose a general

approach based on three main principlgs:‘universality,” = VETY(r )
the given set of external parametéssress, strain limit, etg. W[AM]:J f > k. VT '
always causes the loss of flow macrostability, followed by k=2 K
mechanical failure; (ii) “divergence of characteristic
scales,” the characteristic lengths of “basic elements” of
plastic flow and fracture exceed all essential microscopigyhere VE (o) (i=1,... k,...) arereal tensors of
length scales for the critical values of stress or stréin)  ank 2.

“scaling” (fractality), the properties of strain field statistics | gt firstk indices (w=1,2,3) denote,, components, the
and crack surface topology obey scaling laws. next k indices =0,1,2,3) derivatives. The distribution

The main goal of the present investigation is to describg[a ] is a monotone function oW[A,]: hence the most
some plastic deformation phenomena as a result of the evo'rogable process corresponds to ; DED or A (
lution of an extended dissipative dynamical system and t:1 2,3) satisfying the variational equation oy W
study the relations between the statistics of the media and the ="’
parameters of the plastic flow self-organization. The same SWIA, ]
methodology applied to the case of fracture will be presented .-

in the near future. oA,

..Aq,V

><dr1dt1- "dridti‘ LA

0
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and given initial and boundary conditions. inverse to the full correlation function, is definable by Ez).
The solution A, (A,,) and difference A, ,=A,,  With the substitutiorR5,"*(r)—R5""*(r). This quantity in-

_KW can be regarded as a “classic” path and fluctuations,dUdeS interactionénonlinear phenomenand will bg called

respectively. We restrict our attention to the so-called “ac-the full vertex of second order. The full vertex, in general,

tive” paths assumingls/dt=0 for each pointr t), where does not coincide with the operator for the squares of field
o variables in generating functionél), denoted byv4; *(r;).

t{ oA, , IA*Y 12 We assume that for the initial stafthere is no external
=f . dr stres$ the ‘“classic” path corresponds to the equilibrium
w\oat gt ! . \ .
equation of the Cosserat elastic pseudocontinuum mbfel:

0

is some internal parameter of a system, the “length” of the
classic path, and evolution along this “classic” path is the y2p
same for all cell; . a
To build a generating functional of fluctuations of field
A,,, we produce a series expansionwfA,, | in the vicinity

of Kw. As is well known, it is possible to express the

T, VulVA) = §VA(V2A, -V VA, =0,

where¢, is the structural length scale of the elastic pseudo-
continuum,

derivatives with respect to the time of an arbitrary order in ST

terms of functions of internal parameters: length of a [th V,Fy, V2= E PV

scalar curvatures};(s)---9,_1(s), and torsiond,(s) (nis # w=1 O

the number of independent components of tem_s,gl;). The field A, contains longitudinal and transverse compo-

For pathsds/dt=0 integration over the spatial variables nents,AM=AZ+A§L, and corresponding distortiongy;, ,
gives unessential constants, proportional to some powers (1/n)3J, ,Ay (nis the number of components of fiefd,)
(Q4)"; temporal integration parametrizes vertiods " by  and ALyyzA#,V—A;‘W. The longitudinal and transverse
S,91(S)" ¥, 1(8),9(S). In the case of proportional stress terms of the free vertex of second ordevs, (r;)
9,(s)=0 tensorV{ " depends only on the second invariant = V4, ""(r;) + V4, "(r;), are
of A, VL "=V T(s).

. . . meeev,n
.Let W[AM] bemthe generating funcuona! of fluctuations VESIN(r s+ 0)= T2 s S(F1—T2),
with vertices V{"(r; ,t;,s,9,(s)). Normalized averages V(e5)
weighted bye""«] are the correlation functions of ordek2 -
- v vt — 2 ’ 2w 2 o
RS (ri b)) =(A%A(ry,ty) - AP(r 5, to)) Voo "(ri,s—+0) V<812>'[1+§0V Jo(ri—ry),
1 where
:Zf Aﬂ’q(rlatl)‘"Ap’V(rzk,tzk)eW[A"]dAw
(s%):Vflf Rbg(r)dr,
Z= f eW[A#]dAM , (2
2\ _\/— v,
wheredA,, stands for continuum integration. (e3)=V 1f R5o.n(r)dr

This relation shows that, in principle, the statistics of the
deformation field fluctuations can be parametrized with there longitudinal and transverse mean-square deviations of
set of curvature and torsion characteristics for a “classic”strain fields fluctuations at state—+0\V is the volume,
path. We denote  Fourier representations asts ""=(e")?(e")? T4 '=s"%Pe’, ande? is the unit
A,(p,®), V(p,»). The modesw#0 we call “fast’; the  vectors in directiorr.

“slow” generating functional is It is possible to show that the stressed-state free vertices
of longitudinal fluctuations are the same, whereas the free
1 vertices of transverse fluctuations have the form
W’[Aﬂ]=—ln—f eMALdd'A |
Z ’ JIARRS 7N
whered’A,, is the sign of the “fast variable” continuum Vi (i )= ﬁ[a(SHégVZ] o)
integration. Further we omit the prime. !

We define the inverse to the free correlation functionwhere 6(s)=G *dr/ds is the shear strain-hardening rate
Rbo "(r)  operator  [V5P%(rq,r1)RyompqdF1—r2)dr;  along the “classic” path normalized by the shear modulus
=8k ord(r,—r,) and call it the free vertex of second order. and controlled by the internal geometry of the “classic”

For systems wher& "*(r;)=0 (k>2) the free vertex Path—by its lengtfs, curvature, and torsion. _
of second order coincides with vertat (r;). The corresponding correlation functions are given by

In a general case, whewi" "”(r;)#0 (k>2), then the
normalized bilocal average weighted by"’ determines the RL, V(r,s)=
full correlation functionR5 "”(r). The operatoV% *(r;),

CE T V(ed)

—rl¢
—re ,
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TABLE I. The basic elements of the Feynman diagram.

Vi " (p) V3" (p) Vi 7" (po)
R4, N (r,s)=CE "™V(e3) 8(r1— 1), System(2) resolved with respect to vertices thus looks
like
where C4 "'=grd9Pe’, Ch""=etere’e’, and ¢
= £,0~2is the correlation length of transverse displacement =0+ + ..
fluctuations.

Mean-square deviations of transverse and longitudinal
displacement fields fluctuations can be expressed as, respec-

tvely, >;<;=>g<+;)cc<}@

<82(0)>=v*1f Rbg:(r,0)dr=(e)o 1, 3

Introducing d?(p) = R,(p)/R,o(p) we then use effective
vertices defined as
(2(0)=v"* [ RigIr.0dr=(e3),

k
and, except the narrow macroelasticity region whérel gk(p‘)zvk(pi)iﬂl d(py).
and(e2)~(e3), then(s?(6))>(e3). We will limit our con-
sideration of the statistics of displacement field fluctuations Calculation of

to transverse terms; the sigrt’™‘will be omitted in the fol-
lowing.
We call (¢2) and &, the normalized mean-square devia-
tion of displacement field fluctuations and fundamentaly: first order in interactions performed in the scale-
length scale, respectively. The formal definition is regularization formalism.The solution of relevant renormal-
) ) ) ization group(RG) equation foré gives the expression for
(e7)= , “rln O<8 (0)), the mean-square deviation and correlation length in the form
e of
£o= lim £(0): (e%(0))=(e) 6",
6—1-0
&0)=£&0™ "%, )

experimental investigations of displacement fluctuation sta-

tistics (extrapolated to the ares— +0) can be used to esti- wherea=1-—a;g4, a;=(n+2)/4, andn is the number of

mate numerical values. The approximatig-0 is the case independent components of fiefd, ,. The active deforma-

of the usual continuum considerations of elasticity and plastion process is accompanied by a decrease in the strain-

ticity. hardening rate d#/ds<0); hence the mean-square devia-
The mediaV{ ""#0, (k>2) we will call the nonlinear tion of displacement fluctuations and correlation length

Cosserat pseudocontinuum; the generating functidfi#l,]  increase according to the scaling |&¥ satisfying the rule

corresponds to the statistics of displacement field fluctua- ) )

tions. (e%(0)) _(e1) 5
In general, the calculation of the full correlation functions O ®
R4 “(p) [normalized averages weighted key "MA) for
V" "#0 (k=3,4,...)] can be performed employing the
Feynman-diagram technique. We will use the diagrams i
the frequency representation: the main elements are “free” g\«
and “full” correlation functions and vertices of the order <82(0)>:<82(01)><0—> ,
2k. The term “free” stands here for the vertices correspond- 1

ing to a given set of wave vectors on external lines and to the a2
parameterized “classic” pathd(s,9,(s)). The basic ele- 5(9)25(01)(_> .
ments of the Feynman diagram used are shown in Table I. 01

Thus, if(£2(6,)), £(#;) are mean-square deviations of fluc-
ﬁuations and correlation length for stede, then
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In other words, the introduction of a new fundamental scale According to Eq.(7) for the case of negative interactions
£(6,) and the mean-square deviatigs?(6,)) is equal to the  (g,>0) the decrease of the strain-hardening rate on the de-
scale transformatiod— ( 6/ 6;). Regardless of the choice of formation path is accompanied by a decrease of the interac-
a normalizing point, the limit9—0 leads to(s2(6)),£(6)  tion intensity andd— 0, g,— 0. The critical indexa— 1 and
—o—cooperative effects arise. Ag2(6)),&(6) increase, the law for the correlation length and mean-square deviation
for someé<= 6, fluctuations become comparable to the meandivergence is universal again:

deformation (e2)~s?) or the correlation length reaches the ) o1 1

size of a system (£~L,)—homogenous deformation con- (e%(0)=(e1)0™", =0 %

sidered in conventional plasticity theoffdzecomes unstable. gjfferent types of universality correspond to different signs
For example, uniaxial strain leads to the formation of a transgys ine g, value.

verse necKwhere the specimen fails afterwaydso an esti-

> : > AT Expanding thekth-order vertex in the vicinity of the
mation of the flow instability is roughly

“classic” path to the functional Fourier series, it is possible

L\ ~2a to prove a relation between the interaction in reduced vari-
6, :(0) , (6)  ables, renormalized to the state- +0, and the stress-strain
2§ diagrani

wherel g is the smallest specimen dimensi@hickness. = s o(£2) ™20 g) ™2
For #= 6, plastic waves propagate along a specimen: for Om+2= Om+2(82/ 1 ar o
0< 0, spatial fluctuations of the displacement field interfere,whered,,=d™6/ds™ is a “parabolicity” of the stress-strain
forming macroscopic localizations of the flow. curve. For only one nonvanishing vertegg,z(g§>d4; ie.,
Equation(3) for g, at second order in the interaction is the sign of the interaction is determined by the sigrdgf
_ Ultraviolet analysig p?= u260(s, 9,4(s))] is performed us-
0% —b.a2 ing the same method. The diagram corresponding to the first
de 194 significant ultraviolet correction is

where b;=(n+8)/4. This, along with the equation for —C@:}—

V,(6), gives an effective contribution of the second order to
the correlation length and mean-square deviation of the disSolving the RG equation in the ultraviolet area gives the full
placement field fluctuations: correlation function in the form

(8%(0)=(s%(61) 0", 2 (p_z F
E(0)=¢&(6,)0 >0 Rl = (=) woo)
— (6, ,
— a2
() =1+ 1 94(0) B=1-a303,85=—g (8)

b1 G4 We introduce a correlatioffracta) dimensionD=28 as a
94(0)=04(1—b1g,In6) "L, (7)  dimension of the correlation function of displacement fluc-
tuations. Higher orders are evaluated similarly; omitting
For g,<0 the deformation procegstrain-hardening rate simple evaluations, we barely state here the main result: in

decreasesis accompanied by an infinitely increasing inter- the caseg,<0 increasingp?/ 6 ratio enlarges the absolute

action. In the vicinity|g, In 6|~1/b,, the next(third) order  value of the interactiog, and, therefore, reduces the dimen-

of perturbation theory should be considered. Only one corsion. For the casg,>0 an increase of the ratip? to 6

rection is sufficient here, namely, weakens the interaction and, hence, increases the dimension:
for p2—o, g,—0 andD—2.

To summarize, the statistics of displacement field fluctua-
tions may be expressed in terms (©f the strain-hardening
rate 8(9,(s),s), which is governed by active deformation

The associated RG equation is along the “classic” pathii) intrinsic constants of the me-
dia: structure length scalg, (associated with the elastic un-
dg, 3 load of constrained deformatipand parameteay, represent-
do b192— 0294, ing the magnitude of interaction between the fluctuations of
the flow, expressible through a “parabolicity” of the stress-
where b,=(n+8)(n+1)/2. The solution, in its implicit  strain diagram and reduced mean-square devi&fprin the
form, may be used for numerical approximations. The fixedasymptotic aread— 0 the statistics of fluctuations exhibits
point for this equation isgg=—b,/b,; if n=3, theng;  fractal behavior: the correlation length and displacement het-
=—0.125, so forg,<0 the scaling law is asymptotically erogeneity diverge according to a power law, being con-

0

universal: nected to each other by the similarity relationship.
) o i . The results obtained constrain the ability of the analytic
(e°(0)=(en)0 ™, £=&0 %, a,=1-a;9;>1. plasticity theory: the assumption of a possibility for the me-
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Z=50um TABLE Il. Scaling parameters: index, fundamental length scale,
X=1mm/]\‘r':1mm e, instability transition point, and estimation of the normalized mean-
square deviation.

al? §o (,U«m) Sy <8§>

Fe 0.75-0.12  28:2  0.12:0.05 (1-2)x10*
Cu  0.06:0.01  90+3  0.17:0.05 (2-4)10*

. . , __was calculated using a standard algorithm. Hegeis the
strall:i:\(iizlcl) 3L2ateral side of a steel specimen. Elevation profile atsize of a measured squate, is the_measured heigfnelati_ve
o to the mean plane and the spatial wavelengths are in the
range of 300um to 9.6 mm.

The interdependence bg(p) and the function of the pair

ctuation correlation is

dia, during active deformation, to evolve along any path
(where the quasiequilibrium state of the system can be modﬂu
eled is not realistic enough. There are limitations on the

“elementary” volume §S in a field approach and on the (h3i(p)/h3i(—p))=Cs 33 Ra(p),
“diagram”: in the vicinity 6~ 6, the magnitude of fluctua- ' ’ '
tions becomes comparable to the length of the *“classic” hs;(p) = pihs(p),

path. In this area the concept of a deterministic description, ,
based on some kind of equilibrium equations, makes no cor-— L 2, and(--) denotes angular averaging on the plane of
ventional sense, but exactly here processes governing trpatial frequenciep. The correlation length is meant to be

strength properties, namely, the loss of plastic flow stability

and fracture, take place. £ W”fTé(F(J)(jZ .
pIR2(p)dp
Ill. EXPERIMENTAL PROCEDURE AND RESULTS According to Eq.(7) the linear regression of the experi-

In order to examine the correctness of the accepted agnentally measured datada-In 6 gives the values and accu-
sumptions and obtained resu[igs. (4), (7), and (8)], we  racy for & and a. The fractal dimension of the fluctuation
have performed measurements of the plastic deformatiofOrrelation function was determined as
heterogeneity. In the present investigation, the heterogeneity 1 dInRy(p)
of the displacement fields was observed during the evolution =_Z —22D;
of a polished surface of ste€D.1% carboh and copper 2 dinp

samples, subjected to uniaxial tension at a constant straifye yajyes and accuracy were obtained also by a linear fit on
ratee=10""s " and a normal temperature 293 K, using a5 |og-log scale. The micro- to macroinstability transition
scanning laser profilometer technigtfe. points, was determined using E¢p); half of the specimen
Local elevations of the lateral surface were measured &fickness was regarded as the smallest characteristic dimen-
points arranged on a square lattice covering@&Bmnt  gjon The scaling parameters—fundamental length sgale
index «, instability transition poins, , and estimation of the

area: for steel, 6865=4225 points with one cell size
150umx150um (Fig. 1): for copper, 12&129=16641  ,majized mean-square deviatiGe?)—are given in Table

points with 75umX75um cells. The accuracy of the
method is+1.25 um for all spatial directions. The measure-
ment procedure was carried out at an initial statro strain
and for strains=0.02-0.36(the range depends on the ma-
terial), up to the failure of the sample. The measured eleva
tion span changes during the deformation from0 to 115
pm. Vertical span achieves the minimum at some straine
state §<0.06), notat an initial point. The reason is that the model of geometric faults,=m, for Fe's,=0.29, for Cu

polished surface is “microsmooth,iot “macroflat;” it be- o _ 33 and for macrohomogenous tensics,=0.36 for
comes flatter, remaining almost smooth, after a small amount,, ¢ ':0 37 for Cy) '
,Sp=0. .

of plastic deformation.
The Fourier transform of the elevation values matrix for
every strains,

The increase of strain is accompanied by a decrease of the
strain-hardening rate and an increase of the correlation length
in accordance with the scaling law, as shown in Fig. 2. The
macroscopic instability transition point determined by Eq.

6), s, =0.12+0.05 for iron ands, =0.17+0.05 for copper,
considerably less than that for the usual estimate in the

The behavior of the fractal dimension of the correlation
function during the deformation process is given in Fig. 3.
Experiments show statistically reliable self-similar behavior
of the displacement field fluctuations. During deformation

hs(p) = f ha(r)e'P'dr, the strain-hardening ratéor given strain valuese decreases
and the fractal dimensioD increases: in iron fromD
=1.27+0.01 for #=1.49x10 2 to D=1.52+0.01 for ¢
_ 2mmn _ N—-1 =0.69x 10 2—the effective interaction thus changes from
p=——, n=(nq,ny), O0=ny,n,<——, ;
Lo 2 0.85+0.04 to 0.36-0.03. Determined fronD, the absolute
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1-35_ T T T T T 1.60_ L B DL LR A8 LALLS LLLLI it
[ Fe ] C ]
130 A Q 150 F ]
[ Cu(trend) | ] g L ]
1.25F ] 2 qa0f ]
r 1 (] - ]
= . ] E [ ]
F120F ] 2 130F .
o . ] T UL - _ &
o 3 : -5 +:
&115F ] = 120f .
110 - 1_10: A RPN RPN SIS PP POV PPN PP »
[ ] 0.5 1.0 15 2.0 253.035 x10
1.05F ~ 9 6 (logarithmic scale)
r ~ ]
100: ] FIG. 3. Fractal dimension of the correlation function of dis-
05 1.0 15 20 253035 x10% placement field fluctuations vs normalized strain-hardening ate

6 (logarithmic scale) . . . . .
that “nonclassical” behavior—fractality—arises in the sec-

FIG. 2. Correlation lengtl§ vs normalized strain-hardening rate ond order of perturbation theory, the same order needed in
0. renormalization(7) for index .

interaction valuég,| =0.61+0.25 is consistent with that de- IV. CONCLUSIONS

termined frome, |g4| =0.40+0.19. Surface topology investigations reveal the statistics of the
In copper, due to a significantly greater value of the fun-gisplacement field during plastic deformation of real engi-

damental scalé,, the scope of the fractal approximation is neering materials. The numerical values and analytic behav-
narrower. The dimensionality(changes fromD=1.27 jor of some parameters, grounded in experimental data, are
+0.03 to D=1.34+0.0) and absolute interactiong,|  consistent with those obtained from proposed concepts of
=1.14*+0.073 differ from the corresponding values for iron. instability. We have calculated the fundamental length scale
On the other hand, the obtained absolute interaction is naf, and the interaction magnitudg—important model con-
consistent with the estimatég,|.s—0.88+-0.02 deduced stants connecting the singular behavior of mesoscopic per-
from « using Eq.(7). A possible reason for this difference is turbations to features of the stress-strain diagram.
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