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Instability of plastic deformation as a self-organizing fractal

A. M. Avdeenko and E. I. Kuzko
Moscow State Steel and Alloys Institute, Moscow, Russia

~Received 4 March 1999; revised manuscript received 23 June 2000; published 19 January 2001!

The collective dynamics of plastic deformation is investigated using a field approach. A correlation function
of displacement field fluctuations in a Cosserat-like continuum model is calculated via the renormalization
group method. The dynamics of the correlation length and mean-squared deviation of displacement field
fluctuations are parameterized by a dimensionless strain-hardening rate. The value of the critical index was
obtained experimentally from the surface profiles of steel and copper specimens measured during plastic
tension. The results allow one to predict the point of plastic flow instability at given conditions.
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I. INTRODUCTION

The structure of real polycrystalline material during t
plastic deformation process evolves on different len
scales sequentially~from the microscopic up to the macro
scopic scale! and simultaneously. There exist ‘‘bas
defects’’—plastic flow carriers—of various sizes: disloc
tions are microstructural elements, dislocation superst
tures~including disclinations! represent a mesoscopic leng
scale, and plastic and rotational modes are of a macrosc
scale.

Concentration and coupling of defects increase dur
plastic deformation of the initial structure.1 The emergence
of new degrees of freedom~carriers of the next, ‘‘higher’’
level! is a result of the self-organization of previous lev
carriers.2 The process of plastic deformation is accompan
by microfracturing and followed by macroscopic failur
Fracture processes, on the other hand, can be treated a
appearance and development of some ‘‘basic objects,’’ fo
ing the whole hierarchy of defects: microcracks, voids, fac
of the grain boundary fracture, and so on. Microcracks j
up under stress to form mesoscopic defects and, finall
single macroscopic crack suppressing the developmen
others.

Some theoretical arguments and experimental facts en
us to describe self-organization in plastically deformed a
fractured structures in a unified way. We propose a gen
approach based on three main principles:~i! ‘‘universality,’’
the given set of external parameters~stress, strain limit, etc.!
always causes the loss of flow macrostability, followed
mechanical failure; ~ii ! ‘‘divergence of characteristic
scales,’’ the characteristic lengths of ‘‘basic elements’’
plastic flow and fracture exceed all essential microsco
length scales for the critical values of stress or strain;~iii !
‘‘scaling’’ ~fractality!, the properties of strain field statistic
and crack surface topology obey scaling laws.

The main goal of the present investigation is to descr
some plastic deformation phenomena as a result of the
lution of an extended dissipative dynamical system and
study the relations between the statistics of the media and
parameters of the plastic flow self-organization. The sa
methodology applied to the case of fracture will be presen
in the near future.
0163-1829/2001/63~6!/064103~6!/$15.00 63 0641
h

c-

pic

g

l
d

the
-

ts
n
a
of

le
d
al

y

f
ic

e
o-
o
he
e
d

II. MODEL AND SOLUTION

We consider a solid under stress as the three-dimensi
volume Vd ; the system of external forces applies to
boundary. The areaVd is subdivided intoN small cubic cells
v i ; for each of them a field of displacementAm(m51,2,3) is
defined as a displacement of sitev i from initial r i to the
stressed-stater i8 position:Am5r i2r i8 . Since the initial state
and local properties are unknown andN is huge (v i!Vd),
we will use a statistical approach to solve the problem. T
3N-dimensional distributionf „Am( i )… for N→` is present-
able as

f @Am#5eW@Am#, ~1!

whereW@Am# can be called the generating functional of
open system.

We will limit our consideration to such a class of med
for which the state in the vicinity of pointr i at time t i is
determined by spatial derivatives of the displacement fi
Am specified for any timet i beingt0,t i,t i , wheret0 is the
start of evolution. Barely taking inertial terms into accou
Eq. ~1! may contain the temporal derivative~not greater than
that of the first order! of a displacement field.

For a macroscopically isotropic and homogeneous s
~by initial conditions, i.e., no external stress!, the generating
functional can be expressed, in general, as a functional p
nomial

W@Am#5E ¯E (
k52

` Vk
m¯n~r i ,t i !

k
Am,p¯Aq,n

3dr1dt1¯dridti¯ ,

where Vk
m¯n(r i ,t i) ( i 51, . . . ,k, . . . ) are real tensors of

rank 2k.
Let first k indices (m51,2,3) denoteAm components, the

next k indices (m50,1,2,3) derivatives. The distributio
f @Am# is a monotone function ofW@Am#: hence the most
probable process corresponds to a pathĀm or Ām,n (m
51,2,3) satisfying the variational equation

dW@Am#

dAm
50
©2001 The American Physical Society03-1
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and given initial and boundary conditions.
The solution Ām (Ām,n) and difference dAm,n5Am,n

2Ām,n can be regarded as a ‘‘classic’’ path and fluctuatio
respectively. We restrict our attention to the so-called ‘‘a
tive’’ paths assumingds/dt>0 for each point~r ,t!, where

s5E
t0

t S ]Ām,n

]t

]Ām,n

]t
D 1/2

dt

is some internal parameter of a system, the ‘‘length’’ of t
classic path, and evolution along this ‘‘classic’’ path is t
same for all cellsv i .

To build a generating functional of fluctuations of fie
Am,n we produce a series expansion ofW@Am# in the vicinity
of Ām,n . As is well known, it is possible to express th
derivatives with respect to the time of an arbitrary order
terms of functions of internal parameters: length of a pats,
scalar curvaturesq1(s)¯qn21(s), and torsionqn(s) ~n is
the number of independent components of tensorĀm,n!.

For pathsds/dt>0 integration over the spatial variable
gives unessential constants, proportional to some pow
(Vd)n; temporal integration parametrizes verticesVk

m¯n by
s,q1(s)¯qn21(s),qn(s). In the case of proportional stres
qn(s)[0 tensorVk

m¯n depends only on the second invaria

of Ām,n :Vk
m¯n5Vk

m¯n(s).
Let W@Am# be the generating functional of fluctuation

with vertices Vk
m¯n

„r i ,t i ,s,qn(s)…. Normalized averages
weighted byeW@Am# are the correlation functions of order 2k:

R2k
m¯n~r i ,t i !5^Am,q~r 1 ,t1!¯Ap,n~r 2k ,t2k!&

5
1

Z E Am,q~r 1 ,t1!¯Ap,n~r 2k ,t2k!e
W@Am#dAm ,

Z5E eW@Am#dAm , ~2!

wheredAm stands for continuum integration.
This relation shows that, in principle, the statistics of t

deformation field fluctuations can be parametrized with
set of curvature and torsion characteristics for a ‘‘class
path. We denote Fourier representations
Am(p,v), V(p,v). The modesvÞ0 we call ‘‘fast’’; the
‘‘slow’’ generating functional is

W8@Am#52 ln
1

Z E eW@Am#d8Am ,

where d8Am is the sign of the ‘‘fast variable’’ continuum
integration. Further we omit the prime.

We define the inverse to the free correlation functi
R20

m¯n(r ) operator *V2
mpqn(r 1 ,r 18)R20,mpqn(r 182r 2)dr18

5dm
mdn

nd(r 12r 2) and call it the free vertex of second orde
For systems whereVk

m¯n(r i)50 (k.2) the free vertex
of second order coincides with vertexV2

m¯n(r i).
In a general case, whenVk

m¯n(r i)Þ0 (k.2), then the
normalized bilocal average weighted bye2W determines the
full correlation functionR2

m¯n(r ). The operatorV2
m¯n(r i),
06410
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inverse to the full correlation function, is definable by Eq.~2!
with the substitutionR20

m¯n(r )→R2
m¯n(r ). This quantity in-

cludes interactions~nonlinear phenomena! and will be called
the full vertex of second order. The full vertex, in gener
does not coincide with the operator for the squares of fi
variables in generating functional~1!, denoted byV20

m¯n(r i).
We assume that for the initial state~there is no externa

stress! the ‘‘classic’’ path corresponds to the equilibrium
equation of the Cosserat elastic pseudocontinuum mode3–6

¹2Am1
1

122n
¹m~¹nAn!2j0

2¹2~¹2Am2¹m¹nAn!50,

wherej0 is the structural length scale of the elastic pseu
continuum,

¹m5
]

]xm
, ¹25 (

m51

3
]2

]xm
2 .

The field Am contains longitudinal and transverse comp
nents, Am5Am

n 1Am
t , and corresponding distortions,Am,n

n

5(1/n)dm,nAk,k ~n is the number of components of fieldAm!
and Am,n

t 5Am,n2Am,n
n . The longitudinal and transvers

terms of the free vertex of second order,V20
m¯n(r i)

5V20
m¯n,n(r i)1V20

m¯n,t(r i), are

V20
m¯n,n~r i ,s→10!5

T2
m¯n,n

V^«2
2&

d~r 12r 2!,

V20
m¯n,t~r i ,s→10!5

T2
m¯n,t

V^«1
2&

@11j0
2¹2#d~r 12r 2!,

where

^«1
2&5V21E R20mn

mn,t ~r !dr,

^«2
2&5V21E R20mn

mn,n~r !dr

are longitudinal and transverse mean-square deviation
strain fields fluctuations at states→10,V is the volume,
T2

m¯n,n5(en)2(en)2, T2
m¯n,t5dmqepen, and eq is the unit

vectors in directionr.
It is possible to show that the stressed-state free vert

of longitudinal fluctuations are the same, whereas the f
vertices of transverse fluctuations have the form

V20
m¯n,t~r i ,s!5

T2
m¯n,t

V^«1
2&

@u~s!1j0
2¹2#d~r 12r 2!,

where u(s)5G21dt/ds is the shear strain-hardening ra
along the ‘‘classic’’ path normalized by the shear modu
and controlled by the internal geometry of the ‘‘classic
path—by its lengths, curvature, and torsion.

The corresponding correlation functions are given by

R20
m¯n,t~r ,s!5

C2
m¯n,tV^«1

2&

4pr j0
2 e2r /j,
3-2



INSTABILITY OF PLASTIC DEFORMATION AS A . . . PHYSICAL REVIEW B63 064103
TABLE I. The basic elements of the Feynman diagram.
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R20
m¯n,n~r ,s!5C2

m¯n,nV^«2
2&d~r 12r 2!,

where C2
m¯n,t5dmqepen, C2

m¯n,n5ememenen, and j
5j0u21/2 is the correlation length of transverse displacem
fluctuations.

Mean-square deviations of transverse and longitud
displacement fields fluctuations can be expressed as, res
tively,

^«2~u!&5V21E R20mn
mn,t ~r ,u!dr5^«1

2&u21,

^«2~u!&5V21E R20mn
mn,n~r ,u!dr5^«2

2&,

and, except the narrow macroelasticity region whereu!1
and^«1

2&'^«2
2&, then^«2(u)&@^«2

2&. We will limit our con-
sideration of the statistics of displacement field fluctuatio
to transverse terms; the sign ‘‘t’’ will be omitted in the fol-
lowing.

We call ^«1
2& and j0 the normalized mean-square devi

tion of displacement field fluctuations and fundamen
length scale, respectively. The formal definition is

^«1
2&5 lim

u→120
^«2~u!&,

j05 lim
u→120

j~u!;

experimental investigations of displacement fluctuation s
tistics ~extrapolated to the areas→10! can be used to esti
mate numerical values. The approximationj0→0 is the case
of the usual continuum considerations of elasticity and p
ticity.

The mediaVk
m¯nÞ0, (k.2) we will call the nonlinear

Cosserat pseudocontinuum; the generating functionalW@Am#
corresponds to the statistics of displacement field fluct
tions.

In general, the calculation of the full correlation functio
R2k

m¯n(p) @normalized averages weighted bye2W@Am# for
Vk

m¯nÞ0 (k53,4, . . . )# can be performed employing th
Feynman-diagram technique. We will use the diagrams
the frequency representation: the main elements are ‘‘fr
and ‘‘full’’ correlation functions and vertices of the orde
2k. The term ‘‘free’’ stands here for the vertices correspon
ing to a given set of wave vectors on external lines and to
parameterized ‘‘classic’’ pathu„s,qn(s)…. The basic ele-
ments of the Feynman diagram used are shown in Table
06410
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System~2! resolved with respect to vertices thus loo
like

~3!

Introducingd2(p)5R2(p)/R20(p) we then use effective
vertices defined as

ḡk~pi !5Vk~pi !)
i 51

k

d~pi !.

Calculation of

at first order in interactions performed in the sca
regularization formalism.7 The solution of relevant renormal
ization group~RG! equation foru gives the expression fo
the mean-square deviation and correlation length in the fo
of

^«2~u!&5^«1
2&u2a,

j~u!5j0u2a/2, ~4!

wherea512a1g4 , a15(n12)/4, andn is the number of
independent components of fieldAm,n . The active deforma-
tion process is accompanied by a decrease in the str
hardening rate (du/ds<0); hence the mean-square devi
tion of displacement fluctuations and correlation leng
increase according to the scaling law~4! satisfying the rule

^«2~u!&
j2~u!

5
^«1

2&

j0
2 . ~5!

Thus, if ^«2(u1)&, j(u1) are mean-square deviations of flu
tuations and correlation length for stateu1 , then

^«2~u!&5^«2~u1!&S u

u1
D 2a

,

j~u!5j~u1!S u

u1
D 2a/2

.

3-3
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In other words, the introduction of a new fundamental sc
j(u1) and the mean-square deviation^«2(u1)& is equal to the
scale transformationu→(u/u1). Regardless of the choice o
a normalizing point, the limitu→0 leads to^«2(u)&,j(u)
→`—cooperative effects arise. Aŝ«2(u)&,j(u) increase,
for someu<u1 fluctuations become comparable to the me
deformation (̂«2&'s2) or the correlation length reaches th
size of a system (2j'L0)—homogenous deformation con
sidered in conventional plasticity theories8 becomes unstable
For example, uniaxial strain leads to the formation of a tra
verse neck~where the specimen fails afterwards!, so an esti-
mation of the flow instability is roughly

u* 5S L0

2j0
D 22/a

, ~6!

whereL0 is the smallest specimen dimension~thickness!.
For u>u* plastic waves propagate along a specimen:

u,u* spatial fluctuations of the displacement field interfe
forming macroscopic localizations of the flow.

Equation~3! for ḡ4 at second order in the interaction is

u
dḡ4

du
5b1ḡ4

2,

where b15(n18)/4. This, along with the equation fo
V2(u), gives an effective contribution of the second order
the correlation length and mean-square deviation of the
placement field fluctuations:

^«2~u!&5^«2~u1!&u2a~u!,

j~u!5j~u1!u2a~u!/2,

a~u!511
1

b1

ḡ4~u!

g4
,

ḡ4~u!5g4~12b1g4 ln u!21. ~7!

For g4,0 the deformation process~strain-hardening rate
decreases! is accompanied by an infinitely increasing inte
action. In the vicinityug4 ln uu'1/b1 , the next~third! order
of perturbation theory should be considered. Only one c
rection is sufficient here, namely,

The associated RG equation is

u
dḡ4

du
5b1ḡ4

22b2ḡ4
3,

where b25(n18)(n11)/2. The solution, in its implicit
form, may be used for numerical approximations. The fix
point for this equation isg4

c52b1 /b2 ; if n53, then g4
c

520.125, so forg4,0 the scaling law is asymptoticall
universal:

^«2~u!&5^«1
2&u2a

* , j5j0u2a
*

/2, a* 512a1g4
c.1.
06410
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According to Eq.~7! for the case of negative interaction
(g4.0) the decrease of the strain-hardening rate on the
formation path is accompanied by a decrease of the inte
tion intensity andu→0, ḡ4→0. The critical indexa→1 and
the law for the correlation length and mean-square devia
divergence is universal again:

^«2~u!&5^«1
2&u21, j5j0u21/2;

different types of universality correspond to different sig
of the g4 value.

Expanding thekth-order vertex in the vicinity of the
‘‘classic’’ path to the functional Fourier series, it is possib
to prove a relation between the interaction in reduced v
ables, renormalized to the states→10, and the stress-strai
diagram9

gm125dm12^«1
2&mm12~Vd!m/2,

wheredm5dmu/dsm is a ‘‘parabolicity’’ of the stress-strain
curve. For only one nonvanishing vertex,g45^«1

2&d4 ; i.e.,
the sign of the interaction is determined by the sign ofd4 .

Ultraviolet analysis@p2>m2u„s,qn(s)…# is performed us-
ing the same method. The diagram corresponding to the
significant ultraviolet correction is

Solving the RG equation in the ultraviolet area gives the f
correlation function in the form

R2~p!5^«2~u!&S p2

m2u D 2b

,

b512a3g4
2,a35

n12

8
. ~8!

We introduce a correlation~fractal! dimensionD52b as a
dimension of the correlation function of displacement flu
tuations. Higher orders are evaluated similarly; omitti
simple evaluations, we barely state here the main result
the caseg4,0 increasingp2/u ratio enlarges the absolut
value of the interactiong4 and, therefore, reduces the dime
sion. For the caseg4.0 an increase of the ratiop2 to u
weakens the interaction and, hence, increases the dimen
for p2→`, g4→0 andD→2.

To summarize, the statistics of displacement field fluct
tions may be expressed in terms of~i! the strain-hardening
rate u„qn(s),s…, which is governed by active deformatio
along the ‘‘classic’’ path;~ii ! intrinsic constants of the me
dia: structure length scalej0 ~associated with the elastic un
load of constrained deformation! and parameterg4 represent-
ing the magnitude of interaction between the fluctuations
the flow, expressible through a ‘‘parabolicity’’ of the stres
strain diagram and reduced mean-square deviation~7!. In the
asymptotic areau→0 the statistics of fluctuations exhibit
fractal behavior: the correlation length and displacement h
erogeneity diverge according to a power law, being co
nected to each other by the similarity relationship.

The results obtained constrain the ability of the analy
plasticity theory: the assumption of a possibility for the m
3-4
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INSTABILITY OF PLASTIC DEFORMATION AS A . . . PHYSICAL REVIEW B63 064103
dia, during active deformation, to evolve along any pa
~where the quasiequilibrium state of the system can be m
eled! is not realistic enough. There are limitations on t
‘‘elementary’’ volume j0

d in a field approach and on th
‘‘diagram’’: in the vicinity u'u* the magnitude of fluctua
tions becomes comparable to the length of the ‘‘class
path. In this area the concept of a deterministic descript
based on some kind of equilibrium equations, makes no c
ventional sense, but exactly here processes governing
strength properties, namely, the loss of plastic flow stabi
and fracture, take place.

III. EXPERIMENTAL PROCEDURE AND RESULTS

In order to examine the correctness of the accepted
sumptions and obtained results@Eqs. ~4!, ~7!, and ~8!#, we
have performed measurements of the plastic deforma
heterogeneity. In the present investigation, the heterogen
of the displacement fields was observed during the evolu
of a polished surface of steel~0.1% carbon! and copper
samples, subjected to uniaxial tension at a constant s
rate «̇51023 s21 and a normal temperature 293 K, using
scanning laser profilometer technique.10

Local elevations of the lateral surface were measure
points arranged on a square lattice covering 9.639.6 mm2

area: for steel, 6536554225 points with one cell size
150mm3150mm ~Fig. 1!: for copper, 1293129516641
points with 75mm375mm cells. The accuracy of the
method is61.25mm for all spatial directions. The measur
ment procedure was carried out at an initial state~zero strain!
and for strainss50.02– 0.36~the range depends on the m
terial!, up to the failure of the sample. The measured ele
tion span changes during the deformation from 50mm to 115
mm. Vertical span achieves the minimum at some strai
state (s&0.06), not at an initial point. The reason is that th
polished surface is ‘‘microsmooth,’’not ‘‘macroflat;’’ it be-
comes flatter, remaining almost smooth, after a small amo
of plastic deformation.

The Fourier transform of the elevation values matrix
every strains,

h3~p!5E h3~r !eip"rdr ,

p5
2pn

L0
, n5~n1 ,n2!, 0<n1 ,n2<

N21

2
,

FIG. 1. Lateral side of a steel specimen. Elevation profile
strain«50.32.
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was calculated using a standard algorithm. HereL0 is the
size of a measured square,h3 is the measured height~relative
to the mean plane!, and the spatial wavelengths are in th
range of 300mm to 9.6 mm.

The interdependence ofh3(p) and the function of the pair
fluctuation correlation is

^h3,i~p!/h3,i~2p!&5C2,33i i R2~p!,

h3,i~p!5pih3~p!,

i 51, 2, and^¯& denotes angular averaging on the plane
spatial frequenciesp. The correlation length is meant to be

j52p
*R2~p!dp

* upuR2~p!dp
.

According to Eq.~7! the linear regression of the exper
mentally measured data lnj2ln u gives the values and accu
racy for j0 and a. The fractal dimension of the fluctuatio
correlation function was determined as

D52
1

2

d ln R2~p!

d ln p2 ;

the values and accuracy were obtained also by a linear fi
a log-log scale. The micro- to macroinstability transitio
point s* was determined using Eq.~6!; half of the specimen
thickness was regarded as the smallest characteristic dim
sion. The scaling parameters—fundamental length scalej0 ,
indexa, instability transition points* , and estimation of the
normalized mean-square deviation^«1

2&—are given in Table
II.

The increase of strain is accompanied by a decrease o
strain-hardening rate and an increase of the correlation le
in accordance with the scaling law, as shown in Fig. 2. T
macroscopic instability transition point determined by E
~6!, s* 50.1260.05 for iron ands* 50.1760.05 for copper,
is considerably less than that for the usual estimate in
model of geometric fault~sp5m, for Fe sp50.29, for Cu
sp50.33! and for macrohomogenous tension~sp50.36 for
Fe,sp50.37 for Cu!.

The behavior of the fractal dimension of the correlati
function during the deformation process is given in Fig.
Experiments show statistically reliable self-similar behav
of the displacement field fluctuations. During deformati
the strain-hardening rate~for given strain values! u decreases
and the fractal dimensionD increases: in iron fromD
51.2760.01 for u51.4931022 to D51.5260.01 for u
50.6931022—the effective interaction thus changes fro
0.8560.04 to 0.3660.03. Determined fromD, the absolute

t

TABLE II. Scaling parameters: index, fundamental length sca
instability transition point, and estimation of the normalized mea
square deviation.

a/2 j0 ~mm! s* ^«1
2&

Fe 0.7560.12 2862 0.1260.05 (1 – 2)31024

Cu 0.0660.01 9063 0.1760.05 (2 – 4)31024
3-5
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A. M. AVDEENKO AND E. I. KUZKO PHYSICAL REVIEW B 63 064103
interaction valueug4u50.6160.25 is consistent with that de
termined froma, ug4u50.4060.19.

In copper, due to a significantly greater value of the fu
damental scalej0 , the scope of the fractal approximation
narrower. The dimensionality~changes from D51.27
60.03 to D51.3460.01! and absolute interactionug4u
51.1460.073 differ from the corresponding values for iro
On the other hand, the obtained absolute interaction is
consistent with the estimateug4uest50.8860.02 deduced
from a using Eq.~7!. A possible reason for this difference

FIG. 2. Correlation lengthj vs normalized strain-hardening ra
u.
n

06410
-

ot

that ‘‘nonclassical’’ behavior—fractality—arises in the se
ond order of perturbation theory, the same order neede
renormalization~7! for index a.

IV. CONCLUSIONS

Surface topology investigations reveal the statistics of
displacement field during plastic deformation of real en
neering materials. The numerical values and analytic beh
ior of some parameters, grounded in experimental data,
consistent with those obtained from proposed concepts
instability. We have calculated the fundamental length sc
j0 and the interaction magnitudeg4—important model con-
stants connecting the singular behavior of mesoscopic
turbations to features of the stress-strain diagram.

FIG. 3. Fractal dimension of the correlation function of di
placement field fluctuations vs normalized strain-hardening rateu.
i-

.
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