Ultrasonic studies of the spin-triplet order parameter and the collective mode in Sr₂RuO₄

H. Matsui,¹ Y. Yoshida,² A. Mukai,² R. Settai,² Y. Onuki,² H. Takei,² N. Kimura,³ H. Aoki,³ and N. Toyota¹

¹Department of Physics, Graduate School of Science and Center for Interdisciplinary Research, Tohoku University,

Sendai 980-8578, Japan

²Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

³Center for Low Temperature Science, Tohoku University, Sendai 980-8578, Japan

(Received 27 August 2000; published 22 January 2001)

The elastic constant $C_{\rm T}$ and ultrasonic attenuation $\alpha_{\rm s}$ for $(C_{11}-C_{12})/2$ have been measured on Sr₂RuO₄ with $T_{\rm c}^*=1.42$ K. In contrast to the $A_{1\rm g}$ and $E_{\rm g}$ strains, the $B_{1\rm g}$ strain ($\epsilon_{xx}-\epsilon_{yy}$) strongly couples to the superconducting state, which dominantly originate from hybridized Ru-4 d_{xy} electrons on the γ Fermi surface. Taken into account impurity induced in-gap states, the T^3 dependence of $\alpha_{\rm s}$ is found to be consistent with an existence of line nodes. The large reduction in $C_{\rm T}$ below $T_{\rm c}^*$ evidences the two-component order parameter and chiral *p*-wave state. Anomalous $C_{\rm T}$ and $\alpha_{\rm s}$ around $T_{\rm a}=1.34$ K suggest a collective mode.

DOI: 10.1103/PhysRevB.63.060505

PACS number(s): 74.25.Ld, 74.70.-b

Layered perovskite superconductor Sr_2RuO_4 has attracted much attention,¹ because the pairing symmetry could be of *p* wave. Two-dimensional electronic states are formed on the alternating RuO₂ planes. There exist three cylindrical Fermi surfaces named α , β , and γ running along [001] in a tetragonal structure.^{2–4} The nuclear relaxation rate T_1 measured by ¹⁰¹Ru nuclear quadrupole resonance (NQR) never exhibits a Hebel-Slichter coherence peak, and the Knight shift of ¹⁷O nuclear magnetic resonance (NMR)⁵ is temperature independent below and above T_c . The muon spin relaxation indicates a broken time-reversal symmetry in the superconducting state.⁶ These experimental results were interpreted with *d* vector $z\Delta_0(k_x+ik_y)$ for an isotropic gap.⁷ Here *z* and k_x + ik_y represent spin and orbital parts, and Δ_0 is a constant.

Recent specific heat⁸ and ${}^{1\bar{0}1}$ Ru NQR measurements,⁹ however, show power-law behaviors at low temperatures, suggesting an existence of a line-node gap. An anisotropic gap model¹⁰ shows the *p*-wave superconductivity induced by the short-range ferromagnetic spin fluctuation. Various *f*-wave pairing states are obtained by the product of two irreducible representations in a D_{4b} point group.¹¹

In *p*-wave superfluid ³He, many collective modes were extensively studied by ultrasonic measurements.¹² However, collective modes caused by multicomponent order parameters in an unconventional superconductor¹³ have been little known experimentally at least.

We have already reported a small superconducting anomaly below $T_c = 1.2$ K in the longitudinal mode C_{33} inducing a volume strain with A_{1g} representation of D_{4h} .⁴ On the other hand, a large temperature dependence is found in the longitudinal mode C_{11} , which is reducible to A_{1g} and B_{1g} . With this indication that the B_{1g} strain $\epsilon_{xx} - \epsilon_{yy}$ might strongly couple to the superconductivity, we have measured the ultrasound velocity and attenuation of $(C_{11} - C_{12})/2$ mode to clarify the superconducting order parameter and the collective mode.

We have used a single crystal of Sr_2RuO_4 grown by a floating zone technique with the size of $3.02([110]) \times 2.10([1\overline{10}]) \times 2.51([001])$ mm³. Ultrasonic experiments

based on a phase comparison method with high sensitivity of $\Delta v/v = 10^{-5} \sim 10^{-6}$ have been carried out down to 0.17 K with a ³He-⁴He dilution refrigerator. The attenuation coefficient has been measured by the amplitude variation of the 2nd-echo signal with the input power of $\sim 30 \ \mu$ W. The 5th-higher overtone ~ 43.4 MHz has been employed to increase the resolution. The transverse ultrasound propagating and polarizing along [110] and [110] is excited and detected by the LiNbO₃ transducers stuck to both the parallel sample surfaces by RTV silicone.

The superconducting transition for the present crystal is determined by the specific heat using a quasiadiabatic heat pulse method. As shown in Fig. 1(a), the mean-field superconducting transition temperature is obtained as $T_c^* = 1.42$ K by the mid point of the specific heat jump. The jump between $T_c^{\text{offset}} = 1.37$ K and $T_c^{\text{onset}} = 1.50$ K is estimated to be $\Delta C_p = 4.5 \times 10^3$ erg/cm³ K. The transition width is attributed to the sample inhomogeneity due to the spatial distribution of T_c . In a spin-triplet superconductor, the nonmagnetic impurities act as a pair breaker. According to the analysis with the Abrikosov-Gor'kov theory,¹⁴ T_c^0 for an ideal case has been estimated to be 1.5 K,¹⁵ and the quasiparticle life time due to the impurity scattering is obtained as $\tau_s = 7.5 \times 10^{-11}$ sec for the present crystal.

The temperature dependence of the elastic constant $C_{\rm T} = (C_{11} - C_{12})/2$ is depicted in Fig. 1(b). $\Delta C_{\rm T} = C_{\rm T}(T, H = 0) - C_{\rm T}(T, H = 0.1 \text{ T})$ is the difference in the elastic constant between superconducting and normal states, where H = 0.1 T applied along [001] is higher than the upper critical field at T = 0. The experimental data deviate from $\Delta C_{\rm T} = 0$ below $T_{\rm c}^{\rm onset}$. The difference $\Delta C_{\rm T}$ is theoretically calculated by the second derivative of a Helmholtz free energy based on a two-fluid model $\Delta F = -\phi(\epsilon_{\rm T})[1 - T^2/T_{\rm c}^{*2}(\epsilon_{\rm T})]^2$ with respect to the strain $\epsilon_{\rm T}$.¹⁶ Here the condensation energy ϕ at 0 K and $T_{\rm c}^*$ depends on the strain. In general, the longitudinal elastic constant exhibits a jump at $T_{\rm c}^*$ due to the first-order derivative term $dT_{\rm c}^*/d\epsilon_{\rm T}$.

For the transverse strain ϵ_{Γ} ,

FIG. 1. Temperature dependence of the specific heat (a), the elastic constant (b), and the attenuation coefficient (c) for $(C_{11} - C_{12})/2$. The inset in (b) shows $\Delta C_{\rm T}$ in C_{44} . See the text for details.

$$\Delta C_{\rm T} = \frac{d^2 T_{\rm c}^*}{d \epsilon_{\rm \Gamma}^2} \left[-\frac{T^2}{2 T_{\rm c}^{*2}} \left(1 - \frac{T^2}{T_{\rm c}^{*2}} \right) \right] \Delta C_{\rm p} - \frac{d^2 \phi}{d \epsilon_{\rm \Gamma}^2} \left(1 - \frac{T^2}{T_{\rm c}^{*2}} \right)^2.$$
(1)

Equation (1) only includes the second-order derivative term $d^2T_c^*/d\epsilon_{\Gamma}^2$, so that the discontinuity in the slope $d\Delta C_T/dT$ occurs at T_c^* . As shown by a solid line in Fig. 1(b), Eq. (1) with parameters $d^2T_c^*/d\epsilon_{B1g}^2 = 7 \times 10^4$ K and $\phi^{-1}(d^2\phi/d\epsilon_{B1g}^2) = 2 \times 10^5$, where $\epsilon_{B1g} = \epsilon_{xx} - \epsilon_{yy}$, can be fit well to the data except just below T_c^* .

For the transverse mode C_{44} with E_g inducing $\epsilon_{Eg} = \epsilon_{zx}$ in the inset of Fig. 1(b), we obtain $d^2 T_c^*/d\epsilon_{Eg}^2 = 3 \times 10^3$ K and $\phi^{-1}(d^2\phi/d\epsilon_{Eg}^2) = 1 \times 10^4$. Equation (1) reproduces the data quite well just below T_c^* . In case of C_{33} , $d^2 T_c^*/d\epsilon_{A1g}^2 = 2 \times 10^4$ K, while the first-order derivative term is extremely small because the longitudinal elastic constant does not exhibit a remarkable jump at T_c . Therefore the superconducting electrons couple strongly to the transverse B_{1g} strain, which induces the in-plane perturbation for the twodimensional electronic states.

Here we consider the electron-strain coupling which is measurable via an area coefficient Λ_{Γ} derived by the acoustic de Haas-van Alphen (dHvA) effect. The γ oscillation has not been detected by this effect owing to the large effective mass. The coefficient for C_{33} with the α Fermi surface,⁴

FIG. 2. Temperature derivative of $\Delta C_{\rm T}$ (open circles) and $\alpha_{\rm s}$ (solid line).

 Λ_{A1g}^{α} , is quite large, about 20, while those of $(C_{11}-C_{12})/2$ with α and β Fermi surfaces are quite small,¹⁷ less than 1. Therefore, the α and β Fermi surfaces constructed by the hybridized Ru-4 $d_{yz(zx)}$ orbitals as predicted from the bandstructure calculations² couple strongly with the A_{1g} strain and quite weakly with the B_{1g} strain. These results are totally consistent with the orbital-strain symmetry. Since the superconducting state exclusively couples to the B_{1g} strain as mentioned above, the hybridized Ru-4 d_{xy} orbital electron on the γ Fermi surface is concluded to be dominantly responsible for the superconductivity.

The temperature dependence of the attenuation coefficient is shown in Fig. 1(c) for both the superconducting state (α_s) at H=0 and the normal one (α_n) under H=0.1 T. With decreasing temperature, α_n monotonically increases as expected for a pure metal. At T_c^{onset} , α_s starts to deviate from α_n as well as the elastic constant mentioned above, and then drops sharply well below T_c^* .

The attenuation coefficient for a conventional superconductor is written as: 18

$$\frac{\alpha_{\rm s}}{\alpha_{\rm n}} = 2f_0(\Delta(T)) = \frac{2}{1 + \exp(\Delta/kT)}.$$
(2)

Here Δ is a temperature-dependent energy gap isotropically opened on a Fermi surface. The dotted and broken curves in Fig. 1(c) show the calculated results with Eq. (2) for a weak and strong coupling limit [$\Delta(0)/k_{\rm B}T_{\rm c}^* = 3.52$ and 3.88]. Both curves become exponentially zero, while the data are still temperature dependent down to 0.17 K.

Figure 2 shows the temperature-derivative of $\Delta C_{\rm T}$ and $\alpha_{\rm s}$. There appears a sharp peak in $d\alpha_{\rm s}/dT$ at $T_{\rm a}$ =1.34 K, around which the discontinuous change in $d\Delta C_{\rm T}/dT$ takes place. These anomalies corresponding to the anomalous rounding in $\Delta C_{\rm T}$ and $\alpha_{\rm s}$ do occur not at $T_{\rm c}^*$ but at $T_{\rm a}$ well below $T_{\rm c}^*$.

In Fig. 3, the ratio α_s/α_n near T_c^* is shown by the solid circles as a function of $(T - T_c^*)/T_c^*$. The broken curve is a BCS result with Eq. (2) for a strong coupling limit. To take account of the inhomogeneity effect, a Gaussian distribution function for T_c is applied to Eq. (2): $\Psi(T_c) = (2 \pi \sigma)^{-1} \exp(-(T_c - T_c^*)^2/2\sigma^2)$, the sum of which for all the T_c 's are normalized to unity. The most probable standard

FIG. 3. The ratio α_s/α_n close to T_c^* as a function of $(T - T_c^*)/T_c^*$.

deviation is obtained as $\sigma = 0.025$. For the sake of simplicity, we divide the temperature region with 0.02 K step. The open triangles in Fig. 3 are obtained by summing up Eq. (2) weighted by $\Psi(T_c)$. The data above T_c^* are well reproduced by the inhomogeneity effect. However this effect below T_c^* , which is so small due to the overwhelming temperature dependence [Eq. (2)], cannot explain the data at all. Therefore some additional attenuation exists at temperatures ~ 1.2 K $\leq T \leq T_c^*$.

Next we discuss the nonexponential dependence of the attenuation as shown in Fig. 1(c). At high temperatures, say above 0.8 K, the attenuation no longer follows a power-law behavior because of the temperature-dependent gap. The low-temperature data are well fitted to T^2 for 0.17 K $\leq T \leq 0.4$ K and T^3 for 0.3 K $\leq T \leq 0.8$ K, as shown in Fig. 4. The crossover from T^3 to T^2 dependence occurs around 0.4 K with decreasing temperatures. Since the absolute attenuation coefficient due to the electrons is hardly obtained in general, the extrapolation of a T^2 line to T=0 is set to zero.

When we determine the power-law in an anisotropic superconductor, the impurity effect inducing a low-lying ingap states should be taken into account. The rate of an impurity scattering is represented by the pair-breaking parameter:^{10,19} $\eta_c = \hbar [2\tau_s \Delta(0)]^{-1}$, where $\Delta(0)$ is a maximum gap at T=0. When we assume $\Delta(0) = (1.75-2.5)k_BT_c^*$, η_c is calculated to be 0.014–0.021 for the present crystal. The residual density of states (DOS) is estimated to be about $0.3N_F$, where N_F is a normal-state DOS. Thus the impurity effect plays a significant role below $T_{\rm imp} = \eta_c^{1/2}T_c^* \sim 0.2$ K, which locates in the T^2 regime. Therefore, the crossover could be attributed to the impurity effect, which is observed in T_1^{-1} of the recent ¹⁰¹Ru NQR⁹ deviating from T^3 dependence below 0.15 K.

The T^3 dependence seen at temperatures higher than T_{imp} is compared with the theory. According to the analysis for the transverse attenuation in an anisotropic superconductor,¹⁹ the T^3 dependence is characteristic for an existence of line nodes. The *d* vector might be expressed by $\Delta_0 z(k_x^2 - k_y^2)$ $(k_x + ik_y)$, $\Delta_0 z(k_x k_y)(k_x + ik_y)$,¹¹ or $\Delta_0 z(\sin k_x + i\sin k_y)$,¹⁰ all of which have the same symmetry with $\Delta_0 z(k_x + ik_y)$.⁷ It is noted that the *d* vector does not necessarily contain B_{1g} , although the superconducting state strongly couples to $\epsilon_{xx} - \epsilon_{yy}$. Because the order parameter

FIG. 4. The ratio α_s / α_n as a function of $(T/T_c^*)^n$ (n = 2 and 3).

mentioned later [Eq. (3)] always appears in square in the strain-order parameter coupling.²⁰

The elastic anomalies are discussed from the viewpoint of the strain-order parameter coupling.^{13,20,21} The complex order parameter is defined as $(\eta_1, \eta_2) = |\eta| (\cos \theta, e^{i\phi} \sin \theta)$ belonging to the two-dimensional E_u . The strain couples linearly to the bilinear products of the order parameter.¹³ The free energy for the strain-order parameter coupling of the lowest order is expressed as

$$F_{so} = g_{A1g} \epsilon_{zz} (|\eta_1|^2 + |\eta_2|^2) + g_{B1g} (\epsilon_{xx} - \epsilon_{yy}) \\ \times (|\eta_1|^2 - |\eta_2|^2) + g_{B2g} \epsilon_{xy} (\eta_1^* \eta_2 + \eta_1 \eta_2^*), \quad (3)$$

where the parameters g_{Γ} denote the coupling constants. According to the small change in C_{33} below T_c mentioned before,⁴ the amplitude mode $|\eta|$ relating to A_{1g} does not make a dominant contribution. It is noted that $|\eta|$ plays an important role in UPt₃ and URu₂Si₂, where the noticeable jump is observed at T_c in longitudinal modes.²¹ From the 2nd term, the coupling of $\epsilon_{xx} - \epsilon_{yy}$ to the order parameter originates from the phase mode θ . The large change in ΔC_T below T_c^* , which is a direct evidence for the two-component order parameter and the chiral *p*-wave superconducting state,²⁰ results from the significant contribution of θ to the superconducting state. The phase mode ϕ in the 3rd term could be clarified by the measurement of C_{66} .

Finally we discuss the additional attenuation around T_a (Fig. 3), where the whole volume of the sample completes the transition to the superconducting state below T_c^{offset} . Moreover, ΔC_T around T_a is larger than the calculated curve in Fig. 1(b), and thus there should exist some mechanism supplying the excess entropy. Such anomaly, however, is absent in C_{33} and C_{44} . These facts could be interpreted as an excitation of the superconducting collective mode by the transverse wave in $(C_{11}-C_{12})/2$. From the previous discussions on the strain-order parameter coupling, the phase mode θ associated with a chirality should correspond

to the collective mode. Several collective order-parameter modes are theoretically discussed for a *p*-wave pairing with $z\Delta_0(k_x+ik_y)$.²² In longitudinal modes of UPt₃, a clear peak is emerged just below T_c , which could originate from the density correlation.²³ From the viewpoint of ultrasonic studies, it is evident that the *p*-wave superconducting state in Sr₂RuO₄ is quite different from that in UPt₃. Since the present measurements have been performed under hydrodynamic condition with large damping, further ultrasonic ex-

- ¹Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature (London) **372**, 532 (1994).
- ²Y. Yoshida, A. Mukai, R. Settai, K. Miyake, Y. Inada, Y. Onuki, K. Betsuyaku, H. Harima, T. Matsuda, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. **68**, 3041 (1999).
- ³A.P. Mackenzie, S.R. Julian, A.J. Diver, G.J. McMullan, M.P. Ray, G.G. Lonzarich, Y. Maeno, S. Nishizaki, and T. Fujita, Phys. Rev. Lett. **76**, 3786 (1996).
- ⁴H. Matsui, M. Yamaguchi, Y. Yoshida, A. Mukai, R. Settai, Y. Onuki, H. Takei, and N. Toyota, J. Phys. Soc. Jpn. **67**, 3687 (1998).
- ⁵K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z.Q. Mao, Y. Mori, and Y. Maeno, Nature (London) **396**, 658 (1998).
- ⁶G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature (London) **394**, 558 (1998).
- ⁷M. Sigrist, Physica B **280**, 154 (2000).
- ⁸S. Nishizaki, Y. Maeno, and Z.Q. Mao, J. Phys. Soc. Jpn. **69**, 572 (2000).
- ⁹K. Ishida, H. Mukuda, Y. Kitaoka, Z.Q. Mao, Y. Mori, and Y. Maeno, Phys. Rev. Lett. 84, 5387 (2000).
- ¹⁰K. Miyake and O. Narikiyo, Phys. Rev. Lett. **83**, 1423 (1999).
- ¹¹Y. Hasegawa, K. Machida, and M. Ozaki, J. Phys. Soc. Jpn. 69,

PHYSICAL REVIEW B 63 060505(R)

periments with high frequency are encouraged to clarify the collective mode.

We would like to thank M. Sigrist for valuable discussions and suggestions. This work was supported by the Grant-in-Aid for Encouragement of Young Scientists from Japan Society for the Promotion of Science under Grant No. 11740182, and REIMEI Research Resources of Japan Atomic Energy Research Institute.

336 (2000).

- ¹²B.K. Sarma, J.B. Ketterson, S. Adenwalla, and Z. Zhao, in *Physical Acoustics*, edited by M. Levy (Academic Press, Boston, 1992), Vol. XX, p. 23
- ¹³M. Sigrist and K. Ueda, Rev. Mod. Phys. **63**, 239 (1991).
- ¹⁴A.A. Abrikosov and L.P. Gor'kov, Zh. Eksp. Teor. Fiz. **39**, 1781 (1960) [Sov. Phys. JETP **12**, 1243 (1961)].
- ¹⁵A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 80, 161 (1998).
- ¹⁶L.R. Testardi, Phys. Rev. B **12**, 3849 (1975).
- ¹⁷ H. Matsui, Y. Yoshida, A. Mukai, R. Settai, Y. Onuki, H. Takei, N. Kimura, H. Aoki, and N. Toyota, J. Phys. Soc. Jpn. **69**, 3769 (2000).
- ¹⁸J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. **108**, 1175 (1957).
- ¹⁹K. Miyake, J. Magn. Magn. Mater. 63&64, 411 (1987).
- ²⁰M. Sigrist (private communication and unpublished).
- ²¹P. Thalmeier, B. Wolf, D. Weber, G. Bruls, B. Lüthi, and A.A. Menovsky, Physica C **175**, 61 (1991).
- ²²L. Tewordt, Phys. Rev. Lett. 83, 1007 (1999).
- ²³V. Müller, D. Maurer, E.W. Scheidt, Ch. Roth, K. Lüders, E. Bucher, and H.E. Bömmel, Solid State Commun. **57**, 319 (1986).