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Additivity of vibrational density of states in two-dimensional mesoscopic systems
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We investigate the vibrational density of states~DOS! in two-dimensional~2D! composite systems with
nonhomogeneous geometry. The following three objects are selected as case studies:~i! the union between a
1D and a 2D crystallite;~ii ! the union of a mass fractal with a 2D crystallite; and~iii ! the union of a surface
fractal with a 2D crystallite. In each case, it is found that the DOS of the composite system is, within a very
good approximation, equal to the sum of the DOS of the components. This indicates the absence of a long-
range contribution to the DOS of 2D macroscopic systems. This quantity can therefore be directly evaluated
from the simple average of the DOS of its tessellated mesoscopic elements. The calculation of the vibrational
DOS of a macroscopic solid can then be reduced to a feasible computational operation.

DOI: 10.1103/PhysRevB.63.060301 PACS number~s!: 63.50.1x, 73.23.2b, 61.43.Hv
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The knowledge of the density of states~DOS! of trans-
verse phonons and quantum states is an essential tool to
derstand the properties of solids.1 For large periodic system
of dimensionalityd, the low-frequency DOS of the acoust
branches in the phonon spectra obeys the usual Debye
r(v);vd21. When translational invariance is lost, how
ever, the use of a simple geometrical description based
the global dimensiond is not sufficient to characterize th
vibrational behavior of the system. This is the case for d
ordered structures like amorphous and nonstoichiometric
ids, polymers, polyatomic glasses, and fractals. In particu
it is known that the substitution of the dimensionalityd by
the fractal dimension in the Debye relation for phonons
fractal lattices gives erroneous predictions.2–4 For systems in
which the so-called ‘‘spectral partition’’ is possible, it ha
been theoretically predicted that a weighted average of
DOS can be used to characterize low-frequency vibratio5

It is always possible to consider the macroscopic geo
etry of complex solids as simple unions of mesoscopic
regular cells. Being small, these objects are accessibl
numerical simulation. If a physical quantity is shown to
additive at the mesoscopic scale, one can then reduce
complexity of the macroscopic system to a mesoscopic le
Note also that, in disordered solids, many interesting p
nomena take place within the mesoscopic scale~e.g., the
diffusion of phonons!.

In the present communication, the aim is to compare
vibrational DOS of composite systems with the sum of
DOS of their isolated mesoscopic components. The resu
that the DOS adds in a simple manner over the entire ra
of frequencies. Herein, we consider mesoscopic syst
whose properties are those of irregular resonators, irreg
drums or irregular quantum dots. These systems may ex
anomalous localization and anomalous DOS behavior
have been theoretically investigated4–6 and observed in re
cent experiments.7

In order to compute the eigenfrequencies of transve
vibrations in a two-dimensional~2D! system, we solve the
following set of coupled differential equations:
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n
k~uj 1n2uj ! for j 51,2, . . . ,N, ~1!

wherem is the mass,N is the total number of particles,k is
the spring stiffness, and the summation includes all nea
neighbors n of particle j. The standardAnsatz, un, j
5uj exp(2ivnt), leads to

mvn
2un, j5(

n
k~un, j2un, j 1n!. ~2!

This is an eigenvalue equation that can only be solved
merically for an irregular spatial distribution of mass. Th
different systems considered here are composites wh
components may or may not be irregular in shape. Being
mesoscopic size, they contain between hundreds and t
sands of atoms. As a consequence, the numerical comp
tion of their eigenstates is accessible to modern numer
techniques.

The structures studied here have been selected in ord
test the hypothesis of DOS additivity for the case of comp
ite objects made with complex geometry. The first two stru
tures are artificial@see Figs. 1~a! and 1~b!#. The third struc-
ture @Fig. 1~c!# is the union of a square lattice and th
‘‘infinite cluster’’ obtained in gradient percolation.8 This is a
well-known model geometry for the diffusion front of a so
dering process. In each case, the total number of mode
identical since the number of particles is conserved thro
division into subsystems. Herein, we apply standard num
cal methods to compute the whole set of eigenstates of
three systems shown in Fig. 1.

As depicted in Fig. 1~a!, the ‘‘comb’’ structure consists of
a 2D square lattice crystallite linked to one-dimension
chains containing approximately the same total number
particles. In Fig. 2 we show the DOS for this mixed syste
as a function of the reduced frequencyv5v real(m/k)1/2.
Note that the maximum frequency in 2D is given byv real

2

58k/m. Also shown in Fig. 2 are the individual spect
obtained for the rectangular 2D system and the 1D cha
©2001 The American Physical Society01-1
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FIG. 1. The three composite systems under study:~a! the
‘‘comb’’ lattice is a combination of 1D chains linked to a 2D squa
lattice; ~b! a standard 2D lattice interacting with a Sierpinski t
angle; and~c! a square lattice terminated by the model geometry
a soldering. The external frontier is a fractal diffusion front.
06030
As expected, they are quite different; low frequency se
ments of both obeying the 1D and 2D Debye laws, resp
tively. The solid line in Fig. 2 represents the spectrum o
tained by adding the two individual spectra. One clea
observes that the spectrum of the composite is nearly ide
cal to the sum of the components spectra over the wh
frequency range.

The second artificial system under consideration is a
crystal linked mechanically to a mass fractal@see Fig. 1~b!#.
The vibrations in random or deterministic fractal lattices a
known asfractonsand are generally localized.2–4 In addition,
the low-frequency DOS for fractons is very different fro
the DOS of a regular lattice. The adequate exponent to
used in the Debye relation for fractons is called the spec
or fracton dimension whose value is often close to 4/3.4 Due
to the strong fluctuations observed in the differential DO
we choose to express the numerical results for the sys
described in Fig. 1~b! in terms of its integrated DOSI (v).
This quantity measures the number of states with freque
smaller thanv. As shown in Fig. 3, the integrated DOS o
the composite system is identical to the sum of the integra
DOS of the two noninteracting components.

The third structure under investigation is a geometri
paradigm often used to represent the stochastic proces
diffusive penetration of a single crystal into an empty m
dium @see Fig. 1~c!#. The frontier of the irregular zone ha
been previously established to approximate a diffusion fr
with fractal dimension 7/4.8 This system is then a surfac
fractal. The vibrations on surface fractals are calledfractinos.
For a given surface fractal, there exist localized and delo
ized fractinos.6 The differential DOS for both component
and for the composite system displayed in Fig. 1~c! are
shown in Fig. 4. The low-frequency spectrum for the squ
f

FIG. 2. Differential DOSr(v) against the reduced frequencyv
for the system shown in Fig. 1~a!. The numerical values for the
DOS are the number of states with reduced eigenfrequency betw
v2Dv and v1Dv with Dv50.075. The squares and triangle
correspond to the DOS of the 1D chains and the 2D square lat
respectively. Both spectra obey the corresponding 1D and 2D
bye laws at low frequencies. The circles represent the real spec
of the interacting comb and the solid line corresponds to the sum
the components spectra. They are almost identical over the e
frequency range.
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lattice obeys its corresponding Debye law. The spectrum
the irregular component is markedly different from that
the square lattice. Nevertheless, the additivity hypothesi
confirmed once again as shown in Fig. 4. In order to de
mine if the additivity of the DOS in this random system
generally valid, we performed additional simulations w
100 realizations of the composite geometry. Our results
dicate that this property is self-averaging, i.e., the aver
DOS of this structure does not depend on the special se
configurations utilized and does not present relevant fluc
tions from set to set.

Finally, nonstoichiometric lacunary systems of the ty
shown in Fig. 5 have also been investigated. In contrast w
the previous systems presented in Fig. 1, such materials
be considered homogeneous above a certain characte

FIG. 3. The integrated DOSI (v)5*0
vr(v8)dv8 against the

frequencyv for the composite system presented in Fig. 1~b!. The
squares correspond to the spectrum of the global system and
solid line to the sum of the spectra of the two parts.

FIG. 4. DOS for the system shown in Fig. 1~c!. The triangles
correspond to the spectrum of the irregular part and the squar
the spectrum of the square lattice. The circles correspond to
spectrum of the whole system and the solid line represents the
of the components spectra. The two spectra are identical ove
frequency ranges.
06030
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length j taken to be the average distance between defe
This length can be estimated asj'aC21/d, whereC is the
impurity ~or vacancy! concentration anda is the lattice spac-
ing. For example,j is of the order of tens of lattice spacin
for a value ofC'1%. Qualitatively, one can then consid
that a non-stoichiometric system is a pavement or juxtap
tion of cells of mesoscopic sizes with irregular geomet
The irregularity of the geometry arises from the compo
tional disorder itself.

The 2D nonstoichiometric solids studied here are gen
ated by randomly allocating vacancies over a square latt
Figure 5 shows a typical realization of the nonstoichiome
system generated for a concentration value ofC50.1.
Eigenfrequencies are computed for the composite system
for the four separate components. The additivity property
also observed in this case~see Fig. 6!. In order to provide a
critical evaluation for the additivity hypothesis, we compu
the more demanding quantity,R5r(v) total/(partsr(v)part,
wherer(v) total is the differential DOS of the interacting sys
tem and(partsr(v)part is the sum of the DOS of the compo
nents. The inset of Fig. 6 shows that, although the ratioR is
not strictly constant over the entire range of frequenciesv,
the value ofR'1 still represents a fairly good approxima
tion. The more pronounced discrepancy at low frequencie
due to the long wavelength states which are not presen
the DOS of the components. In addition, we have perform
simulations with 100 realizations of 40340 nonstoichiomet-
ric lattices generated for two different values of the vacan
concentration,C50.1 and 0.2. As expected, the results sh
that the sum of the separate spectra and the spectrum o
interacting ensemble are practically identical.

The additivity of the DOS in all composite systems stu
ied here can be explained in terms of an effective weakn
of the coupling among components. Although physica
linked to each other, these parts interact at their frontier o
The additivity result, however, remains somewhat surpris

the

to
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m
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FIG. 5. Typical realization of a nonstoichiometric lattice wi
10% of vacancies distributed randomly. The composite system
defined on a 40340 square lattice. Vacancies are represented
empty sites. The system is divided into four components which
separated by the solid lines.
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since mesoscopic tiles have a relatively large number
frontier sites. The additivity effect has a second cause:
eigenfrequencies in the different mesoscopic parts hav
few, if any, resonant states. In the cases presented her
components interact only through their frontier and are ou
resonance.

Another important contribution for additivity is the partia
localization of the vibrational states. If present, such an
fect obviously decreases the effective interaction betw

FIG. 6. DOS for the system shown in Fig. 5. The circles cor
spond to the spectrum of the whole system and the solid line
resents the sum of the components spectra. The inset show
dependence of the ratioR on the frequencyv. R is defined as the
ratio between the differential DOS of the interacting system and
sum of the DOS of the components.
06030
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components. This is the case for vibrations of mass or s
face fractals.4,7 Also, vibrations in 2D disordered systems a
always localized in the thermodynamic limit.9–11 The local-
ization of a state in the small scale structure of these solid
not affected by the occurrence of long wavelength mo
when the different components are connected. Only the
calization of the states which are at the boundary of the
objects will be significantly modified.

In summary, it has been shown that, within good appro
mation, the vibrational DOS of selected composite solids
equal to the sum of the calculated DOS of the different m
soscopic parts of the system. As these examples repre
extreme cases in terms of geometry, this conclusion sho
be generally valid. For low frequencies, this observation c
firms the recent theoretical prediction regarding spectral p
tition in infinite graphs5. This corresponds to the cases show
in Figs. 1~a! and 1~b!. The additive property observed in th
present study is not limited to low frequencies, but exten
over the entire frequency range. Moreover, it also applies
systems where the concept of spectral dimension is mean
less@e.g., Figs. 1~c! and 4#. These results illustrate that th
computational complexity of the DOS of a macroscopic so
can be dramatically reduced to the calculation of the DOS
mesoscopic systems. Finally, it should be recalled that,
though not exact, some correspondence should exist betw
the vibrational DOS and the electronic DOS in a single
bital tight-binding approximation. We are currently inves
gating if the additivity hypothesis also applies for the tigh
binding DOS of the same systems studied here as well as
the case of 3D nonstoichiometric structures.
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