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We investigate the vibrational density of stat€&0S) in two-dimensional(2D) composite systems with
nonhomogeneous geometry. The following three objects are selected as case Gjuttiesinion between a
1D and a 2D crystallite(ii) the union of a mass fractal with a 2D crystallite; aiid) the union of a surface
fractal with a 2D crystallite. In each case, it is found that the DOS of the composite system is, within a very
good approximation, equal to the sum of the DOS of the components. This indicates the absence of a long-
range contribution to the DOS of 2D macroscopic systems. This quantity can therefore be directly evaluated
from the simple average of the DOS of its tessellated mesoscopic elements. The calculation of the vibrational
DOS of a macroscopic solid can then be reduced to a feasible computational operation.
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The knowledge of the density of statd80S) of trans- 92U
verse phonons and quantum states is an essential tool to un- m—zj=z k(uj4,—u;) for j=1,2,... N, (1)
derstand the properties of solitifor large periodic systems ot v

of dimensionalityd, the low-frequency DOS of the acoustic \wherem is the massN is the total number of particles, is
branches in the phonon spectra obeys the usual Debye lafe spring stiffness, and the summation includes all nearest
p(@)~ "t When translational invariance is lost, how- neighbors » of particle j. The standardAnsatz uy

ever, the use of a simple geometrical description based oa u; exp(—iwgt), leads to

the global dimensiord is not sufficient to characterize the

vibrational behavior of the system. This is the case for dis- 2

ordered structures like amorphous and nonstoichiometric sol- MwpUn,j= Ey K(Un,j=Un,j+s)- 2

ids, polymers, polyatomic glasses, and fractals. In particular,

it is known that the substitution of the dimensionalifypy ~ This is an eigenvalue equation that can only be solved nu-
the fractal dimension in the Debye relation for phonons inmerically for an irregular spatial distribution of mass. The
fractal lattices gives erroneous predictidndFor systems in  different systems considered here are composites whose
which the so-called “spectral partition” is possible, it has components may or may not be irregular in shape. Being of
been theoretically predicted that a weighted average of thenesoscopic size, they contain between hundreds and thou-
DOS can be used to characterize low-frequency vibrafions.sands of atoms. As a consequence, the numerical computa-

It is always possible to consider the macroscopic geomtion of their eigenstates is accessible to modern numerical
etry of complex solids as simple unions of mesoscopic irtechniques.
regular cells. Being small, these objects are accessible to The structures studied here have been selected in order to
numerical simulation. If a physical quantity is shown to betest the hypothesis of DOS additivity for the case of compos-
additive at the mesoscopic scale, one can then reduce tli€ objects made with complex geometry. The first two struc-
complexity of the macroscopic system to a mesoscopic levefures are artificia[see Figs. (a) and Xb)]. The third struc-
Note also that, in disordered solids, many interesting pheture [Fig. 1(c)] is the union of a square lattice and the
nomena take place within the mesoscopic sdalg., the “infinite cluster” obtained in gradient percolatidhThis is a
diffusion of phonons well-known model geometry for the diffusion front of a sol-

In the present communication, the aim is to compare thélering process. In each case, the total number of modes is
vibrational DOS of composite systems with the sum of theidentical since the number of particles is conserved through
DOS of their isolated mesoscopic components. The result igivision into subsystems. Herein, we apply standard numeri-
that the DOS adds in a simple manner over the entire rangeal methods to compute the whole set of eigenstates of the
of frequencies. Herein, we consider mesoscopic system§iree systems shown in Fig. 1.
whose properties are those of irregular resonators, irregular As depicted in Fig. (), the “comb” structure consists of
drums or irregular quantum dots. These systems may exhib& 2D square lattice crystallite linked to one-dimensional
anomalous localization and anomalous DOS behavior thaghains containing approximately the same total number of
have been theoretically investigateBiand observed in re- particles. In Fig. 2 we show the DOS for this mixed system
cent experiments. as a function of the reduced frequeney= wea(M/K)Y2

In order to compute the eigenfrequencies of transvers&lote that the maximum frequency in 2D is given b,
vibrations in a two-dimensiongPD) system, we solve the =8k/m. Also shown in Fig. 2 are the individual spectra
following set of coupled differential equations: obtained for the rectangular 2D system and the 1D chains.

0163-1829/2001/68)/0603014)/$15.00 63 060301-1 ©2001 The American Physical Society



RAPID COMMUNICATIONS

B. SAPOVAL, S. B. SANTRA, AND J. S. ANDRADE, Jr. PHYSICAL REVIEW B3 060301R)

400 " T T

p(w)

300

200

100

FIG. 2. Differential DOSp(w) against the reduced frequeney
for the system shown in Fig.(d). The numerical values for the
DOS are the number of states with reduced eigenfrequency between
w—Aw and w+Aw with Aw=0.075. The squares and triangles
correspond to the DOS of the 1D chains and the 2D square lattice,
respectively. Both spectra obey the corresponding 1D and 2D De-
bye laws at low frequencies. The circles represent the real spectrum
of the interacting comb and the solid line corresponds to the sum of
the components spectra. They are almost identical over the entire
frequency range.

As expected, they are quite different; low frequency seg-
ments of both obeying the 1D and 2D Debye laws, respec-
tively. The solid line in Fig. 2 represents the spectrum ob-
tained by adding the two individual spectra. One clearly
observes that the spectrum of the composite is nearly identi-
cal to the sum of the components spectra over the whole
frequency range.

The second artificial system under consideration is a 2D
crystal linked mechanically to a mass fradisée Fig. 1b)].

The vibrations in random or deterministic fractal lattices are
known asfractonsand are generally localized? In addition,

the low-frequency DOS for fractons is very different from
the DOS of a regular lattice. The adequate exponent to be
used in the Debye relation for fractons is called the spectral
or fracton dimension whose value is often close to*4Rie

to the strong fluctuations observed in the differential DOS,
we choose to express the numerical results for the system
described in Fig. (b) in terms of its integrated DOY w).

This quantity measures the number of states with frequency
smaller thanw. As shown in Fig. 3, the integrated DOS of
the composite system is identical to the sum of the integrated
DOS of the two noninteracting components.

The third structure under investigation is a geometrical
paradigm often used to represent the stochastic process of
diffusive penetration of a single crystal into an empty me-
dium [see Fig. 1c)]. The frontier of the irregular zone has
(C) been previously established to approximate a diffusion front

with fractal dimension 7/4. This system is then a surface
. fractal. The vibrations on surface fractals are caftedtinos
FIG. 1. The three composite systems under study: the For a given surface fractal, there exist localized and delocal-

“comb” lattice is a combination of 1D chains linked to a 2D square . . . .
lattice; (b) a standard 2D lattice interacting with a Sierpinski tri- ized fractinos’ The differential DOS for both components

angle; andc) a square lattice terminated by the model geometry ofand for_ th? composite system displayed in Figc) lare
a soldering. The external frontier is a fractal diffusion front. shown in Fig. 4. The low-frequency spectrum for the square
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FIG. 3. The integrated DO$(w)= [5p(w')dw’ against the
frequencya for the composite system presented in Figh)1The FIG. 5. Typical realization of a nonstoichiometric lattice with

sqﬁgrlgs (iorzﬁspond t(; tt;: N specttrumf ?; tr:e glob?l system and tr1‘?)% of vacancies distributed randomly. The composite system is
solid line to the sum of the spectra ot the two parts. defined on a 4R 40 square lattice. Vacancies are represented by

empty sites. The system is divided into four components which are
lattice obeys its corresponding Debye law. The spectrum o$eparated by the solid lines.

the irregular component is markedly different from that of )

the square lattice. Nevertheless, the additivity hypothesis ingth § taken to be the average distance between defects.
confirmed once again as shown in Fig. 4. In order to deterJhis length can be estimated &s-aC™ ", whereC is the
mine if the additivity of the DOS in this random system is impurity (or vacancy concentration and is the lattice spac-
generally valid, we performed additional simulations with ing. For example¢ is of the order of tens of lattice spacing
100 realizations of the composite geometry. Our results infor a value ofC~1%. Qualitatively, one can then consider
dicate that this property is self-averaging, i.e., the averagéhat a non-stoichiometric system is a pavement or juxtaposi-
DOS of this structure does not depend on the special set ¢fon of cells of mesoscopic sizes with irregular geometry.
configurations utilized and does not present relevant fluctualhe irregularity of the geometry arises from the composi-
tions from set to set. tional disorder itself.

Fina”y, nonstoichiometric |acunary systems of the type The 2D nonstoichiometric solids studied here are gener-
shown in Fig. 5 have also been investigated. In contrast witfated by randomly allocating vacancies over a square lattice.
the previous systems presented in Fig. 1, such materials Cfﬁgure 5 shows a typlCﬁ' realization of the nonstoichiometric
be considered homogeneous above a certain characterisG¥stem generated for a concentration value @#0.1.
Eigenfrequencies are computed for the composite system and
for the four separate components. The additivity property is
also observed in this cageee Fig. 6. In order to provide a
critical evaluation for the additivity hypothesis, we compute
the more demanding quantitR= p(®)otal/ 2 parts? (@) part»
wherep( ) IS the differential DOS of the interacting sys-
tem and= 510 () part is the sum of the DOS of the compo-
nents. The inset of Fig. 6 shows that, although the r&tis
not strictly constant over the entire range of frequenaies
the value ofR~1 still represents a fairly good approxima-
tion. The more pronounced discrepancy at low frequencies is
due to the long wavelength states which are not present in
the DOS of the components. In addition, we have performed
simulations with 100 realizations of 4040 nonstoichiomet-
ric lattices generated for two different values of the vacancy
concentrationC=0.1 and 0.2. As expected, the results show
that the sum of the separate spectra and the spectrum of the

FIG. 4. DOS for the system shown in Fig(cL The triangles  interacting ensemble are practically identical.
correspond to the spectrum of the irregular part and the squares to The additivity of the DOS in all composite systems stud-
the spectrum of the square lattice. The circles correspond to thid here can be explained in terms of an effective weakness
spectrum of the whole system and the solid line represents the sugf the coupling among components. Although physically
of the components spectra. The two spectra are identical over alinked to each other, these parts interact at their frontier only.
frequency ranges. The additivity result, however, remains somewhat surprising
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200 components. This is the case for vibrations of mass or sur-
face fractal$:’ Also, vibrations in 2D disordered systems are
always localized in the thermodynamic lindit!! The local-
ization of a state in the small scale structure of these solids is
not affected by the occurrence of long wavelength modes
when the different components are connected. Only the lo-
calization of the states which are at the boundary of the two
] objects will be significantly modified.

In summary, it has been shown that, within good approxi-
mation, the vibrational DOS of selected composite solids are
equal to the sum of the calculated DOS of the different me-
soscopic parts of the system. As these examples represent
extreme cases in terms of geometry, this conclusion should
be generally valid. For low frequencies, this observation con-
‘ w ‘ w - firms the recent theoretical prediction regarding spectral par-
0.0 1.0 2.0 3.0 tition in infinite graphs. This corresponds to the cases shown

® in Figs. 1@ and Xb). The additive property observed in the

FIG. 6. DOS for the system shown in Fig. 5. The circles corre-Présent study is not limited to low frequencies, but extends
spond to the spectrum of the whole system and the solid line repoVer the entire frequency range. Moreover, it also applies to
resents the sum of the components spectra. The inset shows tB¥Stems where the concept of spectral dimension is meaning-
dependence of the rati@ on the frequency. R is defined as the less[e.g., Figs. Ic) and 4. These results illustrate that the
ratio between the differential DOS of the interacting system and th€omputational complexity of the DOS of a macroscopic solid
sum of the DOS of the components. can be dramatically reduced to the calculation of the DOS of

) o . mesoscopic systems. Finally, it should be recalled that, al-
since mesoscopic tiles have a relatively large number of,q,gh not exact, some correspondence should exist between
frontier sites. The additivity effect has a second cause: th@,e viprational DOS and the electronic DOS in a single or-
eigenfrequencies in the different mesoscopic parts have g tight-binding approximation. We are currently investi-
few, if any, resonant states. In the cases presented here tEﬁting if the additivity hypothesis also applies for the tight-
components interact only through their frontier and are out o inding DOS of the same systems studied here as well as for

resonance. o o _ the case of 3D nonstoichiometric structures.
Another important contribution for additivity is the partial

localization of the vibrational states. If present, such an ef- We wish to acknowledge useful comments from M. De-
fect obviously decreases the effective interaction betweejmek and the Brazilian agency CNPq for financial support.
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