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Methods for studying droplets in models with quenched disorder are critically examined. Low-energy exci-
tations in two-dimensional models are investigated by finding minimal energy interior excitations and by
computing the effect of bulk perturbations. The numerical data support the assumptions of compact droplets
and a single exponent for droplet energy scaling. Analytic calculations show how strong corrections to power
laws can result when samples and droplets are averaged over. Such corrections can explain apparent discrep-
ancies in several previous numerical results for spin glasses.
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Magnets and superconductors are examples of physicalerturbations are also calculated. The numerical results for
systems where quenched disorder often plays a dominauiroplet energies and geometrical characteristics show that
role. Such systems can exhibit hysteresis effects and loniggarithmic or small power-law corrections are quite strong.
relaxation times that are the manifestation of the large energyhese corrections can be understood in detail by arguments
barriers created by the quenched disorder. One scenario thaithin the droplet picture. Droplets that are not induced by
makes predictions for the equilibrium and nonequilibriumboundary conditions are only bounded above by the system
behavior of disorder dominated phases is the droplet or scasizeL and below by a discretization scale, so thitscales
ing picture! Predictions in this scenario follow from scaling between must be considered when computing aver&igs
assumptions for the energetic and geometric properties dfctions to scaling for droplets of fixed scilsuch as~* or
excitations. For simple topological reasons, excitations cah ~* corrections(e.g., from lattice discretengssr unknown
be defined as regions where the configuration is uniformhjrrelevant operators, might also be considered. However, the
related by a symmetry to a global ground stéteg., spin- scale averaging corrections are apparently dominant for
flipped domaing.In the droplet picture, the low-lying exci- some quantities. Such corrections lead to an effective energy
tations of sizel are connected and compact: they have vol-exponent distinct fron®, as boundary condition induced do-
ume~19, with dimensiond; equal to the system dimension main walls do not have such corrections. To remove scale
d, and the surface to volume ratio decrease$ imgreases. averaging corrections, one cgnoup the droplets by scale |
Droplet boundaries are fractal, with surface dimensin and study the geometry and energy as a function(of I/L
<d. The central ansatz is that the probability distributionif one is interested in large droplétsasL —o. With this
p(A,l) for the energyA of a droplet of sizel in a given analysis, the numerical results provide strong evidence that
volume~19 has a characteristic scatel ?. This distribution  the droplets are “compact,” with fractal domain walls, and
is argued to have finite weight At=0. The two exponentd  that there is a single energy exponént
and dg can be used, for example, to predict many of the One model that | study here is for a two-dimensional elas-
properties of a spin glagsThis scenario is consistent with tic medium, with scalar displacement fieldx), interacting
numeric results for excitations created by modifying bound-with quenched periodic disorder. The continuum energy
ary conditions® However, other work™® has suggested that functional isH[u(x)]= [d?x[Vu(x)]?+ V(u(x),x), where
there may be more than one important energy scaling expd/ has short-range correlations in its second argument and is
nent and more complicated geometries for excitations. Theeriodic in its first argumentV(u(x)+1,x)=V(u(x),X).
proposed distinct exponents separately desdiibgoundary  This model has been used for vortex lattices in superconduct-
induced domain-wall excitations aitil) excitations induced ors, incommensurate charge density waves, and crystal
by internal constraints or external fields. It has also beemgrowth on a disordered substr&te The continuum model
suggested that there is distinct scaling for large droplets cresan be discretized on a scaewhere the disorder and elastic
ated by modifying the quenched disorddt.is important to  energies balanc€.As an effective degree of freeedainis
understand these claims, as they suggest that the standgrithined to a preferred configuratioup to periodic shifts the
droplet picture is, at best, incomplete. displacements; are of the formn;+ 3;, for integern; and

To provide perspective, it is useful to investigate in detailfixed {8;}. Elastic interactions tend to minimize nearest-
systems which lend themselves to precise study, where sonmeighbor differences im;, with excitations of the medium
analytic results are known and large systems can be simudpeing regions displaced relative to the ground state. Since the
lated efficiently. Results are presented here for a twow; are discretized, domain walls separate regions relatively
dimensional(2D) elastic medium and a 2D lIsing spin glass. shifted by unit amounts. Numerical work for zero tempera-
Single interior droplets, which include a specified centralture (T=0) has determined properties of the ground state
point, are computed for the elastic medium. In contrast withand the scaling of boundary induced domain-wall
work on interior droplets in 2D spin glassts, fast, exact energies*?1413 Finite-temperature simulatiors, both
algorithm is used, allowing for precise checks of scaling. TheMonte Carlo and combinatorial, have shown that The0
responses of the elastic medium and the spin glass to bulhase is stable at finif€. This model is thus a useful proto-
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flecting that the minimal energy droplet is chosen from all
length scales from 1 th. The effective energy exponent is
then (for 6<0)

_din(A,) 0
S din(L) 21— (b

eff

@

Applying Eqg. (1) to the 2D spin glass, taking’=2 andL
=16, gives an effective exponef™= —0.45, apparently
quite different from the domain-wall valué= —0.28 (Ref.

FIG. 1. (a) Diagram of the geometry of a sample droplet in the 2) and consistent with the alternate energy exponent pro-
2D elastic medium. The droplet is the region which can be disposed in earlier numerical wofkwhich assumes a simple
placed with minimal energy cost and contains the sample centgpower-law fit given by droplets of size. The effective ex-

(do?). The radiiRy and R, are defined in the textb) Droplets
induced by a bulk perturbatiore & 16) in a 64 spin-glass sample.

ponent converges té quite slowly withL (and is relatively
insensitive tob’), as @ is near zero.

The fl”ed areas haVe SpinS f|Ipped relative to the Unperturbed One case Wherezo for doma|n Wa”s Created by bound_

ground state €#sf). For the results shown in Fig. 4¢

~0.35,1.3 and droplets rarely intersect.

ary conditions is the 2D elastic medium. Large domain walls
can be created by external strains. By statistical tilt invari-
ance of the disordef. the change in the sample averaged

type for models with finitel transitions, such as the 3D spin energy can be found by computing the elastic energy only, as

glasst®

the change in the sample averaged pinning energy is zero.

Another model treated here is the 2D Ising spin glassPisplacing one end of a sample bju=1 to induce one

with Hamiltonian = — X 4;,J;;S;s; , With spinss;=*1 on a
triangular lattice and Gaussian distributégl. The ground
states{s’} for samples in this model were found by a com-

binatorial method for a standard graph representatioh.

For the elastic medium, minimal energy domain walls

domain wall gives an elastic energy density.~2 over the
volumeL?, so that the total domain-wall energy scales as a
constant =0.) This result is consistent with previous nu-
merical simulations of boundary induced domain walls.

However, the meaimterior droplet energ)Ko(L) can be fit

about the center of a sample were studied on a square latti@/er @ decade with-0.15< §< —0.23, to within a few per-
using a polynomial time algoritht that calculated the en- cent for smallelL. Arguments similar to those fa##0 can

ergy A, and the droplet boundary. One method to character
ize the compactness of droplets is to com@R¢e the radius

of the smallest circle that encloses the droplet, iRth the
radius of the largest circle contained by the boundary verti
ces. Droplets can be studied in spin glasses by finding th
ground state and then recomputing the ground $&ijewith
—eL~9ss . This bulk per-
turbation can introduce excitations on all scales. Sample e)i:,l

modified couplingsl;;—Jj;

citations are depicted in Fig. 1.

The droplet energies are of great interest, as these ar
believed to determine the static correlation functions at finite
temperature and the relaxation to equilibrium. Consider th
problem of finding the minimal energy droplet around the
origin in a system of sizé.* When <0, this is an effective

be applied to explain this. There are U/g)/In(b) indepen-
dent scales to choose from, each with identical droplet en-
ergy distributions §=0). In general, choosing the minimum
value fromn identically distributed random numbers with

gontinuous and finite probability at O value gives an expected
value ~n~!. The inverse of the minimal droplet energy

[Ao(L)] tis therefore linear in Iri(). This result caralsobe
derived using elasticity theory. The displacement at the ori-
jin of a region of sizea costs an elastic energy that scales as
~[In(L/a)]"*. By tilt symmetry? the pinning can be aver-
aeged over, so thah,(L)[In(L/a)]"* for interior droplets
constrained to contain the origin. The numerical results are

%uite consistent with these expectations, as shown by the two

parameter fit displayed in Fig. [2n addition, the computed
probability of generating a droplet of sizés consistent with

method to generate large droplets, as larger droplets have yistribution uniform in In) (Ref. 18].

lower mean energies. Assume that there is a fagtahich

Similar corrections are important for the magnetization

gives a separation of length scales: droplets differing in sizen(n) of a spin glass in response to an external fiefdFor
by b are independent. One independent droplet excitatioghe casef+0 andh<O(L? %%, mis found by summing
could be excited at each scale, so that sums over all scalgver scales the product of the probabilit}’?~ ¢ of generat-

must be performedor similar sums, see Refs. 9, 19, and 6
At each length scals, s=1,2, ... ,log(L), the distribution
for the energyA(b®) has characteristic scale®® and has
finite weight b5 at A=0.' The total density of states
p(A,) for A,<L? is then a sum oves, giving p(A,)
~L7%1—(b'L)", for +0, whereb’>0 is set byb and

ing a droplet, its expected contributid#’L ~¢ to the mag-
netization, and the number of droplets/[)¢ at scald. This
givesmeh|(byL)~?—1|, with b/,>0 a constant, to be com-
pared with the uncorrected singular pieoechL~? (for nu-
merics, see Ref.)5 The size of the corrections are quite
similar to those foré.

the lattice and boundary conditions, which affect the lower The measurement of geometrical quantities, such as
and upper ends of the sum. The expected minimum value fdsoundary length and droplet area, can also be strongly influ-
A, scales as~L?1—(b’L)% 1, the subdominant term re- enced by scale averaging correctidginsne averages over all
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FIG. 2. Plot of the inverse of the mean droplet enefgyvs FIG. 4. Plot of the local exponent{™ (from the discrete deriva-

system sizd_ in the 2D elastic medium, averaged over at leadt 10 tive betweenL=8,16 . . .,256) for the link overlap, in the 2D
samples for each. 1o error bars are shown. The line indicates the spin glass as a function of system size. Results are shown for dis-
fit Ao(L)=[0.363+0.263In()]* for 512=L=>32, with x’=1.3 tinct e and boundary condition@pen, with boundary spins fixed
for 3 DOF’s under perturbation, and link periodicd’he expected limit at large
is u;=1.18(3) (shaded regioin.

length scales froml to L. When the sample averaged area
A(L) of interior droplets in the 2D elastic medium is com- rate out the scalesind plot the droplet areA(Ro,L) as a
puted as a function of. and the local exponenof@ﬁ (t_)lnned function of Ry. Changing the order of the averages

— _ . ' gives local exponents that are much better fit by a constant.
=d[In(A(L))]/d[In(L)] is computed, the local dimension is

~RY Wi i
less than two, which might suggest fractal droplets. This |0_For L>32 andRy>8, A(Ro)~R,', with bulk droplet di

cal exponent slowly changes with, though (Fig. 3) The mensiond;=2.01(2) (Fig. 3) A similar plot for the perim-
local exponent fom is eter confirm& thatd,=1.251), with the surface to volume

ratio vanishing a9 for large droplets. Droplet compact-
=2—[In(L/a’")]"*+O(L"2), (2)  ness can also be confirmed by plotting the ratieRo /R,
binned according t&y ; it is found that the distribution df
wherea’' depends on the boundary and lattice cutoffs. Aconverges, with meank(Rp,L))=2.855), when L/2
useful procedure to reduce the correctionsiiﬁ istosepa- >Ry>32.
Corrections to geometric and energetic quantities are also
21— T I important when computing link overlaps, such as those
found in comparing the unperturbelj ground state{s’},

eff
f

2 - with the e-perturbed state. The link overlayp is the fraction
of link valuess;s; on bonds(ij) which are unchanged. By
Lok summing the contributions over all scalgsote the small
o e droplets in Fig. 13)], it can be shown that the local exponent
‘%« “}‘ i § ] for the fraction 1-q, of changed bonds behaves as
1sL|AAL=128 ;o .
e I B i ,
I V:VII;i;itesize,fromA_(L) //’i’ ] eff _ _ diin(1—ay] . ¢ @)
1.7 /,/5" . o din(L) K (cLydm—1'
) —— ¥ S L whereu,= 0+2(d—ds) andc,c’ are constants characteriz-
3 0 20 50 100 200 500 ing the upper and lower cutoffs. The computed local expo-

Ry L nent for the 2D spin glass is shown in Fig. Af(f is rela-

FIG. 3. Estimates of the droplet fractal dimension in a 2D elastictively insensitive toe, at least for 0.35 e<1.3.) Only for

medium (1o statistical uncertainties shownFixing L, binning ~ L>100 doesyuf" approach the largé limit of x~1.18
droplets by linear siz&g, and computing the discrete logarithmic (Using the values)= —0.28 andds=1.27) Similar results
derivative to estimatel[In(A)/d[In(Rg)] gives the droplet dimen- are found for the 2D elastic mediuthiThe exponeni for
siond¢™(Ro) values connected by the solid lines. From this methodspin overlapsy=L~93s’sf, with 1—gq~L " *, has smaller
d¢=2.01(2). Averaging droplet are& over samples and comput- corrections of this form and may well be dominated by cor-
ing the discrete logarithmic derivative to estimafén(A))/d[In(L)]  rections to scaling from unknown operators or inverse
gives the finite size estimat"(L). The dashed line shows a fit lengths. Numeric§ show thatx converges much more
using Eq.(2) with a’=1.7(3), with x>=3.5 for four degrees of quickly thany, in the 2D spin glass. The measuremenp@f
freedom. (relative to 1) has been used by Palassini and Youny
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conclude that a second energy exponéhtaffects the re-
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droplet energyKo(L) are satisfactorily explained, fok?

sponse to bulk perturbations in the 3D spin glass. In three-1(? systems, by averaging simple power laws over scales
dimensions, the scale averaging corrections decrease magetween 1 and.. The link overlap, which inherently aver-
quickly with L, asd— u;~ 1.3 compared with the 2D correc- ages over scales, is strongly affected by finite-size correc-
tion exponend— u,~0.82, but the system sizes that can betions for small¢ andd—ds, with effective exponent correc-
simulated are much smaller. It may be that corrections due ttons greater than 0.1 fdr<<30 in the 2D spin glass. It has
irrelevant variables or possiblel1kffects are dominant, but been suggested that, for topological reasons, distiretpo-

scale averaging corrections cleacigntributeto errors iny, .
A correction ofdu;~ —0.2 forL~8, from similarc andc’,
would invalidate the conclusions of Ref. 7.

nents exist only ird=3.° The numerics in this paper are for
d=2, but they and the general analysis suggest that large
finite-size effects strongly affect results in three dimensions.

In summary, analysis of numerical data provides a precisd 0 reduce these types of corrections, data can be binned over
confirmation of the droplet picture in the bulk of a sample,droplet sizel (or overl/L) at fixed system sizé, checking
both for the scaling of the energies and for the geometricalo” convergence by then increasing

structure of droplets. In comparing the numerical results with

| would like to thank David Huse for bringing to my

the droplet picture, care must be taken to understand whergtention some recent work on droplets, Olivier Martin for a
strong corrections might arise. The corrections arising fromstimulating discussion, and Daniel Fisher for discussions.
averaging over multiple scales can be predicted in some défhe LEDA library’* was most useful in the study of the

tail and apply to spin glasses and other models witeig
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