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Energetics and geometry of excitations in random systems
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Methods for studying droplets in models with quenched disorder are critically examined. Low-energy exci-
tations in two-dimensional models are investigated by finding minimal energy interior excitations and by
computing the effect of bulk perturbations. The numerical data support the assumptions of compact droplets
and a single exponent for droplet energy scaling. Analytic calculations show how strong corrections to power
laws can result when samples and droplets are averaged over. Such corrections can explain apparent discrep-
ancies in several previous numerical results for spin glasses.
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Magnets and superconductors are examples of phys
systems where quenched disorder often plays a domi
role. Such systems can exhibit hysteresis effects and
relaxation times that are the manifestation of the large ene
barriers created by the quenched disorder. One scenario
makes predictions for the equilibrium and nonequilibriu
behavior of disorder dominated phases is the droplet or s
ing picture.1 Predictions in this scenario follow from scalin
assumptions for the energetic and geometric propertie
excitations. For simple topological reasons, excitations
be defined as regions where the configuration is uniform
related by a symmetry to a global ground state~e.g., spin-
flipped domains.! In the droplet picture, the low-lying exci
tations of sizel are connected and compact: they have v
ume; l df , with dimensiondf equal to the system dimensio
d, and the surface to volume ratio decreases asl increases.
Droplet boundaries are fractal, with surface dimensionds
,d. The central ansatz is that the probability distributi
r(D,l ) for the energyD of a droplet of sizel in a given
volume; l d has a characteristic scale; l u. This distribution
is argued to have finite weight atD50. The two exponentsu
and ds can be used, for example, to predict many of t
properties of a spin glass.1 This scenario is consistent wit
numeric results for excitations created by modifying boun
ary conditions.2,3 However, other work4–6 has suggested tha
there may be more than one important energy scaling ex
nent and more complicated geometries for excitations.
proposed distinct exponents separately describe~i! boundary
induced domain-wall excitations and~ii ! excitations induced
by internal constraints or external fields. It has also be
suggested that there is distinct scaling for large droplets
ated by modifying the quenched disorder.7 It is important to
understand these claims, as they suggest that the stan
droplet picture is, at best, incomplete.

To provide perspective, it is useful to investigate in det
systems which lend themselves to precise study, where s
analytic results are known and large systems can be s
lated efficiently. Results are presented here for a tw
dimensional~2D! elastic medium and a 2D Ising spin glas
Single interior droplets, which include a specified cent
point, are computed for the elastic medium. In contrast w
work on interior droplets in 2D spin glasses,4 a fast, exact
algorithm is used, allowing for precise checks of scaling. T
responses of the elastic medium and the spin glass to
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perturbations are also calculated. The numerical results
droplet energies and geometrical characteristics show
logarithmic or small power-law corrections are quite stron
These corrections can be understood in detail by argum
within the droplet picture. Droplets that are not induced
boundary conditions are only bounded above by the sys
sizeL and below by a discretization scale, so thatall scales
between must be considered when computing averages. Cor-
rections to scaling for droplets of fixed scalel, such asl 21 or
L21 corrections~e.g., from lattice discreteness! or unknown
irrelevant operators, might also be considered. However,
scale averaging corrections are apparently dominant
some quantities. Such corrections lead to an effective ene
exponent distinct fromu, as boundary condition induced do
main walls do not have such corrections. To remove sc
averaging corrections, one cangroup the droplets by scale
and study the geometry and energy as a function ofl ~or l /L
if one is interested in large droplets6!, as L→`. With this
analysis, the numerical results provide strong evidence
the droplets are ‘‘compact,’’ with fractal domain walls, an
that there is a single energy exponentu.

One model that I study here is for a two-dimensional el
tic medium, with scalar displacement fieldu(x), interacting
with quenched periodic disorder. The continuum ene
functional isH@u(x)#5*d2x @¹u(x)#21V(u(x),x), where
V has short-range correlations in its second argument an
periodic in its first argument,V(u(x)11,x)5V(u(x),x).
This model has been used for vortex lattices in supercond
ors, incommensurate charge density waves, and cry
growth on a disordered substrate.8,9 The continuum model
can be discretized on a scalea, where the disorder and elast
energies balance.10 As an effective degree of freeedomi is
pinned to a preferred configuration~up to periodic shifts!, the
displacementsui are of the formni1b i , for integerni and
fixed $b i%. Elastic interactions tend to minimize neares
neighbor differences inui , with excitations of the medium
being regions displaced relative to the ground state. Since
ui are discretized, domain walls separate regions relativ
shifted by unit amounts. Numerical work for zero tempe
ture (T50) has determined properties of the ground st
and the scaling of boundary induced domain-w
energies.11,12,14,13 Finite-temperature simulations,15 both
Monte Carlo and combinatorial, have shown that theT50
phase is stable at finiteT. This model is thus a useful proto
©2001 The American Physical Society02-1
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type for models with finiteT transitions, such as the 3D sp
glass.16

Another model treated here is the 2D Ising spin gla
with HamiltonianH52(^ i j &Ji j sisj , with spinssi561 on a
triangular lattice and Gaussian distributedJi j . The ground
states$si

0% for samples in this model were found by a com
binatorial method for a standard graph representation.12,17

For the elastic medium, minimal energy domain wa
about the center of a sample were studied on a square la
using a polynomial time algorithm18 that calculated the en
ergyDo and the droplet boundary. One method to charac
ize the compactness of droplets is to compareRO , the radius
of the smallest circle that encloses the droplet, withRI , the
radius of the largest circle contained by the boundary ve
ces. Droplets can be studied in spin glasses by finding
ground state and then recomputing the ground state$si

e% with
modified couplingsJi j →Ji j 2eL2dsi

0sj
0 .7,19 This bulk per-

turbation can introduce excitations on all scales. Sample
citations are depicted in Fig. 1.

The droplet energies are of great interest, as these
believed to determine the static correlation functions at fin
temperature and the relaxation to equilibrium. Consider
problem of finding the minimal energy droplet around t
origin in a system of sizeL.4 Whenu,0, this is an effective
method to generate large droplets, as larger droplets h
lower mean energies. Assume that there is a factorb which
gives a separation of length scales: droplets differing in s
by b are independent. One independent droplet excita
could be excited at each scale, so that sums over all sc
must be performed~for similar sums, see Refs. 9, 19, and 6!.
At each length scales, s51,2, . . . , logb(L), the distribution
for the energyD(bs) has characteristic scalebsu and has
finite weight b2su at D50.1 The total density of state
r(Do) for Do,Lu is then a sum overs, giving r(Do)
;L2uu12(b8L)uu, for uÞ0, whereb8.0 is set byb and
the lattice and boundary conditions, which affect the low
and upper ends of the sum. The expected minimum value
Do scales as;Luu12(b8L)uu21, the subdominant term re

FIG. 1. ~a! Diagram of the geometry of a sample droplet in t
2D elastic medium. The droplet is the region which can be d
placed with minimal energy cost and contains the sample ce
~dot!. The radii RO and RI are defined in the text.~b! Droplets
induced by a bulk perturbation (e516) in a 642 spin-glass sample
The filled areas have spins flipped relative to the unpertur
ground state (si

oÞsi
e). For the results shown in Fig. 4,e

'0.35,1.3 and droplets rarely intersect.
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flecting that the minimal energy droplet is chosen from
length scales from 1 toL. The effective energy exponent i
then ~for u,0)

ueff5
d ln~D̄o!

d ln~L !
5

u

12~b8L !u
. ~1!

Applying Eq. ~1! to the 2D spin glass, takingb852 andL
516, gives an effective exponentueff520.45, apparently
quite different from the domain-wall valueu520.28 ~Ref.
2! and consistent with the alternate energy exponent p
posed in earlier numerical work,4 which assumes a simpl
power-law fit given by droplets of sizeL. The effective ex-
ponent converges tou quite slowly withL ~and is relatively
insensitive tob8), asu is near zero.

One case whereu50 for domain walls created by bound
ary conditions is the 2D elastic medium. Large domain wa
can be created by external strains. By statistical tilt inva
ance of the disorder,20 the change in the sample averag
energy can be found by computing the elastic energy only
the change in the sample averaged pinning energy is z
Displacing one end of a sample bydu51 to induce one
domain wall gives an elastic energy density;L22 over the
volumeL2, so that the total domain-wall energy scales a
constant (u50.) This result is consistent with previous nu
merical simulations of boundary induced domain walls11

However, the meaninterior droplet energyD̄o(L) can be fit
over a decade with20.15,u,20.23, to within a few per-
cent for smallerL. Arguments similar to those foruÞ0 can
be applied to explain this. There are ln(L/a)/ln(b) indepen-
dent scales to choose from, each with identical droplet
ergy distributions (u50). In general, choosing the minimum
value from n identically distributed random numbers wit
continuous and finite probability at 0 value gives an expec
value ;n21. The inverse of the minimal droplet energ

@D̄o(L)#21 is therefore linear in ln(L). This result canalsobe
derived using elasticity theory. The displacement at the
gin of a region of sizea costs an elastic energy that scales
;@ ln(L/a)#21. By tilt symmetry,9 the pinning can be aver
aged over, so thatD̄o(L)}@ ln(L/a)#21 for interior droplets
constrained to contain the origin. The numerical results
quite consistent with these expectations, as shown by the
parameter fit displayed in Fig. 2@in addition, the computed
probability of generating a droplet of sizel is consistent with
a distribution uniform in ln(l) ~Ref. 18!#.

Similar corrections are important for the magnetizati
m(h) of a spin glass in response to an external fieldh.1 For
the caseuÞ0 andh,O(Lu2d/2), m is found by summing
over scales the product of the probabilityhld/22u of generat-
ing a droplet, its expected contributionl d/2L2d to the mag-
netization, and the number of droplets (L/ l )d at scalel. This
givesm}hu(bh8L)2u21u, with bh8.0 a constant, to be com
pared with the uncorrected singular piecem}hL2u ~for nu-
merics, see Ref. 5!. The size of the corrections are qui
similar to those foru.

The measurement of geometrical quantities, such
boundary length and droplet area, can also be strongly in
enced by scale averaging correctionsif one averages over al
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length scales from1 to L. When the sample averaged ar

A(L) of interior droplets in the 2D elastic medium is com
puted as a function ofL and the local exponentdf̄

eff

5d@ ln„A(L)…#/d@ ln(L)# is computed, the local dimension
less than two, which might suggest fractal droplets. This
cal exponent slowly changes withL, though ~Fig. 3.! The
local exponent forA(L) is

df̄
eff

522@ ln~L/a8!#211O~L22!, ~2!

where a8 depends on the boundary and lattice cutoffs.
useful procedure to reduce the corrections todf

eff is to sepa-

FIG. 2. Plot of the inverse of the mean droplet energyD̄o vs
system sizeL in the 2D elastic medium, averaged over at least 14

samples for eachL. 1s error bars are shown. The line indicates t
fit Do(L)5@0.36310.263 ln(L)#21 for 512>L>32, with x251.3
for 3 DOF’s

FIG. 3. Estimates of the droplet fractal dimension in a 2D ela
medium (1s statistical uncertainties shown.! Fixing L, binning
droplets by linear sizeRO , and computing the discrete logarithm
derivative to estimated@ ln(A)#/d@ln(RO)# gives the droplet dimen-
siondf

eff(RO) values connected by the solid lines. From this meth
df52.01(2). Averaging droplet areaA over samples and compu

ing the discrete logarithmic derivative to estimated@ ln(Ā)#/d@ln(L)#
gives the finite size estimatedf̄

eff(L). The dashed line shows a fi
using Eq.~2! with a851.7(3), with x253.5 for four degrees of
freedom.
06020
-

rate out the scalesand plot the droplet areaA(RO ,L) as a
~binned! function of R0. Changing the order of the average
gives local exponents that are much better fit by a const
For L.32 andR0.8, A(Ro);Ro

df , with bulk droplet di-
mensiondf52.01(2) ~Fig. 3.! A similar plot for the perim-
eter confirms12 thatds51.25(1), with the surface to volume
ratio vanishing asl ds2d for large droplets. Droplet compact
ness can also be confirmed by plotting the ratiok5RO /RI
binned according toRO ; it is found that the distribution ofk
converges, with mean̂ k(RO ,L)&52.85(5), when L/2
.RO.32.

Corrections to geometric and energetic quantities are
important when computing link overlaps, such as tho
found in comparing the unperturbedJi j ground state,$si

0%,
with thee-perturbed state. The link overlapql is the fraction
of link valuessisj on bondŝ i j & which are unchanged. By
summing the contributions over all scales@note the small
droplets in Fig. 1~a!#, it can be shown that the local expone
for the fraction 12ql of changed bonds behaves as

m l
eff52

d@ ln~12ql !#

d ln~L !
5m l2

c8

~cL!d2m l21
, ~3!

wherem l5u12(d2ds) andc,c8 are constants characteriz
ing the upper and lower cutoffs. The computed local exp
nent for the 2D spin glass is shown in Fig. 4 (m l

eff is rela-
tively insensitive toe, at least for 0.35,e,1.3.) Only for
L.100 doesm l

eff approach the largeL limit of m l'1.18
~using the valuesu520.28 andds51.27.! Similar results
are found for the 2D elastic medium.18 The exponentm for
spin overlapsq5L2d(si

osi
e , with 12q;L2m, has smaller

corrections of this form and may well be dominated by c
rections to scaling from unknown operators or inver
lengths. Numerics18 show that m converges much more
quickly thanm l in the 2D spin glass. The measurement ofm l
~relative to m) has been used by Palassini and Young7 to

c

d

FIG. 4. Plot of the local exponentm l
eff ~from the discrete deriva-

tive betweenL58,16, . . . ,256) for the link overlapql in the 2D
spin glass as a function of system size. Results are shown for
tinct e and boundary conditions~open, with boundary spins fixed
under perturbation, and link periodic.! The expected limit at largeL
is m l51.18(3) ~shaded region.!
2-3
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conclude that a second energy exponentu8 affects the re-
sponse to bulk perturbations in the 3D spin glass. In th
dimensions, the scale averaging corrections decrease
quickly with L, asd2m l'1.3 compared with the 2D correc
tion exponentd2m l'0.82, but the system sizes that can
simulated are much smaller. It may be that corrections du
irrelevant variables or possible 1/L effects are dominant, bu
scale averaging corrections clearlycontributeto errors inm l .
A correction ofdm l'20.2 for L'8, from similarc andc8,
would invalidate the conclusions of Ref. 7.

In summary, analysis of numerical data provides a prec
confirmation of the droplet picture in the bulk of a samp
both for the scaling of the energies and for the geometr
structure of droplets. In comparing the numerical results w
the droplet picture, care must be taken to understand w
strong corrections might arise. The corrections arising fr
averaging over multiple scales can be predicted in some
tail and apply to spin glasses and other models whereu is
near zero. The corrections to averaged quantities such a
on

,
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droplet energyD̄o(L) are satisfactorily explained, forL2

.102 systems, by averaging simple power laws over sca
between 1 andL. The link overlap, which inherently aver
ages over scales, is strongly affected by finite-size corr
tions for smallu andd2ds , with effective exponent correc
tions greater than 0.1 forL,30 in the 2D spin glass. It ha
been suggested that, for topological reasons, distinctu expo-
nents exist only ind>3.6 The numerics in this paper are fo
d52, but they and the general analysis suggest that la
finite-size effects strongly affect results in three dimensio
To reduce these types of corrections, data can be binned
droplet sizel ~or over l /L) at fixed system sizeL, checking
for convergence by then increasingL.
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