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We analyze the transport through a narrow ballistic superconductor—normal-metal—-superconductor Joseph-
son contact with nonideal transmission at the superconductor—normal-metal interfaces, e.g., due to insulating
layers, effective mass steps, or band misf@8&N interfaces The electronic spectrum in the normal wire is
determined through the combination of Andreev reflection and normal reflection at the SIN interfaces. Strong
normal scattering at the SIN interfaces introduces electron- and holelike resonances in the normal region that
show up in the quasiparticle spectrum. These resonances have strong implications for the critical supercurrent
I . that we find to be determined by the lowest quasiparticle level: tuning the potaggiab the points where
electron- and holelike resonances cross, we find sharp pe&ksiiesulting in a transistor effect. We compare
the performance of this resonant Josephson-transistor with that of a superconducting single electron transistor.
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[. INTRODUCTION stands for a nonideal interface between the superconducting
banks S and the normal channel N.

The ability to control the supercurrent flow through nar-  In an ideal SNS junctictt the quasiparticle spectrum is
row superconductor—normal-metal—-superconduct8NS determined by the Andreev scattedfigt the SN boundaries
contacts is not only of scientific interest but also providesproducing phase-sensitive levels transporting large
many opportunities for applicatiotdith recent progress in  supercurrent$® The position and relative arrangement of
nanofabrication technology it has become possible to studthese states strongly depends on the chemical potential in the
devices in which electrons propagate ballistically and wheravire as well as on the phase difference between the super-
the transport proceeds via few conduction chanfiglsing  conducting banks. The inclusion of weak normal scattering
gated SNS junction$the transparency of the normal region at the SIN interface will only softly modify this quasiparticle
can be manipulated: in a transparent wire, Andreev scatteringpectrum through the mixing ofleft and righy current-
at the NS boundaries produces phase-sensitive quasipartiadarrying Andreev states. On the contrary, strong interface
levels that carry large supercurrents; conversely, if the transscattering introduces electron- and holelike resonances
mission is not ideal, the admixture of normal scattering re-within the normal region, defining a new starting point. The
duces the supercurrent transport. Accordingly, SNS junctionposition of these resonances again depends on the wire’'s
with a tunable transmission through the normal part define @ffective chemical potential. Tuning a pair of electron- and
natural setup for a superconducting transistor detiife. holelike resonances to degeneracy, these will be mixed by

Recent interest on transport through narrow channels anithe Andreev scattering, and new phase-sensitive levels are
guantum point contacts concentrates on diverse phenomefiamed carrying supercurrent. This mechanism then provides
such as conductance quantization in normal constrica natural setup for the implementation of a superconducting
tions?’~1% supercurrent quantization in superconductingJosephson field effect transisfotwhere the supercurrent is
SNS junctions:®1~130r the transistor effect in superlinks switched on and off by tuning the scattering resonances into
using either gated structufést*or injection technique® 1’  degeneracy through the manipulation of a potential, e.g.,
Experimentally, such junctions are fabricated using superthrough external gates. Model studies of such systems for
conductor—semiconductor  heterostructifré$*'® break individual resonances have been carried out recently by
junctions!~® metal nanolithograph{?>*’ or with the use of Wendinet al®
carbon nanotube$. Theoretically, transport through normal Below we proceed in two steps: After a brief definition of
constrictions has been studied by Glazneaal1°>*°withina  the problem(Sec. I), we first determine the scattering states
quasiclassical description assuming adiabatic joints betweenf the corresponding problem where the superconducting
the channel and the leads. The corresponding extension tmanks are replaced by normal-metallic leads, the NININ
superconducting leads by means of a scattering matrix agunction. Second, we reinstall the superconducting banks and
proach is due to Beenakkgrsee also Ref. 20, while Furu- determine the mixing of théelectron- and holelikenormal
saki et al!? proceeded with the numerical analysis of junc- scattering states through Andreev scattering at the normal-
tions with nonadiabatic geometries and nonideal interfacesuperconductor interface. In Sec. lll we analyze the quasi-
The evolution of the quasiparticle spectrum and the superparticle spectrum for weak and strong normal scattering at
current quantization in a gated narrow SNS junction, as welthe NIS interfaces. Section IV is devoted to the calculation of
as its transformation into a SIS tunnel junction, has beerthe supercurrent; we discuss the functionality of the resonant
recently described by Chtchelkatchevall® Here, we ex- Josephson transitdRJT) and compare this device with the
tend this analysis to the study of SINIS junctions, where Isuperconducting single electron transisteSET).
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(a) . il determine the resonance structure of the related NININ prob-
1D-wire < hon-ideal . i
transmission lem that arises if we replace the superconductors by normal

metallic leads.
@ = superconductor
; A. NININ junctions
A

We expand the scattering states in a basis of in- and out-

(b)

N P i in,out . . °
= § -------------- S going StateSI,R,’L on both sides of the wire, with phases that

F i h==45NR vanish at the interfacés+L/2,
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|~ N\ P (x) = aek(x+L12) 4. qovig=ik(x+L/2), @

1D-wire
W o(x) = alle~ K(x—L/2) 4 goulgik(x-L/2) 3)

L2 L2 X r(X)=ag 0

with k(E) = y2mE/# the wave vector of an incident particle.

FIG. 1. Narrow channel SINIS contact with nonideal interfaces, 1, energy-dependent scattering matsixconnects the ex-
e.g., insulating layers, effective mass steps, or band misfits. We in,out

consider adiabatic constrictions to avoid the mixing of transverséoansmn CoemCIentaRv'— (here,t andr denote the moduli of

channels.(a) Geometrical setup showing the gates narrowing thethe matrix elemenis

wire, (b) potential landscape with a flat barrier boundeddbgcat-

terers modeling insulating layers. All sources of nonideal transmis- ag" _ texpix) —rexpi[2x'= x| al _—
sion account fonormal reflections(NR), whereas the discontinui- aLOUt “r exp(ix") texp(ixt) aing L@
ties of the gap parametér are responsible for Andreev reflections
(AR). with this definition of theS matrix and the basis states, the
scattering phases account for the propagation through the
Il. BALLISTIC CONTACTS: SCATTERING MATRIX wire; e.g., for a vanishing transverse energy in the normal
APPROACH region and in the absence of any interface barrier a finite

_ _ _ phasey!=KkL is picked up.

We consider a narrow metallic lead with few ransverse' \ye gescribe the effective chemical potential in the normal
channels connecting two superconducting banks with @ggion through a smooth function characterized by its mini-
rectangular  pair  potential A(x<—L/2)=Aexpler),  mum u,(0)= o and a positive curvatureaQ?= a5, [see
A(]x|<L/2)=0, andA(x>L/2)=A expl¢g), see Fig. 1a). Fig. 1(b)]. The parametep,q (i.e., the diameter of the me-
Joining the channel adiabatically to the superconductingallic wire) is assumed to be tunable by means of external
banks, the transverse channels in the wire are sepatailé  electrostatic gates. In a long wire the potential is ffef)
for each of them the quasiparticle spectramis determined <A, and produces a sharp switching between transmission
through the one-dimensiondllD) Bogoliubov-de Gennes and reflection within the energy intervial) ; the correspond-
equation(we choose states with,=0) ing transverse energy, (x) defines a smooth and flat poten-

tial barrier in the interval {L/2, L/2). In the following we
refer to such barriers asmooth and t; exp(y) and
(1) r; exp(x') denote the associated “inner” scattering ampli-
tudes describing the motion of the quasiparticles between
—L/2+0 andL/2—0 [we use an analoguous definition of
with Ho= —723,[ 1/2m(x) ]9y + U(X) — uy(x) and whereu,  the inner scattering amplitudes as in E4)]. The particular
andv , denote the electron- and holelike components of thesmooth geometry of such inner barriers justifies the applica-
wave function¥ ,. The potentialJ(x) induces normal scat- tion of the Kemble formul for the transmission probabil-
tering at the NS interface and is due to an insulating layer oity, t2, =141+ exd —2m(u.(0)*&)/#Q]}, whereas the
a band offset, for example. Similarly, the mas$x) may  quasiclassic method can be used to determine the scattering
change at the NS interface, again generating normal scattephasesy'i and y"i.
ing. The transverse energy (x) of the channel is enclosed In order to obtain the global scattering amplitudes
in the effective chemical potentfdlu,(x)=er—&, (x). We  texp(y) andr exp(y’) of the junction we have to include
will also make use of the kinetic energiEs=er+ ¢ of elec-  effects of normal scattering at the boundaries. As a typical
tron (+) and hole () states as measured with respect to theexample we consider symmetric smooth barriers of height
band bottom in the superconductors. e — uyo bounded by Dirac scatterers of strenyth at the

The spectrum splits into continuous and discrete contribuinterfaces(such a setup describes an NININ junction with
tions and we will concentrate on the latter part with<A in  insulating layers at the interfaces; see the Appendix for a
the following, as it provides the main contribution to the brief discussion of other typical cases
critical supercurrent in the most interesting transport re- First, we concentrate on the glob@hnsmissionampli-
gimes, see below. We solve the Bogoliubov-de Gennes equadet exp(ix), which is easily expressed in terms of the scat-
tion for the SINIS junction with the help of the usual tering amplitudes of the inner barrier and the Didecat-
transfer-matrix techniqué.In order to do so we first have to terers; see the Appendix for details of the calculation. The

Ho  A(x)
A*(x) —Ho

u,(X)
v,(X)

u,(X)
v,(X)

g, ,
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1 @ : For symmetric barriers theeflectionamplituder exp(x")
v : is determinedup to =1) by the unitarity of the scattering
‘ . matrix, i.e.,r =(1—t?)¥?andy'= y'+ w(n+1/2). The inte-
: ] ﬁ | gern jumps by unity at perfect resonances.
t

B. SINIS junctions

oL U ' After evaluating the normal scattering amplitudes we can
(b) - : reinstall the superconductors and match the scattering states
I  hQ : in the normal region with the evanescent modes in the super-
T - i conducting banks. We make use of the Andreev
X - : approximatiof? and obtain the quantization conditidrisee
; ' : also Refs. 11 and 25

cogx, —x.—a)=r,r_cosB+t,t_ cosg, (7

il ' I : where the+ (—) signs refer to the kinetic energieg + ¢ of
-10 E- £,(0) [meV] 0 10 the electrothole)like states’® The Andreev scattering at the
* NS boundaries introduces the phase 2 arccos¢/A) de-
FIG. 2. Modulus and phase of the transmission amplitudecreasing frommr ate=0 to O at the gap=A, as well as the
through a parabolic barrier with scatterers at the edgésaram-  phase difference = ¢ — ¢r between the two superconduct-
eters:Z=2, £,(0)=5 eV, L=2500 nm). Note that the energy ing banks. For symmetric barriers the phage (x'. — x",)
E is swept and:, (0) is kept fixed. A similar resonance structure is — (XE —x") is a multiple of7r and produces a smooth func-
found for other sources of nonideal transmission-at/2. tion r,r_ cosB changing sign at perfect resonandese

Fig. 5(b)].

main effect of the scattering at the channel boundaries is t0 "The case of an ideal SNS junction where the effective
introduce resonances at energigs;, which we callperfect  chemical potential joins smoothly to the band bottom in the
(imperfect if t(Ed=1 (<1). For energiesE>¢,(0)  syperconductors has been analyzed by Chtchelkatchev
+40/2 the electrons easily propagate through the channept 113 | this special situation the global and inner scatter-
while the reflection at the boundaries produces almost equing amplitudes coincide and resonances are absent. Sweep-
distant resonances with a spacingA~m/dex"  ing o, they find a one parametriq) family of discrete
~2(uxoe)V% with e =h?w?/2mL? (see Fig. 2; the last spectra describing the transition of an insulating SIS tunnel
relation describes the case of a flat inner barri@n the junction (at u<—A) into a ballistic SNS structurdat
contrary, for small energies below (0)—#£€/2, tunneling ,, > A), see Fig. ). More precisely, electronic levels
suppresses the propagation through the channel and only inyith an exponentially small dependence on the phasee
perfect resonances separated-bgA survive. In the inter-  ~onverted into phase sensitive Andreev levelsuag is in-
mediate region, pairs of perfect resonances collapse and bgreased, i.e., as the band bottom in the wire is lowered. It
come imperfect. Moreover, the scattering phasegrows  tums out that the critical supercurrent is carried by the lowest
with the energy and picks up a phasemind 2 at perfect  state, | . =max, [(2e/4)d,¢0], and is realized for a phase

and imperfect resonances, respectively. We refer to reso= 0. Increasing the channel width, the critical supercur-
nances at energidS = e+ g ,sabovee aselectronicand  rent increases in steps @&/(7o+7%/A) as new transverse

to those below, aE.=&r— ¢, as holelike resonances. channels open. The travel timg of the quasiparticles is
Below, we will be mostly concentrating on the propagatingéasily calculated within the quasiclassical scheme and ap-
regime with E>¢, (0)+%£/2. In this regime the global proaches the asymptotic valug~L/vg , in the open chan-

transmission amplitude takes the form.(~1) nel. This analysis explains the dependence of the nonuniver-
sal critical supercurrent steps on the junction parameters.
eix' In the following we go beyond the analysis of Chtchel-
texpixh) = > ERTN (5 katchevet al. and determine the spectrum and the supercur-
1-Z2°+i2Z+ 2% rent transport in a narrow ballistic SINIS Josephson junction
including resonant barriers in the normal region, see Fig.

with Z=mV,/%2ke the dimensionless parameter giving the

strength of the scattering potential. Resonances of width 1(b).
> oA T . o Ill. QUASIPARTICLE SPECTRUM
I'=——=—-——, with A= (6) .
et T 2-T P Below, we shall see that the bound-state spectrum of junc-

tions with smooth barriers is only slightly modified by
and a transmission probabilitf=1/(1+ Z?) appear as the switching on weak resonances, see Fig) 3with the degen-
denominator in Eq(5) touches the complex unit circleote  eracy of the Andreev levels at=0 and lifted. For a fixed
thatT'— 2#v/L, with v the particle velocity, in the absence pair of levelse™), this splitting 6e =&(")—£(7) is roughly
of any scattering potential a periodic function ofu,, with a period A reflecting the
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FIG. 4. The quasiparticle energies are determined by the inter-
sections of the right- and the left-hand side §éndL) of the quan-
tization condition(7). Every maximum inL contributes a pair of
trapped levels split bye.

estimating the level splitting in the Andreev spectrum shown
in Fig. 3(b). Using Eq.(5) we evaluate the terms on the right
side of the quantization conditigi@) to lowest order irZ and
find t.t =1-27%[cog x' +co x'] and r,.r_
=422|cosxti+||cosxti_|. For symmetric barriers and as a con-
sequence of the unitarity of the scattering matrix, the res-
caled phaseB(e)/# is an integer valued function starting
from 0 ate=0 and jumping by unity whenever lines up

with a (perfect resonance ates Or 5 0f the junction. We
then may write cog=(—1)", wheren(e) denotes the num-
ber of perfect resonances within the interval()0, Hence,
cosB generates a smooth contributior .r _ cosp
=47% cosy" cosx" , which is small, of ordeZ?. Finally, the
scattering phaséy'= x', — x_ in Eq. (7) may be identified
with Syti= th — ' ; the deviation ofsy! from Sy' provides
only small corrections of ordeZ? to the splitting in the
Andreev spectrum and thus can be disregarded.

At ¢ =0 the right-hand side of E¢7) can be expressed as
R=1-2Z?(1-cosdy")(1—cosZx"), while the left-hand
j \ side takes the fornml =cos@yi—a). The sumEXtizxi
0 A N T +Xt_i of the scattering phases depends only weakly dut

increases linearly i,y with a slope 27/ A, as follows from

FIG. 3. Discrete energy spectrum for a smooth parabolic pmenﬁnearizing th(g,#xo)- On the other hand, the phase differ-

tial barrier bounded by Dirac scatterers of strengily (Z t: - . .
=mV,/h?k; parameters are chosen to emphasize the overal‘?ncegxI increases with energy but is roughly independent

structure of the spectrumIn regions | and Il the quasiparticle of 1xo. BothttermsL andR then show an_oscnlatlr]g dep_en-
energies depend on the phase(¢=0: solid lines,¢=7: dashed dence onsx" and on the energy (see Fig. 4 while their
lines). Note that the degeneracies in region | are lifted ¢ot 0, relative phaser(e) slowly decr_eases fromr atg:Q to 0 at
+ . (8 The unperturbed spectrum fa=0 as discussed by &=A. Thus, for small energiesst<A) the maxima inL
Chthelkatchevet al’® (b) At Z=0.1 the junction exhibits weak coincide with the minima irR and we obtain a large split-
resonances that lead to a splitting in the Andreev spectrum; th&ng,

period A reflects the resonance spaciiig. For Z=1 the junction

develops distinct resonances to which the quasiparticle levels are 4 ot

pinned. The remaining degeneracies are a consequence of the al- 58”;ZA|S“1XL|1 ®
most identical resonance shapes.

. . t:
resonance spacing. As the strength of the interface scatteririg 10West order inZ (with x evaluated at=0). The cor-
increases the discrete spectrum is gradually distofge@ responding splitting fore=+ = is proportional to|cosy' |
Fig. 3(c)]; the phase sensitivity at large chemical potentialwith the same prefactor. With increasing energy the phases
Mxo (region ) is reduced and the bound-state energies aligrof L and R match up and the splitting becomes small; see
with the resonance energies of the normal NININ setup. Théd=ig. 4. The monotonous decrease of the splitting is most
effect of interface scattering on the continuum part of theprominent in long junctions with many trapped levels.

spectrum has been analyzed in Ref. 25. As manifested in Eq(8) the splitting vanishes at specific
degeneracy points: we define thenf) degeneracy via the
A. Weak resonances condition e = (E}.s+ E™.)/2, wherel andm count the per-

We first concentrate on weak resonances characterized §§ct resonances. This impliedE e~ Efad/2=¢ re= & es
a small scattering parametgr<1. In particular, we aim at =s§’es. The ideal degeneracies in E@®) originate from the
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assumption that all perfect resonances have the same syn (a (b
metric shapef(E' o+ 6E)=t(EM+ SE). For ¢=0 (*m) 1
and for even(odd) values ofn(s%, the right-hand side of
the quantization conditiofmultiplied by —1) equals unity,
r.r_+t,t_=r2+t2=1, and thus the trapped levels ap- ¢
pear in degenerate pairs. The degeneracy is lifted, if we take
into account that the perfect resonances are not identical.
b

ryr cosP

B. Strong resonances

Let us next study the effects sfrongresonances. With-  ©
out loss of generality we again discuss the symmetric barriel
bounded bys scatterergsee also Ref. 25We concentrate -1
on the open channels in regiordee Fig. 8)]; the other
regimes in the £, u,o) plane are less interesting and we will
briefly discuss them at the end. For sharp resonances wi
I'<A the transmittivity close to a resonanegs assumes a
Lorentz profilé’ t.(e)=(I'/2)/\(e—¢ 9°+(I'/2)?> and
the scattering phase takes the usual fqr}g(s)= X'(E (e
*arctaf2(e—gd/T'].

Figure 5 shows the terms entering the quantization condi-_, . . . o .
tion (7). Particles incident from the left on the normal region This equation follows directly from the quantization condi-

. . t . . .
are reflected backr (. ~1) unless their energy coincides with 101 (7), with t.. exp(y,) described by an ideal Lorentzian

~ i = = t = t
an electronic resonance enefgy; (&,.9 =0 for perfect reso- resonance while t_=0, r_=1, and x_=x-(erd

nance$ Similarly, holes are only transmitted if their energy (e red 7 IS constan(or vice yersa+ =) Forg<A we
_ - may approximater(e)~ m, while ate<A Eq. (9) is easily
corresponds to a holelike resonance endngy(e,.9d =0].

3 , analyzed graphicallynote, however, that the above assump-
Cr:)ns?qléently,tthe prOdtUCLI‘f, tremalns close to u.nlt)I/:.but tions fort. and x'. are only valid if |e —&,.d<A). The
sharply. r$ps 0 zhero a perfec relfonance ene[gﬁaes '9. hase independence of the quasiparticle states in the pres-
5(@)]. Similar to the case o wea resonances.t e pr_odu nce of strong normal scattering is made explicit in the result
r.r_ becomes a smooth function efwhen combined with

cosB=(—1)", see Fig. B). Furthermore, the phase sensitive
termt,t_ cose vanishes practically over the entire interval
[0,A] [see Fig. &)] with the exception of specific points

where particle- and hole resonances becodegenerate

_ _.d
Eres™ €res™ Erest

The left-hand side of Eq7) is mainly determined by the d F[ [(g) N |sin(¢/2)|

FIG. 5. The various terms entering the quantization condition
tﬁ) in the limit '<A: We show the case of perfeisolatedreso-
nances K§—§|>F), where the produdt, t _ is small at all energies
(here, t,t_<0.025). The bound-state energi¢gmarked with
crosses in(e)] are determined by the intersections of G&¢ a)
andr . r_ cosp.

Close to theparticle-hole degenerate resonancése
phase sensitive termt_t_ = (I'/2)%/[ (e — %)%+ (I'/2)?] is
of order unity and we obtain pairs of trapped levels

n(ely even,

phase differencéy! exhibiting sharp steps by at the reso- . res 2 2) 7 sin(al2) |’

nance energies e and s, While remaining constant in )= T a\ |cod¢l2)]

between(in our discussion of the situation away from region el —{cot( —) +——— | n(efy odd

| below, we will have to distinguish perfect from imperfect 2 2 sin(a/2) (10)

resonances, as the latter involve phase jumpsy. Hence,
in the limit '—0 we obtain cosfy!—a)=(—1)" cosa, while
a small finite value of” will smooth the discontinuitiefsee  (We assume both scattering amplitudesexp(x..) to be de-
Fig. 5(d)]. All the terms entering the quantization condition scribed by the same Lorentzian centered aroufid; Eq.

(7) then are pronounced functions efnear the resonance (10) agrees with the result of Ref. 6 obtained for a short
energies, while staying roughly constant everywhere else. Aginction?’ see also Ref. 25 The levels(10) are manifestly

a conseqguence, the intersections of the left- and the righphase sensitive and become degeneraig=ad for evenn
hand side of Eq(7) come to lie close to the resonance ener-and ate = if nis odd. For low energies<A we estimate
gies of the NININ junction, as shown in Fig(& and we «a(e)~m and the maximum level splitting ie~I". We
conclude that the normal-state resonances attract the quasenclude that phase sensitivity survives only in a narrow

particle bound states,~ e,.st0 zeroth order id’. The predi- interval of orderAu,,~I" around the degeneracy points
cateelectronic-and holelike states then can be naturally as- x%;, being negligible everywhere el§see Fig. &)].
signed to the trapped levels in the SINIS junction, too. Above, we have found the trapped levels belonging to a

In region I[see Fig. 8], the bound-state energy close to branch e{u,0) Of perfect resonances at the degeneracy
anisolated resonances determined by the implicit equation points uS, and far awayluxo—MSOI>F- In between we can
- interpolate Eqs(9) and (10) by means of the usual hyper-

£ = Eres= 5001 [a(e)/2]. 9) b::;; dispersion relation and obtaiin the limit e<A; «
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lating layer (in the form of a &-function scattergrat the

& N éres (Mxo) 2'llres (P—xo)

__________________ A — interface, the transmission probability can be written in the
form
— 4kscknwmscrnnw . (12)
—_— (knwmsc+ kscmnw)2+ 4V(2)m§cmﬁ\/\/h4 ,

o=
\/ obviously, the various scattering mechanisms are nonaddi-
tive and Matthiessen’s rule is not applicable.
| Slightly asymmetric junctions have essentially the same
b t 0 A \}/ o proper_tles_ as the_ idealized symmetnc ones. An NINI'N junc-
’ tion with insulating layers of different transparencyy,
. . ] . <Tnax exhibits large imperfect resonanééf height
FIG. 6. Discrete spectrum for a triple barrier generating narrowtz(Eres)mein/Tmax instead of perfect resonances with unit
resonancerom a numerical solution of the quantization condition transmission. Furthermorg! is now a continuous function
(7)]. The levels arfe pinned to the resonances; note that holelik%f energy: the discontinuoijs jumps hyare smearedwith
resonance energies,s grow with u,,, whereas electronic reso- X' increaéing monotonuously foF_ ,<T,,, and bounded

nance energies,. decrease. In region l(lll) the holelike (elec- . : < . r r’
tronic) levels pair up such that the branches of imperfect resonancag’ (€ Opposite case witll, p<T_z; note thaty’ +x

carry two bound states. The inset shows the lowest level near the m+2x', x" the corresponding phase for a particle inci-
degeneracy pointul, for different values of¢ (e=jm/4, j  dentfrom the left and cosB changes rapidly but smoothly
=0...4). between+1 at the resonance energies. Since all terms en-

tering the quantization conditiaf?) are only weakly affected
by small asymmetries, the above discussion of the electronic

i

+ _.d d\2 2
) (1x0) = 8test V (a0~ 1150) >+ [T cOL 9/2)/2], properties remains valid fofweakly) nonsymmetric junc-
11 tions.
where we have assumed thafefe) is odd andd, &res IV. TRANSPORT
~ _3MX0;3res~1- The resul(11) will be useful in our discus- We proceed with the investigation of the transport prop-
sion of the transport properties below. erties of the symmetric SINIS junctions in regiolisee Fig.

In region ll[see Fig. 8)] the perfect holelike resonances 6) and concentrate on the situation characterized by strong
pair up and collapse as,q is lowered, thus generating im- resonances with'/A<1. Given the dependence of the qua-
perfect resonances, see Fig. 6. The analogous collapse of thiparticle energye on the phasep, the contribution of the
electronic resonances is shifted to region Ill. Note that arevel to the supercurrent follows from a simple derivative,
imperfect resonance carrigsvo nearly degenerate levels |=(2e/%)d e (a factor 2 has been included to account for
guaranteeing that the number of bound states remains cospin degeneragy
served upon changingq.

A. Generic case

C. Other sources of nonideal transmission We first consider the generic case where a level is pinned
to an isolatedelectronig resonance. In this situation we can

t
eling the effects of an insulating layer in an SIN interface.2SSUme t~1, t—OCF/A. and 'cc')s@(.—a)—ur_.cos'ﬂ
g g &y « g/'+const (see also Fig. b Within this approximation

Assuming other sources of nonideal transmission-&t/2 /A i I and li v related t6e —
we have to modify some of the above results: In order td+!->1/A is small and linearly related t6e =max, [+(¢)]

describe junctions with potential stejpss at the edges we _m'nw[s(‘P)z] through the large slope IL/ We then estimate
introduce the wave vectdt,,= hm(E—VS)/ﬁ in the nor- ogxd exI' and find 2that each level contributes a small
mal wire and distinguish it from the analogous quankity supercurrent, of order™.

=yJ2mE/# in the superconductor. Withk=(Ks/Knw

+knw/Ksd/2=1, the transmission probability takes the form B. Degenerate resonances

T=2/(1+«) (see the Appendix In the presence of weak  The phase sensitivity of the trapped levels is dramatically
resonancesT(<1), Eq.(8) for the gaps in the Andreev spec- increased close to degenerate resonances; sé& BgHow-
trum readsde~4A 1—T|cosy|/m, while the results for ever, still assuming narrow resonances WithA <1, the
strong resonances remain the sgmmee Eq.(9)]. A step in  supercurrent in general remains small: within our approxima-
the effective mass at the interface produces a similar resultion the contributions arising from a pair of nearly degener-
with m(|x|>L/2)=ms andm(|x|<L/2)=my,, the ratio of  ate levels cancel each other due to the symmefs/f ™) =
wave vectors entering the parameter takes the form  —g_¢(7) (a more accurate analysis provides a residual con-
Kse/Knw= VMsc/My,. Finally, combining all three effects, a tribution of orderl"?, see Ref. 28 Furthermore, the continu-
potential step, an effective mass discontinuity, and an insueus part of the spectrum again contributes with a term of

The above analysis has been basedSmstatterers mod-
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hi, it turns out, also midway in between two such degeneracies;
2med | defining the parametew= 28|£F/h~2(,uxo—,ugo) G
+2n, the result(14) then is exact at all multiples of

T, o~nm (here,S|8F denotes the action for an electron tra-
versing the normal regioh—L/2+0,L/2—0] at the Fermi
level andr=4,S s the travel timg¢ Furthermore, in between
the pointsé=ns the deviations of Eq(14) from the exact
Green’s-function result are small, see Fig. 7.

0.004

0.002 |

C. Josephson versus single electron transistor

Next we discuss the relation between the Josephson tran-
sistor and the superconducting single electron transistor.

FIG. 7. Critical current versus chemical potential,,  The latter consists of two Josephson junctions separated by a
= 6h/21],_ for a sharp resonance with=0.1 and7|, =104/A. superconducting grain, usually referred to as thiand,
The approximatior(14) (dashed ling agrees with the exact result which is capacitively(with capacitanceC,) coupled to an
obtained via the Green’s-function analysis at resonance and midwagxternal gate electrode. In a more figurative terminology we
between resonance$=0,* 1, and provides a good estimate in might call this device a SISIS junction. While the charging
between. energyEc=e?/2Cy tends to fix the number of Cooper pairs

on the island, théconjugate phase variable tends to be fixed

orderI'?. The only situation producing a large curreiof by the Josephson coupling energy of the two junctions.
order I') then is realized at the special degeneracy points-or the SSET, charging effects are domindf¢>E;, and
produced by an(electronig resonance crossing the Fermi thus the total capacitan€® of the island must be smalbut
level, wheres o udy)~2ed ul)~0, see Fig. 6. With its still*® Cy<Cs). Moreover we assumEc<A and hence the
energysg” described by Eq(11), this level carries a non- ground state of the island qontain_s an even number pf elec-
vanishing supercurrent of magnitude trons at any gate voltage. Given this layout for the device, we
expect the supercurrent to be suppressed by the “Coulomb

2e I'2 sing blockade” effect* However, for specific valuev(gj of the

lo

=— — . (13 gate voltage the energies of two even charge states differing
hi 16 (o~ pyo) >+ (I/2)2 coS(¢/2) by 2e become degenerate. At these “Coulomb resonances”
With one channel open, we then find that a large critical}.?te juppéessio? OJ thel Josephsonf?:urre\r;\t/through the isllaﬂd is
supercurrent ifted and we find a large superflow. We can control the
supercurrent by changing the gate voltage and hence the
T2 d SSET constitutes a transistor device.
| ):i[ \/l+[("‘x0_"‘xo)} _ |0~ Pxal The above discussion shows that the SSET and the RJT
X072 r/2 r2 are like devices, switching on as levels become degenerate;
(14)  while for the SSET these levels belong to fixed charge states
. . . . of the island, for the RJT these levels derive from transmis-
IS rgallzed ne%r thg special valupgo for the chemlcal PO" " sion resonances. In both cases the degeneracy is lifted by the
tential wheree e{ uy0) =0 and fore=m—0. This large su-  jngephson coupling cos/2), where the coupling constant
percurrent flow quickly vanishes g is tuned away from g js related to the transmission of the NIS boundaries, see
these de_generacy points by an energy larger than the resggq,y, Furthermore, the SSET and the RJT exhibit largely
nance widthl", see Fig. 7. Below, we refer to such a tunableihe same current-voltage characteristic close to these level
SINIS junction as aesonant Josephson transist@lterna- degeneracies,
tive schemes leading to a transistor effect make use of reso-
nant electromagnetic pumpifigpr injection of quasiparticles 2 .
into specific levels via multiprobe devices, see Refs. 28, 30, = E E_ sine (15)
and 15—-17. Note that the chemical potentialy, is not di- h4ey \(Vy— V92 +[E cod ¢/2)/ey]?’
rectly accessible but only through the gate voltagye thus
introducing the slop@u,,/dV, as an additional character- where the parametets and y have to be specified for each
istic parameter of the device. Also, we point out that a sharglevice. In fact, Eq(15) yields the current through a symmet-
transistor effect requires the temperature to be I&wT ric SSET? if we substitute the energy parameerby the
<T. coupling energyE; and the dimensionless constanby the
The result(14) appears to be valid in the immediate vi- small ratio Cy/Cs. Using the Ambegaokar-Baratoff
cinity of a resonance crossing the Fermi level. Howeverrelatior?® and the Landauer formuf8,we can reexpress the
comparing this result with the one derived from a full coupling energy in terms of more microscopic quantities:
Green's-function analysis of the long (>¢) SINIS junc-  E;=NTA/4, whereN«=kZA denotes the number of open
tion with sharp resonance$ (A <1), one finds that the re- channels in the tunnel junctiod denotes its area, andits
sult (14) is exact at the degeneracy pointgy~uJ, and, as  transmission coefficient. On the other hand, the RJT involves
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the parameterE=I"/2 andy=du.o/deVy. Again, the reso-
nance width is determined by geometrical quantiti€s:
~TA/m, whereT is the transmittivity of the insulator layer !
in the triple barrie?’ For flat inner barriers the quasiclassical - it >
method provides the simplificatioh ~2 (uyoe,)Y? with
e, =h27%/2mL?. Note that, while charging effects dominate
the physics of the SSET these are much less relevant for the -
RJT as the latter involves an “open wire” rather than a
“closed island;” the adiabatic joints to the superconducting
banks provide reservoirs that effectively screen the charge
transport through the wire.

From Eqg.(15) we can determine the critical supercurrent
I as a function of the gate voltage néﬂg- Apparently, FIG. 8. Complex transmission amplitude through a smooth bar-
lc(Vy) defines a current peak of wid#V,=E/ey that at-  rier bounded by steps. With decreasing eneBgyhe inversez
tains its maximum .= €eE/A at the degeneracy point. We =1/t exp()') moves counterclockwise on an ellipse, the center of
estimate its slope by the rathm/é"vg:ezy/ﬁ carrying the  which is positioned air;o/t; and shifts up the imaginary axis. As
dimension of a conductance. For the SSEX1 is deter- drops belowt.; the perfect resonances Rtand Q collapse at the
mined through the small capacitance rafiy/Cs. The bottom of the ellipse R— S— Q) and transform into an imperfect
analogous quantity for the RJT is of order unity, implying (double resonance.

that the RJT shows a more prominent slope: with ) N S
<9Mxo/<99Vg=<9deo/<9evgd, and dguyo=2(er— myo)/d, we  Scattering resonance, the critical current of the junction re-

h mains large] .~el'/2# of orderT — again, the critical cur-
rent is given by the tim&/I" the charge spends in the junc-
tion

1hQ

Re(z)

-L/2 L2 x

NG <te< 1

have to determine the suceptibility of the channel widt
with respect to the gate voltagg,. Making use of simple

electrostatic considerations one easily finds ti@txod : .

o , A second result we wish to emphasize here concerns the
~ag/er, Wh(_aresas% denotes the Bohr radius in the semicon- ¢, that the critical current is carried by the lowest quasipar-
ductor materiaf™* Hence, y~ag/d and withag of order jicje |evel alone. This has been demonstrated for the SNS
10 nm typically we arrive at a value of order unity for the ye,ice in Ref. 13 and above for the SINIS junction for the
parametery. ~ case of strong resonancédeviations from the single-level

Comparable energy scalés- yu,e, can be reached in yegyit are numericallybut not parametricallylarger away
realistic short SINIS junctionfl < m( uxo/2m)*#/A]. Fur- from weak resonancgsThe importance to know the disper-
thermore, we can optimize the performance of the RJT byjon of this level then provides a goadposteriorireason for
tuning the transparency of the insulating layéte Diracé  studying the quasiparticle spectrum in such junctions. Corre-
scatterersuntil the resonance width approaches the reso- sponding spectroscopic experiments can be realized using

nance spacing; such a choice of parameters produces stillmyitiprobe devices as proposed in the work of van Wees
isolated current peaks of maximum height. On the othegt )30

hand, the maximum superflow through the SSET scales with
the numbemN of open channeld, ,,.,=eNTA/4%, while the
RJT as defined above is generically a single-channel device
with a critical supercurrenty,,,=e Ty e /h; going over We thank A. Golubov, V. Shumeiko, and G. Wendin for
to a many-channel RJT device, resonances from individuahelpful discussions and the Swiss National Foundation for
channels superpose differentvalues for the chemical po- financial support. The work of N.M.C. and G.B.L. was partly
tential and hence do not add up in genéPallso, a smooth-  supported by the Russian Foundation for Basic Research un-
ing of the resonance structure has been observed in the nder Contract No. RFFI-000216617.
merical results by Wendiet al®

In summary, superconducting transistors can be designed AppENDIX: RESONANCE STRUCTURES IN ONE
in terms of “charge” (the SSE7J or “phase” devices(the DIMENSION
JT). In the charge device, the island is separated from the
superconducting leads through insulating barriers. On the We consider a one-dimensional potential landscéfe)
other hand, switching channels in a perfect SNS junctiongonfined to the intervdl—L/2,L/2]. As a first example, we
one obtains a phase device withlarge) critical currentl, ~ concentrate on a symmetric barrier consisting of a broad
=el/(7o+h/A) determined by the effective timey+7#/A [szz—&f(V, nQ<V(0)] and smooth potential barrier,
the charge needs to traverse the normal WirBuch devices bounded by steps of heigh¥s=V(L/2—0)—V(L/2+0)
with perfect interfaces are difficult to fabricate — in reality (see the inset of Fig.)8Below we make use of the wave
we always have to account for a nonideal transmisdion vectorsky=+2mE/% andkg,= V2m(E—Vg)/% describing
<1 through the SIN interfaces and we end up with a Fabryparticles of energ¥ in the wire close to the boundaries. The
Perot-type resonator device. Sequential tunneling through thglobal transmission amplitudeexp(y') is most easily ob-
interface barriers then reduces the supercurrent by a facteained by determining the transfer mafriof the barrier be-
T2 in general. However, tuning the chemical potential to atween—L/2—0 andL/2+0 and we find the result

ACKNOWLEDGMENTS

054520-8



SUPERCURRENTS THROUGH GATED . .. PHYSICAL REVIEW &3 054520

t;

i) — o
LR o ismzing e
wheret; exp(x') andr; exp(x') denote the transmission and resonances |2
reflection amplitudes of the inner smooth barrier. In &) 1hQ
we have introduced the definitions= (Kg/ KT Knw/Ksd /2 A I E
and o= (Keo/Knw—Knw/Ksd/2 containing the information Tl
perfect resonances
about the steps. In our example, o, andt; show a weak (isolated) 0 .
dependence on energy and remain almost constant, whil -Li2 L2 *
exp(xt) oscillates rapidly. The derivation of EGA1) makes (ry (E),7; (E))
use of the relationy"i— y'i=7/2+wn, neZ, which fol-
lows from the unitarity of the scattering matrix; the term ) 1
*+ir,o changes sign at each perfect resonancg ofSince ¢
the inner barrier was assumed to be smooth, we expéat FIG. 9. The solid curve in ther{,r;) plane characterizes the
exhibit no resonances at all and the term always carries a energy dependence of the inner and the global reflection amplitudes
positive sign. in a symmetric triple barrier as shown in the inset. The domains of

Next, we show that EqA1) qualitatively reproduces the perfect and imperfect resonances are separated by the curve
transmission amplitude shown in Fig. 2. We define the func+qi(r,). In an narrow interva~#0 aroundV(0) the reflection
tion z= 1/t exp(x"), whose four argumentgi, «, o, andt; coefficentr? drops from 1 to O; in this energy rangg can be
depend on the energy. Since the inner scattering ppage  considered as a constant.
the most energy sensitive argument, we minimjizewith

respect toy' (keepingx, o, andt; fixed at a given energy  resonances of the subsystems consisting of a step and a po-
E). Thus we obtain the stationary phagg$, (E) belonging tential hill account for the global imperfect resonances. Note
to the minima of|z|. Moreover, we can introduce the com- that the barrier bounded by steps generates pronounced reso-
plex valued function Zmin[E]ZZ[X:,inin(E),K(E),O'(E), nances only ifVg=0.7 V(0).
t;(E)], which is roughly constant when comparedzfc&]. In a second step we investigate the transmission ampli-
We can estimate the resonance energies by solving the equade through three arbitrary symmetric potential barriers, i.e.,
tion Z[ Eed = Z mirl Ered fOr E es. Apparently,z[ E] describes a triple barrier, see Fig. 9. The inner barrier is again smooth,
an ellipse in the complex plane with half axes; Bhd «/t; . whereas the two outer barriefsharacterized by the trans-
The center of this ellipse is shifted away from the origin bymission and reflection amplitudest,expiyx®) and
irjo/t;. Figure 8 illustrates the behavior @, whenr;  r exp(y')] are assumed to be equal. Thus the global trans-
grows from 0 to 1 in the intermediate regidhe[V(0) mission amplitude takes the form
—hQ/2, V(0)+#Q/2] [with a smooth inner barrienr; is
strictly monotonousy;=~0 for E>V(0)+#4Q/2 andr,~1
for E<XV(0)—#AQ/2]. The distance from the origin to the t t2el (Xi+2x%)
bottom of the ellipsgpoint S) is always extremal. At high teix' = Lo
energies where #&t;>1/k=t;, we observeperfectreso-
nances: with|z,i,|=1 these resonances are realized at the
symmetric pointd andQ where the ellipse touches the unit )
circle, see Fig. 8. Ad; decreases, the perfect resonancedn order to determine the resonance structure we eval'uate the
approach each otheP(and Q move towardS) and merge €xtrema of the modulus of the denominator in E&2) with
with S ast,\, t,y. At energiesE<V(0) (=t<t.y) the respect to,\/tifr)(‘o (we fixt; andt,, which are less sensitive
reflection coefficientr; drops to zero, and becomes the {0 changes in energyA direct calculaﬂonz yields the two
closest point to the origin withzy,|= (k—or;)/t;>1; the ~ extremal conditions cogl+x"9)=—ri(1+rg)/2r, (1) and
resonances then have paired up and have beémperfect  Sin(x'+x')=0 (I1). Elementary manipulations show that the
with a height decaying rapidly with decreasing enekgy transmission amplitude exhibitgerfect resonances in the
Physically, this resonance structure originates from thdirst case. But condition | can only be satisfied as long as
interplay of two competing transparencies. The transmissiofi=<r ¢i(T o) =21, /(1+1}), i.e., for a reasonably transparent
probability through the potential steps is almost constant anihner barrier(see Fig. 9. The extremal condition Il requires
much smaller than the transparency of the inner barrier fom second distinction. Condition (#) reads x'i+ x'
E>V(0). In this regime the particles propagate freely and=2mn, neZ. The critical points of this type always belong
are reflected by the steps alone; thus we observe perfect rego-local minima oft. Finally, we discuss condition (), x"
nances, and the shape of the smooth inner barrier only influ+ x'o=7+27n, neZ, which refers to local minima when
ences the resonance spacing. On the other handEfor ri<r.; and characterizesperfectresonances in the regime
<V(0) the inner barrier behaves like a hard wall while ther;>r ;. Since the internal barrier was assumed to be
steps are comparatively transparent. The global transmissigmooth, the regime of perfect resonances lies at high ener-
through the barrier bounded by the steps is suppressed by tigges E>V(0)+£€/2, wherer;=0 andr>r;. At low en-
tunneling through the classically inaccessible region. TheergiesE<V(0)—#Q/2, the resonances are always imper-

l—{—zriroei(XtH—XtO)— rgeiz(XtH_Xto) . (AZ)
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fect. Within the crossover region the perfect resonances aferce ¢,V and effective mass steps. Technically they can be

tract each other pairwise and collapse to become imperfect aseated like Diracd scatterers and potential steps, respec-

the energy decreas¢see Fig. 2 tively, as can be easily checked making use of the transfer-
Other sources of resonances are discontinuities of thmatrix formalism.
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