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Supercurrents through gated superconductor–normal-metal–superconductor contacts:
The Josephson transistor

Daniel D. Kuhn,1 Nikolai M. Chtchelkatchev,2 Gordey B. Lesovik,2 and Gianni Blatter1
1Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

2L. D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
~Received 30 June 2000; published 16 January 2001!

We analyze the transport through a narrow ballistic superconductor–normal-metal–superconductor Joseph-
son contact with nonideal transmission at the superconductor–normal-metal interfaces, e.g., due to insulating
layers, effective mass steps, or band misfits~SIN interfaces!. The electronic spectrum in the normal wire is
determined through the combination of Andreev reflection and normal reflection at the SIN interfaces. Strong
normal scattering at the SIN interfaces introduces electron- and holelike resonances in the normal region that
show up in the quasiparticle spectrum. These resonances have strong implications for the critical supercurrent
I c that we find to be determined by the lowest quasiparticle level: tuning the potentialmx0 to the points where
electron- and holelike resonances cross, we find sharp peaks inI c , resulting in a transistor effect. We compare
the performance of this resonant Josephson-transistor with that of a superconducting single electron transistor.
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I. INTRODUCTION

The ability to control the supercurrent flow through na
row superconductor–normal-metal–superconductor~SNS!
contacts is not only of scientific interest but also provid
many opportunities for applications.1 With recent progress in
nanofabrication technology it has become possible to st
devices in which electrons propagate ballistically and wh
the transport proceeds via few conduction channels.2 Using
gated SNS junctions,3 the transparency of the normal regio
can be manipulated: in a transparent wire, Andreev scatte
at the NS boundaries produces phase-sensitive quasipa
levels that carry large supercurrents; conversely, if the tra
mission is not ideal, the admixture of normal scattering
duces the supercurrent transport. Accordingly, SNS juncti
with a tunable transmission through the normal part defin
natural setup for a superconducting transistor device.4–6

Recent interest on transport through narrow channels
quantum point contacts concentrates on diverse phenom
such as conductance quantization in normal const
tions,2,7–10 supercurrent quantization in superconducti
SNS junctions,3,8,11–13or the transistor effect in superlink
using either gated structures4,6,14or injection techniques.15–17

Experimentally, such junctions are fabricated using sup
conductor–semiconductor heterostructures,2,3,14,16 break
junctions,7–9 metal nanolithography,15,17 or with the use of
carbon nanotubes.18 Theoretically, transport through norma
constrictions has been studied by Glazmanet al.10,19within a
quasiclassical description assuming adiabatic joints betw
the channel and the leads. The corresponding extensio
superconducting leads by means of a scattering matrix
proach is due to Beenakker,11 see also Ref. 20, while Furu
saki et al.12 proceeded with the numerical analysis of jun
tions with nonadiabatic geometries and nonideal interfac
The evolution of the quasiparticle spectrum and the sup
current quantization in a gated narrow SNS junction, as w
as its transformation into a SIS tunnel junction, has be
recently described by Chtchelkatchevet al.13 Here, we ex-
tend this analysis to the study of SINIS junctions, wher
0163-1829/2001/63~5!/054520~10!/$15.00 63 0545
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stands for a nonideal interface between the superconduc
banks S and the normal channel N.

In an ideal SNS junction21 the quasiparticle spectrum i
determined by the Andreev scattering22 at the SN boundaries
producing phase-sensitive levels transporting la
supercurrents.13 The position and relative arrangement
these states strongly depends on the chemical potential in
wire as well as on the phase difference between the su
conducting banks. The inclusion of weak normal scatter
at the SIN interface will only softly modify this quasiparticl
spectrum through the mixing of~left and right! current-
carrying Andreev states. On the contrary, strong interf
scattering introduces electron- and holelike resonan
within the normal region, defining a new starting point. T
position of these resonances again depends on the w
effective chemical potential. Tuning a pair of electron- a
holelike resonances to degeneracy, these will be mixed
the Andreev scattering, and new phase-sensitive levels
formed carrying supercurrent. This mechanism then provi
a natural setup for the implementation of a superconduc
Josephson field effect transistor,4,6 where the supercurrent i
switched on and off by tuning the scattering resonances
degeneracy through the manipulation of a potential, e
through external gates. Model studies of such systems
individual resonances have been carried out recently
Wendinet al.6

Below we proceed in two steps: After a brief definition
the problem~Sec. II!, we first determine the scattering stat
of the corresponding problem where the superconduc
banks are replaced by normal-metallic leads, the NIN
junction. Second, we reinstall the superconducting banks
determine the mixing of the~electron- and holelike! normal
scattering states through Andreev scattering at the norm
superconductor interface. In Sec. III we analyze the qu
particle spectrum for weak and strong normal scattering
the NIS interfaces. Section IV is devoted to the calculation
the supercurrent; we discuss the functionality of the reson
Josephson transitor~RJT! and compare this device with th
superconducting single electron transistor~SSET!.
©2001 The American Physical Society20-1
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II. BALLISTIC CONTACTS: SCATTERING MATRIX
APPROACH

We consider a narrow metallic lead with few transve
channels connecting two superconducting banks with
rectangular pair potential D̂(x,2L/2)5D exp(iw L),
D̂(uxu,L/2)50, andD̂(x.L/2)5D exp(iwR), see Fig. 1~a!.
Joining the channel adiabatically to the superconduc
banks, the transverse channels in the wire are separable19 and
for each of them the quasiparticle spectrum«n is determined
through the one-dimensional~1D! Bogoliubov-de Gennes
equation~we choose states with«n>0)

F H0 D̂~x!

D̂* ~x! 2H0
G Fun~x!

vn~x!
G5«n Fun~x!

vn~x!
G , ~1!

with H052\2]x@1/2m(x)#]x1U(x)2mx(x) and whereun

andvn denote the electron- and holelike components of
wave functionCn . The potentialU(x) induces normal scat
tering at the NS interface and is due to an insulating laye
a band offset, for example. Similarly, the massm(x) may
change at the NS interface, again generating normal sca
ing. The transverse energy«'(x) of the channel is enclose
in the effective chemical potential19 mx(x)5«F2«'(x). We
will also make use of the kinetic energiesE5«F6« of elec-
tron (1) and hole (2) states as measured with respect to
band bottom in the superconductors.

The spectrum splits into continuous and discrete contri
tions and we will concentrate on the latter part with«n,D in
the following, as it provides the main contribution to th
critical supercurrent in the most interesting transport
gimes, see below. We solve the Bogoliubov-de Gennes e
tion for the SINIS junction with the help of the usu
transfer-matrix technique.23 In order to do so we first have t

FIG. 1. Narrow channel SINIS contact with nonideal interfac
e.g., insulating layers, effective mass steps, or band misfits.
consider adiabatic constrictions to avoid the mixing of transve
channels.~a! Geometrical setup showing the gates narrowing
wire, ~b! potential landscape with a flat barrier bounded byd scat-
terers modeling insulating layers. All sources of nonideal transm
sion account fornormal reflections~NR!, whereas the discontinui
ties of the gap parameterD are responsible for Andreev reflection
~AR!.
05452
e
a

g

e

r

er-

e

-

-
a-

determine the resonance structure of the related NININ pr
lem that arises if we replace the superconductors by nor
metallic leads.

A. NININ junctions

We expand the scattering states in a basis of in- and
going statesCR,L

in,out on both sides of the wire, with phases th
vanish at the interfaces24 6L/2,

CL~x!5aL
ineik(x1L/2)1aL

oute2 ik(x1L/2), ~2!

CR~x!5aR
ine2 ik(x2L/2)1aR

outeik(x2L/2), ~3!

with k(E)5A2mE/\ the wave vector of an incident particle
The energy-dependent scattering matrixS connects the ex-
pansion coefficientsaR,L

in,out ~here,t andr denote the moduli of
the matrix elements!,

F aR
out

aL
outG5F t exp~ ix t! 2r exp~ i @2x t2x r # !

r exp~ ix r ! t exp~ ix t!
GFaL

in

aR
inG ; ~4!

with this definition of theS matrix and the basis states, th
scattering phases account for the propagation through
wire; e.g., for a vanishing transverse energy in the norm
region and in the absence of any interface barrier a fin
phasex t5kL is picked up.

We describe the effective chemical potential in the norm
region through a smooth function characterized by its m
mummx(0)5mx0 and a positive curvaturemV25]x

2mx @see
Fig. 1~b!#. The parametermx0 ~i.e., the diameter of the me
tallic wire! is assumed to be tunable by means of exter
electrostatic gates. In a long wire the potential is flat,\V
!D, and produces a sharp switching between transmis
and reflection within the energy interval\V; the correspond-
ing transverse energy«'(x) defines a smooth and flat poten
tial barrier in the interval (2L/2, L/2). In the following we
refer to such barriers assmooth and t i exp(ixti) and
r i exp(ixri) denote the associated ‘‘inner’’ scattering amp
tudes describing the motion of the quasiparticles betwe
2L/210 and L/220 @we use an analoguous definition o
the inner scattering amplitudes as in Eq.~4!#. The particular
smooth geometry of such inner barriers justifies the appl
tion of the Kemble formula10 for the transmission probabil
ity, t i 6

2 51/$11exp@22p„mx(0)6«…/\V#%, whereas the
quasiclassic method can be used to determine the scatt
phasesx t i andx r i.

In order to obtain the global scattering amplitud
t exp(ixt) and r exp(ixr) of the junction we have to include
effects of normal scattering at the boundaries. As a typ
example we consider symmetric smooth barriers of hei
«F2mx0 bounded by Dirac scatterers of strengthV0 at the
interfaces~such a setup describes an NININ junction wi
insulating layers at the interfaces; see the Appendix fo
brief discussion of other typical cases!.

First, we concentrate on the globaltransmissionampli-
tudet exp(ixt), which is easily expressed in terms of the sc
tering amplitudes of the inner barrier and the Diracd scat-
terers; see the Appendix for details of the calculation. T
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SUPERCURRENTS THROUGH GATED . . . PHYSICAL REVIEW B63 054520
main effect of the scattering at the channel boundaries i
introduce resonances at energiesEres, which we callperfect
~imperfect! if t(Eres)51 (,1). For energiesE.«'(0)
1\V/2 the electrons easily propagate through the chan
while the reflection at the boundaries produces almost e
distant resonances with a spacingL'p/]Ex t i

;2(mx0«L)1/2, with «L5\2p2/2mL2 ~see Fig. 2; the las
relation describes the case of a flat inner barrier!. On the
contrary, for small energies below«'(0)2\V/2, tunneling
suppresses the propagation through the channel and only
perfect resonances separated by;2L survive. In the inter-
mediate region, pairs of perfect resonances collapse and
come imperfect. Moreover, the scattering phasex t grows
with the energy and picks up a phase ofp and 2p at perfect
and imperfect resonances, respectively. We refer to re
nances at energiesEres5«F1 «̂ res above«F aselectronicand
to those below, atEres5«F2 «̌ res, as holelike resonances
Below, we will be mostly concentrating on the propagati
regime with E.«'(0)1\V/2. In this regime the globa
transmission amplitude takes the form (t i 6'1)

t exp~ ix t!5
eix t i

12Z21 i2Z1Z2ei2x t i
, ~5!

with Z5mV0 /\2kF the dimensionless parameter giving t
strength of the scattering potential. Resonances of width

G5
2

]Ex t
5

2L

p

T

22T
, with L5

p

]Ex t i
~6!

and a transmission probabilityT51/(11Z2) appear as the
denominator in Eq.~5! touches the complex unit circle~note
that G→2\v/L, with v the particle velocity, in the absenc
of any scattering potential!.

FIG. 2. Modulus and phase of the transmission amplitu
through a parabolic barrier withd scatterers at the edges~param-
eters:Z52, «'(0)55 eV, L52500 nm). Note that the energ
E is swept and«'(0) is kept fixed. A similar resonance structure
found for other sources of nonideal transmission at6L/2.
05452
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For symmetric barriers thereflectionamplituder exp(ixr)
is determined~up to 61) by the unitarity of the scattering
matrix, i.e.,r 5(12t2)1/2 andx r5x t1p(n11/2). The inte-
ger n jumps by unity at perfect resonances.

B. SINIS junctions

After evaluating the normal scattering amplitudes we c
reinstall the superconductors and match the scattering s
in the normal region with the evanescent modes in the su
conducting banks. We make use of the Andre
approximation22 and obtain the quantization condition13 ~see
also Refs. 11 and 25!

cos~x1
t 2x2

t 2a!5r 1r 2 cosb1t1t2 cosw, ~7!

where the1(2) signs refer to the kinetic energies«F6« of
the electron~hole!like states.26 The Andreev scattering at th
NS boundaries introduces the phasea52 arccos(«/D) de-
creasing fromp at «50 to 0 at the gap«5D, as well as the
phase differencew5wL2wR between the two superconduc
ing banks. For symmetric barriers the phaseb5(x1

t 2x1
r )

2(x2
t 2x2

r ) is a multiple ofp and produces a smooth func
tion r 1r 2 cosb changing sign at perfect resonances@see
Fig. 5~b!#.

The case of an ideal SNS junction where the effect
chemical potential joins smoothly to the band bottom in t
superconductors has been analyzed by Chtchelkatc
et al.13 In this special situation the global and inner scatt
ing amplitudes coincide and resonances are absent. Sw
ing mx0, they find a one parametric (mx0) family of discrete
spectra describing the transition of an insulating SIS tun
junction ~at mx0!2D) into a ballistic SNS structure~at
mx0@D), see Fig. 3~a!. More precisely, electronic level
with an exponentially small dependence on the phasew are
converted into phase sensitive Andreev levels asmx0 is in-
creased, i.e., as the band bottom in the wire is lowered
turns out that the critical supercurrent is carried by the low
state,I c5maxw @(2e/\)]w«0#, and is realized for a phasew
5p20. Increasing the channel width, the critical superc
rent increases in steps ofe/(t01\/D) as new transverse
channels open. The travel timet0 of the quasiparticles is
easily calculated within the quasiclassical scheme and
proaches the asymptotic valuet0;L/vF,x in the open chan-
nel. This analysis explains the dependence of the nonuni
sal critical supercurrent steps on the junction parameters

In the following we go beyond the analysis of Chtche
katchevet al. and determine the spectrum and the superc
rent transport in a narrow ballistic SINIS Josephson junct
including resonant barriers in the normal region, see F
1~b!.

III. QUASIPARTICLE SPECTRUM

Below, we shall see that the bound-state spectrum of ju
tions with smooth barriers is only slightly modified b
switching on weak resonances, see Fig. 3~b!, with the degen-
eracy of the Andreev levels atw50 andp lifted. For a fixed
pair of levels« (6), this splittingd«5« (1)2« (2) is roughly
a periodic function ofmx0 with a periodL reflecting the

e
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KUHN, CHTCHELKATCHEV, LESOVIK, AND BLATTER PHYSICAL REVIEW B 63 054520
resonance spacing. As the strength of the interface scatte
increases the discrete spectrum is gradually distorted@see
Fig. 3~c!#; the phase sensitivity at large chemical poten
mx0 ~region I! is reduced and the bound-state energies a
with the resonance energies of the normal NININ setup. T
effect of interface scattering on the continuum part of
spectrum has been analyzed in Ref. 25.

A. Weak resonances

We first concentrate on weak resonances characterize
a small scattering parameterZ!1. In particular, we aim at

FIG. 3. Discrete energy spectrum for a smooth parabolic po
tial barrier bounded by Dirac scatterers of strengthV0 (Z
5mV0 /\2kF ; parameters are chosen to emphasize the ove
structure of the spectrum!. In regions I and II the quasiparticle
energies depend on the phasew (w50: solid lines,w5p: dashed
lines!. Note that the degeneracies in region I are lifted forwÞ0,
6p. ~a! The unperturbed spectrum forZ50 as discussed by
Chthelkatchevet al.13 ~b! At Z50.1 the junction exhibits weak
resonances that lead to a splitting in the Andreev spectrum;
periodL reflects the resonance spacing.~c! For Z51 the junction
develops distinct resonances to which the quasiparticle levels
pinned. The remaining degeneracies are a consequence of th
most identical resonance shapes.
05452
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estimating the level splitting in the Andreev spectrum sho
in Fig. 3~b!. Using Eq.~5! we evaluate the terms on the righ
side of the quantization condition~7! to lowest order inZ and
find t1t25122Z2@cos2 x

1

ti 1cos2 x
2

ti # and r 1r 2

54Z2ucosx
1

ti uucosx
2

ti u. For symmetric barriers and as a co
sequence of the unitarity of the scattering matrix, the r
caled phaseb(«)/p is an integer valued function startin
from 0 at «50 and jumping by unity whenever« lines up
with a ~perfect! resonance at«̂ res or «̌ res of the junction. We
then may write cosb5(21)n, wheren(«) denotes the num-
ber of perfect resonances within the interval (0,«). Hence,
cosb generates a smooth contributionr 1r 2 cosb
54Z2 cosx

1

ti cosx
2

ti , which is small, of orderZ2. Finally, the
scattering phasedx t5x1

t 2x2
t in Eq. ~7! may be identified

with dx t i5x
1

t i 2x
2

t i ; the deviation ofdx t from dx t i provides
only small corrections of orderZ2 to the splitting in the
Andreev spectrum and thus can be disregarded.

At w50 the right-hand side of Eq.~7! can be expressed a
R5122Z2(12cosdxti)(12cosSxti), while the left-hand
side takes the formL5cos(dxti2a). The sumSx t i5x

1

t i

1x
2

t i of the scattering phases depends only weakly on« but
increases linearly inmx0 with a slope 2p/L, as follows from
linearizingx

6

t i («,mx0). On the other hand, the phase diffe
encedx t i increases with energy« but is roughly independen
of mx0. Both termsL andR then show an oscillating depen
dence ondx t i and on the energy« ~see Fig. 4!, while their
relative phasea(«) slowly decreases fromp at «50 to 0 at
«5D. Thus, for small energies («!D) the maxima inL
coincide with the minima inR and we obtain a large split
ting,

d«'
4

p
ZLusinx

1

t i u, ~8!

to lowest order inZ ~with x
1

t i evaluated at«50). The cor-

responding splitting forw56 p is proportional toucosx
1

ti u
with the same prefactor. With increasing energy the pha
of L and R match up and the splitting becomes small; s
Fig. 4. The monotonous decrease of the splitting is m
prominent in long junctions with many trapped levels.

As manifested in Eq.~8! the splitting vanishes at specifi
degeneracy points: we define the (l ,m) degeneracy via the
condition«F5(Eres

l 1E res
m )/2, wherel andm count the per-

fect resonances. This impliesuEres
l 2Eres

m u/25 «̂ res5 «̌ res

5« res
d . The ideal degeneracies in Eq.~8! originate from the

n-

ll

e

re
al-

FIG. 4. The quasiparticle energies are determined by the in
sections of the right- and the left-hand side (R andL) of the quan-
tization condition~7!. Every maximum inL contributes a pair of
trapped levels split byd«.
0-4
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SUPERCURRENTS THROUGH GATED . . . PHYSICAL REVIEW B63 054520
assumption that all perfect resonances have the same
metric shape,t(E res

l 1dE)5t(Eres
m 6dE). For w50 (6p)

and for even~odd! values ofn(« res
d ) the right-hand side of

the quantization condition~multiplied by 21) equals unity,
r 1r 21t1t25r 1

2 1t1
2 51, and thus the trapped levels a

pear in degenerate pairs. The degeneracy is lifted, if we
into account that the perfect resonances are not identica

B. Strong resonances

Let us next study the effects ofstrong resonances. With-
out loss of generality we again discuss the symmetric bar
bounded byd scatterers~see also Ref. 25!. We concentrate
on the open channels in region I@see Fig. 3~a!#; the other
regimes in the («,mx0) plane are less interesting and we w
briefly discuss them at the end. For sharp resonances
G!D the transmittivity close to a resonance« res assumes a
Lorentz profile27 t6(«)5(G/2)/A(«2« res)

21(G/2)2 and
the scattering phase takes the usual formx6

t («)5x t(E res)
6arctan@2(«2«res)/G#.

Figure 5 shows the terms entering the quantization co
tion ~7!. Particles incident from the left on the normal regio
are reflected back (r 1'1) unless their energy coincides wit
an electronic resonance energy@r 1( «̂ res)50 for perfect reso-
nances#. Similarly, holes are only transmitted if their energ
corresponds to a holelike resonance energy@r 2( «̌ res)50#.
Consequently, the productr 1r 2 remains close to unity bu
sharply drops to zero at perfect resonance energies@see Fig.
5~a!#. Similar to the case of weak resonances the prod
r 1r 2 becomes a smooth function of« when combined with
cosb5(21)n, see Fig. 5~b!. Furthermore, the phase sensiti
term t1t2 cosw vanishes practically over the entire interv
@0,D# @see Fig. 5~c!# with the exception of specific point
where particle- and hole resonances becomedegenerate,
«̂ res5 «̌ res5« res

d .
The left-hand side of Eq.~7! is mainly determined by the

phase differencedx t exhibiting sharp steps byp at the reso-
nance energies«̌ res and «̂ res, while remaining constant in
between~in our discussion of the situation away from regio
I below, we will have to distinguish perfect from imperfe
resonances, as the latter involve phase jumps by 2p). Hence,
in the limit G→0 we obtain cos(dxt2a)5(21)n cosa, while
a small finite value ofG will smooth the discontinuities@see
Fig. 5~d!#. All the terms entering the quantization conditio
~7! then are pronounced functions of« near the resonanc
energies, while staying roughly constant everywhere else
a consequence, the intersections of the left- and the ri
hand side of Eq.~7! come to lie close to the resonance en
gies of the NININ junction, as shown in Fig. 5~e! and we
conclude that the normal-state resonances attract the q
particle bound states,«'« res to zeroth order inG. The predi-
cateelectronic-andholelikestates then can be naturally a
signed to the trapped levels in the SINIS junction, too.

In region I @see Fig. 3~a!#, the bound-state energy close
an isolated resonanceis determined by the implicit equatio

«5« res2
G

2
cot [a~«!/2]. ~9!
05452
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This equation follows directly from the quantization cond
tion ~7!, with t1 exp(ix1

t ) described by an ideal Lorentzia
resonance while t250, r 251, and x2

t 5x1
t (« res)

1n(« res)p is constant~or vice versa1↔2). For «!D we
may approximatea(«)'p, while at «&D Eq. ~9! is easily
analyzed graphically~note, however, that the above assum
tions for t6 and x6

t are only valid if u«2« resu!D). The
phase independence of the quasiparticle states in the p
ence of strong normal scattering is made explicit in the re
~9!.

Close to theparticle-hole degenerate resonancesthe
phase sensitive term}t1t25(G/2)2/@(«2« res

d )21(G/2)2# is
of order unity and we obtain pairs of trapped levels

« (6)5H « res
d 2

G

2 FcotS a

2 D6
usin~w/2!u
sin~a/2! G , n~« res

d ! even,

« res
d 2

G

2 FcotS a

2 D6
ucos~w/2!u
sin~a/2! G , n~« res

d ! odd

~10!

~we assume both scattering amplitudest6 exp(ix6
t ) to be de-

scribed by the same Lorentzian centered around« res
d ; Eq.

~10! agrees with the result of Ref. 6 obtained for a sh
junction,27 see also Ref. 25!. The levels~10! are manifestly
phase sensitive and become degenerate atw50 for evenn
and atw5p if n is odd. For low energies«!D we estimate
a(«)'p and the maximum level splitting isd«'G. We
conclude that phase sensitivity survives only in a narr
interval of orderDmx0;G around the degeneracy poin
mx0

d , being negligible everywhere else@see Fig. 3~c!#.
Above, we have found the trapped levels belonging t

branch « res(mx0) of perfect resonances at the degenera
pointsmx0

d and far away,umx02mx0
d u@G. In between we can

interpolate Eqs.~9! and ~10! by means of the usual hyper
bolic dispersion relation and obtain~in the limit «!D; a
'p)

FIG. 5. The various terms entering the quantization condit
~7! in the limit G!D: We show the case of perfectisolatedreso-

nances (u«̂2 «̌u@G), where the productt1t2 is small at all energies
~here, t1t2,0.025). The bound-state energies@marked with
crosses in~e!# are determined by the intersections of cos(dxt2a)
and r 1r 2 cosb.
0-5
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« (6)~mx0!5« res
d 6A~mx02mx0

d !21@G cos~w/2!/2#2,
~11!

where we have assumed thatn(« res
d ) is odd and]mx0

«̌ res

'2]mx0
«̂ res'1. The result~11! will be useful in our discus-

sion of the transport properties below.
In region II @see Fig. 3~a!# the perfect holelike resonance

pair up and collapse asmx0 is lowered, thus generating im
perfect resonances, see Fig. 6. The analogous collapse o
electronic resonances is shifted to region III. Note that
imperfect resonance carriestwo nearly degenerate level
guaranteeing that the number of bound states remains
served upon changingmx0.

C. Other sources of nonideal transmission

The above analysis has been based ond scatterers mod-
eling the effects of an insulating layer in an SIN interfac
Assuming other sources of nonideal transmission at6L/2
we have to modify some of the above results: In order
describe junctions with potential stepsV S at the edges we
introduce the wave vectorknw5A2m(E2V S)/\ in the nor-
mal wire and distinguish it from the analogous quantityksc

5A2mE/\ in the superconductor. Withk[(ksc/knw
1knw /ksc)/2>1, the transmission probability takes the for
T52/(11k) ~see the Appendix!. In the presence of wea
resonances (T&1), Eq.~8! for the gaps in the Andreev spec
trum readsd«'4LA12Tucosxtiu/p, while the results for
strong resonances remain the same@see Eq.~9!#. A step in
the effective mass at the interface produces a similar re
with m(uxu.L/2)5msc andm(uxu,L/2)5mnw , the ratio of
wave vectors entering the parameterk takes the form
ksc/knw5Amsc/mnw. Finally, combining all three effects,
potential step, an effective mass discontinuity, and an in

FIG. 6. Discrete spectrum for a triple barrier generating narr
resonances@from a numerical solution of the quantization conditio
~7!#. The levels are pinned to the resonances; note that hole

resonance energies«̌ res grow with mx0, whereas electronic reso

nance energies«̂ res decrease. In region II~III ! the holelike~elec-
tronic! levels pair up such that the branches of imperfect resona
carry two bound states. The inset shows the lowest level nea
degeneracy pointmx0

d for different values of w (w5 j p/4, j
50 . . . 4).
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lating layer ~in the form of a d-function scatterer! at the
interface, the transmission probability can be written in t
form

T5
4kscknwmscmnw

~knwmsc1kscmnw!214V0
2msc

2 mnw
2 /\4

; ~12!

obviously, the various scattering mechanisms are nona
tive and Matthiessen’s rule is not applicable.

Slightly asymmetric junctions have essentially the sa
properties as the idealized symmetric ones. An NINI’N jun
tion with insulating layers of different transparency,Tmin
&Tmax, exhibits large imperfect resonances23 of height
t2(Eres)'Tmin /Tmax instead of perfect resonances with un
transmission. Furthermore,x r is now a continuous function
of energy; the discontinuous jumps byp are smeared~with
x r increasing monotonuously forT2L/2,TL/2 and bounded
for the opposite case withTL/2,T2L/2 ; note thatx r1x r 8

5p12x t, x r 8 the corresponding phase for a particle inc
dent from the left! and cosb changes rapidly but smoothl
between61 at the resonance energies. Since all terms
tering the quantization condition~7! are only weakly affected
by small asymmetries, the above discussion of the electro
properties remains valid for~weakly! nonsymmetric junc-
tions.

IV. TRANSPORT

We proceed with the investigation of the transport pro
erties of the symmetric SINIS junctions in region I~see Fig.
6! and concentrate on the situation characterized by str
resonances withG/L!1. Given the dependence of the qu
siparticle energy« on the phasew, the contribution of the
level to the supercurrent follows from a simple derivativ
I 5(2e/\)]w« ~a factor 2 has been included to account f
spin degeneracy!.

A. Generic case

We first consider the generic case where a level is pin
to an isolated~electronic! resonance. In this situation we ca
assume t1;1, t2}G/L and cos(dxt2a)2r1r2 cosb
} «/G1const ~see also Fig. 5!. Within this approximation
t1t2}G/L is small and linearly related tod«5maxw @«(w)#
2minw @«(w)# through the large slope 1/G. We then estimate
d«}]w«}G2 and find that each level contributes a sm
supercurrent, of orderG2.

B. Degenerate resonances

The phase sensitivity of the trapped levels is dramatica
increased close to degenerate resonances; see Eq.~11!. How-
ever, still assuming narrow resonances withG/L!1, the
supercurrent in general remains small: within our approxim
tion the contributions arising from a pair of nearly degen
ate levels cancel each other due to the symmetry]w« (1)5
2]w« (2) ~a more accurate analysis provides a residual c
tribution of orderG2, see Ref. 28!. Furthermore, the continu
ous part of the spectrum again contributes with a term

e
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order G2. The only situation producing a large current~of
order G) then is realized at the special degeneracy po
produced by an~electronic! resonance crossing the Ferm
level, where«̂ res(mx0

d )'«̌ res(mx0
d )'0, see Fig. 6. With its

energy«0
(1) described by Eq.~11!, this level carries a non

vanishing supercurrent of magnitude

I 05
2e

\

G2

16

sinw

A~mx02mx0
d !21~G/2!2 cos2~w/2!

. ~13!

With one channel open, we then find that a large criti
supercurrent

I c~mx0!5
eG

2\
FA11F ~mx02mx0

d !

G/2 G2

2
umx02mx0

d u
G/2 G

~14!

is realized near the special valuesmx0
d for the chemical po-

tential where« res
d (mx0

d )50 and forw5p20. This large su-
percurrent flow quickly vanishes asmx0 is tuned away from
these degeneracy points by an energy larger than the r
nance widthG, see Fig. 7. Below, we refer to such a tunab
SINIS junction as aresonant Josephson transistor~alterna-
tive schemes leading to a transistor effect make use of r
nant electromagnetic pumping29 or injection of quasiparticles
into specific levels via multiprobe devices, see Refs. 28,
and 15–17!. Note that the chemical potentialmx0 is not di-
rectly accessible but only through the gate voltageVg , thus
introducing the slopedmx0 /dVg as an additional characte
istic parameter of the device. Also, we point out that a sh
transistor effect requires the temperature to be low,kBT
,G.

The result~14! appears to be valid in the immediate v
cinity of a resonance crossing the Fermi level. Howev
comparing this result with the one derived from a fu
Green’s-function analysis31 of the long (L@j) SINIS junc-
tion with sharp resonances (G/L!1), one finds that the re
sult ~14! is exact at the degeneracy pointsmx0'mx0

d and, as

FIG. 7. Critical current versus chemical potentialmx0

5d\/2tu«F
for a sharp resonance withT50.1 andtu«F

510\/D.
The approximation~14! ~dashed line! agrees with the exact resu
obtained via the Green’s-function analysis at resonance and mid
between resonances,d50,6p, and provides a good estimate
between.
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it turns out, also midway in between two such degenerac
defining the parameterd52Su«F

/\'2(mx02mx0
d )tu«F

/\

12np, the result ~14! then is exact at all multiples o
p, d'np ~here,Su«F

denotes the action for an electron tr

versing the normal region@2L/210,L/220# at the Fermi
level andt[]«S is the travel time!. Furthermore, in between
the pointsd5np the deviations of Eq.~14! from the exact
Green’s-function result are small, see Fig. 7.

C. Josephson versus single electron transistor

Next we discuss the relation between the Josephson t
sistor and the superconducting single electron transisto32

The latter consists of two Josephson junctions separated
superconducting grain, usually referred to as theisland,
which is capacitively~with capacitanceCg) coupled to an
external gate electrode. In a more figurative terminology
might call this device a SISIS junction. While the chargin
energyEC5e2/2CS tends to fix the number of Cooper pai
on the island, the~conjugate! phase variable tends to be fixe
by the Josephson coupling energyEJ of the two junctions.
For the SSET, charging effects are dominant,EC@EJ , and
thus the total capacitanceCS of the island must be small~but
still33 Cg!CS). Moreover we assumeEC,D and hence the
ground state of the island contains an even number of e
trons at any gate voltage. Given this layout for the device,
expect the supercurrent to be suppressed by the ‘‘Coulo
blockade’’ effect.34 However, for specific valuesVg

d of the
gate voltage the energies of two even charge states diffe
by 2e become degenerate. At these ‘‘Coulomb resonanc
the suppression of the Josephson current through the isla
lifted and we find a large superflow. We can control t
supercurrent by changing the gate voltage and hence
SSET constitutes a transistor device.

The above discussion shows that the SSET and the
are like devices, switching on as levels become degene
while for the SSET these levels belong to fixed charge sta
of the island, for the RJT these levels derive from transm
sion resonances. In both cases the degeneracy is lifted b
Josephson couplingE cos(w/2), where the coupling constan
E is related to the transmission of the NIS boundaries,
below. Furthermore, the SSET and the RJT exhibit larg
the same current-voltage characteristic close to these l
degeneracies,

I 5
2e

\

E2

4eg

sinw

A~Vg2Vg
d!21@E cos~w/2!/eg#2

, ~15!

where the parametersE andg have to be specified for eac
device. In fact, Eq.~15! yields the current through a symme
ric SSET33 if we substitute the energy parameterE by the
coupling energyEJ and the dimensionless constantg by the
small ratio Cg /CS . Using the Ambegaokar-Baratof
relation35 and the Landauer formula,36 we can reexpress th
coupling energy in terms of more microscopic quantitie
EJ5NTD/4, where N}kF

2A denotes the number of ope
channels in the tunnel junction,A denotes its area, andT its
transmission coefficient. On the other hand, the RJT invol

ay
0-7
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the parametersE5G/2 andg5]mx0 /]eVg . Again, the reso-
nance width is determined by geometrical quantities:G
'TL/p, whereT is the transmittivity of the insulator laye
in the triple barrier.37 For flat inner barriers the quasiclassic
method provides the simplificationL;2(mx0«L)1/2, with
«L5\2p2/2mL2. Note that, while charging effects domina
the physics of the SSET these are much less relevant fo
RJT as the latter involves an ‘‘open wire’’ rather than
‘‘closed island;’’ the adiabatic joints to the superconducti
banks provide reservoirs that effectively screen the cha
transport through the wire.

From Eq.~15! we can determine the critical supercurre
I c as a function of the gate voltage nearVg

d . Apparently,
I c(Vg) defines a current peak of widthdVg5E/eg that at-
tains its maximumI max5eE/\ at the degeneracy point. W
estimate its slope by the ratioI max/dVg5e2g/\ carrying the
dimension of a conductance. For the SSETg!1 is deter-
mined through the small capacitance ratioCg /CS . The
analogous quantity for the RJT is of order unity, implyin
that the RJT shows a more prominent slope: w
]mx0 /]eVg5]dmx0 /]eVg

d, and ]dmx052(«F2mx0)/d, we
have to determine the suceptibility of the channel widthd
with respect to the gate voltageVg . Making use of simple
electrostatic considerations one easily finds that]mx0

d

;aB /«F , whereaB denotes the Bohr radius in the semico
ductor material.38,39 Hence,g;aB /d and with aB of order
10 nm typically we arrive at a value of order unity for th
parameterg.

Comparable energy scalesD;Amx0«L can be reached in
realistic short SINIS junctions@L&p(mx0/2m)1/2\/D#. Fur-
thermore, we can optimize the performance of the RJT
tuning the transparency of the insulating layers~the Diracd
scatterers! until the resonance widthG approaches the reso
nance spacingL; such a choice of parameters produces s
isolated current peaks of maximum height. On the ot
hand, the maximum superflow through the SSET scales w
the numberN of open channels,I max5eNTD/4\, while the
RJT as defined above is generically a single-channel de
with a critical supercurrentI max5eTAmx0«L/\p; going over
to a many-channel RJT device, resonances from individ
channels superpose atdifferent values for the chemical po
tential and hence do not add up in general.40 Also, a smooth-
ing of the resonance structure has been observed in the
merical results by Wendinet al.6

In summary, superconducting transistors can be desig
in terms of ‘‘charge’’ ~the SSET! or ‘‘phase’’ devices~the
JT!. In the charge device, the island is separated from
superconducting leads through insulating barriers. On
other hand, switching channels in a perfect SNS juncti
one obtains a phase device with a~large! critical currentI c
5e/(t01\/D) determined by the effective timet01\/D
the charge needs to traverse the normal wire.13 Such devices
with perfect interfaces are difficult to fabricate — in reali
we always have to account for a nonideal transmissionT
,1 through the SIN interfaces and we end up with a Fab
Perot-type resonator device. Sequential tunneling through
interface barriers then reduces the supercurrent by a fa
T2 in general. However, tuning the chemical potential to
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scattering resonance, the critical current of the junction
mains large,I c'eG/2\ of orderT — again, the critical cur-
rent is given by the time\/G the charge spends in the junc
tion.

A second result we wish to emphasize here concerns
fact that the critical current is carried by the lowest quasip
ticle level alone. This has been demonstrated for the S
device in Ref. 13 and above for the SINIS junction for t
case of strong resonances~deviations from the single-leve
result are numerically~but not parametrically! larger away
from weak resonances!. The importance to know the dispe
sion of this level then provides a gooda posteriorireason for
studying the quasiparticle spectrum in such junctions. Co
sponding spectroscopic experiments can be realized u
multiprobe devices as proposed in the work of van We
et al.30
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APPENDIX: RESONANCE STRUCTURES IN ONE
DIMENSION

We consider a one-dimensional potential landscapeV(x)
confined to the interval@2L/2,L/2#. As a first example, we
concentrate on a symmetric barrier consisting of a bro
@mV252]x

2V, \V!V(0)# and smooth potential barrier
bounded by steps of heightVS5V(L/220)2V(L/210)
~see the inset of Fig. 8!. Below we make use of the wav
vectorsksc5A2mE/\ and knw5A2m(E2VS)/\ describing
particles of energyE in the wire close to the boundaries. Th
global transmission amplitudet exp(ixt) is most easily ob-
tained by determining the transfer matrix23 of the barrier be-
tween2L/220 andL/210 and we find the result

FIG. 8. Complex transmission amplitude through a smooth b
rier bounded by steps. With decreasing energyE the inversez
51/t exp(ixt) moves counterclockwise on an ellipse, the center
which is positioned atir is/t i and shifts up the imaginary axis. Ast i

drops belowtcrit the perfect resonances atP andQ collapse at the
bottom of the ellipse (P→S←Q) and transform into an imperfec
~double! resonance.
0-8
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t exp~ ix t!5
t i

cos~x t i !2 ik sin~x t i !6 ir is
, ~A1!

wheret i exp(ixti) andr i exp(ixri) denote the transmission an
reflection amplitudes of the inner smooth barrier. In Eq.~A1!
we have introduced the definitionsk5(ksc/knw1knw /ksc)/2
and s5(ksc/knw2knw /ksc)/2 containing the information
about the steps. In our example,k, s, and t i show a weak
dependence on energy and remain almost constant, w
exp(ixti) oscillates rapidly. The derivation of Eq.~A1! makes
use of the relationx r i2x t i5p/21pn, nPZ, which fol-
lows from the unitarity of the scattering matrix; the ter
6 ir is changes sign at each perfect resonance oft i . Since
the inner barrier was assumed to be smooth, we expectt i to
exhibit no resonances at all and the termr is always carries a
positive sign.

Next, we show that Eq.~A1! qualitatively reproduces the
transmission amplitude shown in Fig. 2. We define the fu
tion z51/t exp(ixt), whose four argumentsx t i, k, s, andt i
depend on the energy. Since the inner scattering phasex t i is
the most energy sensitive argument, we minimizeuzu with
respect tox t i ~keepingk, s, andt i fixed at a given energy
E). Thus we obtain the stationary phasesxmin

t i (E) belonging
to the minima ofuzu. Moreover, we can introduce the com
plex valued function zmin @E#5z @xmin

t i (E),k(E),s(E),
t i(E)#, which is roughly constant when compared toz@E#.
We can estimate the resonance energies by solving the e
tion z@Eres#5z min@Eres# for Eres. Apparently,z@E# describes
an ellipse in the complex plane with half axes 1/t i andk/t i .
The center of this ellipse is shifted away from the origin
ir is/t i . Figure 8 illustrates the behavior ofz min when r i
grows from 0 to 1 in the intermediate regionEP@V(0)
2\V/2, V(0)1\V/2# @with a smooth inner barrier,r i is
strictly monotonous,r i'0 for E.V(0)1\V/2 and r i'1
for E,V(0)2\V/2]. The distance from the origin to th
bottom of the ellipse~point S) is always extremal. At high
energies where 1't i.1/k5tcrit , we observeperfect reso-
nances: withuzminu51 these resonances are realized at
symmetric pointsP andQ where the ellipse touches the un
circle, see Fig. 8. Ast i decreases, the perfect resonanc
approach each other (P and Q move towardS) and merge
with S as t i↘ tcrit . At energiesE&V(0) (⇒t i,tcrit) the
reflection coefficientr i drops to zero, andS becomes the
closest point to the origin withuzminu5(k2sr i)/t i.1; the
resonances then have paired up and have becomeimperfect,
with a height decaying rapidly with decreasing energyE.

Physically, this resonance structure originates from
interplay of two competing transparencies. The transmiss
probability through the potential steps is almost constant
much smaller than the transparency of the inner barrier
E@V(0). In this regime the particles propagate freely a
are reflected by the steps alone; thus we observe perfect
nances, and the shape of the smooth inner barrier only in
ences the resonance spacing. On the other hand, foE
!V(0) the inner barrier behaves like a hard wall while t
steps are comparatively transparent. The global transmis
through the barrier bounded by the steps is suppressed b
tunneling through the classically inaccessible region. T
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resonances of the subsystems consisting of a step and
tential hill account for the global imperfect resonances. N
that the barrier bounded by steps generates pronounced
nances only ifVS*0.7 V(0).

In a second step we investigate the transmission am
tude through three arbitrary symmetric potential barriers, i
a triple barrier, see Fig. 9. The inner barrier is again smoo
whereas the two outer barriers@characterized by the trans
mission and reflection amplitudesto exp(ixto) and
r o exp(ixro)] are assumed to be equal. Thus the global tra
mission amplitude takes the form

teix t
5

t i to
2ei (x t i12x to)

112r i r oei (x t i1x to)2r o
2ei2(x t i1x to)

. ~A2!

In order to determine the resonance structure we evaluate
extrema of the modulus of the denominator in Eq.~A2! with
respect tox t i1x to ~we fix t i andto , which are less sensitive
to changes in energy!. A direct calculation yields the two
extremal conditions cos(xti1xto)52ri(11ro

2)/2r o ~I! and
sin(xti1xto)50 ~II !. Elementary manipulations show that th
transmission amplitude exhibitsperfect resonances in the
first case. But condition I can only be satisfied as long
r i<r crit(r o)52r o /(11r o

2), i.e., for a reasonably transpare
inner barrier~see Fig. 9!. The extremal condition II requires
a second distinction. Condition II~a! reads x t i1x to

52pn, nPZ. The critical points of this type always belon
to local minima oft. Finally, we discuss condition II~b!, x t i

1x to5p12pn, nPZ, which refers to local minima when
r i,r crit and characterizesimperfectresonances in the regim
r i.r crit . Since the internal barrier was assumed to
smooth, the regime of perfect resonances lies at high e
gies E.V(0)1\V/2, wherer i'0 andr o@r i . At low en-
ergiesE,V(0)2\V/2, the resonances are always impe

FIG. 9. The solid curve in the (r o ,r i) plane characterizes th
energy dependence of the inner and the global reflection amplitu
in a symmetric triple barrier as shown in the inset. The domains
perfect and imperfect resonances are separated by the c
r crit(r o). In an narrow interval;\V aroundV(0) the reflection
coefficent r i

2 drops from 1 to 0; in this energy ranger o can be
considered as a constant.
0-9
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fect. Within the crossover region the perfect resonances
tract each other pairwise and collapse to become imperfe
the energy decreases~see Fig. 2!.

Other sources of resonances are discontinuities of
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force ]xV and effective mass steps. Technically they can
treated like Diracd scatterers and potential steps, resp
tively, as can be easily checked making use of the trans
matrix formalism.
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