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Relativistic flux quantum in a field-induced deterministic ratchet
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We address the problem of a relativistic particle in a periodic asymmetric potential of the ratchet type. As a
solid-state realization of such a particle, we consider a single-flux quantum in a long annular Josephson
junction embedded in an inhomogeneous magnetic field. A determifistithermal regime is theoretically
investigated and compared with numerical results. The ratchet velocity of the relativistic fluxon is found
qualitatively different from that of a nonrelativistic particle.
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I. INTRODUCTION dh
Pxx— @tt—SIHQD_a@t:&_ﬂ_ Nac(t), (1
Motion in a periodic potential lacking reflection symme-
try, known as a ratchet potentiahas attracted a consider-

able interest in past years. The main interest was initially i . .
the thermal ratchef® due to the intriguing possibility of r|ength normalized to the Josephson penetration leagth

extracting useful work from nonequilibrium or time- andt is the time normalized to the inverse of the plasma

correlated noise and due to the relevance of such a system ffgquencyw;=c/\;, with ¢ the maximum velocity of elec-
the understanding of directed motion in biological systemsfromagnetic waves in the junctidwihart velocity. The «
so-called Brownian motors. Recently thdeterministic term accounts for the quasiparticle current, thegsi@rm
ratchef® has also been addressed. The net unidirectionaccounts for the Josephson curreptis proportional to the
motion exhibited in ratchet potentials is the key feature poinstantaneous voltage; is the dc bias current [see Fig.
tentially interesting for applications. Magnetic flux 1(a)] normalized to the critical current,, 7,. iS an ac nor-
cleanind® in superconducting films, fluxon diodeSpr volt-  malized bias current, aridis the magnetic field normalized
age rectifiers are examples of proposed applications of thg the critical fieldBy=4m\,J,/c of the junction. For the
ratchet effect. In Josephson-junction systems, a voltaggnnylar geometry shown in Fig(a the x coordinate in Eq.
rectifier” based on a three-junction superconducting quanty) s the curvilinear coordinate arfuis the radial compo-
tum mterfere_nce device and a fluxon ratcfidtased ON €S°  nent of the external field. For this geometry the boundary
pecially engineered arrays have been theoretically anaonditions of Eq(1) are
experimentally”* investigated. a
Until now, principally the nonrelativistic regime of par-

where ¢ is the quantomechanical phase differencés the

ticles in ratchet potentials has been addressed. Here we ad- ex(0)=px(l), (2a)
dress an experimentally controllable way to study both the
nonrelativistic and relativistic regime of a particle in a o(l)=¢@(0)+m2m, (2b)

ratchet potential. To this purpose, we consider a

5 . . . . . .
well-knowri® solid-state example of a relativistic particle: @ oo tho integem is the number of flux quanta trapped in
single-flux quantum in a long Josephson junction. To appl34[he junction

an effective ratchet potential to the fluxon in the junction we To generate an inhomogeneous maanetic field we can bias
consider the inhomogeneous field generated by a control cur- 9 9 9

rent flowing in a properly shaped control line deposited onWith a control currentic a control line of variable width
top of the long junction. We remark that though here we
focus on the so-called “rocking ratchet a wide variety of (a)
ratchets can be easily realized in our physical system with
similar procedures. For example, a “flashing ratcHét”
could be realized if an ac control current were used. More-
over, the thermal problem could also be investigated if the
thermal noise of the dc bias current were considered or ar
artificially colored current noise were added.

Main topics presented here concern the equation of mo-
tion, the depinning currents, the velocity-force relation, and
the ratchet velocity of the fluxon forced by a square-wave
drive in the deterministi¢nonthermal regime.
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II. FIELD-INDUCED SAWTOOTH RATCHET FIG. 1. (a) A way to apply a sawtooth magnetic field to a long
annular Josephson junctigeshadow pattem (b) The effective po-

The model equation for a long, unidimensional junction intential and force experienced by a fluxon when the sawtooth field is
an inhomogeneous field(x) is'®’ turned on.
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W(x) deposited on the top dand insulated fromthe junc-

tion, as it is shown in Fig. (B). In this way we generate the

field
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where?C is the control current normalized to the critical
current of the junctionl, is the length of the junction normal-
ized to\ j, andw(x) is the width of the control line normal-
ized to the physical width of the junction.

h(x)= ch (3) From relation(3) a control line with a width[see Fig.
2w(X) 1(a)] varying as
|
WhaW il L
max*Yminf 0<x<rL
W(X) _ Wminrl— + (Wmax_ VVmin)x
B W Wi (1= 1)L
max mln( ) rL<X<L,

Wmak(l_ r)I-_(vaax_vvmin)(x_rl—)

where W,,,=max{W(X)}, Wiin=mind{W(x)}, and 0<r<1
gives us the sawtooth normalized field

Ye

ho+ Tx o<x<rl,
h(x)= , (4)
h0+ycl—(1_°r)(x—rl) rl<x<lI,
where
vl 1 Wipa— Wi
hO:’)/TC_  ye= Yel Mmax” ! min) 5)
Wax 2(Wma>3’\/min)

The corresponding forcing term in the E@) is then

Ye

gh - T
X T0= Ye
C(1-1)

o<x<rl,

(6)

rl <x<l.

We should remark that also alternative ways to generate
spatially asymmetric potentials are currently under
investigation*® One of them is based on suitable modifica-
tions of the curvature of the annular junction. In that ¢&se
the externally applied magnetic field is spatially homog-
enous, but the field experienced by the junction is inhomo-

geneous.

Ill. EQUATION OF MOTION

A fluxon with center of mas§(t) traveling in the junction
with velocity £=u is described by

¢=4 arctare?* "9, 7)
where y=1/J/1—U? is the relativistic factor. Following the
classical energetic approaththe equation of motion for
&(t) is obtained inserting solutiof¥) in the power-balance
equation

dHsg [ [ L,
=77f (Ptdx_f f(X)<pth—af erdx, (8
dt 0 0 0
where
"1 2 1 2
Hsg= fo §<px+ E(pt-i-l—COS(p dx.
The resulting equation is
BRI et B S 9
with
— 4 sinh(y1/2)
FO( f) = 77% arctar{m} s (108)

F(&)=— Yo iarcta+

r 2w cosh y(é—rl/2)]

c 4 .
T-r 5-arcta

sinh(yrl /2) }

sinH y(1—r)1/2] }

cosHy[&—(1+n)l/2]} ]
(10b)

For very long junctions the forcing terms simplify to

Fo(él—m)=9 0<é<l, (113
e o<é<rl

F(&1—w)=F(¢§)= (11b
+1% rl<g<l.

A plot of the effective forceF (&) and the corresponding
potential acting on the fluxon is given in Fig(hl for both
the static (y/=1) and dynamical {=5) cases. Restricting
ourselves to very long junctions, we approximate the forcing
terms in Eq.(9) with Egs.(11).

Some simple analytical result can be extracted from Eq.
(9) when inertial effect§term in du/dt in Eqg. (9)] can be
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neglected. This can be done for time-independent forcing, 1.5

because what mattépsis the stationary power-balance ve- (2) 1-trapped fluxon 1.0
locity. For time-dependent forcing, we can restrict ourselves 1.0 N, (0)~5——
to quite largea (quite damped junctiongy=0.1, say, or to e o 1=0 | 1 (0.1) ~ $0 5
an “adiabatic” forcing (i.e., a forcing with a periodT “t’ 0.5——¥.=0.1 (_3“ '
>a~1). Also, the chosen waveform of the forcing could 3 0, (0.1)— g >
further simplify the analysis. For example, for a square-wave g 0.0 80'0
driving, we are substantially concerned with sequential ap- & e 0.1) b=
plication of a constant forcing. Here, if the frequency of the -0.-51 55
square wave is not so high, we can expect the inertial effects /_ n-(0.1) I=60
to be negligible also for not so damped junctions. So, for -1.01 -0) 0=0.5
adiabatic time-dependent forcing, for quite damped junc- =2/3 -1.04
tions, or for quasiadiabatic square-wave forcing and moder- -1.5 o o o 00 01 02 03
filger:yt(;jamped junctions, we can reduce our equation of mo- <g2> o voltage T,
FIG. 2. (a) Current-voltaggforce-velocity characteristic of the
4a § junction with one trapped fluxon when the ratchet potential is off

J . " o
_ = —[—p&é+U =p+FE(&). (12 (open squargsor on(solid squares (b) The critical and depinning
T ,/1_52 ag[ ¢ (O)]=n+F(&). (12 currents versus the normalized control current. The points are nu-
merical results, the lines are analytical results.

appears when these critical values are reached, and the same
In other cases, the more general E8) should be used. citica) current values as the zero-fluxon case can be ex-
Again, we should remark that “quasiparticle” description pected in this case. Thus these critical currents can be ob-
equations(9) and its noninertial version equati@t?), can-  tgined usinge= ¢, in Eq. (1). For the depinning currents

not describe possible effects related to the wave nature of thg= " \ve note that the fluxon is at reginned until these

fluxon, as, for example, the excitation of resonances due tgyjtical values are reached. So we can evaluate them putting
the interaction of the fluxon with self-generated plasma-gzO in Eq.(12). The result is

modes, an effect knowf?’ from similar systems in a peri-
odic potential.

+_a_ __ /c
7. =1 1—r’ e 1+ r (139

IV. SINGLE FLUXON DEPINNING CURRENTS

AND RATCHET VELOCITY - Ye

y Md 1—r"

(13b)

In Fig. 2(a) is shown the effect of the sawtooth potential
on the current-voltagg.e.,  versus( ¢;)] characteristic of a
junction with one trapped fluxon. Noticing that the mean
voltage generated by a fluxon moving with velocityis
given byV={¢,)=27u/l, and that, from Eq(12), » means
a force, we can think of the plots in Fig(a2 also as force-
velocity characteristics. Results refer to a junction wlith — 1T ET)—£0) |

=1, -

A comparison between numerically and analytically calcu-
lated critical values versus the control current is given in Fig.
2(b). The agreement is found satisfactory.

The mean velocity of the fluxon with the inhomogeneous
forcing is

=60, r=2/3, and are calculated integrating EJ) with
forcing term Eq.(6), 7,.=0, andm=1 in boundary condi-
tions equationg?2). As seen, when the ratchet potential is
turned on ¢.#0), the current amplitude of the step is re-
duced, and a current range with zero-mean vol{@geo ve-
locity) appears. T fT dt= f' dé
The critical currentsp, and depinning currentgy that 0 0 &
appear in Fig. @) can be calculated as a functiongf. The
critical valuesz, can be found noticing that the fluxon dis- From Eq.(12) we have

T T

where the revolution period is

— , 14
r\/(401/7'r)2+(7]— 77d+)2+(1_r)\/(4a/77)2+(77— 74)° 0
(7—mnq) (n—nq)
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1.0 (a) p— 0 0<A<rt,
- ug(A)= U(A)/Z 7]§<A<— 04 » (16)
[u(A)+u(=A)li2 A>—nq4.

Analytical prediction equatior(16) is compared with nu-
merical results in Fig. @&). The static(l), active (ll), and
overdriven(lll) regions typical of the ratchet effect can be
a=0.2 recovered in the plot. As a qualitative difference with respect
o 0=0.02 to nonrelativistic particles, the active region for our fluxon
© Anal shows a deviation from the quasilinear tréfid’exhibited in

L L L 1 " it H it ;

10 05 0.0 05 10 nonrelativistic motion. The relativistic natur@e., the ap

o
»
T
I
)
S

u o voltage
~2
1]
o

proaching of a limit ratchet velocity due to the existence of a
n o current limit velocity in our systemis more and more pronounced
* e asa values are decreased. As seen, when the full relativistic
nd ?d regime is achievefla=0.02 in Fig. 3b)] the ratchet velocity
05| (b) . ®,~0 versus the forcing drive amplitude takes the peculiar form of
i | I I 1=60; v.=0.1 a Wln_dow in the _act|v_e region. In _o'ghe_r Wor_ds, t_he ratchet
04 : r=2/3- °n=0 velocity of a particle in a full relativistic regime is almost
L1 i — independent on the forcing amplitude in the active region
X 03 ! 7 «=0.5 and vanishingly small otherwise. As a further consideration,
I ! ° =02 inspection of Fig. &) shows that the efficiency of this kind
021 ; ° =002 of Josephson fluxon diode is maximized in the relativistic
I Anal. regime.
0.1 In the adiabatic limit, the ratchet velocity as a function of
0.0 J ornen », in other words, the modification of the current-voltage
: X ‘ . characteristic due to a square wave, can be constructed piece-
0.0 02 0.4 0.6 wise using Eq(14). ForA<Acr=(77d*— 14 )12 we have
A _ _
FIG. 3. (a) The fluxon velocity as a function of the bias current Lu€ 1;+A)-;u( n—A)] n<mq —A,
for different values of dissipatiom. (b) Ratchet velocity of the
fluxon induced by a square-wave ac forcing in the adiabatic limit. U( n+A) 3 3
The constant force i=0. % g —A<n<m4 +A,
- +
So, the full-step extension will be analytically described by UrR(7:A) =1 0 Mg TAS <79 — A,
the pieces u( 7,2 A) s — A< < 7l +A,
) [u(n+A)+u(n—A)] 7> A,
Uy 1+ Fape- L 2
r 1-r’ (17)
Ye Ye while for A>A;, we have
U(7],’Yc,r):< 0 _1_|’S77ST’ (15) _ _
([ +uty-A1
_ . Ye > 7= T4 ,
| U <o _
@ nq —A<n<nq —A,
Numerically calculated velocity-current curves are compareduR( mA)= Lu(y+A) +u(y—A)] g —A< <754 +A,
with the analytical description equatidh5) in Fig. 3a). 2
The ratchet velocif§*® ug is the velocity of the particle W—A)

averaged over the periof,, of an ac drivez,(t). If the ng A< <74 TA,

external drive is a square wave of amplitudleand period 2

Tex. the ratchet velocity of our fluxon in the “adiabatic” [u(z+A)+u(y—A)] +

limit (Tey—%,we,—0) can be deduced by Eqé&l4) and \ 5 7> 1g TA.

(15 as (18)
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FIG. 5. Trajectory of the center of mass of the fluxon under the

effect of the ac drive for two different amplitudes of the square

wave. The effective potential seen by the fluxon is included as a

guide for eyes. The angular frequency of the drivevwig=0.001

X 21, and the bias current ig=0.

FIG. 4. (a) Modification of the current-voltage characteristic of
the fluxon induced by a square-wave drive in the adiabatic li{m)t.
Same as irfa) but here we are not in the adiabatic limit. The ratchet
voltage (velocity) at =0 for this drive is shown in the inset.

V. SUMMARY

The modification of current-voltage curves induced by a We considered the problem of a relativistic particle in a
square-wave drive of increasing amplitude described by Eqsatchet potential and we individualized a physical realization
(17) and(18) is shown in Fig. 4a). As expected, a crossing for such a particle in a fluxon trapped in a long annular
of the zero-current axis at a ratchet voltagg=2wug/I is Josephson jun.ction_ embe_dded in a sgwtooth magnetic field.
found. In Fig. 4b) we report the numerical result obtained FOr very long junctions simple analytical results have been

for a faster square-wave forcing: synchronized current step@und: concerning the depinning currents, the |-V curve, and
d g- sy IOt e ratchet velocity of the fluxon under an adiabatic square-

wave forcing. The ratchet velocity of our relativistic particle

N ) . X 95 found qualitatively different from the one known for non-

nization of the fluxon motion with thenth harmonic or the  re|ativistic particles. Only simple deterministic, noninertial

nth subharmonic of the ac drive. Obviously, also the ratchegffects have been discussed here, but the proposed physical

velocity (voltage at 7=0 is now quantized:'® The same system could deserve further attention because it allows an

general trend shown in Fig. 4 was found in numerical simu-experimentally controllable way the physics of relativistic

lations performed with a sinusoidal ac drive. particles in deterministic or thermal ratchets to be investi-
Finally, in Fig. 5 we show the time evolution @{t) at  gated.

two values of amplitudéA of the square wave. In the left
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