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Sergey V. Kuplevakhsky
Department of Physics, Kharkov National University, 61077 Kharkov, Ukraine
and Institute of Electrical Engineering, SAS, 842 39 Bratislava, Slovak Republic
(Received 17 April 2000; published 8 January 2001

We solve the problem of exact minimization of the Lawrence-Doniddb) free-energy functional in
parallel magnetic fields. We consider both the infinite in the layering direction(tesafinite LD mode)l and
the finite one(the finite LD mode)l. We prove that, contrary to a prevailing view, the infinite LD model does
not admit solutions in the form of isolated Josephson vortices. For the infinite LD model, we derive a closed,
self-consistent system of mean-field equations involving only two variables. Exact solutions to these equations
prove simultaneous penetration of Josephson vortices into all the barriers, accompanied by oscillations and
jumps of the magnetization, and yield a completely new expression for the lower critical field. Moreover, the
obtained equations allow us to make self-consistent refinements on such well-known results as the Meissner
state, Fraunhofer oscillations of the critical Josephson current, the upper critical field, and the vortex solution
of TheodorakidS. Theodorakis, Phys. Rev. 8, 10172(1990]. Our consideration of the finite LD model
illuminates the role of the boundary effect. In contrast to the infinite case, an explicit analytical solution to the
Maxwell equations of the finite case does not preclude the existence of localized Josephson vortex configura-
tions. By the use of this solution, we obtain a self-consistent description of the Meissner state. Finally, we
discuss some theoretical and experimental implications.
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[. INTRODUCTION As has been shown within the framework of the micro-
scopic theony, the resolution of these contradictions lies in

We obtain exact analytical solutions to the phenomenothe analysis of singular mathematical structure of free-energy
logical Lawrence-Doniach(LD) model for layered super- functionals of layered superconductors. In particular, the sys-
conductors in external parallel magnetic fields. We considetem of the Maxwell equations in layered superconductors
both the infinite in the layering direction cagthe infinite  contains a constraint relation that physically constitutes the
LD mode) and the finite ongthe finite LD model. This  conservation law for the total intralayer current. According
paper should be considered as a logical continuation of oug this constraint relation, the phases of the superconducting
previous study of layered superconductors on the basis of grder parametefthe pair potential at different layers turn
microscopic approacn. o _out to be mutually dependent. The minimization of the free
~ Atpresent, the LD model is widely used for the descrip-gnergy with respect to the phases must necessarily take into
tion of low-T, layered superconductors and superlattices agccqunt this fact. The neglect of mutual dependence of the

wellhas hingTC%t‘lsgperc_o_ndLlJct(()jrs e_xhibiTing the inngi? ‘rjlo' phases leads to an incomplete set of mean-field equations. In
sephson effect.” surprisingly, despite a large number of the- present paper, we elucidate this mathematical issue in
oretical publications on this subject, it has not been realize Il detalil

yet that the problem of the parallel magnetic field is exactly Section Il of the paper is devoted to the infinite in the

solvable. Up to now, actual analytical solutions with d'ffer'éiayering direction LD model. In Sec. Il A, we concentrate on

ent degrees of accuracy have been obtained only for rel ¢ minimizati fthe LD f functional. Usi
tively simple particular cases of the infinite LD model: the exact minimization ot the ree-energy functional. sing

Meissner stat&, Fraunhofer oscillations of the critical Jo- 9€neral field-theoretical arguments, we prove that the Max-
sephson curreritthe upper critical fieldH .,(T), "2 and the well equations of the LD model contain an infinite number of
L c l

vortex statd in the intermediate field regime. unphysical degrees of freedom that cannot be eliminated by

Unfortunately, the calculations of the lower critical field IMPOSing a gauge condition. We achieve the elimination of
H.,,2° based on the assumption of isolated Josephson vothese redundant degrees of freedom by minimizing the free
tex penetration, raise questions. In these calculations, ornergy with respect to the phases, taking account of the con-
employs an anisotropic continuum approximation outside th@ervation law for the total intralayer current. In this way, we
so-called Josephson vortex core regibrgompletely ne- obtain a complete set of necessary and sufficient conditions
glecting the intrinsic discreteness of the LD model. As hasof an unconditional minimum of the LD functional. These
been recently shown by Farld,a set of equations thus ob- conditions constitute a remarkably simple, closed, self-
tained has no physical solution. Furthermore, the calculationsonsistent system of mean-field equations involving only two
of a triangular Josephson vortex lattidealso based on the variables: the reduced modulus of the pair potentthke
assumption of the existence of isolated Josephson vorticesame for all the superconducting layeend the phase dif-
are at odds with the exact vortex solution of Theodorékis, ference(the same for all the barriersin addition, we prove
valid in the same field range and exhibiting full homogeneitythat inhomogeneous in the layering direction field configura-
in the layering direction. tions do not correspond to any stationary points of the free
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energy. As a result, contrary to the prevailing vigw;*%*3 -
the infinite LD model does not admit any solutions in the .
form of isolated Josephson vortices.
In Sec. 11 B, we proceed to exact solutions of the mean- ® v p
field equations of the infinite LD model describing major H i
physical effects. We arrive at a new scenario of the flux L, Ly Y

penetration aH;;: We show that Josephson vortices pen-
etrate all the barriers simultaneously and coherently, forming
homogeneous field distribution in the layering directi@n
“vortex plane”). The corresponding lower critical field is
HC1=2(7rep)\j)*1, where p is the layering period,\;
=(8mejop) Y2 is the Josephson penetration depth, wih N
being the critical density of the Josephson current. We show F'CG- 1. Infinite LD model: the geometry of the problem. Super-
that the magnetization exhibits oscillations and jumps due t(gonductlng layers are represented by horizontal solid black lines.
successive vortex plane penetration. We also obtain all well- PO . . ,
known limiting casegthe Meissner state, Fraunhofer oscil- the_ory. This discussion casts light on the actual domain of
lations of the critical Josephson current, the upper criticaV@lidity of the LD model.

field H.»(T), and the vortex solution of Theodorakigith

self-consistent refinements. All these results stand in com- Il. INFINITE LD MODEL

plete agreement with our previous microscopic
consideratiort.

In Sec. lll, we consider the finite, both in the layering
direction and along the layers, LD model. We show that th g
emergence of additional boundary conditions in this cas@Pitrarily large. _
completely eliminates unphysical degrees of freedom of the e begin by reminding basic features of the LD motiel.
Maxwell equations and makes minimization with respect to!‘n this r.n(,),dell,.the temperatufieis assumed to be close to the
the phases impossible. An explicit solution to the Maxwell INtrinsic” critical temperatureT, of individual layers:
equations obtained in this section, in contrast to the infinite
case, does not preclude the existence of localized Josephson Teo— T )

In this section, we consider an infinite in the layering
direction LD model. One of the dimensions of the system
long the layers is taken to be finite, although it can be made

vortex configurations. As regards the physical effects, we Teo

derive exact analytical expressions for the order parameter,

the currents and the local magnetic field describing thelhe superconductingS) layers are assumed to have negli-

Meissner state. gible thickness compared to the intrinsic coherence length
In Sec. IV, we present a brief summary of the obtained{(T)7~ Y2, the penetration depth(T)= 72 and the lay-

results and discuss some theoretical and experimental implering periodp. Taking the layering axis to be choosing the

cations. In Appendix A, we obtain an explicit solution to the direction of the external magnetic fielti to be z[H

Maxwell equations in the infinite case. We also consider a=(0,0H)] (see Fig. ], assuming homogeneity along this

variation of this solution induced by variations of the phasesaxis and settingi =c=1, we can write the LD free-energy

In Appendix B, we discuss relationship to the microscopicfunctional as

<1.

débn PHAT)  fhe & 1
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np

q)n,nfl(Y) = (Dn,nfl(y) - 26[

(n—

dx A(x,y),
Lp

¢n,n—1(y) =dn(yY) = dn-1(Y).

PHYSICAL REVIEW B3 054508

the number of independent Euler-Lagrange equations is less
than the number of variables. In other words, the system of
Euler-Lagrange equations contains unphysical degrees of
freedom whose number is equal to the number of Noether's
identities. Unusual is, however, an infinite number of identi-

HereA=(A,,A,0) is the vector potential, continuous at the ties (5). Indeed, in continuum gauge theoriesich as, e.g.,

S layers: A(np—0,y)=A(np+0y)=A(np,y); W, is the
length of the system in the direction W,—); f,(y)[O

the Ginzburg-LandaGL) theory of superconductivifythe
number of Noether's identities is equal to the number of

=<fn(y)<1] and¢,(y) are, respectively, the reduced modu- independent parameters of the relevant gauge gidophe

lus and the phase of the pair potentigl(y) in the nth su-
perconducting layer:

An(y)=A(MTf(y)expdn(y), ©)

with A(T) being the intrinsic gapA (T) = 7Y2]; H(T) is the
thermodynamic critical ﬁeldr(T)=2aphr‘1 is a dimen-

case of superconductivity, we are dealing with the electro-
magnetic one-parameter grow(1).] Thus, by imposing
gauge conditions in continuum gauge theories, one com-
pletely eliminates all unphysical degrees of freedom. By con-
trast, in the discrete LD theory a single available gauge con-
dition cannot eliminate an infinite number of unphysical

sionless phenomenological parameter of the Josephson intéfegrees of freedom resulting frof). The resolution of the

layer coupling (G<ap,<1). The local magnetic fieldh
=(0,0h) obeys the relation

_IAYXY)  9AKXY)

h(x,y)=—2 Ny @

A. Exact minimization of the LD functional

problem of the remaining “infinity minus one” unphysical
degrees of freedom lies in implicit mutual dependence of the
variations with respect to the phasg¢gs at differentSlayers.
Below, we demonstrate this dependence explic[tBee re-
lation (12).]

To finish with the discussion of5), we point out that
these same identities hold also for the LD model with decou-
pled Slayers[whenr(T)=0]. However, now the number of

Our task now is to establish a closed, complete, selfunphysical degrees of freedom is equal to the number of
consistent system of mean-field equations for the pair poterPhysically independent systenpene identity (5) per inde-

tial A, and the local magnetic field, which is mathemati-
cally equivalent to the minimization af2) with respect to

pendentSlayer]. A single gauge condition completely elimi-
nates the arbitrariness of the Euler-Lagrange equations in

f, ¢,, andA. This problem should be approached with athis case.

great deal of caution because of singular mathematical struc- We start by minimizing with respect t. Varying (2)

ture of the functional2), resulting from gauge invariance With respect tA,, A, in the regions G—1)p<x<np under
combined with discreteness. Thus, one must take account #fe conditionsA,(x,Ly;) = 8A,(x,L,)=0 yields the Max-

the fact that variations with respect 6, and A are not
independent. Moreover, variations with respecttpat dif-

ferent layers in themselves turn out to be mutually depen

well equations

ah(x, . . .
-(—y) =4mj n,nfl(y)E47TJ Ofn(y)fn—l(y)smq)n,n—l(y):

dent. Unfortunately, these crucial points have not been real- dy

ized in previous literature. To clarify them, we consider

partial variational derivatives with respect th,, and A,

A, formally obtained under the assumption of the indepen-

dence of these variables.

As the functional(2) is invariant under the gauge trans-

formation

dn(y)— én(y) +2en(np,y),

Ai(xiy)_)Ai(X!y)—’_&i n(xvy)! 1=X,Y,

where 7(X,y) is an arbitrary smooth function of,y in the
whole region (o<x<+%)X[Ly,<y<L,], partial
variational derivatives with respect #,, andA,, A, are
related by the fundamental identities

e =—
Opn(y) dy SA((npy) SA(np+0y)
50
_ —LB. (5)
OA(np—0y)

Being a consequence of Noether's second theorem, such

identities are typical of any gauge thedfyThey imply that

(6)

ah(X,
SO

X ' )

wherej, ,—1(y) is the density of the Josephson current be-
tween the (-1)th and the nth layers, jg
=r(T)p/16mel*(T)N?(T). Minimization with respect to
Ay(np,y) leads to boundary conditions at tBdayers

h(np—0y)—h(np+0y)

_pfa(y) [den(y)
- 2e\¥T)| dy

~2eApy)|.  (®)

Equations(6)—(8) should be complemented by boundary
conditions at the outer interfacgs-L,,L,,. As we do not
consider here externally applied currents in thdirection,
the first set of boundary conditions follows from the require-
ment that the intralayer currents vanishyatL,,L,:

den(y)
dy

—2eA/(np,y) -0. )

y:Lyl'LyZ
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Applied to Egs.(8), these boundary conditions show that thefirst eliminate the constraintl2). Assuming thatf ,(y)>0,
local magnetic field at the outer interfaces is independent ofvherem is an arbitrary layer index, we rewritd2) as
the coordinate x:h(x,Ly1)=h(Ly1),h(X,Ly2)=h(Ly5).
Boundary conditions imposed om should be compatible don(y)
: , ; : 2eA(MpY)=—1—+ 5 — > fAy)
with Ampere’s lawh(L,) —h(L;)=4m| obtained by inte- A(mpy dy Z(y) i ' y
gration of Egs{(6) overy, where "

den(y)
X ¢d;y —2eA/(np,y)|. (13

Lyp Lyp
|= f Y s 1a(y) = f Py jno1(y) (10

L
- - Equation (13) expressesA,(mp,y) as a function of all

is the total Josephson current. d¢,(y)/dy. It should be substituted intg2). Now all
Differentiating (8) with respect toy and employing(6), d¢,(y) can be considered as independent. Carrying out the
we arrive at the current-continuity laws for tisdayers: variation under the condition®), we obtain
d don(y) fr-1(Y)SIND -1 (Y) = Frn 1 (Y)SINP 11 m(Y) =0,
o 2 n _ m m,m m m ,m
ay{fn(y)[—dy 2eA(np,y) (14
d den(y)
r(T) : —[fz(y)[ —2eA(np,y)
= ot 2SNy 1 1(y) oyl Tay A
: J dom(y)
_fn+1(y)smq)n+1,n(y)]- (11) - W{fﬁ )[ dmy —28A,(mp,y)H
These relations may be interpreted as “the Euler-Lagrange ((T)
equations for the phases” in the sense that they can be for- = (Y[ fr1(Y)SIND,, n_1(Y)
mally obtained by taking partial variational derivatives with 205(T) ’
respect tog,, under conditiong9). However, actual minimi- 1 (Y)SIN® oy 1n(y)],  nEM.

zation of(2) with respect to the phases must take account of

the mutual dependence af¢,(y) at different layers, as Comparing these equations withl) and integrating with
shown in what follows]The fact that relation$11) follow boundary conditiong9) for n=m yields

directly from the Maxwell equation$6), (8) is a conse-

quence of(5). Surprisingly, this trivial functional depen- dé(y)

dence of the current-continuity laws for tiselayers on the d —2eA(mp,y)=0. (15
Maxwell equations has not been pointed out in the previous y

H 15

literature:~] Sincem is an arbitrary layer index, relatiori@4) and (15)

~ Adding Egs.(11), integrating and using boundary condi- po|q for all n.=m=0,+1,+2,.... Note that only one of the
tions (9), we get the conservation law for the total intralayer o sets of relationg14) and (15) is independent. For ex-

current: ample, relationg14) can be obtained by inserting5) into
i (11) and vice versa. In turn, the number of independent re-
dén(y) lations (15) is exactly equal to infinity minus one, because
2 n _ ,
n;w faly) dy —2eA(npy)|=0. (12) they obey the constrairiil2). As expected, the correct mini-

mization of (2) with respect to the phases completely re-

This key relation of our consideration has mathematical fornsolves the problem of unphysical degrees of freedom con-
of a constrainf on the derivatives of the phases and the tained in Egs.(6)—(8). Physically, relations(15), which
components of the vector potential at differ&iayers. Un-  appear already in the case of decoupled layers, minimize the
fortunately, the existence of the constraint relaiid®) in the  kinetic energy of the intralayer currents and, (@), assure
system of the Maxwell equation$)—(8) has not been no- the continuity of the local magnetic field at ti&layers.
ticed in previous publications, hence difficulties in establish{According to (7), h does not depend or in the barrier
ing a complete set of necessary and sufficient conditions afegions. Thush(x,y)=h(y) in the whole region { % <x
an unconditional minimum of2). We want to emphasize <+%)X[L,;<y<L,].] Relations(14) constitute station-
that the fundamental constraint relatii®?) and its corollar- arity conditions for the Josephson term() and assure the
ies below[relations(14) and (15)] should not be confused continuity of the Josephson current at Bkayers as required
with auxiliary constraint relations imposed on independenby (10).
variables in the standard variational problem of a conditional The above results, in fact, prove that inhomogeneous in
minimum® All constraints of the LD model appear as a the layering direction field configuratiofise., those that do
result of singular structure of the functiond) itself. (See  not satisfy(14) and(15) ] do not correspond to any station-
Refs. 17 and 18 for a thorough discussion of singular fieldary points of the functional2). Consider the variation of the
theories of this type. solution of(6)—(9) for A, in the gaugeA,=0 on an interval

According to main principles of the calculus of (m—1)p<x=mp, induced by a variation of the phase at the
variations'® to minimize (2) with respect tog,, we must nth layer. According tdA5), we have
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1 fa(y) dégn(y)

PO 2Ty dy

Such a variation does not affect the energy of the magnetic
field in (2). If n=m, the variation of the kinetic energy of the
intralayer currents vanishes, but the first-order variation of

the Josephson term is nonzeronk m, the variation of the

PHYSICAL REVIEW B3 054508

known maximumQQ, =0 for H=1=0 (the normal stae
trivially satisfies these conditions with,=0. The absolute
minimum
HA(T)V

8

LD~ —

(V is the volume of the systenfor H=1=0 also satisfies

Josephson term vanishes, but now the first-order variation ghese conditions with,,, ; ;=0 andf,=1. Complemented
the kinetic energy of the intralayer currents is nonzero. Thesgy the requirement that the Josephson term be a minimum

first-order variations of2) vanish if and only if the condi-

these conditions become necessary and sufficient conditions

tions (14) and (15) are fulfilled (i.e., for homogeneous field 5t 411 the minima of(2) for H=0, 1 0, provided that), p

configurations Unfortunately, this general mathematical g
consideration unambiguously precludes the existence of is

lated Josephson vortices**in the infinite LD model. It

also explains the results of Faritiwho has pointed out in-

(For Ly,—Ly;<+, the Josephson term is bounded

Qind thus has both minimum and maximum values.

Indeed, the Josephson term is minimized automatically.
The kinetic energy of the intralayer currents is minimized by

consistencies in a mathematical description of such hypo(lS)_ The energy of the magnetic fie[the last term in2)]

thetical entities.

reaches its minimum value for givéth and| too. This term

It is instructive to look at the incompleteness of the sys-g hon-negative and necessarily has a minimum determined

tem (6)—(8) from a slightly different mathematical point of ,y the condition that its first-order variation vanistNo

view. In the gauge\, =0, this system reduces to an infinite oiher stationary points are availablen the gauged, =0, the
set of integrodifferential equationi43) for the phase differ- st order variation of the magnetic-field energy has the
encese, , 1 (for fixed f)). There are no theorems of exis- 5m

tence and uniqueness of a solution to an infinite set of such

equations. By contrast, for a finite set, describing a finite in

the layering direction layered superconductor, the existencéﬂf‘[{[Ay;H]:
and uniqueness of a solution can be proved by standard

methods of functional analysis. The description of a finite

layered superconductor implies the specification of boundary

conditions onA at the “top” and “bottom” S layers,

whereas the infinite LD model considered here does not im-

pose any boundary conditions @ at x— *=oo. Thus, the +
arbitrariness contained in Eg&)—(8) is an intrinsic math-
ematical property, necessary to satisfy additional boundary

2H2(T)CAT)NA(T)W. 2
e“Hg(T)ZA(T)NA(T) ZJLyd
v

Lyt

+ oo 2
np I“A(X,Y)
x> {—f dx—z—g SA(X,Y)
n=—c (n-1)p X

A,

0 &Ay 0
a_x(np_ Y)— W(anr Y)

conditions in the case of the finite LD model. This issue is

discussed in more detail in Sec. lll.
Minimization with respect td, is straightforward. Under
the condition thasf, (L), ofn(Ly,) are arbitrary, we get

d?fo(y)
dy?

fa(y)—F3(y) +3(T)

r(m
= [2Ta(y) = Tora(y)cos® g n(y) = fr-a(y)

X cos®pn-1(y)]+¢4(T)

den 2
| L2 sennpy)| fuy), (16)
y
df, :
d_y(Lyl): dy(LyZ):O- 17

Equations(6)—(8), (16), and (14) [or, equivalently, Eq.
(15)] (with m—n), together with boundary condition®)
and (8) and boundary conditions fdn(y), form a closed,

X 5Ay(np,y)’ . (18

The vanishing of the volume variation {d8) (the first term

on the right-hand sideis assured by the Maxwell equations
(7). The surface variatiofthe second term on the right-hand
side of (18)] vanishes by virtue of8) and (15). Consider
now the condensation energy() (the sum of the first three
phase- and field-independent tejmEhis energy reaches its
absolute minimum forf ,=1, i.e., when the right-hand side
of (16) is identically equal to zero. The Josephson term and
the kinetic energy of the intralayer currents induce spatial
dependence and a reductionfgf, which increases the con-
densation energy. This influence is minimized under the con-
sidered conditions: the second term on the right-hand side of
(16) vanishes according td5) and the first term is minimal
when the Josephson energy is a minimum.

Thus, we have proved that the above obtained conditions
minimize all the terms of the functioné&?): the condensation
energy, the Josephson energy, the kinetic energy of the in-
tralayer currents and the magnetic-field energy. Any devia-
tion from a solution satisfying these conditions increases all
these terms. As a result, the overall LD free energy increases,
as should be the case for an unconditional minintfim.

complete set of necessary and sufficient conditions of all the Now we proceed to the simplification of Eq&)—(8),

stationary points of the functioné®). For example, the well-

(16), and (14) (with m—n). As the local magnetic fieldh

054508-5
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does not depend ox in the whole region { oo <x<<+®)

X[LyisysLy,], the quantitiesf,, ®,, , cannot depend

on the layer index:

fn(y) = fn—l(y) = f(y), (I)n+l,n(y) = q)n,n—l(y) = @(y)_
(19

The remaining unphysical degree of freedom of Eg5-(8)

PHYSICAL REVIEW B63 054508

o oy 1 dh(y)
JY=Inn-1(=]of y)sing(y)= 77 ==
whereh(y) should satisfy appropriate boundary conditions
aty=Ly,,L, with IEftﬁdy j(y) [see Eq(10) abovd.
Remarkably, the coherent phase differerféthe same
for all the barriers obeys only one nonlinear second-order

(29

and (14), related to the gauge invariance, is eliminated bydifferential equation(26) with only one length scale, the Jo-

fixing the gauge:

Ax(x,y)=0, Ay(x,y) =A(X,y).
[Note thatdA/ax andd?>Aldxdy are continuous at ths lay-

(20

ers by virtue of(8), (15), and(6), (14).] The second set of

relations (19) now vyields ¢,(y)=nda(y)+ n(y), where

¢(y) is the coherent phase differen@he same at all the
barrierg, and 5(y) is an arbitrary function of/ that can be

set equal to zero without any loss of generality.
From (7), employing the continuity conditions foA,
dAldx and relationg15), we obtain

1 dé(y)

A(X,Y)Z ﬁ)d—yx

(21)

Making use of these results, we reduce the functig@pto

Qo[ f,4:H] Hgmww fLyzd
JpiH]= —— y
LD 47T x'¥z Lyl

—f2(y)
'df(y)r

| dy
+r(T)[1—-cosg(y)]f(y)

[ 1 de(y) ﬂ

+ 214+ 4T)

242 20Ty —
+4e°L5(T)N (T)_Zep dy H

(22

sephson penetration depth [Eg. (27)], as in the case of the
Ferrell-Prange equation for a single junctfSiMathemati-
cally, Eq. (26) is a solvability condition for the Maxwell
equations. Due to the factorf2, Eq. (26) is coupled to a
nonlinear second-order differential equati@#) describing

the spatial dependence of the superconducting order param-
eterf (the same for all th&layers. Equationg25) constitute
boundary conditions fot24). The Maxwell equation$28),

(29), combined together, yield E@26), as they should by
virtue of self-consistency.

It is important to note that Eq$23)—(29), with an appro-
priate microscopic identification of T) andj,, can be con-
sidered as a limiting case of the true microscopic equations.
(See Appendix B for more details.

Equations(24)—(29), together with(22), encompass the
whole physics of the infinite LD model in parallel magnetic
fields. They admit exact analytical solutions for all physical
situations of interest. These solutions are discussed in the
next section.

B. Major physical effects

1. Meissner state

Consider a semi-infinit@n they direction LD supercon-
ductor withr(T)<1,Ly;=0, L,,— += in the external fields

(30)

In the Meissner statg,(y)—0, h(y)—0 for y— +o. The
requirement that the Josephson term(22) be a minimum

O<H<sH=(epry %

whereW,=L,,—L,;. The desired closed, self-consistent setmeans that the density of the Josephson energy should vanish

of mean-field equations for the pair potentigl|(y) and the
local magnetic fielch(y) takes the form

An(y)=Af(y)exding(y)], (23
d?f

f(y)+Z%(T) d)fzy)—f3(y)—r(T)[l—COqu(y)]f(y):O,
(24

df f
@(Lyl) = @(LyZ):Ov (25

d2 f2
=y sino) (26
\;=(8mejop) 2 (27)

1 dé(y)

h(y):ﬁd—y’ (28)

aty— +o. This leads to the boundary conditions

d¢ d¢
d—y(0)=2epH, d—y(+°°)=0,

¢(+2)=0, f(+x)=1. (31

The solution of Eqs(24), (26), (28), (29), subject ta25) and
(31), up to first order in the small parametefT) has the

form
y
H EXF{ - )\—J

qb(y) =—4 arctam, (32)
2HH[Ho+ VHZ- Hz]exp[ - H
h(y)= @9

2 1
[He+ VHEI—H?%+ Hzexp[ - )\—y}
J
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. HH, 2ly|
)=~ 55, Hst VHE-H?] exp[—

f(y)=1-4r(T) oy
[Het \/Hg—HZ]Z—H2exp[ 1+e><ﬂ[—)\—J

2y 2 ' Th uti .. . -,
02 _ 12124 42 e ese solutions explicitly satisfy the usual conditions of the
[Hst VH—HT+H ex;{ N H phase and flux quantization. Indeed, consider a closed rect-

angular contourl’ joining the points ¢ (N/2)p,—),

(40

J
X

B (—(N2)p,+2), (+(N2)p,+=), and ¢+ (N/2)p, ).
) The total change of the phase along this contour for the plus
y sign in(37) is
H2[H+ \/H§—H2]2exp{—)\—J g

f(y)=1—4r(T)

2.

= d = de_
Ar¢:f_ dy ¢+dN)//2(Y)+f+ dy ¢dN)//2(y):27TN.

2
[[HS+ VHZ—H?)%+ Hzex;{ - )\—YH
J
(35
Analogously, the total flux through this contour is

The Meissner solution persists up to the fieldg
=(ep\;) ! that should be regarded as the superheating field +oo
of the Meissner state. This fact was established for the LD ®r=Np . dy h(y)=N®o,
model by Buzdin and FeinbefgA self-consistent solution of
the type(32)—(35) was first obtained in the framework of the \yhered = x/e is the flux quantum. Thus, the solution with

microscopic theory.In fieldsH>H,, only vortex solutions the plus sign describes a chain of Josephson vortices posi-

are possible. tioned in the plangg=0 (one vortex per each barrieiSuch
o a solution was first obtained in the framework of the micro-
2. The lower critical field H;,.. . Vortex planes scopic theory and termed “a vortex plane.” The solution

Consider now an infinitéin they directior) LD supercon- ~ With the minus sign in(37) describes a chain of Josephson
ductor withr(T)<1, Ly;——, Ly,—+%, andj(y)—0, anuvoruces_m the pI_ang':O (i.e., _“an antlvortex plane).
h(y)—0 for y— . We are interested in topological solu- ~ BY inserting(37) with the plus sign an€40) into (22) and
tions of Eqs.(24), (26), (28), (29) for this situation. The Ccomparing the result with the free energy of the Meissner
requirement that the Josephson term be a minimum shouffate, we derive the lower critical field,.., at which the
now be understood as the condition that the density of th¥ortex-plane solution becomes energetically favorable:
Josephson energy vanish yat> + . Thus, the appropriate
boundary conditions are 2 2 @

HClx:;Hs_ﬂ' TPNy’

(41

H(—2)=0, @(+»)==x2m7,
Note thath(0)=H>H1.. . This means that the penetration
of Josephson vortices at field$.,.,,<H<Hg can be pre-
d—¢(ioo):o, f(+ow)=1. (36) vented by a surface barrier, which should result in hysteretic
dy behavior of magnetizatiohFinally, we point out that simul-
taneous Josephson vortex penetration, envisaged by the
[Note that aside fromp(+ =) — ¢(—)=+*27 no other to-  vortex-plane solution, and hysteresis in the magnetization
pological boundary conditions are possible. This fact can bé&ave recently been observed experimentally on artificial low-
proved analogously to the well-known case of the sinetemperature superconducting superlattices N#/Si.
Gordon modef?]
The desired solutions up to first order in the small param- 3. The vortex state in intermediate fields

eterr(T) are given by Now we turn to finite-siz€in they direction LD super-

conductors withr(T)<1, —L,;=L,,=W/2, in the field

_ y rangeH,<H<H,.. (H:,.. is the upper critical fielgand in
¢(y)==4arctan exh—J ’ &7 the absence of externally applied currentQ). The bound-
ary conditions ong have the form
4l Y
h(y)=*H.cosh | =], 38 1d W
V) ° AJ 39 L AP Wy (42)
2ep dy 2
i(y)=T2j,cosh 2= sin?‘{—} (39 Under these conditions, the phase difference up to first
A A order in the small parametét?/H? is
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¢(y)=2epHy+aN,(H)

(D% HS
i m[sm(ZepHy)—2epHycos{epWH)].

(43

The constant of integrationrN,(H) accounts for the re-
quirement that the Josephson term in the free energy be a
minimum. The “topological index”N, corresponds to the

PHYSICAL REVIEW B63 054508

1 +W/2 H
M= oW f,w,z dy h(y) = 7
we obtain

H2
~ 16mH

|sif(epWH)|

M(H)= epWH

(—1)No cos{epWH)}.
(50

number of vortex planes and is a singular function of the

applied fieldH:

N,(H)=

. (44)

epwH | @
@

ke

Here[u] means the integer part af and®=pWH is the
flux through one barrier.

By the use 0of(43), we derive the following expressions
for the physical quantities up to first order in the small pa-

rameters (T) andH2/H?:

(=)Mo HZ
h(y)=H|1- 7 m[COS(ZepHy)—COS(epWFD],
(45
j(y)=(—=1)Nj,sin(2epHy), (46)
T
f(y)=1—¥
(—1)No cog2epHy)
1= 1+2[epl(T)H]?
V2y
vaepl(T)H|sin(epwH)| “>"Z(T)
1+ 2[epl(T)H]? W
sinh——
v2{(T)
(47)

In the limit W>¢(T),|y|<W/2, equation(47) becomes
(M (—1)No cog2epHy)

T =1 e MR
The vortex solution(43), (45), (48) for N,=2m (m is an

intege) was first obtained by Theodorals.
From Eq.(44) with N,(H)=1, we derive the lower criti-

(48)

cal field H;, in a finite along the layers superconductor

with W<\ ;:

™ w? Nj

Hclwzm: % Herayy > Heaw

- (49)

For the magnetization

The magnetizatiori50) shows distinctive oscillatory behav-

ior and discontinuities wheepWH 7 approaches an inte-
ger, i.e., when a vortex plane penetrates or leaves the super-
conductor. FoH>®,/pW,

Nobo_ 1)@0
W H< ”+§p_VV’

the LD superconductor exhibits a small paramagnetic effect,
i.e., M(H)>0. (Note that oscillations and jumps of magne-
tization due to Josephson vortex penetration have been ex-
perimentally observed on superconducting superlattices
Nb/Si??)

4. Fraunhofer oscillations of the critical Josephson current

Consider the case of a finite-sizalong the layersLD
superconductor with(T)<1, —L,;=L,,=W/2 in the pres-
ence of an externally applied currdnn the x direction. The
boundary conditions o now are

1d¢(W

AssumingW<\ ;, we obtain the solution up to first order
in the small parameteng T) and W?/\3:

d(y)=2epHy+7N,(H)

C(Dhew?

o )\—g(epWFD’Z[sin(Zepr ¢)

—2epHycogepWHcosep—sing], (52

w2 jo . :
I(so,H):ffW/zdyl(y):—Ism(epWFDISImp,

epH
(53)
_ (-1 w2 >
h(y)=H1-—)— )\—ﬁ(epWH)
X[cog2epHy+ ¢)—cogepWHcose] |,
(54)
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f(y)=1—-r(T)| 1-

v2y
(—1)" cog2epHy+ ) v2epi(T)H|sinepWH)|cose " ¢(T)
1+2[epl(T)H]? 1+2[epl(T)H]? o W
M)

2y

(—1)Nev2epZ(T)H cogepWH)sing Smhﬁ

- 1+2[epl(T)H]? W (55
cosh———
v24(T)

The phase shiftrN,(H), induced byN, vortex planes, as-

=0,1,2 . ..) and theevenN,=2m number of vortex planes.

sures the condition of a minimum of the Josephson energyBoth of them have the usual form of the Mathieu

The field-independent phase shift| ¢| < 7/2) parametrizes
the total Josephson currehtgiven by (53). Equation(53)
yields the well-known Fraunhofer pattern in
superconductor$? Note that the first zero of the Fraunhofer
pattern, by(49), corresponds to the lower critical fiekl.yy -

(See Ref. 2 for the explanation of the Fraunhofer pattern in
terms of the pinning of the vortex planes by the edges of th‘\’Nhere 9.=q(H
=

superconductor.In the absence of the transport current, i.e.
for ¢=0, Egs.(52), (54), and (55) reduce, respectively, to
Egs.(43), (45), and(47).

5. The upper critical field H,, (T)

Here we consider an infinitén the y direction LD su-
perconductor with —L,;=L,,=W/2— +x, subject to
boundary conditions on the phase of the typ8). Suppos-
ing that at the upper critical fielth =H_,.,, the transition to
the normal phase is of the second-order tyffecan be con-
sidered as a small parameter, and Egd) and(26) become

N 16%)
fly)+Z5(T) ay? —r(T)[1-cosa(y)]f(y)=0,
(56)
d’p(y)
a0y =0. (57)
The relevant solution of Eq57) is
¢(y)=2epHy+ wN,(H). (58)

[Compare with(43).] The substitution of(58) into (56)
yields

dzf(t) N, +1
g TIAT.H)= (=)™ *q(H)cos 2]f(1) =0,
(59
AT H) = L2 1D
(TH= fepemnr
I’(T) aph

H = = s
W= PlepeMHT ~ [epgpH 2
where we have introduced a dimensionless variable
=epHy and the notatior;(0)=¢&,,. Hence one gets two
independent equations: for the oddl,=2m+1 (m

layered

equationg! [Note that for N,=2m, Eq. (59) is well
known?]

The upper critical fieldH., is now determined by the
smallest eigenvalue d69):

A(T,Hez) =ap(de), (60)

c2) and ap(q) [ag(—a)=2ae(a)] is the
'smallest eigenvalue of the Mathieu equation corresponding

to the eigenfunctions va:2m+1(t)occe0(t,q) and

fNU=2m(t)occeo(7r/2—t,q). [Note that the function ¢gt,q)

is strictly positive and periodic with the periatl] Explicitly,
T—2ap @ph

Eq. (60) reads
[epépnHezn]? :a()([epfthcch]z)'

Equation(61) exhibits the well-known 3D—-2D crossover
of Hey(T),% with the crossover temperature determined by
7" =2apy. As usual, it is of interest to consider two oppo-
site limiting cases.

(62)

High temperatures, weak fields: 7<2app,Hcoo
<\apn/epépn-

In this 3D regime,

1 1

N ®ph epgph

1 T
TcO

1 T
Heow(T) = =
e2(T) 2\apy €Péph 2

el

The superconductivity of th& layers is strongly depressed
by the vortex planes, which can be seen by comparing local
maximaf . with local minimaf ., of the order parameter:

min

- =2vV2exd —2r(T)]<1.

max

Low temperatures, strong fields: 2¢kr/2app) <1, Hep.,

>\aph/ep§ph.
In this regime,
Hop ()= Son (7 |7
2=t T 2epéyn 2ap),

Qph VTeo

V2epipn VT—Teo(1—2apy)

(63
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‘X This situation is described by the function@) with a

minor change: the summation is now done over
[ =0,1,2,.... We assume thigtT) <1. Boundary conditions of
" the type(9) are supposed to hold =0, andh(x,0)=H.
® p The presence of an outer boundaryxatO is accounted for
by the obvious boundary condition

pfa(y) [deo(y)
2eN%(T)| dy

0 Ly Y [Compare with(8).] The imposition of the boundary condi-
tion (64) implies a restriction on variations @,(x,y): they
must now satisfy the condition

FIG. 2. Finite LD model: the geometry of the problem. Here
A<Lp<+o and\;<L,<+=. oA,(0y)=0. (65

H—h(+0y)= —2eA/0y)]. (64

The influence of the boundary gt=0 must vanish foy—

This expression diverges far— 7 —0. The origin of this . hence boundary conditions

well-known unphysical divergence is the unrealistic assump
tion of the LD model of a negligibl&s-layer thickness|In

the microscopic theory? H,..(T) is finite at any tempera- D q4(+0)=0, dq)“” ”(+ %) =0. (66)
tures] The spatial dependence of the order parameter is ’
given by Forx— 4+, we must arrive at the solution of the infinite LD
model (38)—(40), thus
(=DNr(T)
f(y)xl— ————————cog2epHc.Y). den(y)
Y e pi(T) e 2 S0 26P e2=) PY) eanpy)—0, notw  (67)

dy
This spatial dependence is exactly the same as in the case of S )
intermediate field$48). The minimization with respect td, leads to(16) and

(17). Varying with respect toA, under the condition
OA(X,0)= SA(X,+») =0 yields the Maxwell equation®)
in the regionsnp<x<(n+1)p (n=0,1,2...). Taking

Let the LD superconductor occupy the regipln,; =0 variations with respect té\, under the conditior(65), we
sXsL,|X[Ly,;=0sys<L,]. The external magnetic field obtain the Maxwell equation&) in the regionsnp<x<(n
H(0<H=<H,) is again applied along theaxis (see Fig. 2 +1)p (n=0,1,2 ...) andboundary conditions at thglay-
The homogeneity along this axis is assumé&l, + ). ers(8) forn=1,2,....

IIl. MEISSNER STATE IN THE FINITE LD MODEL

The Meissner state realizes under the conditidng The general solution of the Maxwell equations, subject to
>N\, Lyo>N\;, thus it is sufficient to consider the limiting the above formulated boundary conditions, in the ga@@
casel,,— +o,Lyo— + . has the form
r(m f déo(y)
A(O, du fi(u)fy(u)sin u)+ =— ,
depn1(y)
AOY)=| 4710 A a1 0)+H| X (n+ Dpp]+ 5“2
r(T) f du f, (W[ f,(u)sing (u)— (u)sing (u)] (68)
4e§ (T) f +1(Y) n+1 n+1n n+2 n+2,n+1 ’

np<x=(n+1)p, n=0,12...

where the phase differencés,,;, obey the solvability conditions
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d
P1dY) g eiop f du (W To(u)sin gy o u) + 2epH
dy 0 '

r(m

+2§2(T)[ l(y)j du fi(u)[fo(u)sing, (u) —fo(u)sing, 4(u)]

! fyd f,(u)f i
+f%(7 ,au (Wfo(u)sing, (u) |,

dénr1n(y)

y
1) —gmejop | du fa W) T(W)sin gy 10(1) + 26 pH

r(T)
+ 2§2(T) |:fﬁ+1 J du fo (W fa(u)singn 1 n(U) = frio(U)Singnyons1(U)]

1 y . .
_f_2(_y)JOden(u)[fnl(u)5|n¢n,nl(u)_fn+1(u)5m¢n+1,n(u)] , n=12,.... (69
n
|

Equations(69) assure the continuity of the solutid68) at p? p’H

x=np (n=0,1,2,...).[Compare with Eqs(80) and (81) of l21=| 2+ 32)1107 7520,

the infinite LD model} The obtained solution explicitly sat- 71

isfies the current-conservation law p2 p2H (72)

|n+2,n+1_ 2+P |n+1,n+|n,n—1_m2:01
+ o0
p 2 d¢n(y) Jy . n:1|2! ey
f —2eA,/(np,y)|+ | duj(u)=0,
Bran? 2, i) =gy~ 2eAMpY) [+ | dujw here

(70

+o0
|n+1,nEj0J’ du fy (W) f(u)sinegn. 1 n(u),
wherej(y)=lim, . . jh+1n(Y) is the density of the Joseph- 0
son current given by(34). [Compare with the current- B
conservation law12) of the infinite LD model] n=012...

Note that, in contrast to the infinite LD model, the mini- is the total Josephson current between the-{)th and the
mization with respect to the phaseg now is not possible. nth layers. The local magnetic field inside the barriers
Indeed, a variation of the phase at th#&h layer, 5¢,,, <x<(n+1)p(n=0,1,2...) in theasymptotic regiory—
would induce, by(70), a nonvanishing variation of the vector +« is given by
potential atx=0:

hn+1Eh(X,+OO)E47TIn+1’n+H. (72)
With the help of the quantitiels, , Egs.(71) can be rewritten
1 frzn(y) dé ¢m(Y) in the form of a recursion relation
A0Y)= e ————
OV~ 2¢ foly)  dy p2
hpio—| 2+ N2 h,.1+h,=0, n=0,12..., (73

Such a variation is not allowed by the conditié8b). This subject to boundary conditions
observation explains the role of the arbitrariness contained in
the system of the Maxwell equations of the infinite LD ho=H, h,—0, n—+co. (74)
model, discussed in the preceding section. In the infinite

case, the variation$A,(==,y) were arbitrary, which al- The solution of(73) and (74) is straightforward:

lowed the system to adjust boundary conditiong-at=* oo,

n
S0 as to minimize the free energy with respect to the phases. ho=H| 1+ p_Z_E 1+p_2 (75)
We are interested in the behavior(68) in the asymptotic A2 A AN2
regiony— +oo. The second set of the conditio(86), ap-
plied to(69), in first order in the small parametefT) yields Assumingp<<\, we get
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(n+1)p The exact mean-field equation3)—(29) contain the
h(x,+«)=H exr{— T |’ np<x<(n+1)p, whole physics of the infinite LD model in parallel magnetic
fields. In particular, they reproduce such well-known limiting
n=012.... (76)  cases as the Meissner statEraunhofer oscillations of the
_ _ critical Josephson currefithe upper critical fieldH .(T),”
The intralayer currents are given by and the vortex stafein the intermediate field regime. All

previous calculations of these effects were based on a physi-

cal assumption of the homogeneity of the solution in the
' layering direction. We provide a rigorous mathematical jus-

tification of this assumption by proving that the homogeneity

1 _H np
Jn(+°°)—m(hn_hn+1)—4m\(-r) R IVES

n=0,12.... (77) of the solution is one of the necessary and sufficient condi-
tions of a minimum of2). Moreover, our approach allows us
The order parameters are to make self-consistent refinements on these results by ob-
taining exact analytical expressions for all physical quantities

2np of interest up to leading order in small parameters, which
M| substantially elucidates the physics.

We have obtained an exact topological soluti8id)—(40)
n=0,1,2.... (78 to Egs.(23)—(29), describing a chain of Josephson vortices
(a vortex plang This solution clearly demonstrates that,
contrary to previous suggestions’ Josephson vortices of

fo(+0)=1—2e22(T)\N4T)H? exp{ -

Equationq76)—(78) describe the Meissner state in the region

[0=x<+w)X(Ny<y<-+). In the region <x<+2)  yq ininite LD model form simultaneous|
T . y and coherently
X[0=y=+e), the solution is given by38)—(40). As in the (one vortex per each barrjeait the lower critical fieldH ;.. ,

case of the infinite LD model, the upper bound of the exis-" . . .
tence of these solutions K=H. Unfortunately, in the re- given by(41). Successive penetration of the vortex planes at

gion[0=Xx<\)X[0=<y<A ), an analytical solution to Eqgs higher fields is accompanied by oscillations and jumps of the
(16) and (69) is not possibfe, " magnetization, as described K$0). We show that the

Equations of the typeé16). (69), and (69), subject to to- vortex-plane solutions of the infinite LD model persist up to
pological boundary conditions o, . 1, in principle, de- the upper critical fieldH.,..(T) in the whole temperature
scribe Josephson vortex configurations. In contrast to thE2N9e. _ _ o o

preclude inhomogeneous in the layering direction vortex sotole of the boundary effect. Thus, the imposition of the
lutions. boundary condition64) completely eliminates all unphysi-

cal degrees of freedom and makes minimization with respect
IV. DISCUSSION to the phases impossiple. The explicit solut[ﬁﬁ)_ apd(69)
o to the Maxwell equations, in contrast to the infinite case,
We have solved the problem of exact minimization of thedoes not preclude the existence of localized Josephson vor-
LD functional in both the infinite and the finite cases. Wetex configurations. Making use of this solution, we obtain the
have shown t;‘i"é the LD model belongs to a class of singulairst, to our mind, self-consistent description of the Meissner
flgld theorle_sl. “°the Maxwell equatlo_ns of this model con- gi4te of the finite LD moddIEgs. (76)~(78) and (38)—(40)].
tain constraint$the current conservation law$2) and(70)] All the above results stand in full agreement with our

qucting | Such raint iting f : 'Brevious consideration of layered superconduétbesed on
ucting fayers. such constraints, Tesutting from gauge invart; completely different, microscopic approach. Our discus-

ance combined with inherent discreteness, are typical of layéion (Appendix B of relationship to the microscopic thedry

ered superconductor§See Eq.(26) of the microscopic clarifies a microscopic background of the phenomenological
theory?] Unfortunately, the current-conservation lai?) P g P i 9
o Parameters of the LD model and casts light on its actual

and (70) were completely overlooked in previous public domain of validity.

tions on the LD model. ) )
By taking into account the current-conservation lghg), As regards the experimental status of the problem, simul-

we have minimized the free energy of the infinite LD modeltaneous Josephson vortex penetration into all the barriers, as
with respect to the phases, obtaining a closed, complete, sefescribed in our paper, has been recently observed on artifi-
consistent system of mean-field equatio28)—(29). We cial low-T, superlattices Nb/S¥ Oscillations and jumps of
show that relations of the typ@d1), erroneously regarded as the magnetization, accompanying this penetration, have also
“equations minimizing the free energy with respect to thebeen observetf. Concerning the reported observation of lo-
phases,'™® are, in reality, mere consequences of the Max-calized Josephson vortex configurations in layered figh-
well equations(6)—(8). By considering nonvanishing first- superconductors the boundary effect discussed in Sec. IlI
order variations of(2) caused by the variatiofA5) of an  of our paper may account for this situation. Moreover, the
inhomogeneous solution to the Maxwell equations, we proveresence of irregularities within the layered struct(eey.,

that the infinite LD model does not admit solutions in the stacking faulty can substantially modify the physical picture:
form of isolated Josephson vortices. such irregularities should serve as pinning centers for
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isolated Josephson vortices. We hope that our exact results
will stimulate further theoretical and experimental investiga- ~ Ay(X,Y) =

. y -
amio | AUty Wsing, . 4w
tion in these directions.

yl

+H-2ml - 96ny)
APPENDIX A: EXPLICIT SOLUTION TO THE MAXWELL | (x=np) 2e dy
EQUATIONS OF THE INFINITE LD MODEL
. ) r(m 1 y
In the gaugeA,=0, the explicit solution of Eqs(6)—(8) — 2—f du f,(u)
on the intervals 4e°(T) fo(y) Juy

X[fnfl(u)sm‘ﬁn,nfl(u)_fn+1(u)
(n—1)p<x=np, n=0,£1, n=0,£1,+2,...

(A1) Xsin o 1n(U)], (A2)
subject to boundary condition®) at y=L,; and h(L,) where the phase differences, ,_ 1= ¢,— ¢,_, obey the
=H-27l, has the form solvability conditions

debns1n(Y)

y
2 —gmejop | du .01 o(W)Sin 1) + 26 pH—21)
Lys

r(T)
2§2(T) +l(y) f du fn-%—l(u)[f (U)S|n¢n+1n(u) n+2(u)5|n¢n+2n+1(u)]
1 y . .
- fﬁ(Y) f'—yldu fn(u)[fnfl(u)sm‘z’n,nfl(u)_fn+1(u)sm ¢n+l,n(u)] . (AS)

This infinite system of integrodifferential equations assuresn Eq. (A4), all d¢,,/dy should be considered as indepen-
the continuity of the solutionA2) at x=np (n=0,=1, dent. Thus, the desired variation is
..). Forf,=1, Egs.(A3) reduce to an infinite set of

second-order nonlinear differential equatidhsUnfortu- 1 f2(y) d&pn(y)
nately, an explicit solution for the vector potential of the type SAY(XY)= 55 2 dy
(A2) was not found in previous publications. m

Consider the variation of the solutidA2) induced by a  \wheren=0,-1,+2, ... .
variation of the phase at one of ti®layers, §¢,(y). As
there is only one constraint ot¢,/dy and they compo-
nents of the vector potential at=np, namely the current-
conservation law(12), such a variation affects the solution
(A2) only on one of the intervalgAl), say, (m—1)<x The free energy functional of the microscopic thebry,

<mp. Making use of(13), we rewrite the solutiolfA2) on  after the minimization with respect t#, has the form
this interval as

, (A5)

APPENDIX B: RELATIONSHIP TO THE MICROSCOPIC
THEORY

H2(T
y Qrf.giH]= WWJ s -y
P T N L E
byt i m[df(y)} +gz(T) dqb(y)} 2(y)
21|y L 90l 12 \p) [Tdy |V
m (X m 2e dy a§2( )
[1- cos¢(y>]f2(y)}
Loy 1 dély) ao
( 2(y) % z_ed—y— y(NP.Y) |- 5
Y +4e?7A(T)NYT) i—(ﬁ(y)—H} } (B1)
(A4) 2ep dy
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where &, is the BCS coherence lengtli(T) and\(T) are  seen by minimizingB1) with respect tdf and ¢, the micro-
the GL coherence length and the penetration depth, respeseopic mean-field equations in this limit formally coincide
tively, a is the S layer thickness, with the LD EQgs.(23)—(29), if one identifiesr (T) with the
microscopic parameter/?(T)/aé, and the LD quantityj
with the microscopic expression for the critical Josephson
current of a single junction

with D(t) being the tunneling probability of the barrier be- - T7L3)a 5

tween two successiv8 layers. The rest of notation is the Jo=—5—eN(0)§A%(T),

same as in23). ExpressionB1) applies to the temperature

range(1) and theS layer thicknesses meeting the condition where N(0) is the one-spin density of states at the Fermi

372 [1
- )fodttD(t)<1, (B2

7¢(3

§o<a<<{(T),A(T).
Consider the LD limit of(B1), whena<p. In this limit,

level.
The role of the first-order factoa/p becomes evident

the average kinetic energy of the intralayer currents, i.e., theehen one considers the penetration of an external parallel
term proportional t@®/p2, should be dropped. However, the magnetic field in the layering direction. As can be shown on
microscopic functionalB1) does not reduce to the corre- the basis of the microscopic equatidrthie exponential fall-
sponding LD functional22) because of the presence of the off of the magnetic field occurs on the length scale of the
first order factora/p. (In the LD model this factor is unre- effective penetration depth.s=\\p/a, whereas the LD
alistically taken to be unity.Nevertheless, as can be easily model gives\=\. [See Eq(76).]
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