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Exact solutions of the Lawrence-Doniach model for layered superconductors
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We solve the problem of exact minimization of the Lawrence-Doniach~LD! free-energy functional in
parallel magnetic fields. We consider both the infinite in the layering direction case~the infinite LD model! and
the finite one~the finite LD model!. We prove that, contrary to a prevailing view, the infinite LD model does
not admit solutions in the form of isolated Josephson vortices. For the infinite LD model, we derive a closed,
self-consistent system of mean-field equations involving only two variables. Exact solutions to these equations
prove simultaneous penetration of Josephson vortices into all the barriers, accompanied by oscillations and
jumps of the magnetization, and yield a completely new expression for the lower critical field. Moreover, the
obtained equations allow us to make self-consistent refinements on such well-known results as the Meissner
state, Fraunhofer oscillations of the critical Josephson current, the upper critical field, and the vortex solution
of Theodorakis@S. Theodorakis, Phys. Rev. B42, 10 172~1990!#. Our consideration of the finite LD model
illuminates the role of the boundary effect. In contrast to the infinite case, an explicit analytical solution to the
Maxwell equations of the finite case does not preclude the existence of localized Josephson vortex configura-
tions. By the use of this solution, we obtain a self-consistent description of the Meissner state. Finally, we
discuss some theoretical and experimental implications.

DOI: 10.1103/PhysRevB.63.054508 PACS number~s!: 74.80.Dm, 74.20.De, 74.50.1r
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I. INTRODUCTION

We obtain exact analytical solutions to the phenome
logical Lawrence-Doniach1 ~LD! model for layered super
conductors in external parallel magnetic fields. We consi
both the infinite in the layering direction case~the infinite
LD model! and the finite one~the finite LD model!. This
paper should be considered as a logical continuation of
previous study of layered superconductors on the basis
microscopic approach.2

At present, the LD model is widely used for the descr
tion of low-Tc layered superconductors and superlattices
well as high-Tc superconductors exhibiting the intrinsic J
sephson effect.3,4 Surprisingly, despite a large number of th
oretical publications on this subject, it has not been reali
yet that the problem of the parallel magnetic field is exac
solvable. Up to now, actual analytical solutions with diffe
ent degrees of accuracy have been obtained only for r
tively simple particular cases of the infinite LD model: th
Meissner state,5 Fraunhofer oscillations of the critical Jo
sephson current,6 the upper critical fieldHc2(T),7,3 and the
vortex state8 in the intermediate field regime.

Unfortunately, the calculations of the lower critical fie
Hc1 ,9,10 based on the assumption of isolated Josephson
tex penetration, raise questions. In these calculations,
employs an anisotropic continuum approximation outside
so-called Josephson vortex core region,11 completely ne-
glecting the intrinsic discreteness of the LD model. As h
been recently shown by Farid,12 a set of equations thus ob
tained has no physical solution. Furthermore, the calculat
of a triangular Josephson vortex lattice,13 also based on the
assumption of the existence of isolated Josephson vort
are at odds with the exact vortex solution of Theodorak8

valid in the same field range and exhibiting full homogene
in the layering direction.
0163-1829/2001/63~5!/054508~14!/$15.00 63 0545
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As has been shown within the framework of the micr
scopic theory,2 the resolution of these contradictions lies
the analysis of singular mathematical structure of free-ene
functionals of layered superconductors. In particular, the s
tem of the Maxwell equations in layered superconduct
contains a constraint relation that physically constitutes
conservation law for the total intralayer current. Accordi
to this constraint relation, the phases of the superconduc
order parameter~the pair potential! at different layers turn
out to be mutually dependent. The minimization of the fr
energy with respect to the phases must necessarily take
account this fact. The neglect of mutual dependence of
phases leads to an incomplete set of mean-field equation
the present paper, we elucidate this mathematical issu
full detail.

Section II of the paper is devoted to the infinite in th
layering direction LD model. In Sec. II A, we concentrate o
exact minimization of the LD free-energy functional. Usin
general field-theoretical arguments, we prove that the M
well equations of the LD model contain an infinite number
unphysical degrees of freedom that cannot be eliminated
imposing a gauge condition. We achieve the elimination
these redundant degrees of freedom by minimizing the
energy with respect to the phases, taking account of the c
servation law for the total intralayer current. In this way, w
obtain a complete set of necessary and sufficient condit
of an unconditional minimum of the LD functional. Thes
conditions constitute a remarkably simple, closed, s
consistent system of mean-field equations involving only t
variables: the reduced modulus of the pair potential~the
same for all the superconducting layers! and the phase dif-
ference~the same for all the barriers!. In addition, we prove
that inhomogeneous in the layering direction field configu
tions do not correspond to any stationary points of the f
©2001 The American Physical Society08-1
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energy. As a result, contrary to the prevailing view,9,11,10,13

the infinite LD model does not admit any solutions in t
form of isolated Josephson vortices.

In Sec. II B, we proceed to exact solutions of the me
field equations of the infinite LD model describing maj
physical effects. We arrive at a new scenario of the fl
penetration atHc1 : We show that Josephson vortices pe
etrate all the barriers simultaneously and coherently, form
homogeneous field distribution in the layering direction~a
‘‘vortex plane’’!. The corresponding lower critical field i
Hc152(pepl j )

21, where p is the layering period,lJ
5(8pe j0p)21/2 is the Josephson penetration depth, withj 0
being the critical density of the Josephson current. We sh
that the magnetization exhibits oscillations and jumps due
successive vortex plane penetration. We also obtain all w
known limiting cases@the Meissner state, Fraunhofer osc
lations of the critical Josephson current, the upper criti
field Hc2(T), and the vortex solution of Theodorakis# with
self-consistent refinements. All these results stand in c
plete agreement with our previous microscop
consideration.2

In Sec. III, we consider the finite, both in the layerin
direction and along the layers, LD model. We show that
emergence of additional boundary conditions in this c
completely eliminates unphysical degrees of freedom of
Maxwell equations and makes minimization with respect
the phases impossible. An explicit solution to the Maxw
equations obtained in this section, in contrast to the infin
case, does not preclude the existence of localized Josep
vortex configurations. As regards the physical effects,
derive exact analytical expressions for the order parame
the currents and the local magnetic field describing
Meissner state.

In Sec. IV, we present a brief summary of the obtain
results and discuss some theoretical and experimental im
cations. In Appendix A, we obtain an explicit solution to th
Maxwell equations in the infinite case. We also conside
variation of this solution induced by variations of the phas
In Appendix B, we discuss relationship to the microsco
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theory.2 This discussion casts light on the actual domain
validity of the LD model.

II. INFINITE LD MODEL

In this section, we consider an infinite in the layerin
direction LD model. One of the dimensions of the syste
along the layers is taken to be finite, although it can be m
arbitrarily large.

We begin by reminding basic features of the LD model1,7

In this model, the temperatureT is assumed to be close to th
‘‘intrinsic’’ critical temperatureTc0 of individual layers:

t[
Tc02T

Tc0
!1. ~1!

The superconducting~S! layers are assumed to have neg
gible thickness compared to the intrinsic coherence len
z(T)}t21/2, the penetration depthl(T)}t21/2, and the lay-
ering periodp. Taking the layering axis to bex, choosing the
direction of the external magnetic fieldH to be z@H
5(0,0,H)# ~see Fig. 1!, assuming homogeneity along th
axis and setting\5c51, we can write the LD free-energ
functional as

FIG. 1. Infinite LD model: the geometry of the problem. Supe
conducting layers are represented by horizontal solid black line
VLDF f n ,fn ,
dfn

dy
,Ax ,Ay ;HG5

pHc
2~T!

4p
WzE

Ly1

Ly2
dy (

n52`

1` F2 f n
2~y!1

1

2
f n

4~y!

1z2~T!Fd fn~y!

dy G2

1z2~T!Fdfn~y!

dy
22eAy~np,y!G2

f n
2~y!

1
r ~T!

2
@ f n21

2 ~y!1 f n
2~y!22 f n~y! f n21~y!cosFn,n21~y!#G

1
4e2z2~T!l2~T!

p E
~n21!p

np

dxF]Ay~x,y!

]x
2

]Ax~x,y!

]y
2HG2G , ~2!
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Fn,n21~y!5Fn,n21~y!22eE
~n21!p

np

dx Ax~x,y!,

fn,n21~y!5fn~y!2fn21~y!.

HereA5(Ax ,Ay,0) is the vector potential, continuous at th
S layers: A(np20,y)5A(np10,y)5A(np,y); Wz is the
length of the system in thez direction (Wz→`); f n(y)@0
< f n(y)<1# andfn(y) are, respectively, the reduced mod
lus and the phase of the pair potentialDn(y) in the nth su-
perconducting layer:

Dn~y!5D~T! f n~y!expfn~y!, ~3!

with D(T) being the intrinsic gap@D(T)}t1/2#; Hc(T) is the
thermodynamic critical field;r (T)52apht

21 is a dimen-
sionless phenomenological parameter of the Josephson i
layer coupling (0,aph!1). The local magnetic fieldh
5(0,0,h) obeys the relation

h~x,y!5
]Ay~x,y!

]x
2

]Ax~x,y!

]y
. ~4!

A. Exact minimization of the LD functional

Our task now is to establish a closed, complete, s
consistent system of mean-field equations for the pair po
tial Dn and the local magnetic fieldh, which is mathemati-
cally equivalent to the minimization of~2! with respect to
f n , fn , andA. This problem should be approached with
great deal of caution because of singular mathematical st
ture of the functional~2!, resulting from gauge invarianc
combined with discreteness. Thus, one must take accou
the fact that variations with respect tofn and A are not
independent. Moreover, variations with respect tofn at dif-
ferent layers in themselves turn out to be mutually dep
dent. Unfortunately, these crucial points have not been r
ized in previous literature. To clarify them, we consid
partial variational derivatives with respect tofn , and Ax ,
Ay , formally obtained under the assumption of the indep
dence of these variables.

As the functional~2! is invariant under the gauge tran
formation

fn~y!→fn~y!12eh~np,y!,

Ai~x,y!→Ai~x,y!1] ih~x,y!, i 5x,y,

whereh(x,y) is an arbitrary smooth function ofx,y in the
whole region (2`,x,1`)3@Ly1<y<Ly2#, partial
variational derivatives with respect tofn , and Ax , Ay are
related by the fundamental identities

2e
]VLD

dfn~y!
[

]

]y

]VLD

dAy~np,y!
1

dVLD

dAx~np10,y!

2
dVLD

dAx~np20,y!
. ~5!

Being a consequence of Noether’s second theorem, s
identities are typical of any gauge theory.14 They imply that
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the number of independent Euler-Lagrange equations is
than the number of variables. In other words, the system
Euler-Lagrange equations contains unphysical degrees
freedom whose number is equal to the number of Noeth
identities. Unusual is, however, an infinite number of iden
ties ~5!. Indeed, in continuum gauge theories@such as, e.g.,
the Ginzburg-Landau~GL! theory of superconductivity# the
number of Noether’s identities is equal to the number
independent parameters of the relevant gauge group.@In the
case of superconductivity, we are dealing with the elect
magnetic one-parameter groupU(1).# Thus, by imposing
gauge conditions in continuum gauge theories, one co
pletely eliminates all unphysical degrees of freedom. By c
trast, in the discrete LD theory a single available gauge c
dition cannot eliminate an infinite number of unphysic
degrees of freedom resulting from~5!. The resolution of the
problem of the remaining ‘‘infinity minus one’’ unphysica
degrees of freedom lies in implicit mutual dependence of
variations with respect to the phasesfn at differentS layers.
Below, we demonstrate this dependence explicitly.@See re-
lation ~12!.#

To finish with the discussion of~5!, we point out that
these same identities hold also for the LD model with dec
pledS layers@whenr (T)[0#. However, now the number o
unphysical degrees of freedom is equal to the number
physically independent systems@one identity ~5! per inde-
pendentS layer#. A single gauge condition completely elim
nates the arbitrariness of the Euler-Lagrange equation
this case.

We start by minimizing with respect toA. Varying ~2!
with respect toAx , Ay in the regions (n21)p,x,np under
the conditiondAx(x,Ly1)5dAx(x,Ly2)50 yields the Max-
well equations

]h~x,y!

]y
54p j n,n21~y![4p j 0f n~y! f n21~y!sinFn,n21~y!,

~6!

]h~x,y!

]x
50, ~7!

where j n,n21(y) is the density of the Josephson current b
tween the (n21)th and the nth layers, j 0
5r (T)p/16pez2(T)l2(T). Minimization with respect to
Ay(np,y) leads to boundary conditions at theS layers

h~np20,y!2h~np10,y!

5
p fn

2~y!

2el2~T! Fdfn~y!

dy
22eAy~np,y!G . ~8!

Equations~6!–~8! should be complemented by bounda
conditions at the outer interfacesy5Ly1 ,Ly2 . As we do not
consider here externally applied currents in they direction,
the first set of boundary conditions follows from the requir
ment that the intralayer currents vanish aty5Ly1 ,Ly2 :

Fdfn~y!

dy
22eAy~np,y!G

y5Ly1 ,Ly2

50. ~9!
8-3
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Applied to Eqs.~8!, these boundary conditions show that t
local magnetic field at the outer interfaces is independen
the coordinate x:h(x,Ly1)5h(Ly1),h(x,Ly2)5h(Ly2).
Boundary conditions imposed onh should be compatible
with Ampere’s lawh(Ly2)2h(Ly1)54pI obtained by inte-
gration of Eqs.~6! over y, where

I[E
Ly1

Ly2
dy jn11,n~y!5E

Ly1

Ly2
dy jn,n21~y! ~10!

is the total Josephson current.
Differentiating ~8! with respect toy and employing~6!,

we arrive at the current-continuity laws for theS layers:

]

]y F f n
2~y!Fdfn~y!

dy
22eAy~np,y!G G

5
r ~T!

2z2~T!
f n~y!@ f n21~y!sinFn,n21~y!

2 f n11~y!sinFn11,n~y!#. ~11!

These relations may be interpreted as ‘‘the Euler-Lagra
equations for the phases’’ in the sense that they can be
mally obtained by taking partial variational derivatives wi
respect tofn under conditions~9!. However, actual minimi-
zation of~2! with respect to the phases must take accoun
the mutual dependence ofdfn(y) at different layers, as
shown in what follows.@The fact that relations~11! follow
directly from the Maxwell equations~6!, ~8! is a conse-
quence of~5!. Surprisingly, this trivial functional depen
dence of the current-continuity laws for theS layers on the
Maxwell equations has not been pointed out in the previ
literature.15#

Adding Eqs.~11!, integrating and using boundary cond
tions ~9!, we get the conservation law for the total intralay
current:

(
n52`

1`

f n
2~y!Fdfn~y!

dy
22eAy~np,y!G50. ~12!

This key relation of our consideration has mathematical fo
of a constraint16 on the derivatives of the phases and they
components of the vector potential at differentS layers. Un-
fortunately, the existence of the constraint relation~12! in the
system of the Maxwell equations~6!–~8! has not been no
ticed in previous publications, hence difficulties in establis
ing a complete set of necessary and sufficient condition
an unconditional minimum of~2!. We want to emphasize
that the fundamental constraint relation~12! and its corollar-
ies below@relations~14! and ~15!# should not be confused
with auxiliary constraint relations imposed on independ
variables in the standard variational problem of a conditio
minimum.16 All constraints of the LD model appear as
result of singular structure of the functional~2! itself. ~See
Refs. 17 and 18 for a thorough discussion of singular fi
theories of this type.!

According to main principles of the calculus o
variations,16 to minimize ~2! with respect tofn , we must
05450
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first eliminate the constraint~12!. Assuming thatf m(y).0,
wherem is an arbitrary layer index, we rewrite~12! as

2eAy~mp,y!5
dfm~y!

dy
1

1

f m
2 ~y! (

nÞm
f n

2~y!

3Fdfn~y!

dy
22eAy~np,y!G . ~13!

Equation ~13! expressesAy(mp,y) as a function of all
dfn(y)/dy. It should be substituted into~2!. Now all
dfn(y) can be considered as independent. Carrying out
variation under the conditions~9!, we obtain

f m21~y!sinFm,m21~y!2 f m11~y!sinFm11,m~y!50,
~14!

]

]y F f n
2~y!Fdfn~y!

dy
22eAy~np,y!G G

2
]

]y F f n
2~y!Fdfm~y!

dy
22eAy~mp,y!G G

5
r ~T!

2z2~T!
f n~y!@ f n21~y!sinFn,n21~y!

2 f n11~y!sinFn11,n~y!#, nÞm.

Comparing these equations with~11! and integrating with
boundary conditions~9! for n5m yields

dfm~y!

dy
22eAy~mp,y!50. ~15!

Sincem is an arbitrary layer index, relations~14! and ~15!
hold for all n5m50,61,62,... . Note that only one of the
two sets of relations~14! and ~15! is independent. For ex
ample, relations~14! can be obtained by inserting~15! into
~11! and vice versa. In turn, the number of independent
lations ~15! is exactly equal to infinity minus one, becau
they obey the constraint~12!. As expected, the correct mini
mization of ~2! with respect to the phases completely r
solves the problem of unphysical degrees of freedom c
tained in Eqs.~6!–~8!. Physically, relations~15!, which
appear already in the case of decoupled layers, minimize
kinetic energy of the intralayer currents and, by~8!, assure
the continuity of the local magnetic field at theS layers.
@According to ~7!, h does not depend onx in the barrier
regions. Thus,h(x,y)5h(y) in the whole region (2`,x
,1`)3@Ly1<y<Ly2#.# Relations~14! constitute station-
arity conditions for the Josephson term in~2! and assure the
continuity of the Josephson current at theS layers as required
by ~10!.

The above results, in fact, prove that inhomogeneous
the layering direction field configurations@i.e., those that do
not satisfy~14! and ~15! # do not correspond to any station
ary points of the functional~2!. Consider the variation of the
solution of~6!–~9! for Ay in the gaugeAx50 on an interval
(m21)p,x<mp, induced by a variation of the phase at th
nth layer. According to~A5!, we have
8-4
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dAy~x,y!5
1

2e

f n
2~y!

f m
2 ~y!

ddfn~y!

dy
.

Such a variation does not affect the energy of the magn
field in ~2!. If n5m, the variation of the kinetic energy of th
intralayer currents vanishes, but the first-order variation
the Josephson term is nonzero. IfnÞm, the variation of the
Josephson term vanishes, but now the first-order variatio
the kinetic energy of the intralayer currents is nonzero. Th
first-order variations of~2! vanish if and only if the condi-
tions ~14! and ~15! are fulfilled ~i.e., for homogeneous field
configurations!. Unfortunately, this general mathematic
consideration unambiguously precludes the existence of
lated Josephson vortices9–11,13 in the infinite LD model. It
also explains the results of Farid,12 who has pointed out in-
consistencies in a mathematical description of such hy
thetical entities.

It is instructive to look at the incompleteness of the s
tem ~6!–~8! from a slightly different mathematical point o
view. In the gaugeAx50, this system reduces to an infini
set of integrodifferential equations~A3! for the phase differ-
encesfn,n21 ~for fixed f n). There are no theorems of exis
tence and uniqueness of a solution to an infinite set of s
equations. By contrast, for a finite set, describing a finite
the layering direction layered superconductor, the existe
and uniqueness of a solution can be proved by stand
methods of functional analysis. The description of a fin
layered superconductor implies the specification of bound
conditions on A at the ‘‘top’’ and ‘‘bottom’’ S layers,
whereas the infinite LD model considered here does not
pose any boundary conditions onA at x→6`. Thus, the
arbitrariness contained in Eqs.~6!–~8! is an intrinsic math-
ematical property, necessary to satisfy additional bound
conditions in the case of the finite LD model. This issue
discussed in more detail in Sec. III.

Minimization with respect tof n is straightforward. Under
the condition thatd f n(Ly1), d f n(Ly2) are arbitrary, we get

f n~y!2 f n
3~y!1z2~T!

d2f n~y!

dy2

5
r ~T!

2
@2 f n~y!2 f n11~y!cosFn11,n~y!2 f n21~y!

3cosFn,n21~y!#1z2~T!

3Fdfn~y!

dy
22eAy~np,y!G2

f n~y!, ~16!

d fn

dy
~Ly1!5

d fn

dy
~Ly2!50. ~17!

Equations~6!–~8!, ~16!, and ~14! @or, equivalently, Eq.
~15!# ~with m→n), together with boundary conditions~9!
and ~8! and boundary conditions forh(y), form a closed,
complete set of necessary and sufficient conditions of all
stationary points of the functional~2!. For example, the well-
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known maximumVLD50 for H5I 50 ~the normal state!
trivially satisfies these conditions withf n50. The absolute
minimum

VLD52
Hc

2~T!V

8p

(V is the volume of the system! for H5I 50 also satisfies
these conditions withFn11,n50 and f n51. Complemented
by the requirement that the Josephson term be a minim
these conditions become necessary and sufficient condit
of all the minima of~2! for HÞ0, IÞ0, provided thatVLD
,0. ~For Ly22Ly1,1`, the Josephson term is bounde
and thus has both minimum and maximum values.!

Indeed, the Josephson term is minimized automatica
The kinetic energy of the intralayer currents is minimized
~15!. The energy of the magnetic field@the last term in~2!#
reaches its minimum value for givenH and I too. This term
is non-negative and necessarily has a minimum determ
by the condition that its first-order variation vanish.~No
other stationary points are available.! In the gaugeAx50, the
first-order variation of the magnetic-field energy has t
form

dVLD
m f@Ay ;H#5

e2Hc
2~T!z2~T!l2~T!Wz

p E
Ly1

Ly2
dy

3 (
n52`

1` H 2E
~n21!p

np

dx
]2Ay~x,y!

]x2 dAy~x,y!

1F]Ay

]x
~np20,y!2

]Ay

]x
~np10,y!G

3dAy~np,y!J . ~18!

The vanishing of the volume variation in~18! ~the first term
on the right-hand side! is assured by the Maxwell equation
~7!. The surface variation@the second term on the right-han
side of ~18!# vanishes by virtue of~8! and ~15!. Consider
now the condensation energy in~2! ~the sum of the first three
phase- and field-independent terms!. This energy reaches it
absolute minimum forf n51, i.e., when the right-hand sid
of ~16! is identically equal to zero. The Josephson term a
the kinetic energy of the intralayer currents induce spa
dependence and a reduction off n , which increases the con
densation energy. This influence is minimized under the c
sidered conditions: the second term on the right-hand sid
~16! vanishes according to~15! and the first term is minima
when the Josephson energy is a minimum.

Thus, we have proved that the above obtained conditi
minimize all the terms of the functional~2!: the condensation
energy, the Josephson energy, the kinetic energy of the
tralayer currents and the magnetic-field energy. Any dev
tion from a solution satisfying these conditions increases
these terms. As a result, the overall LD free energy increa
as should be the case for an unconditional minimum.16

Now we proceed to the simplification of Eqs.~6!–~8!,
~16!, and ~14! ~with m→n). As the local magnetic fieldh
8-5
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does not depend onx in the whole region (2`,x,1`)
3@Ly1<y<Ly2#, the quantitiesf n , Fn,n21 cannot depend
on the layer index:

f n~y!5 f n21~y!5 f ~y!, Fn11,n~y!5Fn,n21~y!5F~y!.
~19!

The remaining unphysical degree of freedom of Eqs.~6!–~8!
and ~14!, related to the gauge invariance, is eliminated
fixing the gauge:

Ax~x,y!50, Ay~x,y![A~x,y!. ~20!

@Note that]A/]x and]2A/]x]y are continuous at theS lay-
ers by virtue of~8!, ~15!, and ~6!, ~14!.# The second set o
relations ~19! now yields fn(y)5nf(y)1h(y), where
f(y) is the coherent phase difference~the same at all the
barriers!, andh(y) is an arbitrary function ofy that can be
set equal to zero without any loss of generality.

From ~7!, employing the continuity conditions forA,
]A/]x and relations~15!, we obtain

A~x,y!5
1

2ep

df~y!

dy
x. ~21!

Making use of these results, we reduce the functional~2! to

VLD@ f ,f;H#5
Hc

2~T!

4p
WxWzE

Ly1

Ly2
dyF2 f 2~y!

1
1

2
f 4~y!1z2~T!Fd f~y!

dy G2

1r ~T!@12cosf~y!# f 2~y!

14e2z2~T!l2~T!F 1

2ep

df~y!

dy
2HG2G ,

~22!

whereWx5Lx22Lx1 . The desired closed, self-consistent s
of mean-field equations for the pair potentialDn(y) and the
local magnetic fieldh(y) takes the form

Dn~y!5D f ~y!exp@ inf~y!#, ~23!

f ~y!1z2~T!
d2f ~y!

dy2 2 f 3~y!2r ~T!@12cosf~y!# f ~y!50,

~24!

d f

dy
~Ly1!5

d f

dy
~Ly2!50, ~25!

d2f~y!

dy2 5
f 2~y!

lJ
2 sinf~y!, ~26!

lJ5~8pe j0p!21/2, ~27!

h~y!5
1

2ep

df~y!

dy
, ~28!
05450
y

t

j ~y![ j n,n21~y![ j 0f 2~y!sinf~y!5
1

4p

dh~y!

dy
, ~29!

whereh(y) should satisfy appropriate boundary conditio
at y5Ly1 ,Ly2 with I[*Ly1

Ly2dy j(y) @see Eq.~10! above#.

Remarkably, the coherent phase differencef ~the same
for all the barriers! obeys only one nonlinear second-ord
differential equation~26! with only one length scale, the Jo
sephson penetration depthlJ @Eq. ~27!#, as in the case of the
Ferrell–Prange equation for a single junction.19 @Mathemati-
cally, Eq. ~26! is a solvability condition for the Maxwell
equations.# Due to the factorf 2, Eq. ~26! is coupled to a
nonlinear second-order differential equation~24! describing
the spatial dependence of the superconducting order pa
eterf ~the same for all theS layers!. Equations~25! constitute
boundary conditions for~24!. The Maxwell equations~28!,
~29!, combined together, yield Eq.~26!, as they should by
virtue of self-consistency.

It is important to note that Eqs.~23!–~29!, with an appro-
priate microscopic identification ofr (T) and j 0 , can be con-
sidered as a limiting case of the true microscopic equatio2

~See Appendix B for more details.!
Equations~24!–~29!, together with~22!, encompass the

whole physics of the infinite LD model in parallel magnet
fields. They admit exact analytical solutions for all physic
situations of interest. These solutions are discussed in
next section.

B. Major physical effects

1. Meissner state

Consider a semi-infinite~in they direction! LD supercon-
ductor withr (T)!1, Ly150, Ly2→1` in the external fields

0<H<Hs5~eplJ!
21. ~30!

In the Meissner state,j (y)→0, h(y)→0 for y→1`. The
requirement that the Josephson term in~22! be a minimum
means that the density of the Josephson energy should va
at y→1`. This leads to the boundary conditions

df

dy
~0!52epH,

df

dy
~1`!50,

f~1`!50, f ~1`!51. ~31!

The solution of Eqs.~24!, ~26!, ~28!, ~29!, subject to~25! and
~31!, up to first order in the small parameterr (T) has the
form

f~y!524 arctan

H expF2
y

lJ
G

Hs1AHs
22H2

, ~32!

h~y!5

2HHs@Hs1AHs
22H2#expF2

y

lJ
G

@Hs1AHs
22H2#21H2 expF2

2y

lJ
G , ~33!
8-6
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j ~y!52
HHs

2plJ
@Hs1AHs

22H2#

3

F @Hs1AHs
22H2#22H2expF2

2y

lJ
G GexpF2

y

lJ
G

F @Hs1AHs
22H2#21H2 expF2

2y

lJ
G G2 ,

~34!

f ~y!5124r ~T!

H2@Hs1AHs
22H2#2 expF2

2y

lJ
G

F @Hs1AHs
22H2#21H2 expF2

2y

lJ
G G2 .

~35!

The Meissner solution persists up to the fieldHs
5(eplJ)

21 that should be regarded as the superheating fi
of the Meissner state. This fact was established for the
model by Buzdin and Feinberg.5 A self-consistent solution o
the type~32!–~35! was first obtained in the framework of th
microscopic theory.2 In fields H.Hs , only vortex solutions
are possible.

2. The lower critical field Hc1̀ . Vortex planes

Consider now an infinite~in they direction! LD supercon-
ductor with r (T)!1, Ly1→2`, Ly2→1`, and j (y)→0,
h(y)→0 for y→6`. We are interested in topological solu
tions of Eqs.~24!, ~26!, ~28!, ~29! for this situation. The
requirement that the Josephson term be a minimum sh
now be understood as the condition that the density of
Josephson energy vanish aty→6`. Thus, the appropriate
boundary conditions are

f~2`!50, f~1`!562p,

df

dy
~6`!50, f ~6`!51. ~36!

@Note that aside fromf(1`)2f(2`)562p no other to-
pological boundary conditions are possible. This fact can
proved analogously to the well-known case of the si
Gordon model.20#

The desired solutions up to first order in the small para
eter r (T) are given by

f~y!564 arctan expF y

lJ
G , ~37!

h~y!56Hs cosh21F y

lJ
G , ~38!

j ~y!572 j 0 cosh22F y

lJ
GsinhF y

lJ
G , ~39!
05450
ld
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f ~y!5124r ~T!

expF2
2uyu
lJ

G
F11expF2

2uyu
lJ

G G2 . ~40!

These solutions explicitly satisfy the usual conditions of t
phase and flux quantization. Indeed, consider a closed r
angular contourG joining the points (2(N/2)p,2`),
(2(N/2)p,1`), (1(N/2)p,1`), and (1(N/2)p,2`).
The total change of the phase along this contour for the p
sign in ~37! is

DGf5E
2`

1`

dy
df1N/2~y!

dy
1E

1`

2`

dy
df2N/2~y!

dy
52pN.

Analogously, the total flux through this contour is

FG5NpE
2`

1`

dy h~y!5NF0 ,

whereF05p/e is the flux quantum. Thus, the solution wit
the plus sign describes a chain of Josephson vortices p
tioned in the planey50 ~one vortex per each barrier!. Such
a solution was first obtained in the framework of the micr
scopic theory2 and termed ‘‘a vortex plane.’’ The solution
with the minus sign in~37! describes a chain of Josephso
antivortices in the planey50 ~i.e., ‘‘an antivortex plane’’!.

By inserting~37! with the plus sign and~40! into ~22! and
comparing the result with the free energy of the Meiss
state, we derive the lower critical fieldHc1` , at which the
vortex-plane solution becomes energetically favorable:

Hc1`5
2

p
Hs5

2

p

F0

pplJ
. ~41!

Note thath(0)5Hs.Hc1` . This means that the penetratio
of Josephson vortices at fieldsHc1`,H,Hs can be pre-
vented by a surface barrier, which should result in hyster
behavior of magnetization.2 Finally, we point out that simul-
taneous Josephson vortex penetration, envisaged by
vortex-plane solution, and hysteresis in the magnetiza
have recently been observed experimentally on artificial lo
temperature superconducting superlattices Nb/Si.22

3. The vortex state in intermediate fields

Now we turn to finite-size~in the y direction! LD super-
conductors withr (T)!1, 2Ly15Ly2[W/2, in the field
rangeHs!H!Hc2` (Hc2` is the upper critical field! and in
the absence of externally applied current (I 50). The bound-
ary conditions onf have the form

1

2ep

df

dy S 6
W

2 D5H. ~42!

Under these conditions, the phase difference up to fi
order in the small parameterHs

2/H2 is
8-7
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f~y!52epHy1pNv~H !

2
~21!Nv

4

Hs
2

H2 @sin~2epHy!22epHycos~epWH!#.

~43!

The constant of integrationpNv(H) accounts for the re-
quirement that the Josephson term in the free energy b
minimum. The ‘‘topological index’’Nv corresponds to the
number of vortex planes and is a singular function of
applied fieldH:

Nv~H !5FepWH

p G5F F

F0
G . ~44!

Here @u# means the integer part ofu, and F5pWH is the
flux through one barrier.

By the use of~43!, we derive the following expression
for the physical quantities up to first order in the small p
rametersr (T) andHs

2/H2:

h~y!5HF12
~21!Nv

4

Hs
2

H2 @cos~2epHy!2cos~epWH!#G ,
~45!

j ~y!5~21!Nv j 0 sin~2epHy!, ~46!

f ~y!512
r ~T!

2

3F 12
~21!Nv cos~2epHy!

112@epz~T!H#2

2
&epz~T!Husin~epWH!u

112@epz~T!H#2

cosh
&y

z~T!

sinh
W

&z~T!

G .

~47!

In the limit W@z(T),uyu!W/2, equation~47! becomes

f ~y!512
r ~T!

2 F12
~21!Nv cos~2epHy!

112@epz~T!H#2 G . ~48!

The vortex solution~43!, ~45!, ~48! for Nv52m ~m is an
integer! was first obtained by Theodorakis.8

From Eq.~44! with Nv(H)51, we derive the lower criti-
cal field Hc1W in a finite along the layers superconduct
with W!lJ :

Hc1W5
p

epW
5

p2

2
Hc1`

lJ

W
@Hc1` . ~49!

For the magnetization
05450
a

e

-

M5
1

4pW E
2W/2

1W/2

dy h~y!2
H

4p

we obtain

M ~H !52
Hs

2

16pH F usin~epWH!u
epWH

2~21!Nv cos~epWH!G .
~50!

The magnetization~50! shows distinctive oscillatory behav
ior and discontinuities whenepWH/p approaches an inte
ger, i.e., when a vortex plane penetrates or leaves the su
conductor. ForH@F0 /pW,

NvF0

pW
,H,S Nv1

1

2D F0

pW
,

the LD superconductor exhibits a small paramagnetic eff
i.e., M (H).0. ~Note that oscillations and jumps of magn
tization due to Josephson vortex penetration have been
perimentally observed on superconducting superlatti
Nb/Si.22!

4. Fraunhofer oscillations of the critical Josephson current

Consider the case of a finite-size~along the layers! LD
superconductor withr (T)!1, 2Ly15Ly2[W/2 in the pres-
ence of an externally applied currentI in thex direction. The
boundary conditions onf now are

1

2ep

df

dy S 6
W

2 D5H62pI . ~51!

AssumingW!lJ , we obtain the solution up to first orde
in the small parametersr (T) andW2/lJ

2:

f~y!52epHy1pNv~H !

1w2
~21!Nv

4

W2

lJ
2 ~epWH!22@sin~2epHy1w!

22epHycos~epWH!cosw2sinw#, ~52!

I ~w,H !5E
2W/2

1W/2

dy j~y!5
j 0

epH
usin~epWH!usinw,

~53!

h~y!5HF12
~21!Nv

4

W2

lJ
2 ~epWH!22

3@cos~2epHy1w!2cos~epWH!cosw#G ,
~54!
8-8
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f ~y!512r ~T!F 12
~21!Nv cos~2epHy1w!

112@epz~T!H#2 2
&epz~T!Husin~epWH!ucosw

112@epz~T!H#2

cosh
&y

z~T!

sinh
W

&z~T!

2
~21!Nv&epz~T!H cos~epWH!sinw

112@epz~T!H#2

sinh
&y

z~T!

cosh
W

&z~T!

G . ~55!
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The phase shiftpNv(H), induced byNv vortex planes, as-
sures the condition of a minimum of the Josephson ene
The field-independent phase shiftw(uwu<p/2) parametrizes
the total Josephson currentI given by ~53!. Equation~53!
yields the well-known Fraunhofer pattern in layer
superconductors.6,2 Note that the first zero of the Fraunhof
pattern, by~49!, corresponds to the lower critical fieldHc1W .
~See Ref. 2 for the explanation of the Fraunhofer pattern
terms of the pinning of the vortex planes by the edges of
superconductor.! In the absence of the transport current, i.
for w50, Eqs.~52!, ~54!, and ~55! reduce, respectively, to
Eqs.~43!, ~45!, and~47!.

5. The upper critical field Hc2̀ „T…

Here we consider an infinite~in the y direction! LD su-
perconductor with 2Ly15Ly2[W/2→1`, subject to
boundary conditions on the phase of the type~42!. Suppos-
ing that at the upper critical fieldH5Hc2` the transition to
the normal phase is of the second-order type,f 2 can be con-
sidered as a small parameter, and Eqs.~24! and~26! become

f ~y!1z2~T!
d2f ~y!

dy2 2r ~T!@12cosf~y!# f ~y!50,

~56!

d2f~y!

dy2 50. ~57!

The relevant solution of Eq.~57! is

f~y!52epHy1pNv~H !. ~58!

@Compare with ~43!.# The substitution of~58! into ~56!
yields

d2f ~ t !

dt2
1@A~T,H !2~21!Nv11q~H !cos 2t# f ~ t !50,

~59!

A~T,H ![
@12r ~T!#

@epz~T!H#2 ,

q~H ![
r ~T!

2@epz~T!H#2 5
aph

@epjphH#2 ,

where we have introduced a dimensionless variablet
[epHy and the notationz(0)[jph . Hence one gets two
independent equations: for the oddNv52m11 (m
05450
y.

in
e
,

50,1,2, . . . ) and theevenNv52m number of vortex planes
Both of them have the usual form of the Mathie
equations.21 @Note that for Nv52m, Eq. ~59! is well
known.3#

The upper critical fieldHc2 is now determined by the
smallest eigenvalue of~59!:

A~T,Hc2`!5a0~qc!, ~60!

where qc[q(Hc2`) and a0(q) @a0(2q)5a0(q)# is the
smallest eigenvalue of the Mathieu equation correspond
to the eigenfunctions f Nv52m11(t)}ce0(t,q) and

f Nv52m(t)}ce0(p/22t,q). @Note that the function ce0(t,q)
is strictly positive and periodic with the periodp.# Explicitly,
Eq. ~60! reads

t22aph

@epjphHc2`#2 5a0S aph

@epjphHc2`#2D . ~61!

Equation~61! exhibits the well-known 3D–2D crossove
of Hc2`(T),3 with the crossover temperature determined
t* 52aph . As usual, it is of interest to consider two opp
site limiting cases.

High temperatures, weak fields:t!2aph ,Hc2`

!Aaph/epjph .
In this 3D regime,

Hc2`~T!5
1

2Aaph

t

epjph
5

1

2Aaph

1

epjph
S 12

T

Tc0
D .

~62!

The superconductivity of theS layers is strongly depresse
by the vortex planes, which can be seen by comparing lo
maxima f max with local minima f min of the order parameter

f min

f max
52& exp@22r ~T!#!1.

Low temperatures, strong fields: 2(12t/2aph)!1, Hc2`

@Aaph/epjph .
In this regime,

Hc2`~T!5
Aaph

2epjph
S 12

t

2aph
D 21/2

5
aph

& epjph

ATc0

AT2Tc0~122aph!
. ~63!
8-9
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This expression diverges fort→t* 20. The origin of this
well-known unphysical divergence is the unrealistic assum
tion of the LD model of a negligibleS-layer thickness.@In
the microscopic theory,2 Hc2`(T) is finite at any tempera
tures.# The spatial dependence of the order paramete
given by

f ~y!}12
~21!Nvr ~T!

4@epz~T!Hc2`#2 cos~2epHc2`y!.

This spatial dependence is exactly the same as in the ca
intermediate fields~48!.

III. MEISSNER STATE IN THE FINITE LD MODEL

Let the LD superconductor occupy the region@Lx150
<x<Lx2#3@Ly150<y<Ly2#. The external magnetic field
H(0<H<Hs) is again applied along thez axis ~see Fig. 2!.
The homogeneity along this axis is assumed (Wz→1`).
The Meissner state realizes under the conditionsLx2
@l, Ly2@lJ , thus it is sufficient to consider the limiting
caseLx2→1`,Ly2→1`.

FIG. 2. Finite LD model: the geometry of the problem. He
l!Lx2,1` andlJ!Ly2,1`.
05450
-

is

of

This situation is described by the functional~2! with a
minor change: the summation is now done overn
50,1,2,... . We assume thatr (T)!1. Boundary conditions of
the type~9! are supposed to hold aty50, andh(x,0)5H.
The presence of an outer boundary atx50 is accounted for
by the obvious boundary condition

H2h~10,y!5
p f0

2~y!

2el2~T! Fdf0~y!

dy
22eAy~0,y!G . ~64!

@Compare with~8!.# The imposition of the boundary cond
tion ~64! implies a restriction on variations ofAy(x,y): they
must now satisfy the condition

dAy~0,y!50. ~65!

The influence of the boundary aty50 must vanish fory→
1`, hence boundary conditions

Fn11,n~1`!50,
dFn11,n

dy
~1`!50. ~66!

For x→1`, we must arrive at the solution of the infinite LD
model ~38!–~40!, thus

dfn~y!

dy
22eAy~np,y!→0, n→1`. ~67!

The minimization with respect tof n leads to~16! and
~17!. Varying with respect toAx under the condition
dAx(x,0)5dAx(x,1`)50 yields the Maxwell equations~6!
in the regionsnp,x,(n11)p (n50,1,2, . . . ). Taking
variations with respect toAy under the condition~65!, we
obtain the Maxwell equations~7! in the regionsnp,x,(n
11)p (n50,1,2, . . . ) andboundary conditions at theS lay-
ers ~8! for n51,2, . . . .

The general solution of the Maxwell equations, subject
the above formulated boundary conditions, in the gauge~20!,
has the form
A~0,y!5
r ~T!

4ez2~T!

1

f 0
2~y!

E
0

y

du f1~u! f 0~u!sinf1,0~u!1
1

2e

df0~y!

dy
,

A~x,y!5F4p j 0E
0

y

du fn11~u! f n~u!sinfn11,n~u!1HG @x2~n11!p#1
1

2e

dfn11~y!

dy

2
r ~T!

4ez2~T!

1

f n11
2 ~y!

E
0

y

du fn11~u!@ f n~u!sinfn11,n~u!2 f n12~u!sinfn12 ,n11~u!#, ~68!

np,x<~n11!p, n50,1,2, . . .

where the phase differencesfn11,n obey the solvability conditions
8-10
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df1,0~y!

dy
58pe j0pE

0

y

du f1~u! f 0~u!sinf1,0~u!12epH

1
r ~T!

2z2~T! F 1

f 1
2~y!

E
0

y

du f1~u!@ f 0~u!sinf1,0~u!2 f 2~u!sinf2,1~u!#

1
1

f 0
2~y!

E
0

y

du f1~u! f 0~u!sinf1,0~u!G ,
dfn11,n~y!

dy
58pe j0pE

0

y

du fn11~u! f n~u!sinfn11,n~u!12epH

1
r ~T!

2z2~T! F 1

f n11
2 ~y!

E
0

y

du fn11~u!@ f n~u!sinfn11,n~u!2 f n12~u!sinfn12,n11~u!#

2
1

f n
2~y!

E
0

y

du fn~u!@ f n21~u!sinfn,n21~u!2 f n11~u!sinfn11,n~u!#G , n51,2, . . . . ~69!
-

-
-

i-

r

d
D
it

se
Equations~69! assure the continuity of the solution~68! at
x5np (n50,1,2,...). @Compare with Eqs.~80! and ~81! of
the infinite LD model.# The obtained solution explicitly sat
isfies the current-conservation law

p

8pel2 (
n50

1`

f n
2~y!Fdfn~y!

dy
22eAy~np,y!G1E

0

y

du j~u!50,

~70!

wherej (y)[ limn→1` j n11,n(y) is the density of the Joseph
son current given by~34!. @Compare with the current
conservation law~12! of the infinite LD model.#

Note that, in contrast to the infinite LD model, the min
mization with respect to the phasesfn now is not possible.
Indeed, a variation of the phase at themth layer, dfm ,
would induce, by~70!, a nonvanishing variation of the vecto
potential atx50:

dAy~0,y!5
1

2e

f m
2 ~y!

f 0
2~y!

dd fm~y!

dy
.

Such a variation is not allowed by the condition~65!. This
observation explains the role of the arbitrariness containe
the system of the Maxwell equations of the infinite L
model, discussed in the preceding section. In the infin
case, the variationsdAy(6`,y) were arbitrary, which al-
lowed the system to adjust boundary conditions atx→6`,
so as to minimize the free energy with respect to the pha

We are interested in the behavior of~68! in the asymptotic
region y→1`. The second set of the conditions~66!, ap-
plied to ~69!, in first order in the small parameterr (T) yields
05450
in

e

s.

I 2,12S 21
p2

l2D I 1,02
p2H

4pl2 50,

~71!

I n12,n112S 21
p2

l2D I n11,n1I n,n212
p2H

4pl2 50,

n51,2, . . . ,

where

I n11,n[ j 0E
0

1`

du fn11~u! f n~u!sinfn11,n~u!,

n50,1,2, . . .

is the total Josephson current between the (n11)th and the
nth layers. The local magnetic field inside the barriersnp
,x,(n11)p(n50,1,2, . . . ) in theasymptotic regiony→
1` is given by

hn11[h~x,1`![4pI n11,n1H. ~72!

With the help of the quantitieshn , Eqs.~71! can be rewritten
in the form of a recursion relation

hn122S 21
p2

l2Dhn111hn50, n50,1,2, . . . , ~73!

subject to boundary conditions

h05H, hn→0, n→1`. ~74!

The solution of~73! and ~74! is straightforward:

hn5HF11
p2

2l2 2
p

l
A11

p2

4l2G n

. ~75!

Assumingp!l, we get
8-11
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h~x,1`!5H expF2
~n11!p

l~T! G , np,x,~n11!p,

n50,1,2, . . . . ~76!

The intralayer currents are given by

Jn~1`!5
1

4pp
~hn2hn11!5

H

4pl~T!
expF2

np

l~T!G ,
n50,1,2, . . . . ~77!

The order parameters are

f n~1`!5122e2z2~T!l2~T!H2 expF2
2np

l~T!G ,

n50,1,2, . . . . ~78!

Equations~76!–~78! describe the Meissner state in the regi
@0<x,1`)3(lJ!y,1`). In the region (l!x,1`)
3@0<y,1`), the solution is given by~38!–~40!. As in the
case of the infinite LD model, the upper bound of the ex
tence of these solutions isH5Hs . Unfortunately, in the re-
gion @0<x,l)3@0<y,lJ), an analytical solution to Eqs
~16! and ~69! is not possible.

Equations of the type~16!, ~68!, and ~69!, subject to to-
pological boundary conditions onfn11,n , in principle, de-
scribe Josephson vortex configurations. In contrast to
equations of the infinite LD model, these equations do
preclude inhomogeneous in the layering direction vortex
lutions.

IV. DISCUSSION

We have solved the problem of exact minimization of t
LD functional in both the infinite and the finite cases. W
have shown that the LD model belongs to a class of sing
field theories:17,18 the Maxwell equations of this model con
tain constraints@the current conservation laws~12! and~70!#
on the phases and the vector potential at different super
ducting layers. Such constraints, resulting from gauge inv
ance combined with inherent discreteness, are typical of
ered superconductors.@See Eq. ~26! of the microscopic
theory.2# Unfortunately, the current-conservation laws~12!
and ~70! were completely overlooked in previous public
tions on the LD model.

By taking into account the current-conservation law~12!,
we have minimized the free energy of the infinite LD mod
with respect to the phases, obtaining a closed, complete,
consistent system of mean-field equations~23!–~29!. We
show that relations of the type~11!, erroneously regarded a
‘‘equations minimizing the free energy with respect to t
phases,’’15 are, in reality, mere consequences of the Ma
well equations~6!–~8!. By considering nonvanishing first
order variations of~2! caused by the variation~A5! of an
inhomogeneous solution to the Maxwell equations, we pr
that the infinite LD model does not admit solutions in t
form of isolated Josephson vortices.
05450
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The exact mean-field equations~23!–~29! contain the
whole physics of the infinite LD model in parallel magnet
fields. In particular, they reproduce such well-known limitin
cases as the Meissner state,5 Fraunhofer oscillations of the
critical Josephson current,6 the upper critical fieldHc2(T),7,3

and the vortex state8 in the intermediate field regime. Al
previous calculations of these effects were based on a ph
cal assumption of the homogeneity of the solution in t
layering direction. We provide a rigorous mathematical ju
tification of this assumption by proving that the homogene
of the solution is one of the necessary and sufficient con
tions of a minimum of~2!. Moreover, our approach allows u
to make self-consistent refinements on these results by
taining exact analytical expressions for all physical quantit
of interest up to leading order in small parameters, wh
substantially elucidates the physics.

We have obtained an exact topological solution~37!–~40!
to Eqs.~23!–~29!, describing a chain of Josephson vortic
~a vortex plane!. This solution clearly demonstrates tha
contrary to previous suggestions,9,10 Josephson vortices o
the infinite LD model form simultaneously and coheren
~one vortex per each barrier! at the lower critical fieldHc1` ,
given by~41!. Successive penetration of the vortex planes
higher fields is accompanied by oscillations and jumps of
magnetization, as described by~50!. We show that the
vortex-plane solutions of the infinite LD model persist up
the upper critical fieldHc2`(T) in the whole temperature
range.

Our consideration of the finite LD model illuminates th
role of the boundary effect. Thus, the imposition of t
boundary condition~64! completely eliminates all unphysi
cal degrees of freedom and makes minimization with resp
to the phases impossible. The explicit solution~68! and~69!
to the Maxwell equations, in contrast to the infinite ca
does not preclude the existence of localized Josephson
tex configurations. Making use of this solution, we obtain t
first, to our mind, self-consistent description of the Meissn
state of the finite LD model@Eqs.~76!–~78! and~38!–~40!#.

All the above results stand in full agreement with o
previous consideration of layered superconductors2 based on
a completely different, microscopic approach. Our disc
sion ~Appendix B! of relationship to the microscopic theory2

clarifies a microscopic background of the phenomenolog
parameters of the LD model and casts light on its act
domain of validity.

As regards the experimental status of the problem, sim
taneous Josephson vortex penetration into all the barrier
described in our paper, has been recently observed on a
cial low-Tc superlattices Nb/Si.22 Oscillations and jumps of
the magnetization, accompanying this penetration, have
been observed.22 Concerning the reported observation of l
calized Josephson vortex configurations in layered highTc

superconductors,23 the boundary effect discussed in Sec.
of our paper may account for this situation. Moreover, t
presence of irregularities within the layered structure~e.g.,
stacking faults! can substantially modify the physical pictur
such irregularities should serve as pinning centers
8-12
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isolated Josephson vortices. We hope that our exact re
will stimulate further theoretical and experimental investig
tion in these directions.

APPENDIX A: EXPLICIT SOLUTION TO THE MAXWELL
EQUATIONS OF THE INFINITE LD MODEL

In the gaugeAx50, the explicit solution of Eqs.~6!–~8!
on the intervals

~n21!p,x<np, n50,61, n50,61,62, . . . ,
~A1!

subject to boundary conditions~9! at y5Ly1 and h(Ly1)
5H22pI , has the form
re

f

pe

n

05450
lts
- Ay~x,y!5F4p j 0E

Ly1

y

du fn~u! f n21~u!sinfn,n21~u!

1H22pI G~x2np!1
1

2e

dfn~y!

dy

2
r ~T!

4ez2~T!

1

f n
2~y!

E
Ly1

y

du fn~u!

3@ f n21~u!sinfn,n21~u!2 f n11~u!

3sinfn11,n~u!#, ~A2!

where the phase differencesfn,n215fn2fn21 obey the
solvability conditions
dfn11,n~y!

dy
58pe j0pE

Ly1

y

du fn11~u! f n~u!sinfn11,n~u!12ep~H22pI !

1
r ~T!

2z2~T! F 1

f n11
2 ~y!

E
Ly1

y

du fn11~u!@ f n~u!sinfn11,n~u!2 f n12~u!sinfn12,n11~u!#

2
1

f n
2~y!

E
Ly1

y

du fn~u!@ f n21~u!sinfn,n21~u!2 f n11~u!sinfn11,n~u!#G . ~A3!
n-

y,
This infinite system of integrodifferential equations assu
the continuity of the solution~A2! at x5np (n50,61,
62, . . . ). For f n51, Eqs.~A3! reduce to an infinite set o
second-order nonlinear differential equations.13 Unfortu-
nately, an explicit solution for the vector potential of the ty
~A2! was not found in previous publications.

Consider the variation of the solution~A2! induced by a
variation of the phase at one of theS layers,dfn(y). As
there is only one constraint ondfn /dy and they compo-
nents of the vector potential atx5np, namely the current-
conservation law~12!, such a variation affects the solutio
~A2! only on one of the intervals~A1!, say, (m21),x
<mp. Making use of~13!, we rewrite the solution~A2! on
this interval as

Ay~x,y!5F4p j 0E
Ly1

y

du fm~u! f m21~u!sinfm,m21~u!

1H22pI G~x2mp!1
1

2e

dfm~y!

dy

1
1

f m
2 ~y! (

nÞm
f n

2~y!F 1

2e

dfn~y!

dy
2Ay~np,y!G .

~A4!
sIn Eq. ~A4!, all dfn /dy should be considered as indepe
dent. Thus, the desired variation is

dAy~x,y!5
1

2e

f n
2~y!

f m
2 ~y!

dd fn~y!

dy
, ~A5!

wheren50,61,62, . . . .

APPENDIX B: RELATIONSHIP TO THE MICROSCOPIC
THEORY

The free energy functional of the microscopic theor2

after the minimization with respect toA, has the form

V@ f ,f;H#5
Hc

2~T!

4p
WxWzE

Ly1

Ly2
dyFa

p F2 f 2~y!1
1

2
f 4~y!

1z2~T!Fd f~y!

dy G2

1
z2~T!

12 S a

pD 2Fdf~y!

dy G2

f 2~y!

1
az2~T!

aj0
@12cosf~y!# f 2~y!G

14e2z2~T!l2~T!F 1

2ep

df~y!

dy
2HG2G , ~B1!
8-13
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SERGEY V. KUPLEVAKHSKY PHYSICAL REVIEW B63 054508
wherej0 is the BCS coherence length,z(T) and l(T) are
the GL coherence length and the penetration depth, res
tively, a is theS layer thickness,

a5
3p2

7z~3!
E

0

1

dt tD~ t !!1, ~B2!

with D(t) being the tunneling probability of the barrier b
tween two successiveS layers. The rest of notation is th
same as in~23!. Expression~B1! applies to the temperatur
range~1! and theS layer thicknesses meeting the conditio
j0!a!z(T),l(T).

Consider the LD limit of~B1!, whena!p. In this limit,
the average kinetic energy of the intralayer currents, i.e.,
term proportional toa3/p3, should be dropped. However, th
microscopic functional~B1! does not reduce to the corre
sponding LD functional~22! because of the presence of th
first order factora/p. ~In the LD model this factor is unre
alistically taken to be unity.! Nevertheless, as can be eas
05450
c-

e

seen by minimizing~B1! with respect tof andf, the micro-
scopic mean-field equations in this limit formally coincid
with the LD Eqs.~23!–~29!, if one identifiesr (T) with the
microscopic parameteraz2(T)/aj0 and the LD quantityj 0
with the microscopic expression for the critical Josephs
current of a single junction

j 05
7z~3!a

6
eN~0!j0D2~T!,

where N(0) is the one-spin density of states at the Fer
level.

The role of the first-order factora/p becomes eviden
when one considers the penetration of an external par
magnetic field in the layering direction. As can be shown
the basis of the microscopic equations,2 the exponential fall-
off of the magnetic field occurs on the length scale of t
effective penetration depthleff5lAp/a, whereas the LD
model givesleff5l. @See Eq.~76!.#
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