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We consider a simple model for a superlattice composed of a thin magnetic film placed between two bulk
superconductors. The magnetic film is modeled by a planar but otherwise arbitrary distribution of magnetic
dipoles and the superconductors are treated in the London approximation. Due to the linearity of the problem,
we are able to compute the magnetic energy of the film in the presence of the superconductors. We show that
for wave vectors that are much larger than the inverse London penetration depth, the magnetic energy is
unchanged with respect to the film in free space, whereas in the case of small wave numbers compared to the
inverse London penetration depth, the magnetic energy resembles the energy of a distribution of magnetization
in a two-dimensional space. Possible experimental applications of these results are discussed.
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[. INTRODUCTION ferromagnetism are seen to coexist in bulk systems, e.g., in
HoMogS; and ErRhB,.8

The interplay between superconductivity and ferromag- Another system in which the coexistence of superconduc-
netism in bulk materials has been the subject of active retivity and ferromagnetism has been observed in the bulk is
search since 1957 when Ginzbtirgublished a paper in the nuclear magnet Aup’~*? This compound shows a su-
which he considered the effect of the field created by a buliperconducting phase transitiont=207 mK and an order-
distribution of magnetization on a superconductor, whiching transition to a ferromagnetic state at an even lower tem-
was described by the London equatidride concluded that peratureT,, =35 wK. This particularly low temperature can
for a ferromagnetic induction field of the sample larger thanbe explained by the weakness of the interaction between the
its superconducting critical field, this field would destroy su-nuclear spingwhich is primarily due to an indirect exchange
perconductivity, but he also pointed out that in thin films orvia the conduction electrons
wires where the induction field is much smalleiue to de- On a different perspective, the development of the
magnetization effecisand the critical field highefdue to the  epitaxial growth of crystals has permitted the creation of
small diamagnetic energythan in bulk superconductors, it artificial superlattices composed of superconducting and
should be possible to observe the coexistence of the twéerromagnetic materials, e.g., Fe/V, Ni/V, Ni/Mo, EuS/Pb,
phenomena. Experiments carried out by Mathias, Suhl, anBuO/Al, and Nb/Gd*~*In these superlattices, one can ex-
Corenzwit on lanthanum with several rare-earth paramagperimentally study the interaction between superconduct-
netic impurities dissolved at low concentrations suggestedvity and ferromagnetism when these two effects occur
that the interaction responsible for the depletion of the superin neighboring spatial regions and also study the sup-
conducting critical temperature of lanthanum is the exchanggression of superconductivity as a function of the relative
interaction between the paramagnetic impurity spins and thproportion (i.e., layer thickness of the two materials.
superconducting electrons. This interaction induces an effedMore recently, the cuprates Ry&UdCuy,0g_ 5 (Refs. 20—-23
tive ferromagnetic interaction between tHantiparalle) and RuSyGd, , ,Ce, _,Cu,04( (Refs. 24 have been found to
spins in the Cooper pair, which tends to destroy it and hencehow superconductivity and a ferromagnetism below their
destroy superconductivity. Anderson and Sufve shown critical temperaturesT,=15—40 K for RuSpGdCy,0g_ 4
that the Ruderman-Kittel-Kasuya-Yosida interaction be-and T.=37 K (for an optimal x=0.2) for
tween the ferromagnetic spins due to the conduction eledRuS,pGd, . ,Ce, _,Cu,0,q, the Curie temperatures for mag-
trons is significantly reduced in the superconducting statenetic ordering beind,,~ 133 K for the first compound and
but pointed out that ferromagnetism could coexist with su-T,~100 K for the second. The experimental analysis shows
perconductivity if the ferromagnetic atoms formed small do-that these materials, like all cuprates, have a layered structure
mains. The dependence of the superconducting critical temand that superconductivity and ferromagnetism seem to oc-
perature on the concentration of magnetic impurities due teur in different layers. However, a detailed analysis has been
exchange scattering of electrons from these impurities wakindered by difficulties with the growth of single crystafs.
addressed with the microscopic theory of superconductivity Motivated by such experiments, in which magnetism and
by Abrikosov and GorkoV. de Gennes and Sarfhhave  superconductivity are seen to occur in different spatial re-
estimated that typically, the exchange interaction betweegions of the studied materials, we wish to address the prob-
localized moments and superconducting electrons would bkem of a thin ferromagnetic layer, placed between two bulk
10°—10° larger than the dipolar interaction considered bysuperconducting layefsee Fig. 1, in which the thickness of
Ginzburg. The detailed form of the Landau-Ginzburg theorythe superconducting layers is much larger than the London
of ferromagnetic superconductors was worked out by Suhl.penetration depth of the superconducting material and the
Despite their conflicting character, superconductivity andthickness of the ferromagnetic layer is very small compared
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It was shown by Aharony and Fisiérthat in a
d-dimensional system, d-dimensional dipolar interaction
(such as the one occurring in a bulk tridimensional ferromag-
net or in the layered-geometry superconductor/ferromagnet/
superconductgris a relevant interactiofin the sense of RG
near a paramagnetic-ferromagnetic transition, leading to a
crossover between the critical exponents of the short-range
ferromagnet and the critical exponents of the dipolar system
when one approaches the critical temperaftré! Pelcovits
and Halperii® have also shown that in the case of a
d-dimensional systems with adf1)-dimensional dipolar
interaction(such as the one ocurring in a thin magnetic film
in free spacgthe universality class of the dipolar system is

FIG. 1. Thin ferromagnetic film between bulk superconductorsthe same as above. This is due to the fact that at the fixed
(schemati. point, the “effective” (renormalized dipolar coupling con-

stant is infinite, making the susceptibility of the system in-
to this quantity, which is a condition that can be easily ob-dependent of the longitudinal degree of freedom of the mag-
tained with the modern techniques of epitaxial growttn netization, which is the one sensitive to the nature of the
this limit, the results obtained can also be applied to superdipolar interaction. However, in real systems, measurements
lattices of the two materials, given that the ferromagneticare not taken exactly at the critical point and one always
layers are decoupled from one another. probes the crossover region. In this region, the dipolar cou-

We consider in this paper a simple model system compling constant is finite and one should be able to detect the
posed of a very thin ferromagnetic film, with an arbitrary distinct character of the transition if the ferromagnetic film is
distribution of magnetization in the plane of the film, which included in a layered geometry with superconductors or if
is placed in a spatial gap of sized2between two semi- the film is grown in a nonsuperconducting substrate, due to
infinite superconductors described by the London equationghe different character of the dipolar interaction at small
The film is coupled to the superconductors by the electrowave vectors. The ideal experiment to detect such a distinc-
magnetic interaction, i.e., we neglect the proximity effct tion would presumably be a measurement of the longitudinal
and we consider the Josephson curiefidwing between the  susceptibility using polarized neutrotfs*® Experiments
two superconductors to be zefie limitations of these ap- done with films of EuS/SrS grown on a Si substrate have
proximations will be discussed in Sec.)\Having made the showrt* that the low-Curie temperature of E($6.5 K) is
approximations indicated above, we are able to solve théurther reduced in these geometries. The authors of Ref. 14
problem exactly, by first considering the simpler problem ofhave also performed experiments with films of EuS/Pb, prob-
a single dipole in the spatial gap and then superimposing thig the transition between the superconducting state and the
different solutions, due to the linearity of the London equa-normal state in the Pb layer as a function of the applied
tions. One can then compute the dipolar energy of the distrimagnetic field. Therefore, EuS stands as a good candidate for
bution of magnetization. It turns out that for wave vectorsa material to be used in the ferromagnetic layer. It has the
much larger than the inverse London penetration depth, th&urther advantage of being an insulatsee below.
form of the dipolar energy in momentum space is unchanged Another possibility would be the study of spin-spin cor-
by the presence of the superconductors. On the other hancglation functions in a magnetic film in the ordered phase and
for wave vectors much smaller than the inverse London peneutside the critical region. Indeed, Kashftbaas shown that
etration depth, the dipolar energy in momentum space rethe static correlation functions of 24Y model with 2 di-
sembles the energy of a distribution of dipoles in a two-polar interactions would display a behavior analogous to that
dimensional(2D) space. This behavior can be traced to theof the dynamic correlations functions of the stochastic pro-
Meissner effect, which confines the magnetic flux linescess described by the Kardar-Parisi-Zh&kg2) equation in
within the spatial gap. 1+1 dimensiond? for which the form of these correlation

One can think of several possible ways to detect the effunctions is known. An adequate experiment to probe these
fects of this change of behavior of the dipolar interaction atcorrelation functions at low momentum compared with the
low wave vectors. If one were able to choose the materialinverse London penetration degilthere such length is typi-
composing a layered geometry of superconductortally of the order of a thousand angstromeould presum-
ferromagnetic film/superconductor in such a way that theably be low-angle neutron scattering from the magnetic fluc-
Curie transition temperature of the magnetic film to the fer-tuations in a layered geometry. Other possible experiments
romagnetic state is lower than the critical temperafiyef  that could probe the magnetic properties of the system in the
the superconductor, one should be able to measure the crittrdered phase would be the use of the magnetooptical Kerr
cal properties of the system at the paramagneticeffect or of the Faraday effect on samples with a single mag-
ferromagnetic transition, in particular such quantities as thaetic layer to image such a layer.
specific heat and the magnetic susceptibility, with the super- The structure of this paper is as follows: in Sec. Il, we
conductors already displaying the Meissner effect and theredefine our model in terms of the geometry of the system and
fore with a modified form of the dipolar energy. the equations that describe it. We also describe the type of
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Vxh=0, 1
V-h=0, (2
b=puo(h+m), 3

where the first two equations are the Maxwell equations for
the magnetic fielch and the magnetic inductiob, and the

= A NN S T AL ) third equation is the constitutive relation between the two.
N 7 — —— Y2 — . . . .
e e~ S~ For the case of a single dipole oriented along xtexis, the

magnetizatiorm(r)=mx &%(r), wherem is the magnitude
of the magnetic dipole.
The superconductors are described by the equations

VXh=j, (4)
b=—-AVXj5, (5)
b= uh, (6)
FIG. 2. In-plane distribution of magnetization between bulk su- i L . .
perconductorgschematie where the first equation is the Maxwell equation, which re-
lates the magnetic field with the “free” current; the second
boundary conditions we have to consider. In Sec. Ill, we'€lation is the second London equatfomhich relates the

present the solution of the equations for a single dipole anguPercurreny® with the magnetic induction; and the third
construct the solution for a general in-plane distribution oféquation is the constitutive relation between the magnetic
magnetization by linear superposition. In Sec. IV, we com-nduction and the magnetic field. The constanis depen-
pute the dipolar energy of the distribution of magnetizationdent on the type of the superconductor. In a static situation
and discuss the physical limitations of the model we havesuch as the one we are considering, the electric &eid in

considered. Finally, in Sec. V, we present our conclusions.the superconductor and the total currgnty®, i.e., there is
no normal component of the current.

Il GEOMETRY OF THE MODEL AND RELEVANT Substituting Egs(5) and (6) in Eq. (4), one obtains

EQUATIONS V23—\.%1=0, 7
The geometry of the model is as follows: an infinite dis- 5 s
tribution of in-plane magnetization is placed in the plane Vb= “b=0, ®

=0. This distribution is constituted by single magnetic di'where)\L:(A/,u)l’z is the London penetration depth and
poles, placed in an arbitrary fashion with respect to one angpere Eq.(8) follows from taking the curl of Eq(7) and
other(see Fig. 2 The in-plane constraint implies that all the using Eq.(5), and where we have used the fact that)
dipoles point in a direction within the plane. Above and be-_, (equatior’1 of continuityandV-b=0. These two equa-
low the distribution are.two bulk superconductors, wh|ch &X-tions show that the magnetic-flux density and the supercur-
tend fromz=d (respectivelyz= —d) to z=c (respectively, rent penetrate a layer of thickneks at the surface of the
z=—m). The spatial gap with sizedis supposed to be superconductofMeissner effegt

filled with an insulator Wi'Fh m:?\gnetic permitivity. Thg These equations have to be supplemented by boundary
two superconductors are identical and have a magnetic pegpnditions at the surface of the superconductors. These con-
mitivity 4 (i.e., they are paramagnetic, with relative permi- gitions are the continuity of the normal componentbofof

tivity p,=p/po). These supercondutors are described byne tangential components bf and of the normal compo-

the London equationsee below which imply a linear re-  nent of the curreny at the boundary surfaces of the two
lation between the current and the magnetic field.

This linear relation allows us to consider instead a simple
problem, the one of a single magnetic dipole, placed at th
origin of the coordinate system and oriented alongxthais. V29— 2g=0 (9)
Once this problem has been solved, one can construct the - ’
solution for the general case simply by using translationathen one can satisfy Eqé7) and(8) and the boundary con-
and rotational invariance in the plane and by adding the difdition j,=0 atz==*=d. Notice that this choice implies that
ferent solutions. The linearity of the equations will guarantyj,=0 throughout the material, which is physically reason-
that the linear combination is also a solution. Furthermore, able, sincej,=0 at the surfaceg==*d and also forz=
uniqueness theorem proved by Londauaranties that this = co.

Isuperconductor%lf one chooseg=V X (gz), whereg(r) is
a solution of

solution is unique. On the other hand, in the spatial gap, we obtain from Eq.
In the spatial gap, the system is described by the follow{1) h=—V®,,. Substituting this result in Eq3) and using
ing equation$? Eq. (2), we obtain
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V2D, =V-[mx &3(r)], (10)
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The above equations and boundary conditions are suffi-
cient to determine the solution of the problem within the

which is Poisson’s equation. Since we know the solution ofLondon approximation.

this equation in free spadee., in the absence of the super-
conductor$ to obtain the solution in this case, we can write

mp COS¢

dy(r)=——m—"o"rt
m(r) 477(p2+22)3’2

+x(p.¢.2), 11

where the first term on the right-hand side is the solution i
free space and the functiop(p,¢,z) is a solution of the
Laplace equationy?x(p,#,z)=0 and where we have used

cylindrical polar coordinates for later convenience.

Therefore we need to solve the modified Helmholtz equa
tion (9) in the superconductors and the Laplace equation fo
x in the gap and then fit the two solutions using the conti-

nuity conditions forb andh at the boundary.

We can further simplify the problem if we notice that the

system is invariant undera rotation around th& axis. This
invariance imposes the conditions
g_(p,¢,2)=—g+(p,—¢.—2), (12)

X(p!¢lz):X(p!_¢1_Z)! (13)

whereg, (respectivelyg_) is the solution of the Helmholtz
equation in the uppefrespectively, lower superconductor.

n

lll. THE SINGLE-DIPOLE SOLUTION AND THE
GENERAL SOLUTION FOR AN ARBITRARY
DISTRIBUTION OF MAGNETIZATION

We concluded in the previous section that in order to find
the field and current distributions for the case of a single
dipole, one needs to find a joint solution of the Laplace and
Helmholtz equations, which satisfies the appropriate bound-
ary conditions(17)—(19). Such a solution can be most easily
found using cylindrical polar coordinates and is given in
ferms of Fourier-Bessel integral transforms by

m

(I)M(p1¢1z): E

p COS¢h
(p2+ Z2)3/2

+ F dk k J,(kp)coshkz)cose
0

e*kd(lulr—l /k2+ )\Ez_k)

X
k coshkd) + u; k%4 ? sinh(kd)

Since the magnetic flux in the superconductor is given infor ®(r) and

terms ofg by

b,= le‘?( ag)+1‘929 (14)
9%g
— 2
bp_ ’u)\"&pﬁz’ (15
p\{ o%g
b= p ddaz’ (16)

and we have, in the spatial gap=uq[—VOy(r)

+mx 5%(r)], then the continuity conditions fdr andh im-
ply that atz=d,

Dy i T

o7 =N, > -\ %9 : 17
z=d J°z 7=d
P 32
P =AE((9 g*) , (18)

p z=d p(?Z z=d

ﬂ -2 &) (19
i |,_q L agoz oy

where we have used the fact thgt is a solution of the
Helmholtz equation and that, in the superconductor,
= wh. A similar set of conditions is valid &= —d but they
are trivially related to these conditions by E¢52) and(13).

(20)
(p,$,2) m dek
1 IZ =
g+ P 4’7T,u,r)\E 0
-2
xe VI @-d ], (kp)cose
y 1
k coshikd) + , t\k2+ N[ 2 sinh(kd)
(21

for g, (r) with g _(p,#,2)=—9.(p,— ¢,—2) and where
J1(x) is the Bessel function of order one. These integrals can
only be calculated explicitly in the particular case-0,
m,=1. We obtain

m e PN
q)M(p,d),O):E m‘l‘ p2 COS¢, (22)
m coS¢
g+(p1¢1o):_ > - (23)
AT\ p

The magnetic potentiab,(p, $,0) corresponds to the mag-
netic potential of a dipole that produces a 3D field at short
distances and that at distancea produces a 2D field, i.e.,
the field produced by a dipole in a two-dimensional space.
This behavior can be traced to the Meissner effect, which
confines the flux lines to the spatial gap and to a region of
size A in each of the superconductors. Although the 0
case is somewhat unphysicéthe superconductor would
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have to withstand an infinite fieldwe shall see that as long stant currents and is given Hy*®
asd<\\, this type of behavior is essentially unchanged.
Now, in order to generalize this solution to the case of an 1 2 -~
arbitrary distribution of magnetization, we represent the Em=— EMOJ d“pm(p)-h(p,$,2=0). 27

magnetization per unit of area in the form o ) )
Substitutingh=-V®,,, with ®,(r) given by(25) and ap-
proximating the discrete sums on the lattice by integrals, we

m(p)=2 m; &*(p=p), (24 obtain
wherem; is a dipole situated g = (x;,y;) andp=(x,y). In Mo d’k 2
real systems,p; will correspond to the sites of a two- :ﬁfBZ(ZW)z T[k-m(k)][km(—k)]
dimensional lattice where the dipoles are situated. The solu-
tion corresponding to this distribution of magnetization is N i [ N e e N
given by the linear superposition of the solutions correspond- X d T et
ing to eachm, i.e., D N e e
(28)
m;-(p—p;) i :
D $,2)= wherem(k)==; m, e *# and where the integrals ovér
m(p,b,2) 2 47T(|P_Pi|2+22)3/2 (k) i g

are over the first Brillouin zone of the reciprocal lattice. Ex-

mi-(p—p.) (* pression(28) was obtained in the limit in which one can
+Z ;f dk k disregard the lattice structure of the dipole distribution. If
T Amlp—pl Jo such a structure has to be taken into account, then one has to
% Jy(k|p— pi|) costikz) IL:]seEqEvgg)j summation methddso handle the discrete sums
e—kd(Mr—l\/m_ k) Expression(28) has two important limits. The first is

X — —— whenu,=1 and\ —, or whend—c<. We obtain
k coshikd) + u. 1Vk?+ N[ 2 sinh(kd)

d’k 2
29 E= 2| —— TFlkemlk-m(=k)], (29
for ®,,(r) and BZ(21)
which is the familiar result for the dipolar energy of a thin
(pb)=— mi-(p—p1) f‘” dk k film. The second limit is when the largest contribution to the
9+p. . T Amu N p—pllo energy comes from modes(k), for whichk<L ~! whereL
is a length such thdt>\ | >d (we takex  >d). In this case,
X Jy(k|p—pi]) e~ VKEHN =) we obtain
« 1 _ Mo f d’k [k-m(k)J[k-m(—k)]
k coshkd) + 1, 1\k2+ [ 2 sinh(kd) ApeL Jk=L-1(277)2 k?
(26) 1
_ _ X| 1+ S (khp)2+0(kY) |, (30)
for g.(r). The functiong_(r) is constructed from the 2

single-dipole solution in an analogous manner. Note that one | . o\ -1
cannot use Eq$12) and(13) because we no longer have the Which shows that fok<\, ~ the energy of the sy;tem hgs
mr-rotation symmetry around theaxis** Using the magnetic the same form as the energy of a system of dipoles in a

: - two-dimensional space. Also, comparing E88) (with w,
fhoetesn;ls?(lai“"(r)' we can now compute the dipolar energy of =1) with Eq. (29), one can conclude that the dipolar inter-

action has effectively been enhanced with respect to the
simple film situation, since the fraction in E@®8) is always
IV. THE MAGNETIC ENERGY OF THE SYSTEM larger than 1 whenw,=1. This result can be easily under-

The dipolar energy of the system can be obtained by supstood from the fact that the energy given in Eg8) also
stituting the dipole distribution by an equivalent distribution includes the kinetic energy of the supercurrént.
of loops of current, i.e., one that will produce the same field The modified dipolar kernel

distribution. The easiest way to compute the energy neces-

sary for the formation of such a current distribution is to F (k)= 1 (Jk*+ N 2K+ (VPN P k)e
compute it with the currents of the individual loops that form Tk (W+ k)ekd_(m_ k)ekd

the distribution kept constant. The dipolar energy of the

magnetization distribution is equal to the energy necessary tgiven in Eq.(28) with u,=1, is plotted against the kernels
form the current distribution when the fluxes in each loop arel/k and 1k?, which appear, respectively, in EqR9) and
kept constant, which is minus the energy computed with con¢30) in Fig. 3.
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The question now arises if one can indeed detect sucHucting and the ferromagnetic layers is primarily due to the
change of behavior in the dipolar interaction in artificial su-proximity effect, has been considered using a microscopic
perlattices of superconductors and ferromagnetic materials @pproach by Radoviet al®! and by Schinz and Schwabl
even in naturally layered systems like RuSdCw,0Ogz_5 or  Using a phenomenological description. In both cases, the
RuSKLGd, . ,Ce,_,Cu,0;0. The detection of such a change problem. treated reduces to thg one of decoupled thin super-
of behavior relies on the possibility of finding an experimen-conducting layers embedded in a ferromagnet. Experiments
tal system that obeys a series of constraints. done in superlattices of Fe/iRef. 15 and Nb/Gd(Ref. 19

First, the London approximation, which was used, and'@ve confirmed these results. _
which postulates a local relation between the current and the. Third, one cannot have any Josephson currents flowing
magnetic induction, is only valid sufficiently close to the © rough the insulating junction, otherwise the boundary con-

critical temperature at which the superconducting phase trarfiion Jz=0 atz==d is not valid. This implies that the
sition occurs. But we believe that the qualitative features OPhase difference between the superconduct]ng order param-
this solution éhould be valid even when the London approxi-eters of the two superconductor_s 1S 2€70. Th|s 'S th_e case for

S _ .. most superconducting systems in equilibrium, but in certain
mation is noti.e., at lO.W temperatures compared tf) the Crltl'junctions containing ferromagnetic materials, a nonzero dif-
cal temperature Physically, one should expect this type of torence between the phases of the superconducting order pa-
behavior as long as the superconductor displays the Meissng{meter in each side of the junction, leading to a current in
effect. _ _ _equilibrium, has been predictéd.

Second, we have considered a ferromagnetic layer with "Finally, we have not considered the thermodynamical sta-
zero thickness. The solution obtained can only be valid if ongjlity of the system we are working with. This implies that
can neglect the proximity effect in the ferromagnetic layer,we are working in a weak-field situation, i.e., the field pro-
i.e., the induction of superconductivity in the ferromagneticduced by the distribution of magnetization is much lower
material by the superconductSrOtherwise, in a layer with than the critical field at which the superconducting system
finite thickness, an effective exchange interaction will be in-undergoes a transition to the intermediate stat¢he case of
duced between the magnetic moments and this interactiotype-I superconductoyr to the mixed statéin the case of
also has to be taken into account. However, this effect igype-Il superconductoysOne way to achieve this condition
negligible in insulators. Therefore, an appropriate material tds to choose either a magnetic material with a low-saturation
choose for the ferromagnetic layer would be a ferromagnetighagnetization or a superconductor with a high critical field
insulator’® We have also neglected the suppression of thdin the case of type-I supercondugice.g., V, or a high field
superconducting order parameter at the boundary betweddc1 (in the case of a type-II supercondudtce.g., Nb.
the two media, which always occurs in the presence of a film N Summary, despite the restrictions pointed above, we

of finite thickness. In the case of a film made of a ferromagNink that there is room for believing that one could manu-
netic insulator, the de Gennes boundary conditions tell ugacture systems composed of alternating magnetic and super-
gonducting layers where the above effect could be detected

boundary® Since the London penetration depth depends orlr'Sing the methods discussed in the introduction or others.

this parameter, this will mean that the effective London pen-
etration depth will be greater than the penetration depth mea-
sured in the absence of the ferromagnetic film. Nevertheless, We have computed the magnetic-field distribution of an
the London approximation remains valigrovided that we  arbitrary distribution of planar magnetization in a spatial gap
are working in a weak-field situatiofsee below]. The op-  between two superconductors. The purpose of this calcula-
posite limit, in which the coupling between the supercon-tion is to provide a simple model for a superlattice of ferro-

V. CONCLUSIONS
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magnetic materials and superconductors where the dipolarariance of the system along thexis is no longer present,
interaction between the magnetic moments in the ferromagsut one can still draw useful conclusions from the reflexion
netic system is taken into account. properties of the system in they plane(see Ref. 44 What

We have also computed the dipolar energy of such a syanakes the model much more difficult to solve is the fact that
tem and we have shown that for low momenta compared tone cannot exclude the presence of Neumann functions in
the London inverse-penetration depth, the system has a dipthe Fourier-Bessel integrals that determg{e) and®(r),
lar energy, which resembles the energy of a magnetizatioand that also in this case one cannot use @) as the
distribution in two dimensions and hence it leads to an enexpression for the total magnetic energy of the sysfeom-
hancement of the dipolar energy compared to that of gare with Ref. 46 One should nevertheless mention that a
simple ferromagnetic film. method for computing the magnetic energy in the presence

As to possible future directions of research one can poinbf vortices has been considered by Erdiral>* for the case
out the possibility to consider a treatment of the same probef a thin magnetic film interacting with a thin superconduct-
lem in the line of what was done in Ref. 52, i.e., consider thang film.
Landau-Ginzburg theory of the layered system including the
free energy of the superconducting system and of the ferro-
magnetic layer and the interaction between the two via the
electromagnetic interaction and the proximity effect, with the We acknowledge many helpful discussions with M. Ku-
appropriate boundary conditions. However, in this case onéc¢, D. Rainer, H. Braun, H. Kinder, G. Eilenberger, M. A.
has to take into account the nonlinearity of the problem andantos, C. Bracher, M. Riza, and M. Kleber. J.E.S. acknowl-
the three-dimensional character of a solution involving aedges the support of the European Commission, Contract
nonuniform distribution of magnetization in the plane. No. ERB-FMBI-CT 97-2816 and from the Deutsche Fors-

A slightly different model that can also be treated exactlychungsgemeinschaft Schwerpunktprogramm ‘Strukturgradi-
with the methods developed in this paper is the one of a thirenten in Kristallen’, Contract No. Schw 348/12ftom 01/
ferromagnetic layer between two bulk type-Il superconduct03/00. E.F. acknowledges the support of the Deutsche
ors aboveH,, i.e., with flux penetration in the form of an Forschungsgemeinschaft, Contract No. FR850/3. E.F. also
Abrikosov vortex lattice oriented along theaxis. In this  acknowledges the hospitality of the Instittit flheoretische
case, the boundary conditiond7)—(19) would be un- Physik, LMU Minchen, where part of this work was done.
changed, but the equation determinig@), Eq. (9), would  F.S. acknowledges the support of the Deutsche Forschungs-
be replaced by an inhomogeneous equation where the role gemeinschaft Einzelprojekt Schw. 348/10-1 and of the
sources is played by the vortices. Also, therotational in-  BMBF Verbundprojekt 03-SC5-TUMO.
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