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Dipolar interactions in superconductor-ferromagnet heterostructures
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We consider a simple model for a superlattice composed of a thin magnetic film placed between two bulk
superconductors. The magnetic film is modeled by a planar but otherwise arbitrary distribution of magnetic
dipoles and the superconductors are treated in the London approximation. Due to the linearity of the problem,
we are able to compute the magnetic energy of the film in the presence of the superconductors. We show that
for wave vectors that are much larger than the inverse London penetration depth, the magnetic energy is
unchanged with respect to the film in free space, whereas in the case of small wave numbers compared to the
inverse London penetration depth, the magnetic energy resembles the energy of a distribution of magnetization
in a two-dimensional space. Possible experimental applications of these results are discussed.
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I. INTRODUCTION

The interplay between superconductivity and ferrom
netism in bulk materials has been the subject of active
search since 1957 when Ginzburg1 published a paper in
which he considered the effect of the field created by a b
distribution of magnetization on a superconductor, wh
was described by the London equations.2 He concluded that
for a ferromagnetic induction field of the sample larger th
its superconducting critical field, this field would destroy s
perconductivity, but he also pointed out that in thin films
wires where the induction field is much smaller~due to de-
magnetization effects! and the critical field higher~due to the
small diamagnetic energy! than in bulk superconductors,
should be possible to observe the coexistence of the
phenomena. Experiments carried out by Mathias, Suhl,
Corenzwit3 on lanthanum with several rare-earth param
netic impurities dissolved at low concentrations sugges
that the interaction responsible for the depletion of the sup
conducting critical temperature of lanthanum is the excha
interaction between the paramagnetic impurity spins and
superconducting electrons. This interaction induces an ef
tive ferromagnetic interaction between the~antiparallel!
spins in the Cooper pair, which tends to destroy it and he
destroy superconductivity. Anderson and Suhl4 have shown
that the Ruderman-Kittel-Kasuya-Yosida interaction b
tween the ferromagnetic spins due to the conduction e
trons is significantly reduced in the superconducting st
but pointed out that ferromagnetism could coexist with
perconductivity if the ferromagnetic atoms formed small d
mains. The dependence of the superconducting critical t
perature on the concentration of magnetic impurities due
exchange scattering of electrons from these impurities
addressed with the microscopic theory of superconducti
by Abrikosov and Gor’kov.5 de Gennes and Sarma6 have
estimated that typically, the exchange interaction betw
localized moments and superconducting electrons would
1022103 larger than the dipolar interaction considered
Ginzburg. The detailed form of the Landau-Ginzburg theo
of ferromagnetic superconductors was worked out by Su7

Despite their conflicting character, superconductivity a
0163-1829/2001/63~5!/054439~8!/$15.00 63 0544
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ferromagnetism are seen to coexist in bulk systems, e.g
HoMo6S8 and ErRh4B4.8

Another system in which the coexistence of supercond
tivity and ferromagnetism has been observed in the bulk
the nuclear magnet AuIn2.9–12 This compound shows a su
perconducting phase transition atTc5207 mK and an order-
ing transition to a ferromagnetic state at an even lower te
peratureTM535 mK. This particularly low temperature ca
be explained by the weakness of the interaction between
nuclear spins~which is primarily due to an indirect exchang
via the conduction electrons!.

On a different perspective, the development of t
epitaxial growth of crystals has permitted the creation
artificial superlattices composed of superconducting a
ferromagnetic materials, e.g., Fe/V, Ni/V, Ni/Mo, EuS/P
EuO/Al, and Nb/Gd.13–19 In these superlattices, one can e
perimentally study the interaction between supercondu
ivity and ferromagnetism when these two effects occ
in neighboring spatial regions and also study the s
pression of superconductivity as a function of the relat
proportion ~i.e., layer thickness! of the two materials.
More recently, the cuprates RuSr2GdCu2O82d ~Refs. 20–23!
and RuSr2Gd11xCe12xCu2O10 ~Refs. 24! have been found to
show superconductivity and a ferromagnetism below th
critical temperaturesTc515240 K for RuSr2GdCu2O82d
and Tc537 K ~for an optimal x50.2) for
RuSr2Gd11xCe12xCu2O10, the Curie temperatures for mag
netic ordering beingTM'133 K for the first compound and
TM'100 K for the second. The experimental analysis sho
that these materials, like all cuprates, have a layered struc
and that superconductivity and ferromagnetism seem to
cur in different layers. However, a detailed analysis has b
hindered by difficulties with the growth of single crystals.25

Motivated by such experiments, in which magnetism a
superconductivity are seen to occur in different spatial
gions of the studied materials, we wish to address the pr
lem of a thin ferromagnetic layer, placed between two b
superconducting layers~see Fig. 1!, in which the thickness of
the superconducting layers is much larger than the Lon
penetration depth of the superconducting material and
thickness of the ferromagnetic layer is very small compa
©2001 The American Physical Society39-1
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to this quantity, which is a condition that can be easily o
tained with the modern techniques of epitaxial growth.13 In
this limit, the results obtained can also be applied to sup
lattices of the two materials, given that the ferromagne
layers are decoupled from one another.

We consider in this paper a simple model system co
posed of a very thin ferromagnetic film, with an arbitra
distribution of magnetization in the plane of the film, whic
is placed in a spatial gap of size 2d between two semi-
infinite superconductors described by the London equatio
The film is coupled to the superconductors by the elec
magnetic interaction, i.e., we neglect the proximity effec26

and we consider the Josephson current27 flowing between the
two superconductors to be zero~the limitations of these ap
proximations will be discussed in Sec. IV!. Having made the
approximations indicated above, we are able to solve
problem exactly, by first considering the simpler problem
a single dipole in the spatial gap and then superimposing
different solutions, due to the linearity of the London equ
tions. One can then compute the dipolar energy of the dis
bution of magnetization. It turns out that for wave vecto
much larger than the inverse London penetration depth,
form of the dipolar energy in momentum space is unchan
by the presence of the superconductors. On the other h
for wave vectors much smaller than the inverse London p
etration depth, the dipolar energy in momentum space
sembles the energy of a distribution of dipoles in a tw
dimensional~2D! space. This behavior can be traced to t
Meissner effect, which confines the magnetic flux lin
within the spatial gap.

One can think of several possible ways to detect the
fects of this change of behavior of the dipolar interaction
low wave vectors. If one were able to choose the mater
composing a layered geometry of superconduc
ferromagnetic film/superconductor in such a way that
Curie transition temperature of the magnetic film to the f
romagnetic state is lower than the critical temperatureTc of
the superconductor, one should be able to measure the
cal properties of the system at the paramagne
ferromagnetic transition, in particular such quantities as
specific heat and the magnetic susceptibility, with the sup
conductors already displaying the Meissner effect and th
fore with a modified form of the dipolar energy.

FIG. 1. Thin ferromagnetic film between bulk superconduct
~schematic!.
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It was shown by Aharony and Fisher28 that in a
d-dimensional system, ad-dimensional dipolar interaction
~such as the one occurring in a bulk tridimensional ferrom
net or in the layered-geometry superconductor/ferromag
superconductor! is a relevant interaction~in the sense of RG!
near a paramagnetic-ferromagnetic transition, leading t
crossover between the critical exponents of the short-ra
ferromagnet and the critical exponents of the dipolar sys
when one approaches the critical temperature.29–34 Pelcovits
and Halperin35 have also shown that in the case of
d-dimensional systems with a (d11)-dimensional dipolar
interaction~such as the one ocurring in a thin magnetic fi
in free space! the universality class of the dipolar system
the same as above. This is due to the fact that at the fi
point, the ‘‘effective’’ ~renormalized! dipolar coupling con-
stant is infinite, making the susceptibility of the system
dependent of the longitudinal degree of freedom of the m
netization, which is the one sensitive to the nature of
dipolar interaction. However, in real systems, measureme
are not taken exactly at the critical point and one alwa
probes the crossover region. In this region, the dipolar c
pling constant is finite and one should be able to detect
distinct character of the transition if the ferromagnetic film
included in a layered geometry with superconductors o
the film is grown in a nonsuperconducting substrate, due
the different character of the dipolar interaction at sm
wave vectors. The ideal experiment to detect such a dist
tion would presumably be a measurement of the longitud
susceptibility using polarized neutrons.36–40 Experiments
done with films of EuS/SrS grown on a Si substrate ha
shown14 that the low-Curie temperature of EuS~16.5 K! is
further reduced in these geometries. The authors of Ref
have also performed experiments with films of EuS/Pb, pr
ing the transition between the superconducting state and
normal state in the Pb layer as a function of the appl
magnetic field. Therefore, EuS stands as a good candidat
a material to be used in the ferromagnetic layer. It has
further advantage of being an insulator~see below!.

Another possibility would be the study of spin-spin co
relation functions in a magnetic film in the ordered phase a
outside the critical region. Indeed, Kashuba41 has shown that
the static correlation functions of anXY model with 2d di-
polar interactions would display a behavior analogous to t
of the dynamic correlations functions of the stochastic p
cess described by the Kardar-Parisi-Zhang~KPZ! equation in
111 dimensions,42 for which the form of these correlation
functions is known. An adequate experiment to probe th
correlation functions at low momentum compared with t
inverse London penetration depth~where such length is typi-
cally of the order of a thousand angstroms! would presum-
ably be low-angle neutron scattering from the magnetic fl
tuations in a layered geometry. Other possible experime
that could probe the magnetic properties of the system in
ordered phase would be the use of the magnetooptical K
effect or of the Faraday effect on samples with a single m
netic layer to image such a layer.

The structure of this paper is as follows: in Sec. II, w
define our model in terms of the geometry of the system
the equations that describe it. We also describe the typ

s
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DIPOLAR INTERACTIONS IN SUPERCONDUCTOR- . . . PHYSICAL REVIEW B 63 054439
boundary conditions we have to consider. In Sec. III,
present the solution of the equations for a single dipole
construct the solution for a general in-plane distribution
magnetization by linear superposition. In Sec. IV, we co
pute the dipolar energy of the distribution of magnetizat
and discuss the physical limitations of the model we ha
considered. Finally, in Sec. V, we present our conclusion

II. GEOMETRY OF THE MODEL AND RELEVANT
EQUATIONS

The geometry of the model is as follows: an infinite d
tribution of in-plane magnetization is placed in the planez
50. This distribution is constituted by single magnetic d
poles, placed in an arbitrary fashion with respect to one
other~see Fig. 2!. The in-plane constraint implies that all th
dipoles point in a direction within the plane. Above and b
low the distribution are two bulk superconductors, which e
tend fromz5d ~respectively,z52d) to z5` ~respectively,
z52`). The spatial gap with size 2d is supposed to be
filled with an insulator with magnetic permitivitym0. The
two superconductors are identical and have a magnetic
mitivity m ~i.e., they are paramagnetic, with relative perm
tivity m r5m/m0). These supercondutors are described
the London equations~see below!, which imply a linear re-
lation between the current and the magnetic field.

This linear relation allows us to consider instead a simp
problem, the one of a single magnetic dipole, placed at
origin of the coordinate system and oriented along thex axis.
Once this problem has been solved, one can construc
solution for the general case simply by using translatio
and rotational invariance in the plane and by adding the
ferent solutions. The linearity of the equations will guaran
that the linear combination is also a solution. Furthermore
uniqueness theorem proved by London2 guaranties that this
solution is unique.

In the spatial gap, the system is described by the follo
ing equations:43

FIG. 2. In-plane distribution of magnetization between bulk s
perconductors~schematic!.
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¹3h50, ~1!

¹•h50, ~2!

b5m0~h1m!, ~3!

where the first two equations are the Maxwell equations
the magnetic fieldh and the magnetic inductionb, and the
third equation is the constitutive relation between the tw
For the case of a single dipole oriented along thex axis, the
magnetizationm(r )5m x̂ d3(r ), wherem is the magnitude
of the magnetic dipole.

The superconductors are described by the equations

¹3h5¤, ~4!

b52L¹3¤

s, ~5!

b5mh, ~6!

where the first equation is the Maxwell equation, which
lates the magnetic field with the ‘‘free’’ current; the seco
relation is the second London equation,2 which relates the
supercurrent¤s with the magnetic induction; and the thir
equation is the constitutive relation between the magn
induction and the magnetic field. The constantL is depen-
dent on the type of the superconductor. In a static situa
such as the one we are considering, the electric fielde5o in
the superconductor and the total current¤5¤

s, i.e., there is
no normal component of the current.

Substituting Eqs.~5! and ~6! in Eq. ~4!, one obtains

¹2
¤2lL

22
¤50, ~7!

¹2b2lL
22b50, ~8!

where lL5(L/m)1/2 is the London penetration depth an
where Eq.~8! follows from taking the curl of Eq.~7! and
using Eq.~5!, and where we have used the fact that¹•¤

50 ~equation of continuity! and ¹•b50. These two equa-
tions show that the magnetic-flux density and the superc
rent penetrate a layer of thicknesslL at the surface of the
superconductor~Meissner effect!.

These equations have to be supplemented by boun
conditions at the surface of the superconductors. These
ditions are the continuity of the normal component ofb, of
the tangential components ofh, and of the normal compo
nent of the current¤ at the boundary surfaces of the tw
superconductors.2 If one chooses¤5¹3(gẑ), whereg(r ) is
a solution of

¹2g2lL
22g50, ~9!

then one can satisfy Eqs.~7! and ~8! and the boundary con
dition z50 at z56d. Notice that this choice implies tha
z50 throughout the material, which is physically reaso
able, sincez50 at the surfacesz56d and also forz5
6`.

On the other hand, in the spatial gap, we obtain from E
~1! h52¹FM . Substituting this result in Eq.~3! and using
Eq. ~2!, we obtain

-
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¹2FM5¹•@m x̂ d3~r !#, ~10!

which is Poisson’s equation. Since we know the solution
this equation in free space~i.e., in the absence of the supe
conductors! to obtain the solution in this case, we can wr

FM~r !5
mr cosf

4p~r21z2!3/2
1x~r,f,z!, ~11!

where the first term on the right-hand side is the solution
free space and the functionx(r,f,z) is a solution of the
Laplace equation,¹2x(r,f,z)50 and where we have use
cylindrical polar coordinates for later convenience.

Therefore we need to solve the modified Helmholtz eq
tion ~9! in the superconductors and the Laplace equation
x in the gap and then fit the two solutions using the con
nuity conditions forb andh at the boundary.

We can further simplify the problem if we notice that th
system is invariant under ap rotation around thex axis. This
invariance imposes the conditions

g2~r,f,z!52g1~r,2f,2z!, ~12!

x~r,f,z!5x~r,2f,2z!, ~13!

whereg1 ~respectively,g2) is the solution of the Helmholtz
equation in the upper~respectively, lower! superconductor.
Since the magnetic flux in the superconductor is given
terms ofg by

bz5mlL
2F1

r

]

]r S r
]g

]r D1
1

r2

]2g

]f2G , ~14!

br52mlL
2 ]2g

]r]z
, ~15!

bf52
mlL

2

r

]2g

]f]z
, ~16!

and we have, in the spatial gapb5m0 @2¹FM(r )
1m x̂ d3(r )#, then the continuity conditions forb andh im-
ply that atz5d,

]FM

]z U
z5d

5m rlL
2S ]2g1

]2z
2lL

22g1D
z5d

, ~17!

]FM

]r U
z5d

5lL
2S ]2g1

]r]zD
z5d

, ~18!

]FM

]f U
z5d

5lL
2S ]2g1

]f]zD
z5d

, ~19!

where we have used the fact thatg1 is a solution of the
Helmholtz equation and that, in the superconductor,b
5mh. A similar set of conditions is valid atz52d but they
are trivially related to these conditions by Eqs.~12! and~13!.
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The above equations and boundary conditions are s
cient to determine the solution of the problem within t
London approximation.

III. THE SINGLE-DIPOLE SOLUTION AND THE
GENERAL SOLUTION FOR AN ARBITRARY

DISTRIBUTION OF MAGNETIZATION

We concluded in the previous section that in order to fi
the field and current distributions for the case of a sin
dipole, one needs to find a joint solution of the Laplace a
Helmholtz equations, which satisfies the appropriate bou
ary conditions~17!–~19!. Such a solution can be most easi
found using cylindrical polar coordinates and is given
terms of Fourier-Bessel integral transforms by

FM~r,f,z!5
m

4p S r cosf

~r21z2!3/2

1E
0

`

dk k J1~kr!cosh~kz!cosf

3
e2kd~m r

21Ak21lL
222k!

k cosh~kd!1m r
21Ak21lL

22 sinh~kd!
D
~20!

for FM(r ) and

g1~r,f,z!52
m

4pm rlL
2E0

`

dk k

3e2Ak21lL
22(z2d)J1~kr!cosf

3
1

k cosh~kd!1m r
21Ak21lL

22 sinh~kd!

~21!

for g1(r ) with g2(r,f,z)52g1(r,2f,2z) and where
J1(x) is the Bessel function of order one. These integrals
only be calculated explicitly in the particular cased→0,
m r51. We obtain

FM~r,f,0!5
m

4p S 1

rlL
1

e2r/lL

r2 D cosf, ~22!

g1~r,f,0!52
m cosf

4plL
2r

. ~23!

The magnetic potentialFM(r,f,0) corresponds to the mag
netic potential of a dipole that produces a 3D field at sh
distances and that at distances@lL produces a 2D field, i.e.
the field produced by a dipole in a two-dimensional spa
This behavior can be traced to the Meissner effect, wh
confines the flux lines to the spatial gap and to a region
size lL in each of the superconductors. Although thed50
case is somewhat unphysical~the superconductor would
9-4
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DIPOLAR INTERACTIONS IN SUPERCONDUCTOR- . . . PHYSICAL REVIEW B 63 054439
have to withstand an infinite field!, we shall see that as lon
asd!lL , this type of behavior is essentially unchanged.

Now, in order to generalize this solution to the case of
arbitrary distribution of magnetization, we represent t
magnetization per unit of area in the form

m~r!5(
i

mi d2~r2ri !, ~24!

wheremi is a dipole situated atri5(xi ,yi) andr5(x,y). In
real systems,ri will correspond to the sites of a two
dimensional lattice where the dipoles are situated. The s
tion corresponding to this distribution of magnetization
given by the linear superposition of the solutions correspo
ing to eachmi , i.e.,

FM~r,f,z!5(
i

mi•~r2ri !

4p~ ur2ri u21z2!3/2

1(
i

mi•~r2ri !

4pur2ri u
E

0

`

dk k

3J1~kur2ri u! cosh~kz!

3
e2kd~m r

21Ak21lL
222k!

k cosh~kd!1m r
21Ak21lL

22 sinh~kd!

~25!

for FM(r ) and

g1~r,f,z!52(
i

mi•~r2ri !

4pm rlL
2ur2ri u

E
0

`

dk k

3J1~kur2ri u! e2Ak21lL
22(z2d)

3
1

k cosh~kd!1m r
21Ak21lL

22 sinh~kd!

~26!

for g1(r ). The function g2(r ) is constructed from the
single-dipole solution in an analogous manner. Note that
cannot use Eqs.~12! and~13! because we no longer have th
p-rotation symmetry around thex axis.44 Using the magnetic
potentialFM(r ), we can now compute the dipolar energy
the system.

IV. THE MAGNETIC ENERGY OF THE SYSTEM

The dipolar energy of the system can be obtained by s
stituting the dipole distribution by an equivalent distributio
of loops of current, i.e., one that will produce the same fi
distribution. The easiest way to compute the energy ne
sary for the formation of such a current distribution is
compute it with the currents of the individual loops that for
the distribution kept constant. The dipolar energy of t
magnetization distribution is equal to the energy necessar
form the current distribution when the fluxes in each loop
kept constant, which is minus the energy computed with c
05443
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stant currents and is given by45,46

Em52
1

2
m0E d2r m~r!•h~r,f,z50!. ~27!

Substitutingh52¹FM , with FM(r ) given by~25! and ap-
proximating the discrete sums on the lattice by integrals,
obtain

E5
m0

8pEBZ

d2k

~2p!2

2p

k
@k•m~k!#@k•m~2k!#

3
@m r

21Ak21lL
221k#ekd1@m r

21Ak21lL
222k#e2kd

@m r
21Ak21lL

221k#ekd2@m r
21Ak21lL

222k#e2kd
,

~28!

where m(k)5( i mi e2 ik•ri and where the integrals overk
are over the first Brillouin zone of the reciprocal lattice. E
pression~28! was obtained in the limit in which one ca
disregard the lattice structure of the dipole distribution.
such a structure has to be taken into account, then one h
use Ewald summation methods47 to handle the discrete sum
in Eq. ~25!.

Expression~28! has two important limits. The first is
whenm r51 andlL→`, or whend→`. We obtain

E5
m0

8pEBZ

d2k

~2p!2

2p

k
@k•m~k!#@k•m~2k!#, ~29!

which is the familiar result for the dipolar energy of a th
film. The second limit is when the largest contribution to t
energy comes from modesm(k), for whichk<L21 whereL
is a length such thatL@lL@d ~we takelL@d). In this case,
we obtain

E'
m0

4m rlL
E

k<L21

d2k

~2p!2

@k•m~k!#@k•m~2k!#

k2

3S 11
1

2
~klL!21O~k4! D , ~30!

which shows that fork!lL
21 the energy of the system ha

the same form as the energy of a system of dipoles i
two-dimensional space. Also, comparing Eq.~28! ~with m r
51) with Eq. ~29!, one can conclude that the dipolar inte
action has effectively been enhanced with respect to
simple film situation, since the fraction in Eq.~28! is always
larger than 1 whenm r51. This result can be easily unde
stood from the fact that the energy given in Eq.~28! also
includes the kinetic energy of the supercurrent.48

The modified dipolar kernel

F~k!5
1

k

~Ak21lL
221k!ekd1~Ak21lL

222k!e2kd

~Ak21lL
221k!ekd2~Ak21lL

222k!e2kd

given in Eq.~28! with m r51, is plotted against the kernel
1/k and 1/k2, which appear, respectively, in Eqs.~29! and
~30! in Fig. 3.
9-5
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FIG. 3. The modified dipolar kernelF(k) ~the
continuous gray plot! is plotted against the ker
nels 1/k ~the long-dashed plot! and 1/k2 ~the
short-dashed plot!. We have takenm r51 andd
50.1, lL51 in F(k) ~in arbitrary units!. It is
seen that the functionF(k) interpolates between
1/k2 and 1/k, the crossover length being the Lon
don penetration depthlL51.
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The question now arises if one can indeed detect s
change of behavior in the dipolar interaction in artificial s
perlattices of superconductors and ferromagnetic materia
even in naturally layered systems like RuSr2GdCu2O82d or
RuSr2Gd11xCe12xCu2O10. The detection of such a chang
of behavior relies on the possibility of finding an experime
tal system that obeys a series of constraints.

First, the London approximation, which was used, a
which postulates a local relation between the current and
magnetic induction, is only valid sufficiently close to th
critical temperature at which the superconducting phase t
sition occurs. But we believe that the qualitative features
this solution should be valid even when the London appro
mation is not~i.e., at low temperatures compared to the cr
cal temperature!. Physically, one should expect this type
behavior as long as the superconductor displays the Meis
effect.

Second, we have considered a ferromagnetic layer w
zero thickness. The solution obtained can only be valid if o
can neglect the proximity effect in the ferromagnetic lay
i.e., the induction of superconductivity in the ferromagne
material by the superconductor.26 Otherwise, in a layer with
finite thickness, an effective exchange interaction will be
duced between the magnetic moments and this interac
also has to be taken into account. However, this effec
negligible in insulators. Therefore, an appropriate materia
choose for the ferromagnetic layer would be a ferromagn
insulator.49 We have also neglected the suppression of
superconducting order parameter at the boundary betw
the two media, which always occurs in the presence of a
of finite thickness. In the case of a film made of a ferroma
netic insulator, the de Gennes boundary conditions tell
that the order parameter is effectively quenched to zero a
boundary.50 Since the London penetration depth depends
this parameter, this will mean that the effective London p
etration depth will be greater than the penetration depth m
sured in the absence of the ferromagnetic film. Neverthel
the London approximation remains valid@provided that we
are working in a weak-field situation~see below!#. The op-
posite limit, in which the coupling between the superco
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ducting and the ferromagnetic layers is primarily due to
proximity effect, has been considered using a microsco
approach by Radovic´ et al.51 and by Schinz and Schwabl52

using a phenomenological description. In both cases,
problem treated reduces to the one of decoupled thin su
conducting layers embedded in a ferromagnet. Experime
done in superlattices of Fe/V~Ref. 15! and Nb/Gd~Ref. 19!
have confirmed these results.

Third, one cannot have any Josephson currents flow
through the insulating junction, otherwise the boundary c
dition z50 at z56d is not valid. This implies that the
phase difference between the superconducting order pa
eters of the two superconductors is zero. This is the case
most superconducting systems in equilibrium, but in cert
junctions containing ferromagnetic materials, a nonzero
ference between the phases of the superconducting orde
rameter in each side of the junction, leading to a curren
equilibrium, has been predicted.53

Finally, we have not considered the thermodynamical s
bility of the system we are working with. This implies tha
we are working in a weak-field situation, i.e., the field pr
duced by the distribution of magnetization is much low
than the critical field at which the superconducting syst
undergoes a transition to the intermediate state~in the case of
type-I superconductors! or to the mixed state~in the case of
type-II superconductors!. One way to achieve this conditio
is to choose either a magnetic material with a low-saturat
magnetization or a superconductor with a high critical fie
~in the case of type-I superconductor!, e.g., V, or a high field
Hc1 ~in the case of a type-II superconductor!, e.g., Nb.

In summary, despite the restrictions pointed above,
think that there is room for believing that one could man
facture systems composed of alternating magnetic and su
conducting layers where the above effect could be dete
using the methods discussed in the introduction or other

V. CONCLUSIONS

We have computed the magnetic-field distribution of
arbitrary distribution of planar magnetization in a spatial g
between two superconductors. The purpose of this calc
tion is to provide a simple model for a superlattice of ferr
9-6
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magnetic materials and superconductors where the dip
interaction between the magnetic moments in the ferrom
netic system is taken into account.

We have also computed the dipolar energy of such a
tem and we have shown that for low momenta compare
the London inverse-penetration depth, the system has a d
lar energy, which resembles the energy of a magnetiza
distribution in two dimensions and hence it leads to an
hancement of the dipolar energy compared to that o
simple ferromagnetic film.

As to possible future directions of research one can p
out the possibility to consider a treatment of the same pr
lem in the line of what was done in Ref. 52, i.e., consider
Landau-Ginzburg theory of the layered system including
free energy of the superconducting system and of the fe
magnetic layer and the interaction between the two via
electromagnetic interaction and the proximity effect, with t
appropriate boundary conditions. However, in this case
has to take into account the nonlinearity of the problem a
the three-dimensional character of a solution involving
nonuniform distribution of magnetization in the plane.

A slightly different model that can also be treated exac
with the methods developed in this paper is the one of a
ferromagnetic layer between two bulk type-II supercondu
ors aboveHc1, i.e., with flux penetration in the form of a
Abrikosov vortex lattice oriented along thez axis. In this
case, the boundary conditions~17!–~19! would be un-
changed, but the equation determiningg(r ), Eq. ~9!, would
be replaced by an inhomogeneous equation where the ro
sources is played by the vortices. Also, thep-rotational in-
05443
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variance of the system along thex axis is no longer present
but one can still draw useful conclusions from the reflexi
properties of the system in thexy plane~see Ref. 44!. What
makes the model much more difficult to solve is the fact t
one cannot exclude the presence of Neumann function
the Fourier-Bessel integrals that determineg(r ) andFM(r ),
and that also in this case one cannot use Eq.~27! as the
expression for the total magnetic energy of the system~com-
pare with Ref. 46!. One should nevertheless mention tha
method for computing the magnetic energy in the prese
of vortices has been considered by Erdinet al.54 for the case
of a thin magnetic film interacting with a thin supercondu
ing film.
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H. v. Löhneysen,ibid. 194-196, 2405~1994!.

20L. Bauernfeind, W. Widder, and H. Braun, Physica C254, 151
~1995!.

21C. Bernhard, J. L. Tallon, Ch. Niedermayer, Th. Blasius, A.
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