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Sliding phases via magnetic fields
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We show that three-dimensional ‘‘sliding’’ analogs of the Kosterlitz-Thouless phase, in stacked classical
two-dimensionalXY models and quantum systems of coupled Luttinger liquids, can be enlarged by the
application of a parallel magnetic field, which has the effect of increasing the scaling dimensions of the most
relevant operators that can perturb the critical sliding phases. Within our renormalization-group analysis, we
also find that for the case of coupled Luttinger liquids, this effect is interleaved with the onset of the integer
quantum Hall effect for weak interactions and fields. We comment on experimental implications for a conjec-
tured smectic metal phase in the cuprates.
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I. INTRODUCTION

In 1979, Efetov1 suggested that it would be possible
extend the low-temperature Kosterlitz-Thouless~KT! phase
of a two-dimensional superconductor to three dimensions
stacking two-dimensional systems in the presence of a
allel magnetic field. The underlying idea, most simply und
stood in a particular gauge for the field, that we specify
low, is that the interlayer Josephson coupling which wo
ordinarily be relevant even when weak, is now spatia
modulated and no longer gives rise to divergences. It tu
out that this does not work. As pointed out by Korshun
and Larkin,2 the modulated Josephson coupling gives rise
a coupling that isnot modulated, and although it is of highe
scaling dimension than the zero-field Josephson couplin
is still relevant everywhere within the KT phase. Howev
recent works on cationic-lipid-DNA complexes by O’He
and Lubensky3 and Golubovic and Golubovic,4 and then on
XY systems by O’Hern, Lubensky, and Toner5 ~OLT! have
found a different way of obtaining analogs of KT phases
three dimensions. In this approach, additional derivative c
plings leave the phases in the different planes free to ro
globally with respect to each other~hence ‘‘sliding phases’’!
while extending the region of irrelevant vortex fugacity to
range where the interlayer Josephson coupling is now ir
evant. Emeryet al.,6 and Vishwanath and Carpentier7 have
applied this insight to quantum problems and obtained
analog of the Luttinger liquid in two dimensions.

Our purpose in this paper is to point out that one c
combine Efetov’s insight with the more recent works a
considerably extend the domain of these sliding phases
reducing the dimension of a large class of relevant opera
via the action of a parallel magnetic field. This is of cons
erable interest, for the full class of perturbations in su
problems can be quite constraining,7 even though it is rea-
sonable that most of them are not realized with substan
amplitude.6 We will be especially interested in ‘‘sliding Lut
tinger liquids’’ or ‘‘smectic metals,’’ which have been a
gued to arise in the cuprate superconductors on accoun
the stripe instability of a doped antiferromagnet.6,8 We
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should note that there is a close connection between
work and that on the striped phases in high Landau lev9

even though our point of departure~Efetov’s conjecture! is
very different. In the Landau level problem, the field is bu
in at the first step and is central in giving rise to the strip
phase in the first instance, while for us it can be variable
magnitude and give rise to both gapped quantum Hall
gapless smectic behavior and an interesting phase trans
between them. Nevertheless, in both the cases, the
serves to constrain the available set of relevant operators
very similar fashion.

We will begin in Sec. II with a quick account of th
‘‘dimensional reduction’’ of the Josephson coupling pr
duced by a parallel field, the genesis of the sliding phase,
its enlargement by the field. Next~Sec. III! we discuss the
application of these ideas to coupled Luttinger liquids a
present contrasting phase diagrams for a model studied
Emeryet al. In this discussion we also show how the integ
quantum-Hall states are rediscovered by perturbation the
about a smectic metal if the interactions are not too stro
We close with a brief summary and a discussion of poss
experimental implications for the cuprates.

II. SLIDING XY PHASES IN PARALLEL FIELDS

We begin with a brief summary of the genesis of t
sliding phase in a three-dimensional stack of layers cha
terized by anXY-order parameter. We largely follow OLT
and their notation for ease of comparison. The Hamiltonia
of the sliding phase fixed points~the plural is warranted!
belong to the family

HS5
1

2 (
nn8

E d2r K nn8“'un~r !“'un8~r !, ~1!

where Knn85K f n2n8 with f n5(11(mgm)dn,0
2 1

2 (mgm(dn,m1dn,2m) and and“'un(r ) denotes the in-
layer gradient of theXY variable in layern. We take r
[(x,y) and set the separation of successive layers along
z axis to 1. One can check thatHS is invariant under shifts
©2001 The American Physical Society30-1
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un(r )→un(r )1cn, for any choice ofcn . This freedom to
globally rotate the angle in one layer relative to another, e
in the presence of interlayer couplings inHS , is the hallmark
of the sliding phase.

Note that HS returns to itself under a renormalizatio
group ~RG! transformation that ‘‘lives’’ in two dimensions
and treats the layer indexn as an internal or flavor index o
the fieldsun . In order to identify functionsKnn8 that would
governstablefixed points under this RG, we need to exam
ine the behavior of vortex fugacities and Josephson c
plings. The former yields, for a vortex configuration$sn% in
which a net vorticitysn occurs in layern, the scaling dimen-
sion

Dv@sn#5
pK

T (
n,n8

f n2n8snsn8 , ~2!

which signals a KT unbinding transition at a temperatu
TKT@sn#, upon exceeding the value 2 appropriate to a tw
dimensional RG. The generalized Josephson couplings,

HJ@sn#52VJ@sn#E d2r cosF(
p

spun1p~r !G , ~3!

where thesn are integers that satisfy(nsn50, are readily
shown to have the scaling dimension,

DJ@sn#5
T

4pK (
n,n8

snsn8 f n2n8
21 , ~4!

where the inverse couplings

f p
215

1

pE0

p

dk
coskp

f ~k!
~5!

are defined via the Fourier transform

f ~k!511(
m

gm~12coskm! ~6!

of the scaled couplingsf n .
The Josephson couplings are irrelevant above a de

pling temperature Td@sn#, at which DJ@sn#52. If
minsn

TKT@sn#.maxsn
Td@sn# for some choice ofKnn8 , then

we obtain a sliding phase. In the sliding phase, the spin
relations are algebraically long ranged in a given layer a
vanish between layers,

^cos@un~r !2um~0!#&;
dnm

r h
, ~7!

whereh5(T/2pK) f 0
21.

Including a parallel magnetic field

We now consider the inclusion of a magnetic field para
to the layers, appropriate to instances whereun are phases o
a superconducting order parameter; without loss of gene
ity, we takeB5Bŷ. It is convenient to work in the gaug
Az(r )5Bx. In this gauge, the sliding phase Hamiltonians a
of the same form, and the computation of the scaling of
05443
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vortex fugacity is unchanged. However, the Josephson c
plings are modified by the replacements

un→un12nqBx, ~8!

whereqB5eB/\c is a characteristic wave vector introduce
by the field.

The key observation regarding the effect of the field
this: for those Josephson couplings for which(ppsp5” 0,
there is an explicit oscillating term in the argument of t
cosine that will render them less relevant. Most straightf
wardly, consider treating such a term in the perturbat
theory. In zero field, we would discover that the term w
relevant upon finding divergences in perturbation theo
The inclusion of the field will attenuate these divergenc
due to the oscillation of the correlation functions of the p
turbation.

However, the net result is not always to render the per
bation theory convergent. Higher-order graphs can invo
regions where products of the oscillating couplings nevert
less give rise to operators that do not oscillate. For exam
the Josephson coupling for layers at distancep,

cos@un1p~r !2un~r !12pqBx#

;ei [un1p(r )2un(r )]ei2pqBx1c.c. ~9!

will give rise to

cos@un1p~r !22un~r !1un2p~r !#, ~10!

which can then produce divergences of its own. Indeed,
particular generation is exactly what invalidates Efeto
original conjecture, for the operators~10! are relevant every-
where in the KT phase of decoupledXY layers. Neverthe-
less, the application of the field does effect a ‘‘dimension
reduction’’ in that ‘‘charged’’ operators that have a n
(ppsp ~microscopically these arise from hopping proces
that move a net charge up or down the stack! can only affect
the result through the generation of ‘‘neutral’’ operators f
which (ppsp50. At the ~unstable! decoupled two-
dimensional~2D! XY fixed line, the latter have higher di
mension and we may expect that this will be true at slid
fixed points as well. While that is not always the case, as w
be clear by the following example, it is still true that knoc
ing out the charged operators improves the stability of
sliding phase—after all, the neutral operators were pres
anyway.

To illustrate this effect, we consider the example used
OLT with first and second neighbor couplings. The coupli
function f n has a Fourier transform

f ~k!511g1~12cosk!1g2~12cos 2k! ~11!

that is required to take its minimum value atk5ko :

f ~ko!5d, f 8~ko!50 and f 9~ko!52C. ~12!

Sliding phases arise whend and ko are chosen so that th
system is close to an incommensurate transverse orde
instability, as has been discussed nicely by Vishwanath
Carpentier.7 At small d, the asymptotic form,
0-2
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SLIDING PHASES VIA MAGNETIC FIELDS PHYSICAL REVIEW B63 054430
f p
21;

cos~pk0!e2pAd/C

ACd
~13!

enables easy numerical calculation of the scaling dimens
of the Josephson couplings and thence of the tempera
Td . In Fig. 1, we plot the ratiob5minsn

TKT@sn#/maxsn
Td

where thesn are restricted to the two layer Josephson c
plings ~9! and the three-layer terms that they generate~10!.
The value ofko where both are greater than 1 supports
sliding phase in zero field,10 while the latter alone determine
the sliding phase in a magnetic field. The expansion of
phase is clear.~We have not attempted to include all oper
tors that might be allowed by symmetry. As noted in Ref.
in the Luttinger liquid context, higher-order operators allo
increasingly finer instabilities. We do not know of a pro
that all such operators allow or exclude a connected slid
phase, but assume that in a given system, a finite set wi
important over some reasonable range of length scales.
gardless, the magnetic field will improve matters by knoc
ing out all the charged operators.!

III. SMECTIC METALS IN TRANSVERSE FIELDS

In this section we discuss coupled one-dimensional~1D!
Luttinger liquids~LL’s ! in the presence of a magnetic fiel
with the field B transverse to the plane in which the 1
chains are placed. It was known that at thedecoupledLL
fixed points, the transverse interchain coupling is always
evant in one of three channels: single electron hopp
~Cooper! pair hopping, and interchain 2kF back scattering.
As a consequence, the decoupled LL phase is always
stable and driven toward the Fermi liquid,11 superconduct-
ing, or charge/spin density wave~CDW/SDW! phases. It was

FIG. 1. A plot of b5TKT /Td againstko /p at d51025. The
dashed line is due to charged two-layer couplings while the s
line is due to the leading, three-layer, neutral couplings. TheB
50 sliding phase exists when the minimum of the two curves
ceeds 1. TheB5” 0 sliding phase requires only that the solid cur
exceeds unity and hence leads to a larger sliding phase.
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recently pointed out6,7 that adding strong interchain forward
scattering terms~which are exactly marginal! to the decou-
pled LL fixed point can drive all these interchain couplin
irrelevant. The resulting stable, non-Fermi liquid, smec
metal phase is the quantum analog of the classical slid
phase.5

Since the single electron and Cooper pair hopping p
cesses involve charge transfer between neighboring cha
the presence of a magnetic field has a similar effect, as
fore, of increasing the scaling dimensions of the operat
corresponding to these processes, that can perturb the s
tic metal fixed points, and hence increasing the range of
bility of the smectic metal phase~for simplicity we will ne-
glect the Zeeman effect of the field in this paper!. In the
following, we present an explicit analysis of this effect. Fo
lowing Emeryet al.6 three different types of smectic meta
fixed points need to be distinguished and analyzed in turn~i!
a spinful smectic metal with a spin gap;~ii ! a spinful smectic
metal without a spin gap; and~iii ! a spinless smectic meta
For simplicity we will only include nearest-neighbor inte
chain couplings and their immediate descendants.

A. Spin-gapped smectic metal

In this case the fixed point action in Euclidean space ta
the form6

S5
1

2 (
Q

@W0~k'!v21W1~k'!k2#uf~Q!u2

5
1

2 (
Q

F v2

W0~k'!
1

k2

W1~k'!G uu~Q!u2, ~14!

where Q5(v,k,k'), for each chain the 2-current isj m

5(1/Ap)emn]nf, andu is the dual field off. The scaling
dimensions of various local operators are determined by
dimensionless Luttinger coupling function

w~k'!5AW0~k'!W1~k'!, ~15!

which is periodic in (k') with period 2p as we have set the
interchain distance to 1. As in Ref. 6, we consider the s
plified model in whichw(k') takes the form

w~k'!5K01K1 cos~k'!5K0@11l cos~k'!#. ~16!

Stability requiresulu,1. In the presence of a spin ga
single electron hopping is irrelevant and the magnetic fi
has no effect on 2kF backscattering that does not involv
charge transfer between chains. We thus focus on the sin
pair hopping process, which in the presence of a magn
field is described by the following perturbing Hamiltonia
~near-neighbor hopping only!:

Hsc52tJE dx hsc~x!,

hsc~x!5(
j

cos@A2p$u j~x!2u j 11~x!%12qBx#, ~17!

id

-
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S. L. SONDHI AND KUN YANG PHYSICAL REVIEW B 63 054430
where tJ is the Josephson coupling strength andqB
5eB/\c as before. As in the previous section, the field ad
an oscillatory phase to the pair hopping term, which rend
hsc irrelevant by itself. However, as it flows, it again gene
ates terms in which the oscillatory phases cancel. The m
relevant of these is

H̃sc}tJ
2E dx h̃sc~x!,

h̃sc~x!5(
j

cos@A2p$2u j~x!2u j 11~x!2u j 21~x!%#,

~18!

which is generated at second order intJ . The scaling dimen-
sion of this term is

D̃sc5
2K0

2p E
0

2p

dk'$11l cos~k'!%$12cos~k'!%2

5~322l!K0 . ~19!

Combining the knowledge ofD̃sc with the scaling dimension
of the 2kF backscattering operator6

DCDW5
2

K0~12l1A12l2!
, ~20!

we can determine the phase diagram of the model~14! in the
presence of a magnetic field and near-neighbor interch
couplings, and subject to weak, generic perturbations, u
the criteria that the smectic phase is stable whenD̃sc.2 and
DCDW.2; otherwise the system is in the stripe cryst
superconducting phase forDCDW smaller/bigger thanD̃sc .
@In this identification we have made the natural assump
that the coupling~18! will govern the properties of the phas
when it grows most rapidly. By itself, it will produce a vo
tex lattice.12# The phase diagram is plotted in Fig. 2. F
comparison we have also included the phase bounda
separating the superconducting phase from the smectic m
and stripe crystal phases in theabsenceof a magnetic field6

as dotted lines. It is quite obvious that both the smectic m
and stripe crystal phases get expanded by the magnetic
which suppresses interchain Josephson coupling and
creases the scaling dimension of operators involving p
hopping.

B. Spin-ungapped smectic metal

In this case the fixed point action has contributions fro
both the charge and spin sectors:S5Sr1Ss , where we take
Sr to have the same form as Eq.~14!, and

Ss5
Ks

2 (
j

F1

v
~]tf j s!21v~]xf j s!2G , ~21!

in which we assume that there is no interchain coupl
among spin fields, as in Ref. 6. Spin rotation invariance~also
assumed here! requiresKs51. The analysis of pair hopping
is similar to the previous case and it is easy to show that
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most relevant operator generated by the pair hopping
scaling dimensionD̃sc

nogap5D̃sc
gap13.2, i.e., operators gen

erated by pair hopping arealways irrelevanthere.
Low-energy single-electron hopping, which is allowed,

on the other hand, more complicated and interesting.
terms of the original electron operators it takes the form

He52teE dx he~x!,

he~x!5(
j s

$c j s
† ~x!c j 11s~x!eiqBx1H.c.%. ~22!

We need to distinguish two different cases here.
~i! kF and qB are incommensurate. In this case, sing

electron processes all involve an oscillating phase, and
most relevant process without an oscillating phase gener
by He is

H̃e}te
2E dx h̃e~x!,

h̃e~x!5(
i

@c j↑
L†~x!c j↓

R†~x!c j 11↑
L c j 21↓

R 1H.c.1•••#,

~23!

whereL/R stands for left/right mover, and ‘‘••• ’’ stands for
terms of similar structure. In bosonized form,

h̃e~x!} cos$A2p@2~ur i1fs i !2ur i 11

2ur i 212fs i 112fs i 21#%, ~24!

which has the scaling dimension

FIG. 2. Phase diagram for coupled Luttinger liquids with a sp
gap, in the presence of a magnetic field. For comparison, we h
also included the phase boundaries separating the supercondu
phase from the smectic metal and the stripe crystal phases in
absenceof a magnetic field~dotted line!, as reported by Emery
et al. ~Ref. 6!. The presence of a magnetic field significantly e
pands the region of both the smectic metal and the stripe cryst
0-4
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SLIDING PHASES VIA MAGNETIC FIELDS PHYSICAL REVIEW B63 054430
D̃e511
K0

2 S 3

2
2l D1

12A12l2

2K0l2A12l2
. ~25!

We assume that the system behaves as a Fermi liquid
magnetic field when this term dominates. This identificat
is suggested if we note that at the noninteracting pointl
50 andK051, this term is marginal. This leads to the pha
diagram Fig. 3, which is qualitatively different from th
phase diagram in the absence of the field, Fig. 2 of Ref
There are two particularly interesting differences:~i! The su-
perconducting phase gets completely squeezed out by
field; ~ii ! the smectic metal phase now extends all the way
l50, which corresponds to thedecoupledLL fixed point, a
situation impossible without the field.

~ii ! 2kF5nqB wheren is an integer. In this caseHe , or its
higher-order descendents in the low-energy theory, can
a left mover on the Fermi point of thej th chain to a right
mover on the Fermi point of the (j 1n)th chain; this is a
low-energy single-electron hopping process thatdoes notin-
volve an oscillatory phase, which takes the form

He852teE dx h8~x!,

h8~x!5(
j s

~c jL
† c j 1nR1H.c.!

} cosAp

2
~ur i2ur i 1n1fr i1fr i 1n!

3cosAp

2
~us i2us i 1n1fs i1fs i 1n!.

~26!

The scaling dimension of this operatorDe,n8 for n51 is

FIG. 3. Phase diagram for coupled spinful Luttinger liqui
without a spin gap, in the presence of a magnetic field, assum
there is no commensuration betweenkF andqB .
05443
a
n

6.

he
o

rn

De,18 5
K0

4 S 12
l

2D1
1

2K0~11l1A12l2!
1

1

2
. ~27!

In regions of parameter space where this is the most rele
operator, we expect that the system develops a gap th
largely single particle in character. The identification of t
resulting state is easy once we recognize that the cond
2kF5nqB is precisely that the Landau level filling of th
system isn52n, i.e., the electrons~inclusive of their spin
degeneracy! occupy n Landau bands and form an integ
quantum Hall state.

In Fig. 4 we show the phase diagram for the casen
51 (n52). As the transition between the quantum Hall sta
and the smectic metal happens via the hopping going ir
evant, it is a continuous transition. To our knowledge, this
the first instance of a continuous transition between a qu
tum Hall state and a metallic state. We should note that
persistence of the quantum Hall phase up to the up
boundary atl51 is non-generic; it arises in the particula
model studied upon a cancellation between numerator
denominator that will not typically take place.

Finally, higher-order commensurations betweenkF and
qB are possible when lattice effects are strong on the ch
and the electron operator has pieces oscillating at hig
multiples ofkF . We have not investigated these.

C. Spinless smectic metal

In this case we only have charged fields as in the s
gapped case, but single-electron processes need to be co
ered as in the spin ungapped case. The analysis of pertur
operators is very similar to the spin ungapped case, wh
leads to the phase diagram in Fig. 5, whenkF and qB are
incommensurate. Integer quantum Hall cases are, of cou
allowed here as well, when 2kF5nqB .

g FIG. 4. Phase diagram for coupled spinful Luttinger liqui
without a spin gap, in the presence of a magnetic field, in the c
mensurate case 2kF5nqB .
0-5
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D. Disorder

Following Giamarchi and Schulz,13 one can also analyz
the scaling of weak single-particle randomness. We have
done this systematically, but will content ourselves with
couple of remarks. First, in all cases it is possible to fi
subsets of the smectic metal where both intrachain rand
backscattering and interchain random hopping
irrelevant—hence the system is a perfect, albeit complet
anisotropic, metal in the long-wavelength limit. Second, it
possible to find sections of the phase boundary between
quantum Hall states and the smectic metal where disord
still irrelevant, e.g., in the spin ungapped problem this h
pens both nearl50 and nearl51. In these cases, we fin
an analytically tractable fixed point governing a transiti
out of a quantum Hall state in the presence of interacti
and disorder that warrants further analysis.14

IV. SUMMARY

Achieving a ‘‘dimensional continuation’’ of strong corre
lation physics from low dimensions by weakly coupling
infinite set of systems is an appealing strategy in the stud

FIG. 5. Phase diagram for coupled spinless Luttinger liquids
the presence of a magnetic field, assuming there is no comme
ration betweenkF andqB .
y,
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higher dimensional systems.15 The application of a magnetic
field has been conjectured previously to be useful in t
task. In addition to the work of Efetov, we should also me
tion the suggestion of Strong, Clarke, and Anderson16 that a
two-dimensional non-Fermi liquid phase could be induced
this fashion in a layered system. Striking experiments in
organic superconductors that are evidence for this poin
view have been discussed at some length.17

In this paper, we have shown that this decoupling eff
of the magnetic field can be given a precise meaning in
context of two-dimensional sliding phases, via its reduct
of the dimension of the most relevant charged operators
perturb them. This significantly expands the size of the s
ing phases. As a bonus we find, in the quantum version
the problem, quantum Hall phases at commensurate fi
that undergo a continuous transition to a smectic metal.

In the underdoped region of the cuprates, it has been
gued that the stripe instability leads to a smectic metal s
and that it may already have been observed.6 In this setting,
the spin gapped phase discussed here is the one at i
whence we anticipate that the Zeeman coupling~ignored in
our analysis! will not be important. We suggest that the fie
sensitivity of the phase diagram in this region would be
interesting test of the smectic hypothesis—essentially,
should look for the expansion of the metal or the onset o
CDW. The parameters needed to see this effect should
sure that the interchain hopping is weaker than the fieldte
,vFqB (vF is the on-chain Fermi velocity! and that the
temperature does not wash out the phases induced by
field. The latter condition can be translated, via the on-ch
smectic correlation lengthj;eF /nT (eF is the on-chain
Fermi energy andn is the linear density of electrons!, to the
statementBaj;fo wherea is the interchain spacing andfo
is the flux quantum.
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1K. B. Efetov, Zh. Éksp. Teor. Fiz.76, 1781 ~1979! @Sov. Phys.
JETP49, 905 ~1979!#.

2S. E. Korshunov and A. I. Larkin, Phys. Rev. B46, 6395~1992!.
3C. S. O’Hern and T. C. Lubensky, Phys. Rev. Lett.80, 4345

~1998!.
4L. Golubovic and M. Golubovic, Phys. Rev. Lett.80, 4341

~1998!.
5C. S. O’Hern, T. C. Lubensky, and J. Toner, Phys. Rev. Lett.83,

2745 ~1999!.
6V. J. Emery, E. Fradkin, S. A. Kivelson, and T. C. Lubensk

Phys. Rev. Lett.85, 2160~2000!.
7A. Vishwanath and D. Carpentier, cond-mat/0003036~unpub-
lished!.
8S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature~London!

393, 550 ~1998!.
9E. Fradkin and S. A. Kivelson, Phys. Rev. B59, 8065~1999!; H.

A. Fertig, Phys. Rev. Lett.82, 3693 ~1999!; A. H. MacDonald
and M. P. A. Fisher, Phys. Rev. B61, 5724~2000!.

10Readers wishing to compare our Fig. 1 with Fig. 1 in Ref.
should note that the latter does not include the instabilities
to the three layer operators in Eq.~10!. The statement in Ref. 5
that the latter are always less relevant is not correct.

11This is controversial. For a different view see P. W. Anders
The Theory of Superconductivity in the High-Tc Cuprates
0-6



e

m
nd

d in
432

ett.

SLIDING PHASES VIA MAGNETIC FIELDS PHYSICAL REVIEW B63 054430
~Princeton University Press, Princeton, 1997!.
12L. Balents and L. Radzihovsky, Phys. Rev. Lett.76, 3416~1996!.
13T. Giamarchi and H. J. Schulz, Phys. Rev. B37, 325 ~1988!.
14A different example has been studied by J. Y

cond-mat/9902093~unpublished!.
15Examples of such work in other contexts include continuing i

purity model physics to higher dimensions as in D. L. Cox a
05443
,

-

A. Zawadowski, Adv. Phys.47, 599~1998! and continuing frac-
tional quantum Hall physics to three dimensions as discusse
J. D. Naud, L. P. Pryadko, and S. L. Sondhi, cond-mat/0006
~unpublished!.

16S. P. Strong, D. G. Clarke, and P. W. Anderson, Phys. Rev. L
73, 1007~1994!.

17D. G. Clarke and S. P. Strong, Adv. Phys.46, 545 ~1997!.
0-7


