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Sliding phases via magnetic fields
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We show that three-dimensional “sliding” analogs of the Kosterlitz-Thouless phase, in stacked classical
two-dimensionalXY models and quantum systems of coupled Luttinger liquids, can be enlarged by the
application of a parallel magnetic field, which has the effect of increasing the scaling dimensions of the most
relevant operators that can perturb the critical sliding phases. Within our renormalization-group analysis, we
also find that for the case of coupled Luttinger liquids, this effect is interleaved with the onset of the integer
quantum Hall effect for weak interactions and fields. We comment on experimental implications for a conjec-
tured smectic metal phase in the cuprates.
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[. INTRODUCTION should note that there is a close connection between our
work and that on the striped phases in high Landau Iévels
In 1979, Efetov suggested that it would be possible to even though our point of departutEfetov’s conjecturgis

extend the low-temperature Kosterlitz-Thoulésd) phase very different. In the Landau level problem, the field is built
of a two-dimensional superconductor to three dimensions bjy at the first step and is central in giving rise to the striped
stacking two-dimensional systems in the presence of a paphase_ in the first instance, while for us it can be variable in
allel magnetic field. The underlying idea, most simply under-magnitude and give rise to both gapped quantum Hall and
stood in a particu]ar gauge for the f|e|d, that we Specify be_gapless smectic behavior and an interesting phase transition
|0W, is that the inte”ayer Josephson Coupling which Wou'dbetWeen them. NeVertheleSS, in both the cases, the field
ordinarily be relevant even when weak, is now spatiallyServes to constrain the available set of relevant operators in a
modulated and no longer gives rise to divergences. It turn¥€ry similar fashion. _ .
out that this does not work. As pointed out by Korshunov ~We will begin in Sec. Il with a quick account of the
and Larkin? the modulated Josephson coupling gives rise to dimensional reduction” of the Josephson coupling pro-
a coupling that ismot modulated, and although it is of higher duced by a parallel field, the genesis of the sliding phase, and
scaling dimension than the zero-field Josephson coupling, its enlargement by the field. NexBec. Il) we discuss the
is still relevant everywhere within the KT phase. However,application of these ideas to coupled Luttinger liquids and
recent works on cationic-lipid-DNA complexes by O’Hern Present contrasting phase diagrams for a model studied by
and Lubensky and Golubovic and Golubovitand then on  Emeryet al. In this discussion we also show how the integer
XY systems by O’Hern, Lubensky, and Ton¢®LT) have duantum-Hall states are redis_covere_d by perturbation theory
found a different way of obtaining analogs of KT phases indbout a smectic mgtal if the interactions are not too strong.
three dimensions. In this approach, additional derivative cou¥Ve close with a brief summary and a discussion of possible
plings leave the phases in the different planes free to rotat@xperimental implications for the cuprates.
globally with respect to each othérence “sliding phases)’
while extending the region of irrelevant vortex fugacity to a Il. SLIDING XY PHASES IN PARALLEL FIELDS
range where the interlayer Josephson coupling is now irrel- . . , .
evant. Emenyet al,® and Vishwanath and Carpentidrave We begin with a brief summary of the genesis of the

applied this insight to quantum problems and obtained al§quing phase in a three-dimensional stack of layers charac-
analog of the Luttinger liquid in two dimensions. terized by anXY-order parameter. We largely follow OLT

Our purpose in this paper is to point out that one car@d their. n_otation for ease of c_:omparison. T_he Hamiltonians
combine Efetov’s insight with the more recent works andOf the sliding phase fixed pointghe plural is warranted
considerably extend the domain of these sliding phases b§elong to the family
reducing the dimension of a large class of relevant operators 1
via the action of a parallel magnetic field. This is of consid- _ - 2
erable interest, for the full class of perturbations in such Hs 2 % Jd MK Vo 0n(1 VL 0 (1), @
problems can be quite constrainihg@ven though it is rea-
sonable that most of them are not realized with substantialvhere Ko =Kt with fo=(1+ZnvYm) no
amplitude® We will be especially interested in “sliding Lut- — %Emym(én,mnt Sh—m) and andV, 6,(r) denotes the in-
tinger liquids” or “smectic metals,” which have been ar- layer gradient of theXY variable in layern. We taker
gued to arise in the cuprate superconductors on account & (X,y) and set the separation of successive layers along the
the stripe instability of a doped antiferromagfiftWe zaxis to 1. One can check thhtkg is invariant under shifts
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0,(r)— 6,(r) + ¢, for any choice ofy,. This freedom to Vvortex fugacity is unchanged. However, the Josephson cou-
globally rotate the angle in one layer relative to another, eveplings are modified by the replacements
in the presence of interlayer couplingsHi, is the hallmark
of the sliding phase. On— 00+ 2N0gX, ®)
Note thatHs returns to itself under a renormalization \hereq,=eB/%c is a characteristic wave vector introduced
group (RG) transformation that “lives” in two dimensions  py the field.
and treats the layer indaxas an internal or flavor index on The key observation regarding the effect of the field is
the fieldsd, . In order to identify functions<,,,, that would  this: for those Josephson couplings for whighps,#0,
governstablefixed points under this RG, we need to exam-ihere is an explicit oscillating term in the argument of the
ine the behavior of vortex fugacities and Josephson coUgpsine that will render them less relevant. Most straightfor-
plings. The former yields, for a vortex configuratipm,} in  \yardly, consider treating such a term in the perturbation
which a net vorticityo, occurs in layen, the scaling dimen-  theory. In zero field, we would discover that the term was
sion relevant upon finding divergences in perturbation theory.
K The inclusion _of t_he field will attenuate the_se divergences
AJfon]= - > fren OnO s (2) due to the oscillation of the correlation functions of the per-
n.n turbation.

which signals a KT unbinding transition at a temperature, However, the net result is not always to render the pertur-

Tilon], upon exceeding the value 2 appropriate to a woPation theory convergent. Higher-order graphs can involve

dimensional RG. The generalized Josephson couplings region_s where products of the oscillating c_ouplings neverthe-
" less give rise to operators that do not oscillate. For example,

the Josephson coupling for layers at distapce

HJ[Sn]:_VJ[Sn]j dr CO{E Spgn+p(r) ) (©))
. €09 O p(r) = 0n(r) +2pdeX]
where thes,, are integers that satisf,s,=0, are readily — @il p() = 001 @i 2P0eX 4 9
shown to have the scaling dimension, e
will give rise to
_L 2 71 4
Adlsnl=77% =SSt @ COY O p(1) = 26,() + O_p(1)], (10)
where the inverse couplings which can then produce divergences of its own. Indeed, this
particular generation is exactly what invalidates Efetov’'s
-1 1 f K d coskp ®) original conjecture, for the operatofs0) are relevant every-
Po7m)o f(k) where in the KT phase of decoupledy layers. Neverthe-

less, the application of the field does effect a “dimensional
reduction” in that “charged” operators that have a net
2pPs, (microscopically these arise from hopping processes

are defined via the Fourier transform

f(k)= 1+E Ym(1—coskm) (6) that move a net charge up or down the sjazkn only affect
m the result through the generation of “neutral” operators for
of the scaled couplings, . which 2, ps,=0. At the (unstabl¢ decoupled two-

The Josephson couplings are irrelevant above a decodimensional(2D) XY fixed line, the latter have higher di-
pling temperature T [s,], at which Aj[s,]=2. If mension and we may expect that this will be true at sliding

min, Terlop]>max, TJs,] for some choice oKy, , then fixed points as well. While that is not always the case, as will

we obtain a sliding phase. In the sliding phase, the spin cor.l-)e clear by the following example, it is still true that knock-

relations are algebraically long ranged in a given layer anélr:.g out the charged operators improves the stability of the
vanish between layers, sliding phase—after all, the neutral operators were present
anyway.
S To illustrate this effect, we consider the example used by
(cog 0,(r)— 6,,(0) )~ ALY (7 OLT with first and second neighbor couplings. The coupling
r7 function f,, has a Fourier transform

— -1
where = (T/2mK)fo ™. f(k)=1+ y,(1—cosk)+ yp(1—cos X)  (11)

Including a parallel magnetic field that is required to take its minimum value kat Kk, :
We now consider the inclusion of a magnetic field parallel , "
to the layers, appropriate to instances wh%{are phasgs of f(ko)=0, f'(ko)=0 and f"(ko)=2C. (12
a superconducting order parameter; without loss of generag"ding phases arise whefi and k, are chosen so that the
ity, we takeB=BY. It is convenient to work in the gauge system is close to an incommensurate transverse ordering
A,(r)=Bx. In this gauge, the sliding phase Hamiltonians areinstability, as has been discussed nicely by Vishwanath and
of the same form, and the computation of the scaling of theCarpentier. At small 8, the asymptotic form,
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4.0

recently pointed o6t that adding strong interchain forward-
scattering termgwhich are exactly marginpko the decou-
pled LL fixed point can drive all these interchain couplings
irrelevant. The resulting stable, non-Fermi liquid, smectic
metal phase is the quantum analog of the classical sliding
phase’

Since the single electron and Cooper pair hopping pro-
cesses involve charge transfer between neighboring chains,
the presence of a magnetic field has a similar effect, as be-
fore, of increasing the scaling dimensions of the operators
corresponding to these processes, that can perturb the smec-
tic metal fixed points, and hence increasing the range of sta-
bility of the smectic metal phaséor simplicity we will ne-
glect the Zeeman effect of the field in this papdn the
following, we present an explicit analysis of this effect. Fol-
lowing Emeryet al® three different types of smectic metal
fixed points need to be distinguished and analyzed in {urn:

k0 T a spinful smectic metal with a spin ga(ii; a spinful smectic
metal without a spin gap; an(i) a spinless smectic metal.
FIG. 1. A plot of =Ty /T4 againstk,/m at 6=10"°. The  For simplicity we will only include nearest-neighbor inter-

dashed line is due to charged two-layer couplings while the soliGth i couplings and their inmediate descendants.
line is due to the leading, three-layer, neutral couplings. Bhe

=0 sliding phase exists when the minimum of the two curves ex-
ceeds 1. Thd#0 sliding phase requires only that the solid curve

3.0
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1.0
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A. Spin-gapped smectic metal

exceeds unity and hence leads to a larger sliding phase. In this case the fixed point action in Euclidean space takes
the fornf
_, cogpkge PVIC
fp = (13 1 ) ) ’
JCs S=3 2 [Wo(ki)w?+ Wik )K?]|4(Q)|
enables easy numerical calculation of the scaling dimensions 1 2 2
w

of the Josephson couplings and thence of the temperatures _

+ 0(Q)|?, 14
Ty4. In Fig. 1, we plot the ratigg=min, Tyi{onl/max Tq 2 G [Woky)  Wa(k,) 16(Q) 19
where thes, are restricted to the two layer Josephson cou- _ : .
plings (9) and the three-layer terms that they genefat®. Vilhi;?/—Q_(g’Vk’ki)’df;r. etﬁChd chIa]Ln l;hef 2-(_‘}1;]rrent Ilﬁf‘

The value ofk, where both are greater than 1 supports a ;( 7) Cpv f¢’ an IIS Ie uat 1€ld o ‘% i € §cad|rE)g th

sliding phase in zero fielt while the latter alone determines IMensIons of various local operators are determined by the

the sliding phase in a magnetic field. The expansion of théjlmenSIonleSS Luttinger coupling function

phase is cleaWe have not attempted to include all opera-

tors that might be allowed by symmetry. As noted in Ref. 7, w(k, )= vWo(k )Wy(k.), (19
in the Luttinger liquid context, higher-order operators allow
increasingly finer instabilities. We do not know of a proof
that all such operators allow or exclude a connected slidin
phase, but assume that in a given system, a finite set will b
important over some reasonable range of length scales. Re-
gardless, the magnetic field will improve matters by knock-

which is periodic in k) with period 27 as we have set the
interchain distance to 1. As in Ref. 6, we consider the sim-
lified model in whichw(k, ) takes the form

w(k,)=Kg+Kjicogk, )=Kg[1+Ncodk,)]. (16

ing out all the charged operators. Stability requires|\|<1. In the presence of a spin gap,
single electron hopping is irrelevant and the magnetic field
[ll. SMECTIC METALS IN TRANSVERSE FIELDS has no effect on - backscattering that does not involve

: . . . ) charge transfer between chains. We thus focus on the singlet
lr.] this gecltlon W? d[scuss coupled one-d|menS|c§ﬁ®) pair hopping process, which in the presence of a magnetic
Luttinger liquids(LL’s) in the presence of a magnetic field, fie|q js described by the following perturbing Hamiltonian
with the field B transverse to the plane in which the 1D (near-neighbor hopping only

chains are placed. It was known that at thecoupledLL

fixed points, the transverse interchain coupling is always rel-

evant in one of three channels: single electron hopping, HSC=—tJJ dx hs(x),
(Coopej pair hopping, and interchaink? back scattering.

As a consequence, the decoupled LL phase is always un-

stable and driven toward the Fermi liguitisuperconduct- ho (0= cod V2ml0:(x)— 6: (O +2aax]. (1
ing, or charge/spin density way€DW/SDW) phases. It was selX) 2 V276,00 = 01 (0} +20ex], (17
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where t; is the Josephson coupling strength angd 1.0 Smectic Metal
=eB/#c as before. As in the previous section, the field adds Superconductor
an oscillatory phase to the pair hopping term, which renders ;?e%magnetlc
hec irrelevant by itself. However, as it flows, it again gener- 08 7
ates terms in which the oscillatory phases cancel. The most
relevant of these is
06 .
ot [ dx R, A
04 .
R =2 cod \2m{26;() — 6,100 6;_1(x)}], Stripe Crystal
J 0.2 _
(18)
which is generated at second ordet jn The scaling dimen-
sion of this term is 09,3 : 20 . 20

- 2K 0

2m
= + _ 2
Ase 2w fo dk, {1+ cogk, )H{1~cogk,)} FIG. 2. Phase diagram for coupled Luttinger liquids with a spin

gap, in the presence of a magnetic field. For comparison, we have
=(3—2N)Kp. (190 also included the phase boundaries separating the superconducting
. ~ . . . . phase from the smectic metal and the stripe crystal phases in the
Combining the knowledge af s with the scaling dimension  ghsenceof a magnetic field(dotted ling, as reported by Emery
of the kg backscattering operator et al. (Ref. 6. The presence of a magnetic field significantly ex-

pands the region of both the smectic metal and the stripe crystal.
2

(20 most relevant operator generated by the pair hopping has

Acow Ko(l—A+y1—\2)’ e e

_ , , scaling dimensiom\ 29%P=A32P+3>2, i.e., operators gen-
we can determine the p.has.e diagram of the .m()malm the erated by pair hopping amways irrelevanthere.
presence of a magnetic field and negr-ne|ghbor' mterchfsun Low-energy single-electron hopping, which is allowed, is
couplings, and subject to weak, generic perturbations, using, the other hand, more complicated and interesting. In
the criteria that the smectic phase is stable whef>2 and  terms of the original electron operators it takes the form
Acpw>2; otherwise the system is in the stripe crystal/
superconducting phase farcpy smaller/bigger tham.. Ho—_t f dx h(x)
[In this identification we have made the natural assumption € € '
that the couplind18) will govern the properties of the phase
when it grows most rapidly. By itself, it will produce a vor- B + iqax
tex latticel?] The phase diagram is plotted in Fig. 2. For he(x)_% {4/ 11,(x)€% +Hel (22
comparison we have also included the phase boundaries
separating the superconducting phase from the smectic metdéle need to distinguish two different cases here.
and stripe crystal phases in tabsenceof a magnetic fielf (i) ke and qg are incommensurate. In this case, single-
as dotted lines. It is quite obvious that both the smectic metatlectron processes all involve an oscillating phase, and the
and stripe crystal phases get expanded by the magnetic fielhost relevant process without an oscillating phase generated
which suppresses interchain Josephson coupling and iy H, is
creases the scaling dimension of operators involving pair

hopping. Fgoct? J dxPe(x),

B. Spin-ungapped smectic metal

In this case the fixed point action has contributions from  { (x)=>} [z/;jL{‘(x) lﬂij(X) llij+1¢l//F—1¢+ Hc+---],
both the charge and spin sectdBs: S,+ S, , where we take [

S, to have the same form as E44), and (23
K 1 whereL/R stands for left/right mover, and-* - stands for

3027" 2,: ;(37¢j0)2+v(5x¢j”)2 , (21)  terms of similar structure. In bosonized form,

in which we assume that there is no interchain coupling he(X) o cOg V2 2( 0+ i) = Opi+1
among spin fields, as in Ref. 6. Spin rotation invariataiso — 01— i1 bui_alh, (24)

assumed hejeequiresK ,=1. The analysis of pair hopping
is similar to the previous case and it is easy to show that thevhich has the scaling dimension
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FIG. 3. Phase diagram for coupled spinful Luttinger liquids
without a spin gap, in the presence of a magnetic field, assuming FIG. 4. Phase diagram for coupled spinful Luttinger liquids
there is no commensuration betwdenandqg . without a spin gap, in the presence of a magnetic field, in the com-
mensurate casekz=nqg .

Z—1+K°(3 x>+ L=V1-A° (25)
¢ 212 2KA2\1—2\?' /12ﬁ(1 §)+ 1 L 27)
o 4 2] 2Ko(14N+y1-2%) 2

We assume that the system behaves as a Fermi liquid in a

magnetic field when this term dominates. This identiﬁcationI , ¢ h his is th |
is suggested if we note that at the noninteracting point, " r€gions o parameter space where this is the most relevant

=0 andKy=1, this term is marginal. This leads to the phaseoperator,. we expect that the system deyelop§ a gap that is
diagram Fig. 3, which is qualitatively different from the Iargely single p_arUcIe in character. The_ldentlflcatlon of t_h_e
phase diagram in the absence of the field, Fig. 2 of Ref. Gresultlng s.tate IS €asy once we recognize that_ the condition
There are two particularly interesting differencé$:The su- ZKFInq_B 1S prec_|sely that the Lar_1dau I_evel f|II|ng of _the
perconducting phase gets completely squeezed out by t stem isy=2n, i.e., the electronsginclusive of the|r_sp|n
field; (ii) the smectic metal phase now extends all the way t egeneracy occupy n Landau bands and form an integer

A =0, which corresponds to thaeecoupled.L fixed point, a q“a”t“'.“ Hall state. .
situation impossible without the field. In Fig. 4 we show the phase diagram for the case

(i) 2ke=ngg wheren is an integer. In this cadé,, orits ~ — + (v=2). As the transition between the quantum Hall state
higher-order descendents in the low-energy theory, can turﬁnd th? §mectlc metal happ(a_ns via the hopping going !rrgl-
a left mover on the Fermi point of thth chain to a right evan_t, it isa continuous tra_msmon. To our knowledge, this is
mover on the Fermi point of thej ¢ n)th chain; this is a the first instance of a cont|r_1uous transition between a quan-
low-energy single-electron hopping process ii@és notin- tum .HaII state and a metallic state. We should note that the
volve an oscillatory phase, which takes the form persistence of thg quantum 'HaI'I phase up to the' upper

boundary at\ =1 is non-generic; it arises in the particular
model studied upon a cancellation between numerator and
HI = _teJ dx h'(x), denominator that will not typically take place.
Finally, higher-order commensurations betwden and
(g are possible when lattice effects are strong on the chains
and the electron operator has pieces oscillating at higher
h'(X)ZJZ ()L nrtH.C) multiples ofkg . We have not investigated these.

a . .
< COS \/;( gpi — gpi+n+ ¢pi + ¢pi+n) C. Spinless smectic metal
In this case we only have charged fields as in the spin
T gapped case, but single-electron processes need to be consid-
X cos 5( O5i = Ogitnt oit Pyitn) ered as in the spin ungapped case. The analysis of perturbing
operators is very similar to the spin ungapped case, which
(26)  leads to the phase diagram in Fig. 5, wHenand qg are
incommensurate. Integer quantum Hall cases are, of course,
The scaling dimension of this operatdf, , for n=1 is allowed here as well, whenk2=ngg.
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1.0

higher dimensional system3The application of a magnetic
field has been conjectured previously to be useful in this
task. In addition to the work of Efetov, we should also men-
1 tion the suggestion of Strong, Clarke, and Andet8ahat a
two-dimensional non-Fermi liquid phase could be induced in
this fashion in a layered system. Striking experiments in the
organic superconductors that are evidence for this point of
view have been discussed at some lertgth.

In this paper, we have shown that this decoupling effect
of the magnetic field can be given a precise meaning in the
context of two-dimensional sliding phases, via its reduction
of the dimension of the most relevant charged operators that
perturb them. This significantly expands the size of the slid-
ing phases. As a bonus we find, in the quantum version of
0.0 . . the problem, quantum Hall phases at commensurate fields

0.0 2.0 K 4.0 that undergo a continuous transition to a smectic metal.

0 In the underdoped region of the cuprates, it has been ar-

FIG. 5. Phase diagram for coupled spinless Luttinger liquids, ingued tha'F the stripe instability leads to a smec'Fic meFaI state
the presence of a magnetic field, assuming there is no commens@nd that it may already have been obser‘?{datdlh|s setting,
ration betweerke andqg . the spin gappe_d_phase discussed here is the one at issue,

whence we anticipate that the Zeeman coupliggored in
D. Disorder our analysigswill not be important. We suggest that the field
: . . sensitivity of the phase diagram in this region would be an

Following Giamarchi and SchufZ,one can also analyze interesting test of the smectic hypothesis—essentially, one
the scaling of weak single-particle randomness. We have Nl 4 ook for the expansion of the metal or the onset of a
done this systemaucglly, put will contgn'g ourselyes W'th acpw. The parameters needed to see this effect should en-
couple of remarks. First, in all cases it is possml_e to findg ;e that the interchain hopping is weaker than the field,
subsets of the smectic metal where both intrachain randorgquB (v is the on-chain Fermi velocityand that the

_baclkscatttirrl]ng atr;]d m'E{erch_am rafnd(:{)m lbh_?pplngl talretemperature does not wash out the phases induced by the
Irelevant—hence the System IS a pertect, albeit Completelya y The |atter condition can be translated, via the on-chain
anisotropic, metal in the long-wavelength limit. Second, it ISsmectic correlation lengthi~ e /nT (e is the on-chain
possible to find sections of the phase boundary between tl}_e F F

. . ermi energy andh is the linear density of electropgo the
guantum Hall states and the smectic metal where disorder %QtatemenBa§~¢ wherea is the interchain spacing a
still irrelevant, e.g., in the spin ungapped problem this hap~Is the flux quantuom b

pens both neak=0 and neain =1. In these cases, we find

S.C.ina Smectic Metal

0.8 -

Fermi Liquid
in a magnetic
field

0.6 [

04

Stripe Crystal

02 -
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