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We present a theory of magnetic anisotropy in 1yMn,V-diluted magnetic semiconductors with carrier-
induced ferromagnetism. The theory is based on four- and six-band envelope function models for the valence-
band holes and a mean-field treatment of their exchange interactions witii Mns. We find that easy-axis
reorientations can occur as a function of temperature, carrier dgnsityd strain. The magnetic anisotropy in
strain-free samples is predicted to havp®8 hole-density dependence at smalla p~* dependence at large
p, and remarkably large values at intermediate densities. An explicit expression, valid apsimaiven for
the uniaxial contribution to the magnetic anisotropy due to unrelaxed epitaxial growth lattice-matching strains.
Results of our numerical simulations are in agreement with magnetic anisotropy measurements on samples
with both compressive and tensile strains. We predict that decreasing the hole density in current samples will
lower the ferromagnetic transition temperature, but will increase the magnetic anisotropy energy and the
coercivity.
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I. INTRODUCTION do not include effects due to interactions among the itinerant
holes, and(iii) we do not account for correlations between
The discovery of carrier-mediated ferromagnefistin localized spin configurations and itinerant hole states. The
ll,_,Mn,V and doped Il ; _,Mn,VI-diluted magnetic semi- importance of each of these deficiencies is difficult to judge
conductors(DMS’s) has opened up a broad and relatively in general, and probably depends on adjustable material pa-
unexplored frontier for both basic and applied researchrameters. In our view, it is likely that there is a substantial
Experiment$® in Ga,_,Mn,As and In_,Mn,As have dem- range in the parameter space of interest where the predictions
onstrated that these ferromagnets have remarkably squa®é the present theory are useful. We expect that important
hysteresis loops with coercivities typically40 Oe, and that progress can be made by comparing this simplest possible
the magnetic easy axis is dependent on epitaxial growtitheory of carrier-induced DMS ferromagnetism with experi-
lattice-matching strains. In this paper we discuss the magment.
netic anisotropy properties of {lL,Mn,V DMS ferromag- This work has two objectives. Most importantly, we have
nets, predicted by a mean-field thedof the exchange in- attempted to shed light on how various adjustable material
teraction coupling between localized magnetic ions andarameters can influence magnetic anisotropy. Second, we
valence band free carriers. We use phenomenological fouhave made an effort to estimate the magnetic anisotropy en-
or six-band envelope function models, depending on the cargy in those cases where experimental information is pres-
rier densityp, in which the valence-band holes are charac-ently available. Our hope here is to initiate a process of care-
terized by Luttinger, spin-orbit splitting, and strain-energyful and quantitative comparison between mean-field theory
parameters. and experiment, partially to help judge the efficiency of this
The physical origin of the anisotropy energy in our modelapproximation in predicting other physical properties. Even
is spin-orbit coupling in the valence band. Our work is basedn the mean-field theory, we find that the magnetic anisot-
in part on theoretical descriptions developed by @am? ropy physics of these materials is rich. We predict easy-axis
and Bastarcet al® to explain the optical properties of un- reorientations as a function of hole density, exchange inter-
doped, paramagnetic DMS’s. As the critical temperature igiction strength, temperature, and strain and identify situa-
approached, the mean-field theory we empl@®duces to an tions under which 1ij_,Mn,V ferromagnets are remarkably
earlier theor§ that invokes generalized RKKY carrier- hard.
mediated interactions between localized spins. The two ap- In Sec. Il we detail our mean-field theory of the ordered
proaches differ, however, in their description of the magneti-state. The theory simplifies in the limit of low-temperature
cally ordered state. As this work was nearing completion, weand low-hole densities. Our results for this limit, presented in
learned of a closely related stutly that uses the same Sec. Ill, predict &111) easy axis in the absence of strain,
mean-field theory to address critical temperature trends iand a magnetic anisotropy energy that is approximately 10%
this material class and that also addresses magnetic anis@f the free-carrier band-energy density. This value is ex-
ropy physics. We are aware of three elements of the physidsemely large for a cubic metallic ferromagnet; typical ratios
of these materials that make the predictions of our mean-fielth transition metal ferromagnets are smaller than % Gor
theory uncertain{i) we do not account for the substantial example. The anisotropy energy in this limit varies as the
disorder that is usually present in these ferromagrigjsive  free-carrier density to the 5/3 power and is independent of
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the exchange-coupling strength. Explicit results for the straiments is believed to be antiferromagnéfid.e., Jpa>0. For
dependence of the magnetic anisotropy in the same limit ar6aAs, experimental estimatés'’ of J,4 fall between
presented in Sec. IV. We find that unrelaxed lattice-matchin@.04 eV nni and 0.15 eV niy with more recent work sug-
strains due to epitaxial growth contribute a uniaxial anisot-gesting a value toward the lower end of this range.
ropy that favors magnetization orientation along the growth The form of the valence band for Bloch wave vectors near
direction when the substrate lattice constant is larger than thghe zone center in a cubic semiconductor follows frionp
ferromagnetic semiconductor lattice constant and an in-plangerturbation theory and symmetry consideratibhsThe
orientation in the opposite case. Unfortunately, perhaps, thfour-band §=3/2) and six bandj(=3/2 and 1/2 models are
simple low-density limit does not normally apply in situa- known as Kohn-Luttinger Hamiltonians and their explicit
tions where high critical temperatures are expected. Théorm is given in the Appendix. The eigenenergies are mea-
more complicated, and more widely relevant, general case isured down from the top of the valence band, i.e., they are
discussed in Sec. V. We find that magnetic anisotropy has hole energies. The Kohn-Luttinger Hamiltonian contains the
nontrivial dependence on both temperature and exchangepin-orbit splitting parametes, and three other phenom-
coupling strength and that easy-axis reversals occur, in gernological parameters;;, y,, andy;. These are accurately
eral, as a function of either parameter. According to ourknown for common semiconductors. For GaAs and InAs, the
theory, anisotropy energy densities comparable to those itwo materials in which 1} _,Mn,V ferromagnetism has been
typical metallic ferromagnets are possible when the exobserved, A;,=0.34 eV and 0.43 eV, andy{,v,,v3)
change coupling is strong enough to depopulate all but one-(6.85,2.1,2.9) and (19.67,8.37,9.29), respectively. Most of
of the spin-split valence bands, even with saturation magnethe specific illustrative calculations discussed below are per-
tization values smaller by more than an order of magnitudeformed with GaAs parameters.
In the limit of large-hole densities, we find that the anisot-  Qur calculations are based on the Kohn-Luttinger Hamil-
ropy energy of strain-free samples is proportional to holeronian and on a mean-field theory in which correlations be-
density p~! and exchange COUpIiand. We find that in  tween the local-moment configuration and the itinerant car-
typical situations a strair, of only ~1% is sufficient to rier system are neglected. We comment later on limits of
overwhelm the cubic anisotropy of strain-free samples. Wevalidity of this approximation. There are a number of equiva-
conclude in Sec. VI with a discussion of the implications of lent ways of developing this mean-field theory formally. In
these calculations for the interpretation of present experithe following paragraphs we present a view that is conve-
ments, and with some suggestions for future experiments thatient for discussing magnetic anisotropy.
could further test the appropriateness of the model used here. In the absence of an external magnetic field, the partition
function of our model may be expressed exactly as a
Il. FORMAL THEORY weighted sum over magnetic impurity configurations speci-

fied by a localized spin quantization axMd, and azimuthal

Our theory is based on an envelope-function descriptio Pin quantum numbers, :

of the valence-band electrons, and a spin representation fo

their kinetic-exchange interactibn with localized d

electron? on the Mn' * ions: ZI% exp(—Fp[m]/kgT), %)
|

2 2 2 whereFy[m,] is the valence-band-free energy for holes that
HZ?'lmJ“HbJ“]pdiE]I Si-sid(ri—Ry), @ experier?ce an effective Zeeman magnetic field

wherei labels a valence-band hole ahdabels a magnetic
ion. In Eq. (1), H,, describes the coupling of magnetic ions
with total spin quantum numbet=>5/2 to an external field R
(if one is present S is a localized spins; is a hole spin, and 1he mean-field theory consists of replacing)[m,] by its

M, is either a four- or six-band envelope-function SPatial average for each magnetic impurity configuration,
Hamiltoniart® for the valence bands. In this paper we do notthereby neglecting correlations between spin distributions in
consider external magnetic fields #,—0. The four-band local-moment and hole subsystems. The effective Zeeman
Kohn-Luttinger model describes only the total angular mo-magnetic field experienced by the holes then depends only
mentumj = 3/2 bands, and is adequate when spin-orbit couon M, the direction of the local-moment orientation, and the
pling is large and the hole densify is not too large. As mean azimuthal quantum number averaged over all local
discussed later, in the case of GaAs, a four-band model sufnoments M:

fices forp=<10®cm™3. In Ill;_,Mn,V semiconductors, the R L

four j =3/2 bands are separated by a spin-orbit splitting hve(M)=JpeNunMM=hM, (4)

from the twoj =1/2 bands. In the relevant range of hole and
Mn** densities, no more than four bands are ever occupie
Nevertheless, mixing betwegr= 3/2 andj = 1/2 bands does
occur, and it can alter the balance of delicate cancellations _ _ >

that often controls the net anisotropy energy. The exchange Zur(M)=exg{[Ni TS(M) = Fu(n) 1/ksT}, ®
interaction between valence-band holes and localized mowhere the entropy per impurity is defined by

ﬁ<F>[m.]=—deME| m 8(r—R,). @)

hereNy,=N,/V is the number of magnetic impurities per
nit volume. The mean-field partition function is
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Note that
In

E 5(2 mI_NIM)
m, [ N
s(M)=Kkg lim (6) dFy(hM) -

Ny N ' T:<§tot'M>! (15

and Fb(ﬁ) is the free energy of a system of noninteracting _ _ o
fermions with sinale-particle HamiltoniaH. — - S whereS,,, is the total hole spin, and the angle brackets indi-
g'€-p b > cate a thermal average for the noninteracting valence-band

F9IIOW|ng standard Iarge 'number allr.guments(,M) IS system. Since the valence-band system experiences an effec-
readily evaluated by considering an auxiliary system consist

: g e five Zeeman coupling with strength proportional ioand

ing of magnetic impurities coupled only to an external mag- .~ a . .

netic field H. For this model problem, a familiar exercie  direction =M, it is clear that the right-hand side of EQ.5)
gives the result is negative in sign and that its magnitude increases mono-

tonically with h, making it easy to solve Eq14) numeri-
M(H)=JB;(x), (7 cally.
. . ) To simplify the calculations presented in subsequent sec-
wherex=g, ugHJ/kgT, g is the Landeg factor of the ion,  {ions, we take advantage of the fact that temperatures of
ug is the electron Bohr magneton, and interest are almost always considerably smaller than the itin-

1 erant carrier Fermi energy. This allows us to replﬁgeﬁ)
cott{ (2J+1)x/2] - 5cothx/2J)  (8) by the ground-state enerd,(h). Then, using Eq(13) and

_ o ) o o Eq.(11), a single calculation dE(h M) over the range from
is the Brillouin function. The Brillouin function is a one-to- =g to h=NynJseJ May be used to determine the local-

one mapping between reduced fields the interval{0°]  oment magnetizatioM(T) and the free energyF(T)

2J+1
By(x)= 23

and reduced magnetizatiom8/J in the interval[0,1]; the  —g _M(T)] atall temperatures.
inverse functionB; * mapsM/J to x. Since the magnetiza-  The mean-field theory critical temperature can be identi-
tion maximizess(M) + g, ugHM/KgT, fied by linearizing the self-consistent equation at sthaWe
find that
ds(M)
M — g ugH/KgT. 9 2 o R
N J(J+1) Nypdpg d“Fp(hM)
Equation(9) can be used to eliminatel and arrive at the KeTc(M)=— 3 Vv dh? - (1)
following explicit expression fos(M): h=0
” dB,(X) The seconq de_rivative of the valgnce—ba}nd .free energy \_/vith
s(M):kBJ' . dxx ax (10 respect to field is proportional to its Pauli spin susceptibility,
By "(M1J) X which is, in turn, proportional to the valence-band density of

H 3
The entropy per impurity vanishes fod =J=5/2 because states at the Fgrm_| energy, and pd at smallp. In the
there is a single configuration with,m,=N,J, and ap- absence of strain, it follows from cubic symmetry that the

proaches In(@+1)~1.79 forM—0. right-hand side of Eq(16) is independent of. Below the
The mean polarization of the localized spins at a givercritical temperature, however, the mean-field free energy
temperature and for a given orientation of the local momentsloes depend oM; this dependence is the magnetic anisot-
is determined by minimizing the mean-field free energy  ropy energy we wish to calculate. We will see that the de-
pendence of the anisotropy energy on hole density is very
Fue(M)=—kgTInZye(M) different from that of the critical temperature.

=Fp(N=NypJdpgMM)—kgTN;S(M), (11)
I1l. MAGNETIC ANISOTROPY IN THE STRONG

with respect taM. Setting the derivative to zero gives EXCHANGE COUPLING LIMIT
ds(M) Jod de(hM) Our mean-field theory simplifies at low temperatures and,
= : (12)  for the four-band model, simplifies further whénis much
dMm kgTV ~ dh > .
larger than the characteristic energy scale of occupied Kohn-
Comparing with Eq.(9), it follows that Fy (M) is mini-  Luttinger states. A convenient typical energy scale ishhe
mized byM =JB;(g, ugHeid/kgT)=JIB;(Xerr), Where =0 hole Fermi energyg,. For a given value oNyyJ,q the

largest value ofh is reached aff=0. Then, sinceH is
always nonzeroxeg—0o° and the solution to the mean-field
equations iV = J, implying thath=Ny,J,4J for every ori-
entationM. At T=0 there is no entropic contribution to the
free energy and

o _GukeHer _ Jpa dFy(hM)
S VksT  dh

13

It follows that h=Ny,J,qM is determined by solving the
self-consistent equation

h=NynJpad Byl Xer(h)]. (14) Fue(T=0)=Ep(h=NyJped M). (17)
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We note in passing that the magnetization densitfat0  hole spins. Explicit expressions for the expansion of such a
has contributions from the localized spins and the itineranspin coherent state in terms of the eigenstateg,ofre
spins: known?!

| — M) =ud|3/2) + 3[u?v|1/2) + uv?| — 1/2)] + 03| — 3/2).
(22)

where k is an additional parameter of the Luttinger model.In  Edq. (21) u=—iexp(-i¢/2)sin@@2) and v

Because of the antiferromagnetic exchange interaction, the i€xp{¢/2)cos@/2), where¢ and ¢ are the spherical coor-

two terms here will tend to have opposite signs with the firstdinates that specify the unit vecterM. In the largeh/egg

term, which is independent of hole density, typically verylimit, the band term in the single-particle Hamiltonian may

dominant. Forh>er, two further simplifications occur. be treated using first-order perturbation theory. Taking the

When the splitting of the hole bands by the effective Zeemarexpectation value of the Kohn-Luttinger Hamiltonian in the

coupling is sufficiently large, or the hole densjtyis suffi-  spin coherent state, we find that

ciently small, only the lowest energy hole band will be oc- N Ry

cupied. Furthermore, the effective Zeeman term will domi- - ~ N ~s

nate the mean-field single-particle Hamiltonian and, as we €K)=773 H(=MH(K[-M)=—5+ 5 -y (M k).

detail below, the envelope-function spinor for this occupied (22

hole state has a simple analytic expression. In this section w; i . .

assume that the spin-orbit splitting enetyy, is much larger '?h_e first term on the rlght-hangl side 9f HG2) refAIects the

than all other energies so that we can work with a four-bandPin coherent state propefy,M-s|—M)=—[-M)/2. In

model. More generally, the anisotropy will depend onEg.(22) we have noted that for ari and anyk, the depen-

h/Aso, even in the limit of small hole densities. dence of hole energy do=|K] is quadratic. Using this prop-
To judge whether or not this limit can be achieved inerty, it follows that the Fermi energy

practice, we estimate the Fermi energy of holes using the

spherical approximatienin which the doubly degenerate=0

K - ~
M(T=0)=2uaINun+ 35(Sor M), (18)

2

) — 23\2/3 (N
bulk heavy-hole and light-hole bands are parabolic with masses er(M)= m(Gﬂ' p)“y(M), (23)
My=m/(y;—2y)~0.498n and m=m/(y,+27y)~0.086n, re- _ o
spectively. An elementary calculation then gives and that the ferromagnetic ground-state energy density is
72 (3m2p\ 2P E, (M) hp 3 .
=—| —— _—— — 4 =
€Fo 2m ( 2 ) Y0 (19) V 2 5 peF( M )1 (24)
wheren=N/V is the free-carrier density and where

—2/3

Yo=

(71—27%) P+ (y,+2y) 7%
2

o df( o —2/3
(20) Y(M)E(JE[?’(MK)]M) : (25

For GaAs;o~3.05, the Fermi energy is the same as that of |, analogy with then=0 quantity;o defined in Eq(20),

a system with four identical effective mam/79 bands. ;(I\A/I) is an average of the band-energy curvature over recip-
Typical highT, Ga _,Mn,As ferromagnetic semiconductor P ~
rocal space directionls, with the smaller values of(M,k)

samples have~0.1 nnmi 3 andNy,~1.0 nm 3 (x~0.05), : , N |
although these parameters can presumably be varied wideljy€ighted more heav2|Iy. Note that the factorr32 in Eq.
Choosing aJpq value in the midrange of estimated values 19) is replaced by @< in Eq. (23) because only one band is
(~0.006 Ry nm) these parameters imply that-0.015 Ry occupied in this limit, instead of the four that are occupied at
and e;o~0.01 Ry. h is neither large compared tg-o, nor h=0. m/y(M) may be thought of as a spin-orientation-
small compared ta\.,. Thus, the simple expressions dis- dependent effective mass, which is readily evaluated as a
cussed in this section are not accurate for current fiigh- function of M, given the Luttinger parameters of any mate-
systems. As our ability to engineer materials improves, itrial. Although the magnetic condensation energy has a term
should, however, be possible to grow samples &nain the  proportional toJ,q, only the band energy contributes to the

limit discussed here. Sindeis comparable t@go, we know, N1 dependence of the ferromagnetic ground-state energy.
even before performing detailed calculations, that valenceéThe magnetic anisotropy energy in this limit is independent

band quasiparticle spectra in paramagnetic and ferromagnetig Jpa and proportional to the hole density to the 5/3
states will differ qualitatively. power.

In thg Ia-rgeh limit the lone occup|e.d spinor at faach wave  \ve have evaluated(M) as a function of angle for the
vector k will be the member of the=3/2 manifold for | yttinger parameters of GaAs and InAs. As discussed in
which the total angular momentum is aligned in the directionmore detail later, we always find that magnetic anisotropy in
—M; the origin of the minus sign here is the antiferromag-the absence of strain is well described by a cubic harmonic
netic nature of the interaction between localized spins anéxpansion truncated at sixth order, an approximation com-
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TABLE I. High-symmetry direction moment-orientation- Kea 172
dependent average Luttinger parameters and their cubic harmonic K~ 1 , (28)
expansions for GaAs and InAs-based, lijMn,V ferromagnetic ,LLOM§

semiconductors. These parameters specifyTthed magnetic an- . . L. . .
isotropy energy in the limit of large spin-orbit spliting and large Will typically be larger than 1. This is unusual in cubic ma-

exchange-coupling parametel,() or small-hole density. terials and occurs because spin-orbit coupling has a much
stronger influence on semiconductor valence bands than on
Host W1000 %110 (111 y58 52 transition metau bands. _ . _
As we discuss at length in Sec. V, magnetic anisotropy
GaAs 5.965 5.088 4639 —3.509 —4.24 does not continue to increase rapidly with hole density once
InAs 13.207 10.854 9.705 -9.412 -9.84 two or more bands are occupied in the metallic state. In

current highT, samples, we will find that several bands are
) ] _ _ always occupied, even at zero temperature. The simple limit
monly used in the literatuf® on magnetic materials. The discussed in this section demonstrates that anisotropy ener-

corresponding cubic harmonic expansion ﬁNI) is gies,T=0 saturation moments, and critical temperatures will
_ L have radically different dependencies on engineerable pa-
(M)=((100) + y§A(MIMZ+MIMZ+MIM?) rameters.
cann2nn2p 2
+y2 MiMiM;. (26) IV. STRAIN DEPENDENCE OF MAGNETIC

In our calculations we find thag(M)< y, for all directions ANISOTROPY: LOW-HOLE DENSITY LIMIT

M. This property reflects the fact that small curvat(ezge Because of the low solubility of Mn in 11I-V semiconduc-
Fermi wave vectordirections are weighted more highly in tors, Ill; _,Mn,V materials withx large enough to produce
calculating the total hole energy. For both InAs and GaAs wecooperative magnetic effects cannot be obtained by equilib-
find that the dominant fourth-order cubic anisotropy coeffi-rium growth. The molecular beam epitaxi/BE) growth
cient, y{%<0, indicating nickel-type anisotropy with easy techniques that have been successfully develSpamduce
axes along thé€111) cube diagonal directions. At a qualita- ll;-,Mn,V films whose lattices are locked to those of their
tive level, the source of the higher total hole energy when thgubstrates. X-ray diffraction studiebave established that
moment orientation is along@01) (cube edggdirection is the resulting strains are not relaxed by dislocations or other
easy to understand. With such a moment orientation, the oglefects, even for thick films. Strains in the;llLMn,V film
cupied hole orbital hag,=—3/2 and energy dispersion break the cubic §ymmetry assumed in the prgvious segtion.
given by Hhh(lz) in Eq. (A9). It follows that y(M Fort_unately, the influence of MBE_ growth Iatt|ce-matph|ng
~ (100 k) has the relatively large valug, + y, for all ori- strains on the hole bands of cublc_sem|conductors is well
A A wively farg UeLT 72 understood®2°For the(001) growth direction used to create
entations ofk in the x-y plane. These large values of yji,_ mn,V films, strain generates a purely diagonal contri-
v(M,k) are important in the average and cause the averagsution to the four-band single-particle envelope-function

overk to reach its maximum for this orientation f. Hamiltonian in the representation we use in this paper, add-
The cubic magnetic anisotropy energy coefficients in thigng contributionsde, and Je,, respectively, toj,= *=3/2
limit are given by heavy-hole andj,=*1/2 light-hole entries. The energy
3 2 shifts are related to the lattice strains‘by
Ki?=+ g5 (677p) Y%, @7 e a,
5€h:C_ —2a;(Cyy— (:12)_3(011‘F 2Cy) |, (29
Values of y{? for GaAs and InAs are listed in Table I. We "
will see later that these expressions apply up po e a,
~10'" cm™2. Inserting this value for the hole density gives de=5| —2a1(Cy— C) +5(Cuut2Cyy)|, (30)
coefficients ~2 kJm 3 for GaAs host material and 1

~4 kJm 2 for InAs host materials; magnetic anisotropy is wheree, is the in-plane strain produced by the substrate-film
twice as strong in InAs in the strain-free case. These anisolattice mismatch:

ropy energy coefficients are not so much smaller than those

of the cubic metallic transition metal ferromagnets, despite as—ar

the much higher carrier densities in the metallic case. We e0=a—F. (31)
will see below that the scale of the semiconductor magnetic

anisotropy energy does not change as the carrier density ifh Egs. (29)—(31), the C;; are the elastic constants of the
creases from 6cm 2 to ~10?* cm™ 3. The relatively large  unstrained 11] _,Mn,V film, which we will assume to be
anisotropy energies occur despite the fact that the saturatiddentical to those of the host IlI-V materiadg is the lattice
momentsM of 1ll ;_,Mn,V ferromagnets are more than an constant of the substrate on which the, ljMn,V film is
order of magnitude smaller than their cubic metal countergrown, ar is the unstrained lattice constant of bulk
parts. It follows from these values that the magnetic hardnesdl ; _,Mn,V, anda; anda, are phenomenological deforma-
parameters of the L ,Mn,V ferromagnets, tion potentials whose values for common Ill-V semiconduc-
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tors are known. For the six-band model the strain Hamil- Strain-induced anisotropy energies can be modified by
tonian includes off-diagonal elements and is given up to agrowing the magnetic film on relaxed buffer layers. This
constant times the unit matrix by effect has been demonstratethy Ohnoet al. who showed
that the easy axis for Ga,Mn,As films changes from in
plane to growth direction when the substrate is changed from
GaAs to relaxedIn,GaAs buffer layers. For 15% In, the
magnetic film strain changes from compressieg=
—0.0028 to tensileey=0.0077 when this change is made.
We note that the sense of this change is opposite to that
0 predicted by our largd, smallp analytic result which pre-
dicts that compressive strains favor growth direction orienta-
ol tions. Similarly, In_,Mn,As on InAs is under a small ten-
sile strain but is observed to have a growth direction easy
axis. (Recall that in the largé- limit the band anisotropy
makes the growth direction the hard axi$his distinction
may be taken as an experimental proof that several hole
bands are occupied in the magnetic ground state of these
materials. The strain anisotropy energgeschange sign at
smaller values oh partly because the first band to be de-
(32 populated has primarily heavy-hole character. We will see in
the next section that the mean field does predict the correct
wherel’= (¢, — en)/eg=2a5(C11+2C;)/Cyy. For GaAs and  sjgn for the strain anisotropy energy at experimental hole
InAs, I'= —0.2382 Ry and-0.2762 Ry, respectively. densities. We conclude from the present considerations that

As in the previous section, we can derive an explicit eX-strain can play a strong role in band-structure engineering of
pression for the strain contribution to the magnetic anisoty;, . Mn,V ferromagnet magnetic properties.

ropy energy wherh> ey and h>T1", allowing band and
strain terms to be treated as a perturbative correction to the V. PARTIALLY POLARIZED HOLE BAND STATES:

effective Zeeman coupling, anki<As,, allowing a four-  MAGNETIC ANISOTROPY IN THE GENERAL CASE
band model to be used. In this way we obtain

0O O 0 0

o

ﬁ|“ o

0 1 0 0

o

Hsirain=1"€g 0O O

N

S

N| -

Sl

The results fo,(h M) discussed in the previous section
Ecrain(M) P 3pcosd become accurate when the effective Zeeman cougiing
v gl3%ntde]t ——[den— el large enough to reduce the number of occupied hole bands to
(33) one, and the Fermi energy remains safely smaller than the
spin-orbit splitting. The situation is much more complicated
Strain produces a uniaxial contribution to the magnetic anat smalleth and larger hole densities. Then several bands are
isotropy of Ill;_,Mn,V films that favors orientations along occupied, even al=0, and these usually give competing
the growth direction when strain shifts heavy holes downcontributions to the magnetic anisotropy. It net true in
relative to the light holes and orientations in the plane in thegeneral that band and strain contributions to the magnetic
opposite circumstance. Using E@9) and Eq.(30) and de- anisotropy are simply additive. We expect that it will even-
formation potential elastic constant valiésye find that a  tually be possible to realize a broad range of material param-
contribution to the energy density given W .i,Sir?(6),  eters, and hence a broad rangehofalues, in Il}_,Mn,V
where the uniaxial anisotropy constant iKg,,,=  ferromagnets. The range of possibilities is immense, and ac-
—0.36 Ryggp for GaAs and K ain=—0.41 Ryegp for  curate modeling of a particular sample will require accurate
InAs. Sincea,<0, compressive straine{<0) lowers the values forp, J,4, andNy, for that material.
heavy-hole energy relative to the light-hole energy and fa- In this section we discuss a series of illustrative calcula-
vors moment orientations in the growth direction, while ten-tions, starting with ones performed using a four-band model
sile strain g,>0) favors moment orientations perpendicular of strain-free Ga_,Mn,As at hole densityp=0.1 nm 3
to the growth direction. Since the lattice constant ofThe valence-band energy density is
Ga_,Mn,As is largef than that of GaAs, while that of
In;_,Mn,As is smaller than that of InAs, Ga,Mn,As on Eb
GaAs is under compressive strain ang IgMn,As on InAs
is under tensile strain. AssumihgVergard's law, e,
=0.0004 ande,= —0.0028 for InAs and GaAs, respectively, Where eg is the Fermi energyk is the Bloch wave vector,
atx=0.05. Forp=103 nm™3, a density for which this low- and the mean-field-theory quasiparticle energigk, h) are
density result is still reasonably reliable, we find thateigenvalues of thél,X N, single-particle HamiltonianN},
Kstrain=—0.36 kd m 2 for InAs andK ¢, ,in=2.2 kJm 3for  is the number of bands included in the envelope-function
GaAs. At these densities, strain and cubic band contributionslamiltonian
are comparable in GaAs, but the latter contribution is domi- .
nant in the InAs case. Hy=H_+h-s+Hgyain- (35

Np

E E O(er— €;(k,h))e;(k,h), (34)
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FIG. 1. Valence-band spin per hole as a function of effective -0.0218
Zeeman field strength. <001> <1005 <110> <001>

FIG. 2. Hole energy per particle in units bfas a function of
magnetization orientation fon=0.0275Ry). The solid line is a
cubic harmonic expansion fit to these results truncated at sixth or-
der. At this value oh, three hole bands are partly occupied and the

asy axes are the cube edge directions.

For a strain-free model we sklg;,i,=0. In Fig. 1 we plot
the calculated spin polarization per hole as a functioh fofr
a growth direction field orientation; recall that this quantity
can be obtained by differentiating the energy per hole wit
respect tch and that the effective field seen by the localized
spins is obtained by multiplying this quantit . The . . .
hlgle spin polarizati)(/)n incfe)a/lsgs Iinegrly atysun‘%aglsvith a Resulis forKiCa(h).obta.med. for the four-band model in this
slope proportional to the valence-band Pauli susceptibilityW_""y are summarized in Fig. 3. These results can be com-
We see that for the hole density of Fig. 1, complete hole spilfme_d with the calcula_ted temperature dependence. of the ef-
polarization is approached only at valueshadomparable to ective Ze(_ar_nan coupling to-obtam the model's cubic anisot-
or larger than the spin-orbit splitting of GaAs, so that theOPY coefficients as a fun.ct.|on of temperature, hole density,
four-band model is not physical in this regime. For any givenand h. Here we see explicitly the anlsotropy reversals thgt
model, and a given moment orientationsiagle calculation cpmmonly accompany hole band depopulations. We note in
of this type provides all the microscopic information re- Fig. 3 that the analytic result_s of Set_:. Il are recovered only
quired to solve the mean-field equations at all temperatureg(.)r very large values oh at th|s density.

For fixed values of,q, Nyn, andp, h must be evaluated The valgnce-band Fermi surfaces of; l}Mn,V ferro-
as a function of temperature by solving the self-consistenf?29nets V‘_”” b_e stror_lgly d_ependent on both temperature and
mean-field equation, Eq14), and using numerical results moment direction orientation. Four-band model Fermi sur-
like those plotted ir,1 Fig 1 Fod,y=0.15 eV nm, Ny, face intersections with the,=0 plane are illustrated in Figs.
=1 nm 3, and p=0.1 nm® the (p:ritical temperatureTz 4 and 5 forp_= 0.1 nm? ath=0 andh=_0.01 RY’ respec-
[h(T)=0 for T>T,] is ~100 K, in rough agreement with t|\_/ely._ Both figures are for moments oriented in thH_)O)
experiment. There are, however, other choices of parametefi"ection Tfheh =001 Ry value |shth<=|:r=0 effecftll\_/e field
that are also consistent with the measured critical tempera@p_dNM“‘]) ori<—0.05 ang;{]Pd at the low gnd of literature
ture. In addition, as we discuss further in the next section, itStimates. ,q=0.05 eV nm.) These two figures represent
is not clear that this level of theory should always yield ac-"€ mean-field-theory Fermi surfaces at two different tem-
curate results foff, . peratures. In the spherical approximation, tire 0 Fermi

At T=0, h reaches its maximum valueJ, NynJ
~0.0275 Ry. The dependence of energy on magnetization 1.0
orientation at this value di is illustrated in Fig. 2 and com- 05 |
pared with the cubic harmonic expansion truncated at sixth
order. The coefficients of this expansion are fixed by energy
per volume calculations i§100), (110), and(111) direc-
tions. In Fig. 2, and in all other cases we have checked, the

0.0

anisotropy (mRy per particle)
)
(4]

truncated cubic harmonic expansion is very accurate. It is -1.0 t
therefore sufficient to evaluate the energy per volume in the
high-symmetry directions and to use -5
-2.0 : : : : :
Kca:4(Eb(110>—Eb<100)) 0.00 001 002 003 004 005 006
1 v h (Ry)

FIG. 3. The dependence of the crystalline anisotropy coeffi-
(36) cients, K{?(h) and K$3(h) on h for a four-band model withp

e 2TEs(111) — 36E,(110) + 9E,(100
B ' =0.1 nm 3.

2 \%
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FIG. 4. Fermi surface intersection with the=0 plane for a
four-band model withp=0.1 nm 3 andh=0. Doubly degenerate
heavy-hole(larger contour and light-hole(smaller contour bands

are occupied.

=0.1 nm 3, the single-band limit is achieved only htval-
ues for which the four-band model breaks down.
Finally, we turn to a series of illustrative calculations in-
] o _ tended to closely model the ground state of, G®INg osAS.
energy at this hole d_ensny ig-0~0.01 Ry, so a strong dis- For this Mn density and the smaller valueslgf; favored by
tortion of the bands is exp_ected in the magnetlc stateh At recent estimate)(T=0)=J,¢Ny,J~0.01 Ry. This value
=0, the hole bands occur in degenerate pairs; we refer to théf h is not so much smaller than the spin-orbit splitting pa-
two less dispersive bands that occupy the larger aréla in rameter in GaAs 4¢,=0.025 Ry), so that accurate calcula-
space as heavy-hole bands, although this terminology lacksons require a six-band model. Even wittixed, our calcu-
precise meaning in the general case. #ncreases, both lations show that the magnetic anisotropy of,Ging osAS
heavy- and light-hole bands split. For smillthe minority-  ferromagnets is strongly dependent on both hole density and
spin heavy-hole band occupation decreases rapidly and adtrain. The hole density can be varied by changing growth
other band occupations increase. The heavy-hole minorityeonditions or by adding other dopants to the material, and
spin band is completely depopulated for-0.04 Ry. Once strain in a GggdMng osAs film can be altered by changing
this band is empty, the light-hole minority-spin Fermi radii substrates as discussed previously. The cubic anisotropy co-
begin to shrink rapidly. At still stronger fields, the majority- efficients(in units of energy per volumeor strain-free ma-
spin light-hole band is depopulated and the single-band limiterial are plotted as a function of hole density in the inset of
addressed in preceding sections is achieved. or Fig. 6;the main plot shows the coefficients in units of energy
per particle. Over the density range<0.05 nm 3, four- and
0.10 . - : six-band models are in good agreement. We see from this
result that the asymptotic low-density region where the an-
isotropy energy varies asp®® holds only for p
0.05 | 1 <0.005 nm? at this value ofh. The easy axis is nearly
always determined by the leading cubic anisotropy coeffi-
cient K{*, except near values gf where this coefficient
0.00 | ] vanishes. As a consequence the easy axis in strain-free
samples is almost always either along one of the cube edge
directions K{>0), or along one of the cube diagonal di-
_0.05 | ] rections K{#<0). Transitions in which the easy axis moves
between these two directions occur twice over the range of
hole densities studiedSimilar transitions occur as a func-
-0.10 - - . tion of h, and therefore temperature, for fixed hole denkity.
-010 005 000 005 010 Near the hole density 0.01 nm, both anisotropy coeffi-
Ke(@ ) cients vanish and a fine-tuned isotropy is achieved. The
FIG. 5. Intersection of the Fermi surface and khe 0 plane for slopes of thg anisotropy coefficient curves vary as the num-
a four-band model wittp=0.1 nm 3 andh=0.01 Ry. This value P€r of occupied bands increases from 1 to 4 with increasing
of h solves the mean-field equations&t0, Ny,=1 nm 3, and  Nole density. _ _ o
J,4=0.05 eV nn, which is near the lower experimental estimate ~ Six-band model Fermi surfaces are illustrated in Figs. 7
for the exchange coupling constariEor J,4=0.15 eV nni this ~ and 8 by plotting their intersections with tike=0 plane at
value ofh solves the mean-field equationsTat 85 K). The mag- Pp=0.1 nm 3 for the cases of100)- and(110)-ordered mo-
netization orientation is along the.00) direction. Heavy-hole and ment orientations. Comparing Fig. 5 and Fig. 7, which differ
light-hole bands are split at nonzeho only in the band model employed, we see that there is a

k (@)
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eO
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-010  -005  0.00 005 010 FIG. 9. Energy differences amon@01), (100, (110, and
k(@) (111) magnetization orientations versus in-plane strejnat h

=0.01 Ry andp=0.35 nm 3. For compressive straing{<0) the
systems has an easy magnetic plane perpendicular to the growth
direction. For tensile strainseg>0) the anisotropy is easy axis
with the preferred magnetization orientation along the growth direc-

) o . tion. The anisotropy changes sign at large tensile strain.
marked difference between the majority-spin heavy-hole

bands in four- and six-band cases. For the six-band modeJj

quasi_partigle dispersion is partic_ularly slow, leading to Iargesity, as indicated by recent experiments. The relevant value
Fe_rm| rad_n along .thdll@ directions. ]'cl'he_ I_arge _arr:dhmorel_ of e, depends on the substrate on which the epitaxial
anisotropic mass is a consequence of mixing with the split; _—_ ; :

off hole bands. This effect occurs for all ordered momente2-93NoosAS film is grown, as discussed in Sec. 1V. The

. i ) S ost important conclusion from Fig. 9 is that strains as small
orientations, although the details of the small minority bandtm b g

. N as 1% are sufficient to completely alter the magnetic anisot-
Fermi surface projections change markedly. The dependen 0 pletely 9

of quasiparticle band structure on ordered moment orienta(%Ggpy energy landscape. For example, i@aMnAs on

tion, apparent in comparing these figures, should lead t- aAs, €= ~0.0028 atx=0.05, the anisotropy has a rela-

+ app . paring | 9 P ?|vely strong uniaxial contribution even for this relatively
large anisotropic magnetoresistance effects ip_iMn,V modest compressive strain, which favors in-plane moment
ferromagnets. We also note that in the case of cube edgc?rientations, in agreement with experiment. A relatively

orientations, the Fermi surfaces of different bands intersecgmaII (~1 kJ m,g) residual plane anisotropy remains that
This property could have important implications for the de'favors(llO) over (100 ForE)<=0 05 (Ga I\%As on ax

Ca)Ilnolfiilgc; ngg; \\/,vvs\;erfsngr:?rﬁggic—:‘:\é?dr?hoedf:;predictions for the_ 0.15 (In, G_a)As buffer the str_ain_ Is tensi_leeo_= 0.0077,
strain dépendence of the anisotropy energyhat0.01 Ry f'ind we predict a substantial uniaxial C_ontrl_butlon_ to th_e an-
and hole densityp=0.35 nnt %, According to our é:alcula- |sotropy energy that _favors grovvth direction orllentatlons,
tions, the easy axes.in the a.bsence of strain are along ta ain in agreement with experiment. For Fhe tensile case, the
cube, edges in this case. This calculation is thus for a holl}Jl |sot.ropy energy changes more dramaﬂcally than for com-
' %resswe strains due to the depopulation of higher subbands,
as shown in Fig. 10. At large tensile strains, the sign of the

FIG. 7. Six-band model Fermi surface intersections with the
k,=0 plane forp=0.1 nm 3 andh=0.01 Ry. This figure for mag-
netization orientation is along the.00) direction.

ensity approximately three times smaller than the Mn den-

0.10 anisotropy changes emphasizing the subtlety of these effects
and the latitude that exists for strain engineering of magnetic
properties.

0.05 f

VI. DISCUSSION

0.00 f

We first comment on the implications of the consider-
ations described in this paper for the interpretation of current
experiments. The hysteretic effects that reflect magnetic an-
-0.05 | T isotropy have been studied most extensively for the highest
T. samples currently available. These mean-field-theory pre-

dictions depend on three phenomenological parameters;
G e = SicE Sl Nwn which is sample dep_endent but acpurately knadyg;
k (@) which shou_ld be nearly universal for a given Ill-V host com-
pound but is less accurately known; and the hole demsity

FIG. 8. Six-band model Fermi surface intersections with thewhich is sample dependent and not accurately known. Val-
k,=0 plane for the parameters of Fig. 7 and magnetization orienues ofJ,4 andp must be inferred from experiment, some-
tation along thg/110) direction. times by comparison with theoretical pictures that are not yet

k (@)
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0.012 talline anisotropy coefficient. Even when several hole bands
0.010 F———~— . 3rd band are occupied with competing spin-orbit interactions, these
— e materials have relatively large magnetic hardness param-
g 00081 eters. Unlike the case of metallic thin film ferromagnets that
i 0.006 I _— N have much larger saturation moments, the magnetostatic
20 <100> a\\ shape anisotropylays a minor role in the dependence of
3 - I A1 S total energy on moment orientation. The small saturation
0.002 - = N moment will also tend to lead to large domain sizes and
- <091> SN square easy-axis direction hysteresis loops, as seen in experi-
ment.
0.005 | T 4th band Coercivities can be estimatédrom the anisotropy fields
7. 0.004 N defined by
E o N\
= 0003 - N K
g 0.002 ,v.;"/‘// <100> \\ /.LoHa""’IlLoM 5—2. (37)
[} Y M M
T e <111> O o'Vls
0.001 | N 1 _ . . .
-——- <001> For hard magnetic materials, anisotropy fields are much
0'0090,10 _0.05 0.00 005 0410 larger than saturation magnetizations. The itinerant field

8, places an upper bound on, and is expected to scale with, the
coercivity. Our calculations suggest that the coercivity in fer-
romagnetic samples with a single partially occupied hole
band will be immensely larger than the coercivity of current
samples. Such samples could be fabricated, for example, by
adding donors such as Si to current samples, further compen-
sating the Mn acceptors. According to mean-field theory, this
o ) ) modification in the sample preparation procedure will lower
fully developed. The reliability of)pq and p estimates is  the ferromagnetic critical temperature, and, at the same time,
improving and presumably will continue to improve. It now increase the anisotropy energy.
seems clear that the values &y andp in current highT Finally, we conclude with a few words of caution. This
samples are such that several hole bands are partially occtheory of magnetic anisotropy has three principal limitations:
pied in the ferromagnetic ground state. In this case, we seg) it is based on a mean-field theory description of the ex-
from Fig. 3 that our calculations predict cube edge easy axeshange interaction between localized spins and valence-band
that include the growth direction. The anisotropy energiesholes;(ii) it neglects hole-hole interactions; afii) it does
are typically ~10"° Rynm 3~1 kJm >, Similar anisot- not account for disorder scattering of the itinerant holes.
ropy energies are produced by strains as smallegs Confronting these weaknesses would in each case consider-
~0.001 and more typical strains produce larger anisotropybly complicate the theory, and we feel it is appropriate to
energies. An important conclusion from this work is thatseek progress by comparing the present relatively simple
strain contributions to the anisotropy will not normally be theory with experiment. Nevertheless, it is worthwhile to
negligible. speculate on where and how the theory may be expected to
We believe that the in-plane easy axis observed irfail.
Ga _«Mn,As films grown on GaAs is a consequence of Mean-field theory should be reliable when the range of
compressive strain in the magnetic film that dominates thehe hole-mediated interaction between localized spins is long
cubic band anisotropy energy. When,GagMn,As is grown  andthe spin-stifiness parameter that characterizes the energy
on (In, GaAs, the lattice-matching strain is tensile, reinforc- of long-wavelength spin fluctuations is sufficiently large.
ing the growth direction easy-axis anisotropy of strain-freeConsiderations of this type sugg&sthat mean-field theory
samples(As discussed earlier, the signs of both strain andwill fail at high temperatures unless the ratio of the hole
cubic band contributions to strain change when the light-holelensity to the localized spin density is small and the freisl
bands are depopulat¢dVe note that in our calculations, the not too large compared to the Fermi energy. Sipés typi-
cubic band anisotropy is almost always dominated by theally smaller thanN,,, because of antisite defects in low-
fourth cubic harmonic coefficient. Given this, it follows that temperature MBE growth samples, mean-field theory is
only the cube edge easy axes that includes the growth diredikely to be reasonable at least &=0 in many (Ill,Mn)V
tion axis, and cube diagonal axes that are not in the filnferromagnets.
plane, are possible without strain. Hole-hole interactions will clearly tend to favor the ferro-
Since the local moments are fully polarized in the ferro-magnetic state by countering the band-energy cost of the spin
magnetic ground state, it is easy to estimate the saturatiopolarization. Because of strong spin-orbit coupling in the va-
momentM ¢~ Ny,g, ugJ, leading to the relatively small nu- |ence band, estimates based on many-body calculations for
merical valueuoM¢~0.05T. It follows that the growth di- electron gas systems may be of little use in estimating the
rection orientation magnetostatic energy,~ ,uOMﬁ importance of this effect more quantitatively. Work is cur-
~0.1 kIm 3, is considerably smaller than the magnetocrys—ently in progress that should shed more light on this

FIG. 10. Third and fourth-band densities f#00), (111), and
(001) magnetization orientations versus in-plane strajnat h
=0.01 Ry andp=0.35 nni 3. Curves for the/110) magnetization
orientation(not shown hereare similar to those for th€100) ori-
entation.
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matter:® Nevertheless, it seems likely that these interactions APPENDIX
will not have an overriding importance, at least in large hole

) In the literature, different representations are used for the
density samples.

Finall disorder. It is clear f . four-band and six-band model Kohn-Luttinger Hamiltonians.
inally, we come to disorder. [tis clear from experiment,, e interest of completeness and clarity, this appendix

that disorder does not have a qualitative impact on freegpaifies the expressions on which our detailed calculations
carrier-mediated ferromagnetism even when those free carrle pased. Detailed derivations ofp perturbation theory

ers have been localized by a random disorder potential. lo, cubic semiconductors can be found elsewHére.
seems likely that disorder will destroy the ferromagnetic Thek=0 states at the top valence band havie char-
state only when the localization length becomes comparablgcter and can be represented by Ithel orbital angular mo-

to the distance between localized spins. On the other hanghentum eigenstatds,). In the coordinate representation we
since elastic disorder scattering will mix band states withcgn write

different orientations on the Fermi surface, it also seems

clear that a reduction in magnetic anisotropy energy must 1 _

result. Indeed the coercivities that follow from our anisot- (rlm=1)=— Tf(r)(x+|y),

ropy energy results appear to be larger than what is observed. 2

As far as we are aware, no theory of this effect exists at

present. y (rlm=0)=1(r)z, (A1)

1 .
(rlm=—1)= —=f(r)(x~iy).
ACKNOWLEDGMENTS \/E
We gratefully acknowledge helpful interactions with The Kohn-Luttinger Hamiltonian for systems with no spin-
W.A. Atkinson, T. Dietl, J. Furdyna, J.A. Gaj, J. Kig,  orbit coupling,, , is written in the representation of the
B.-H. Lee, E. Miranda, Hsiu-Hau Lin, and Hideo Ohno. following combinations ofm):
Work at the University of Oklahoma was supported by the

NSF under Grant No. EPS-9720651 and a grant from the IX) = i(lm ——1)—|m=1))
Oklahoma State Regents for Higher Education. Work at In- J2 ! ’
diana University was performed under NSF Grant Nos.
DMR-9714055 and DGE-9902579. Work at the Institute of i
Physics ASCR was supported by the Grant Agency of the Y)=—=(|m=—-1)+|m=1)), (A2)
Czech Republic under Grant No. 202/98/0085, and by the V2
Ministry of Education of the Czech Republic under Grant 2V =Im=0
No. OC P5.10. A.H.M. gratefully acknowledges the hospi- |Z)=[m=0).
tality of UNICAMP where project work was initiated. It reads
|
AKZ+B(K;+k2) Chyky Ckek,
2 2 2
H, = Ckyky Aky+B(ki+k3) Ckyk, , (A3)
Ck,ki Ckok, AKZ+B(kZ+K?)
|
where m is the bare electron mass, and, v,, and y3 are the

phenomenological Luttinger parameters. To include spin-
orbit coupling we use the basis formed by total angular mo-
mentum eigenstatg$,m;):

11)=|j=3/2m,=3/2),
|2)=|j=3/2m;=—1/2),

hZ
A=— %(71+47’2),

52 .
B=— 5 (71-2%2), (Ad) [3)=li=3/2m;=1/2),
|4y=|j=3/2m, = —32), (AS)
oo 3ﬁ2 |5>E|J:1/2,mJ:1/2>,
== Y3 6)=|j=1/2m;=—1/2).
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(m=1,0—1) and spin ¢=1,]) eigenstates by |2>=%(|X,T>—i|Y,T>)+ \@|Z,l),
|1)=[m=17),
1 \/E 1 _ 2
2)= Im=—11)+\/zIm=0.). 13)= =X DFIv I+ V3121,
1 2 (A7
3)=F5Im= u>+\f|m. 01),
|4>_T (X, D=1y, 1)),
[4)=[m=-1,), (A6)
5)=— —=|m=0,7)+ \Flm 1), ! | !
- \/§ 1= 1= |5>:—ﬁ(|X’l>+I|YYl>)_E|Z,T>’
1 2
|6>:ﬁ|m|:01l>_\/;|m|:_lvT>7 |6 __i(|x _|Y +i|z
o )= 7 D =1Y.T)) 7 ).
1 . . N .
- i The six-band model Kohn-Luttinger Hamiltonia, , in the
D ﬁ(|X’T>+I|Y'T>)’ representation of vectof&\5) is :
H b 0 b V2
—c — _
hh \/5 C
b*+/3
—c* Hy, 0 b - \/\5/_ —d
_b* 0 th —C d —%
2
H;= b* (A8)
0 b* _C* Hhh _C*\/E ﬁ
b* b3
S d* —cv2 Hso 0
7 o
b*\3 b
*y2  —d¥* - — 0 Hso
2 R
|
In matrix (A8) we highlighted the four-band model Hamil- %2

tonian. The Kohn-Luttinger eigenenergies are measured
down from the top of the valence band, i.e., they are hole

energies and we use the following notation:
ﬁZ

Hin= 5 [(v1+ 1) (KK +(71- 272K ], (A9)

2
Hm:z

Sl (1= 72 (KK + (71 272)K ],

Hsozz_ ya( k2+ k§+ kg) +Aso,

\/_ 2

Yako(ky—iky),

2
f 2k k) -
\/—2

2m

2iyskyky ],

d=— ol 2K = (KZ+K2)1.
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The four-band Kohn-Luttinger Hamiltonian can be diago-
nalized analytically and yields a pair of Kramers doublets 0 0 _ 1 0 _L
with eigenenergies 23 V6
HpptHip /1 1 1 1
T Z(Hhh_HIh)2+|b|2+|C|2- 0 0 — —_ | -—
3 23 | 32
In the spherical approximatiéh (y,,ys— y=0.6y, 1 1
+0.4v,), the top of the valence band consists of two doubly — —= 0 0 0
degenerate parabolic bands with effective massas —; 2\5
=m/(y;—2vy)~0.498n and m=m/(y,+2v)~0.086m. ! 1
(An approximation, in which the light-hole bands, which 0 ﬁ 0 0 0
have a much smaller density of states are ignored, is ad
equate for some purposgs. 1 1
The four-band and six-band representations for the hole NAEN 0 0 0
spin-operator components read
1 1 1
0 o L 9 I o 0 —= = -5
NG N3 332 6
1
1 1 1
0 0 : _ 0 5 0 o o0 | 0
3 23 32
1
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