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Analytical approach to the Davydov-Scott theory with on-site potential
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We propose an analytical approach to study the one-dimensional acoustic polaron model that includes an
on-site external potential applied to each chain molecule. The key to the approach is an exact discrete solution
for the chain-deformation field given in terms ofquasjparticle wave function. For this purpose we introduce
a set of polynomial series that resemble the Chebyshev polynomials. We call these series the hyperbolic
Chebyshev polynomials. Using next a properly chosen discrete trial function for the wave function envelope,
we obtain simple expressions for the variational energy of the system. Contrary to an igoldbedit any
external potentialmolecular chain, the polaron stgf@avydov soliton is shown to exist only for appropriate
system parameters while the delocalizedciton state can always exist. As a result, the following three
regimes can be specified for the chain with an on-site potefitidhe polaron is a ground state and the exciton
is a metastable statéj) the polaron is a metastable state and the exciton(dekcalized ground state, and
(iii) the polaron state does not exist and only the exciton exists, being a ground state. Two characteristic
dimensionless parameters are found in terms of which a criterion of existencabfe and metastable
polaron states and their nonexistence is formulated. Finally, the Davydov soliton experiences depinning in a
particular case of system parameters, resulting in a transparent regime of uniform propagation of the soliton
with very small size.
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. INTRODUCTION bottom"?42% Thus, our generalized polaron Hamiltonian
consists of three parts:
There has been renewed interest in the Davydov soliton
and polarons in molecular chafrfsdemonstrated by recent I:|=I:|qp+ I:Iph+ quph 1)
publications>~*” which have called into question different A
aspects of polaron dynamics and self-trapping. HistoricallywhereH, describes a single free quantum particle or quasi-
one-dimensional polaron models received a major impetuparticle (an exciton or an extra electrpim the chain,ﬂph is

from the work of Davydov and Kislukhd, who used the  the phonon Hamiltonian, arid .., describes the interaction
exciton formalism to describe the steady-state propagation qff the quantunquasjparticle with acoustic phonons of the
a self-localized intramolecular excitatiggenerally, a quan- chain.
tum particle along a molecularpolypeptide chain. This The first term in the right-hand side of E@) is the usual
transfer process, often referred to as the Davydov-Scott selfight-binding Hamiltonian for a quanturfguasjparticle,
trapping mechanism of energy transfer in protein, involves
high-frequency intramolecular motiongconsidered by
Takend® as classical oscillatorsthat are coupled to low-
frequency acoustic (as in the original Davydov
modef 3710182 or optical (as in the Holstein Where &, is the (quasjparticle energy in the undistorted
modef¢11-1521-28 nbhonon motions. chain,J the hopping amplitudée.g., the dipole-dipole inter-
The purpose Of the present paper is to investigate th@CtiOI’] Strength between intramolecular Vibrations, when the
problem of existence of self-localizegolaron states in a chain is undistortex anda/(a,) are the Bose or Fermi cre-
molecular chain interacting with its environment, contrary toation (annihilation) operators of the(quas)particle associ-
the original acoustic Davydov model in which the chain of ated with thenth molecule of the chain. _
coupled massive molecules is considered as an isolated ob- The second part of Ed1) describes the phonon displace-
ject. Thus, each hydrogen-bonded molecular chain in th&ent fieldQ, interacting(in the harmonic approximation
a-helix protein or in crystalline acetanilié@e®® is tightly ~ With a periodic substrate potential, so that each chain mol-
coupled to a three-dimensional complex skeleton and there2cule is assumed to be influenced by the local harmonic po-
fore each molecule of the chain has an equilibrium positiorfential with a force constant,:
given externally. The simplest way to describe the interac-
tion of the molecular chain with such an atomic or molecular N n K . - Ko A
periodic environment is to introduce in the acoustic Davydov Hpn= En: oM +§(Qn+1_ Qn)2+?Qﬁ : 3
Hamiltonian a sequence of harmonic on-site potentials and to
place each chain molecule in this potential, allowing itHereM is the molecular mas¥ is the force constant of the
to vibrate with low frequency around the potential interaction between molecules, and the lattice field operators

Ao= 2 [Eoatan—J(@iansa+agsan], (@
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P, and Q, are the momentum and displacement from theinvestigate how the interplay between the constantsnd
equilibrium position of thenth chain molecule. X2 results in mobility of the Davydov soliton.

The third part of the Hamiltoniand describes the On the other hand, the Hamiltonid)—(4) may also be
(quas)particle-phonon interaction that consists of two referred .to as .the Holstein modkith a posmve(because.
portions2’ One of these appears under the assumption thdf=0) dispersion and a nonlocal electron-phonon coupling
(quas)particle band energy depends linearly on the distancéVith the two constanty,=0 andy,=0). We consider the
between the nearest-neighbor molecules &s=&, followlng arguments. In thg Ilmltlng caslé.—>0, \{vhen the
+x1(Qns 1— Q. 1), whereas the appearance of the other in-COUPling between the on-site oscillators is abs@nbccurs
teraction term is associated with the linear dependence of tHNY Via the nonlocal electron-phonon couplingt is not
amplitude of hopping between theh and (i+1)th mol- ~ Known whether polaron solutions exist. Indeed, in the con-
ecules:J, 1 1=J— x2(Qus1—Q,), meaning that the hop- tinuum limit (when the siten is _substltuted by the spatial
ping amplitude decreases with increase of the distance b&ariablex), for the standing continuum envelopgx) of the
tween the adjacent molecules. Thus, the Hamiltonian thag@ve functiony(t), one can derive from Eq¢5) and (6)
describes such a combindduasjparticle-interaction and the nonlinear Schidinger equation with the nonlinearity

2\n : : FAti
was also introduced in earlier studi&® reads ()" (wherg the prime denotes the d|fferent|at|o.n OoXgr
that can easily be integrated and analyzed using phase-

. A « portrait techniques. As a result, this equation appears not to
Hoppr= X120 ahan(Qni1—Qn-1) support solutions of the standar@ell-shapedl type that
" would correspond to self-localized states.
N . . . However, if we consider the discrete version of this
+x22 (@lansi+al180(Qni1—Qn). @ model, using a variational approagiised in the present pa-
" pen to find the envelopep, in the form of a discrete trial
Using the adiabatic Davydov anshfzwith the corre- function with exponential spatial decay, we find that, con-

sponding technique¥, one finds that the Hamiltonia)—  trary to the_ qontinuum Iimit,.the total energy of the system
(4) results in the following system of two coupled classicalattains a minimum, but only if the constap/Jx, exceeds a
equations of motion: certain critical value. This means that there exists some criti-
cal value for the eigenfrequency of the on-site oscillators,
i 9= Eotn—I(Wn—1+ ¥+ 1) + X2(Qns1— Qn1) ¥ above which the self-trapping effect disappears. The phonon
dispersion should effectively soften this frequency so that the
T X2l (Qn=Qn-1)¥n-1+(Qn+1—Qn) ¥n+1l, critical value will increase. This is why for the Davydov

(5) model with an on-site potential, the existence of self-
localized states in some cases was numerically observed, but

a B B 2 in other cases only delocalized states were obtaihedl
Qn=K(Qn+172Qn+ Qn-1) = #0QnF Xa(| -1 these arguments demonstrate that the problem of the exis-
—|n_1]?)+2x2 RE & (rs1— n-1)], (6)  tence of self-localized states in the polaron model given by

the Hamiltonian(1)—(4) is far from being fully understood.

where,(t) is the discrete complex-valued wave function of  The results in the present paper are obtained in two steps.
the (quas)particle andQ,(t) is the classical lattice field of First, we develop analytical techniques of summation of the
the molecule’s displacements from their equilibrium posi-whole variety of series using an algebra that is similar to that
tions,n=0,=1, ... . These equations are complemented byof the Chebyshev polynomials. This allows us to obtain all
the normalization conditiof | ,(t)|>=1. equations expressed only in terms of the envelppe Sec-

In the particular case when the phonon term with the onond, having in the theory only one lattice fielg,, we are
site oscillators is absenik(=0), Egs.(5) and(6) reduce to  able to apply a simple variational approach using cog
the usual Davydov modéf In this case, each of the variational parameter. In this way, it is proved that final
(quas)particle-phonon coupling constarngg or x, results in  equations can be analyzed analytically. Particularly, a crite-
the existence of self-localized states for all values of theion for the existence of self-localizétoth stable and meta-
system parameters. Moreover, E@S) and (6) are easily stable states is obtained.
solved in the continuum limit and the self-trapping occurs  This paper is organized as follows. In the next section, we
with the additive coupling constang= y;+ x,. Therefore, present the reduced equations of motion that are basic equa-
the interaction term withy, was rarely considered in litera- tions to be studied throughout this paper. In Sec. Ill, using
ture. However, the situation in the discrete case appears to ke Chebyshev-like polynomials, we develop a procedure
more sophisticated because the physical origin of the corthat gives an analytical solution for the lattice displacement
stantsy; and y, is different: the interaction withy; is a field as a function of the wave-function envelope. In the next
result of lowering the on-site enerd@y, under a chain com- section, we apply a discrete variational approach to find this
pression, whereas the secong,) interaction originates envelope by minimization. A criterion given as an implicit
from increase of the hopping amplitudk, .., with this  function of two dimensionless characteristic parameters is
compression. Therefore, it is not clear what happens to derived in Sec. V. The binding energy of the localiZgda-
small(narrow) Davydov soliton when both these interactions si)particle is discussed in Sec. VI. This section also confirms
are present in the theory. The present paper also aims # high accuracy of our variational approach. In Sec. VII, we
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estimate the Peierls-Nabarro barrier for the self-localized S o2=1 (11)
states and find the particular case when polarons are de- non T
pinned. Section VIII contains our conclusions. Finally, some
results of analytical calculations are presented in Appendixe$he reduced equation®)—(11) are the key objects to be
A and B. studied in the present paper. As regards the spectral param-
etere in Eq. (8), it can be expressed in terms of the lattice
Il. REDUCED EQUATIONS TO BE STUDIED fields ¢, andu,, as follows. Multiplying both sides of E{8)

_ _ o ) by ¢, and summing them ovaer, and then using the normal-
For the dimensionless description we introduce scalegzation condition(11), we find

time 7=uvot/l, where | is the lattice spacing andg

=K/MI is the sound velocity in the lattice subsystem. In , 1

terms of space and time-scaling parameters, botfighasi-  £=C0SK>, (¢n+1—@n)?+5 a2, (1= 7)(Ups1—Up_1)@p
; . . . n 2 9

)particle wave functiony,(t) and the displacement field

Q,(t) can be rewritten ag,(7)=exdi(Eq—23)t/% ], (1) 1

anduy(7)=Qq(t)/I. Next, we use the representation of the ~ + 5 @7 COSK[(Un—Un—1) @n-1+ (Uns 1~ Un) @nsal-

wave functiong,(7) in the form of a modulated plane wave:

én(7)= @n(T)EXpli[nk—0o(eo+e) 7]} (7

where the characteristic paramete+Jl/hv, measures the
ratio of amplitudes for transfers from site to site in tl@a-
si)particle and phonon subsystems. Thus,dénelix protein,
the values)=7.8 cmm * andI=4.5 A are knowrf° so that
for velocities vy~ 10° m/s one obtainsr~1. The dimen-
sionless energy,=2(1—cosk) describes the linear band
spectrum of the linearized equati¢b) and e is the binding
energy of the(quasjparticle to the chain. Using the repre-
sentation(7) in Egs. (5) and (6) and equating the real and
imaginary parts of Eq(5), we find the following three dis- Note that in the particular case of standing solutioss (
crete equations: =0), Eq.(9) simply vanishesk=0). As for Eq.(10), in the
continuum limit (again for TW solutionsone can approxi-
&=~ COSK(¢n+1=2¢n+ @n-1) +(2/2){(1-7) mately substitutegthe time derivative by the discrigte time
X (Ups1—Un_1)@n derivative: d?u,/dm?=s?(u,;;—2U,+U,_;). Then this
equation can be rewritten concisely as

(12

In this paper we are interested only in traveling wave
(TW) solutions of Eqs(8)—(11). For this class of solutions
one can write ¢, (7)=¢(n—s7) and u,(7)=u(n—s7)
wheres=uv/v, is the dimensionless propagation velocity. In
the continuum limit, Eq.(9) is transformed to the relation
between the wave numbkrand the velocity of wave propa-
gations,

s=20 sink. (13

+ cosk[(Uy—Up—1)¢n—1

+ (Ups 1= Up) @ns b ® Uns1=2¢UnFUn-1= Ry (149

d with the source term
®n .

——=sink{o(¢n- 1= @ni1) +(@n2)[(Upr1— Uy e
dr nmhoTne nLTNERL R =G(1— ) (921~ @B, 1)+2G 7 cosken(@n-1— @n1).

_(un_un—l)‘Pnfl]}’ 9 (15
Here the constantg and G are defined byl=1+ w§/2(1

d?uy 2 —s?) andG=p/2(1-s?). Therefore, Eq(14) is appropri-
a2 = (Unerm2UnFUn-) =gl + AL(1 =) ate for moving 6>0) solutions if they are sufficiently
2 5 smooth from site to site, but it also appears as an ediget
X(@h+1™ ¢n-1)/2+ 7 COSKen(@ns1~ @n-1)]. creteequation for standingki=0 ands=0) solutions.
(10) As mentioned in the previous section, in the limiting case

when the on-site potential disappeats,~0 or {—1), the

In these equations, the coupling constaptsand x, are  system of Eqs(8) and (14) is reduced to the usual acoustic
redefined to the dimensionless quantitiesnd 8 according  polaron modet:? In this particular case, the difference
to the relations a=2l(x1+x2)/J and  u,,;—u, can easily be found from Eq¢l4) and(15) as a
B=2l(x1+x2)/M v3.25 We have also incorporated the par- function of ¢, and ¢, 1. Inserting this function into Eq8),
tition parameterp=x,/(x1+x2), 0<=7n=<1, so thaty=0  we obtain a stationary discrete nonlinear Sclmger
if x,=0 andy=1 if y;=0.2° The dimensionless frequency (DNLS) equation with cubic nonlinearity, the normalized so-
wo=Kko/K measures the relative strength of the intermo-lution of which in the continuum limit is well known:
lecular and on-site interactions. Note that the former interace,(7) = VA/2 seclix(n—s7)], and e=—\?cosk with the
tions effectively reduce the eigenfrequency of the on-site osreduced coupling constant
cillators. Finally, the envelope ¢,(7) satisfies the
normalization condition A=apB(1— 5+ ncosk)?/4(1—s?)cosk. (16)
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For instance, in the case of-helix protein, the mass of a
peptide group isM=114m,, wherem, is the proton mass
and the coupling constant was estimated gs=3.4

x 10" N. Therefore, the constaintatk=0 is of order ten.
Also note that fork=0, the constank does not depend on
the partition parameten because both the constants and
X2 are present in the theory additively. As can be seen fro
this solution, the constamt is a characteristic parameter of

the theory, since it determines the soliton size and the energy

level ¢.

Ill. DECOUPLING PROCEDURE AND HYPERBOLIC
CHEBYSHEV POLYNOMIALS

In a general case whef™>1, we cannot express so easily

the differenceu,, ;—u, through the envelope, as in the

PHYSICAL REVIEW B63 054302

whereK 24 =K[28(¢) is the Green's function defined by the
recurrence formula

KEG (0 =2eK 90 - k@),

KEOlp =1, KIO(g)=1(0), (20

Mith the generating functiorf({) indicated in the square

brackets superscript. It is important that in the particular case
hen the generating function i§({)=¢, 1<, the
functionsk 91 can be calculated explicitly:

K (£)=T,(¢)=coshn Arcosh?)=(b"+b~")/2,

b=¢+ \/g’?—l, (21)

for all integersn=0,1, ... .Since the algebra of these is

limiting casel— 1. But this step is necessary in order to get“hyperbolic,” contrary to the usual Chebyshev polynomials

a nonlinear Schidinger equation given in terms of only, .
In this section,

defined in the interval & <1, we call the set of functions

using the explicit representation of(21) the hyperbolicChebyshev polynomiafé

Chebyshev-like polynomials, we develop a procedure that The next important step is that tHéLzﬂ polynomials,
allows us to solve this problem. This is the most importantincluding also those with other generating functioi(g),
point of our findings. In this way we are able to decouple thecan be expressed explicitly in terms of the polynomials
lattice fieldse, andu,, and we call this scheme a decoupling T,(¢). Indeed, by induction, one can establish the identity

procedure.

Let us consider the solutions of the two types of symme-
try: the center of thep,, profile is assumed to be localized at

a lattice site(we call it a site-centered @ state and theg,
profile is centered in the middle of adjacent lattice site|
it a bond-centered oB statg. Next, let us suppose the,
profile to be centered at the site with=0. Then one can
write ¢ _,=¢, (N=0,=1,...). In theother case, assuming

that the,, profile is centered in the middle between the sites

with n=0 andn=1, we haveyp_,=¢,.1 (n=0,£1,...).
Using these symmetry definitions in E(L5), we find that
R_,=—-R,andR_,=—R,;;, n=0,x1, ..., for thesite-

KRI_gPRI =27, n=23, .... (22)

Using this identity, we find separately for even and odd sub-
scripts, the relations that allow us to write the functidt}é®
through the polynomiald,,:

m
KRO=1+ 21_21 Ty, m=12,..;

KL, = 22 Tj+1, m=0.1,. (23)

and bond-centered profiles, respectively. Using the last rela-

tions, one finds from Eq14) the symmetry properties of the
displacement fieldi,,. Thus, theS andB symmetry proper-
ties can be summarized as follows:

¢-n=@n, U_p=—U,, R;=—R,, (17
for S symmetry and
@ n=@n+1, Up=—Uyr1, Ry=—Rpyq, (18

for B symmetry, wherem=0,=1, ... .Below we treat self-
localized states of both symmetries separately.

A. Site-centered self-localized states

In the case of solutions centered at the site withO, we
have the identitieR,=0 anduy=0, which immediately fol-
low from the symmetry relation§l7). Next, by induction,

one can prove that the solution of the linear difference equa-

tion (14) can be represented in the form

n—1

u,=K2u, +E KIZ R;, n=23,..., (19

Finally, using the representatidi23) and the explicit for-
mula (21), one finds the explicit expression for the polyno-
mials K24

n+l__p—n—1
K[ZZ]:b b

- n=01,....
" b—b?!

(24)

Now we need to calculate the displacementn Eq. (19).
To this end, we use a boundary condition at the right end of
the chain. Particularly, using the zero boundary condition
(lim,_,.u,=0), we find from Eq.(19)

n-1
- _ [251 2£]
lim E (KR4 KEDR,

noow =1

nil pn—i—pN+i i '
=—lim — b™'R.. (25
nowi=1 b"—b" = i (29

Thus, Egs.(19), (24), and (25) determine the displace-
ment fieldu,, n=1,2,..., as dunction of the envelope,
for each{>1. Calculating next the relative displacements

Uns+1— U, in terms of ¢, and substituting the resulting ex-
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pressions in Eq(8), we obtain a stationary DNLS equation.

In the two particular case$=0 (x,=0) and =1 (x;
=0), this equation is derived in Appendix [&ee Eqs(A4)
and (A9)].

B. Bond-centered self-localized states

In the case of solutions centered in the middle between
the sites withn=0 andn=1, the symmetry properties are

determined by Eqs(18). Using the equatiomy= —uy, by

induction, one can prove that the solution of the linear dif-

ference equatiofil4) is represented in the form

n—-1

=Ky +2 K24 R

iRy, n=2.3,...,

(26)
where the ponnomiaIS(ngH] can also be expressed in
terms of the hyperbolic Chebyshev polynomidls. Simi-
larly, by induction, one can establish the identity

K=k () +KBD(0), n=1,2,.... (27

Using this equation and the representati@d), we find the
explicit expression for the polynomialgl?¢**!,
bn+l_ bfn

[2¢+1]— =
ol b-1

n=0,11,.... (29)

In the same way as for th@profiles, the displacement;

PHYSICAL REVIEW B 63 054302

First, we notice that the basic equatiai®s and (14) can
be represented as a minimum condition for the discrete en-
ergy functionalE({¢,},{u,}), written through the reduced
Lagrangian functiori:

E=—L=coskY, [(¢ns+1— @n)2+ (a/2G cosk)u,
n

X(Rn+§un_un+1)]v

=(b+b /2, (30)

where the constant term with has been omitted. This func-
tional can also be obtained in the standard mafaefor the
equations of motiori{5) and(6)] from the Hamiltonian(1)—

(4), using the same assumptions and notation that led to Egs.
(8) and(14). Inserting the representation fog given by Egs.
(A2), (A7), (A12), and(A16) in Eqg. (30), we get the func-
tional of onelattice field, i.e.E({¢,}). Therefore, a properly
chosen discrete trial function with only one variational pa-
rameter can be used and its optimal value can be calculated
analytically by minimization of the variational energ$0).
Below we will apply this variational approach separately to
the SandB polaron states.

A. Site-centered self-localized states

Thus, for theS polaron states, the trial function that de-
scribes the normalizegee Eq(11)] envelope profilep,, can

can be calculated, using the zero boundary condition at thge chosen in the form

right end of the chain. As a result, from E@6) we find

— lim 2 [K

n—o l*

2_{]1 ]/K[2§+l]]R

n-1 br‘l—j_b—n+j

im
nowi=1 (b+1)(b""1—b"~

) R;

= (29

C14+b71j
The corresponding DNLS equations are given by E444)
and(A18).
IV. CALCULATION OF SELF-LOCALIZED STATES

Whenwy#0 (b>1), each of the stationary DNLS equa-
tions (A4), (A9), (Al4), or (A18) cannot be solved analyti-

cally, because even in the continuum limit it becomes a
integro-differential equation. Therefore, an appropriate vanaTe
tional method should be applied. From this point of view, the

exact representations for the lattice displacement fig/d
given by the seriesA2), (A7), (A12), and (A16) with the
corresponding coefficien®;, , Bj,, Cj,, andDj, [see Egs.

(A3), (A8), (13), and (A17)] appear to be very useful be-

1-9°
+qzq » N
Then, according to Eq$A2) and (A7), we find by straight-

forward calculation that the displacement fieldis given by
up=0 and

on= =0,*1,.... (31)

b(1— 2\2 2n_b—n
- ( q)z(q ) ) s 32
(1=bg*)(b—q°)
if =0 and
2ba(1— 2\2 2n_b—n
U,= q(1=a)(d ) G cosk, (33

(1+9*)(1-bg*)(b—g?)
if »=1, wheren=1,2, ... .Inserting next the expressions
(31)—(33) in the functional (30) and using the symmetry

roperties of the lattice fieldg, and u, [see Eq.(17)] as
ell as the definitiong15), (A5), and (A10), by direct but
ngthy calculations we obtain
(1-9?  (1-9¢»)°
1+q2 -\, "(b— qZ)ZPSV(b :q), »=0,1,
(34

ESV(bv)\V;q) _
cosk

cause they allow us to reduce significantly the number ofvhere the subscript=0 (»=1) corresponds to the case
variational parameters. We use a discrete trial function with=0 (»=1) and the function®s,(b;q) are presented in Ap-
only one variational parameter describing the size of self-pendix B[see Eq.(B1)]. Note that both the functionPBg,
localization. As a result, the polaron profiles and energy ardave small variation in the interval0g<1 and tend td/2
found in a simple form. wheng—1.
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B. Bond-centered self-localized states

For theB polaron states the trial function for the envelope

¢, can be chosen in the form

(35

Similarly, according to Eq4A12), (A13), (A16), and(Al7),
we find

b(1-g?)?2[(1+q 2)g*~ (b+1)b "]
- 2(1-ba?)(b—q?)

G, (36

n
if »=0 and
b(1-g?)?
(1-bg?)(b—q?)

q(1-bg?)+b(bg+q+1+g®)
— b+ 1)(1+q) b™"|G cosk.

2n—1

Un

(37

if =1, wheren=1,2,... .Next, using in the same manner
as above, the symmetry properties of the lattice fieldand
U, given by Eqgs.(18) as well as the expressioii35)—(37),
we find that the energy function&B0) is transformed to

Eg,(b,\,;Q) ) (1-q?)3 .
“oosk LT A Tz Peubia), v=01,
(39)

where the explicit form of the functiorf3g, is also presented

in Appendix B[see Eq(B1)]. As above, these functions also
tend tob/2 if g—1.

C. Energy surfaces and delocalized states

The four variational functions Eg,(b,\,;q) and
Eg,(b,\,;q), v»=0,1, given by Eqs(34) and (38) are the

PHYSICAL REVIEW B63 054302

R
5

X 0?:,:'...., 25X
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KRR

R

@, (q)

q 1 10

FIG. 1. Variational functionPy(q) plotted as a two-dimensional
surface against] and A\, at the fixed value of the parametk({
=1.25). The curve on this surface shows the set of minima of the
function ®y(q,\y).

polaron solution being a ground state of the system. After we
introduce an on-site potential/$1), the energy surface
changes and another local minimum appeargjatl (see
curve 2 in the inset of Fig.)3

This minimum, at which the variational energlyy(q)
always equals zerpsee Eq.(34)], corresponds to the ex-
tended, completely delocalized state. When we decrkgse
(at ¢ fixed) or increasg’ (at )\ fixed), the size of the polaron
profile increases and the energy minimum becomes more and
more shallow. At a certain critical value ofy or ¢, the
variational energy at both the minima becomes the same
(equal to zerpas demonstrated by curve 3 in Fig. 3. Further
decrease ol or increase ot results in increasing the en-
ergy at the self-localized state that becomes positive, exceed-
ing the zero energy of the delocalized state. Therefore, the
polaron state becomes metastable, whereas the delocalized
state becomes a ground state. This situation is illustrated by
curve 4 in Fig. 3. Finally, with further decreasing or in-
creasing, the polaron state disappears and only one mini-

basic results of the analytical approach developed in this pd?Um atq=1, which corresponds to the delocalized state,
per. The two-dimensional plots of one of these functionsfémains(see curve b

namely,®(q)=Eg(b,\g;q)/cosk, are presented in Figs. 1
and 2, which include the dependence on the parametgers
and ¢, respectively.

Both these plots show that the minimum of the variational

energy ®,(q) disappears, for sufficiently small coupling

constant\y at ¢ fixed (see Fig. 1 and the curve on the sur-

face), or sufficiently largeZ at A fixed (see Fig. 2 This is
contrary to the limiting cas€—1, when there exists the

continuous transition from the small polaron regime to the

large one if the constant, tends to zero. In other words, the
polaron regime for a sufficiently big parameteor a suffi-
ciently weak coupling constamt,, at certain critical values
of these parameters, suddenly disappears.

Figure 3 shows details of the drastic behavior of the en-
ergy function®y(q). Here, curve 1 represents the energy

behavior of the system in the limiting cage=1, when the

on-site potential is absent. In this case there exists only one FIG. 2. Variational functionb,(q) plotted as a two-dimensional

minimum in the interval 82q<1 that corresponds to the

surface againgg and { at the fixed value\y=5.
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FIG. 3. Variational functionby({,\g;q) against the parameter 0.5}
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=1 (curve D, {=1.3 and\y=2 (curve 2, {=1.3875 and\y=2 01
(curve 3, {=1.415 and\y=2 (curve 4, and¢=12.5 and\y=2
(curve 5. -0.5¢
Thus, we have obtained three possible regim@sthe -1

polaron is a ground state and the delocalized state is meta-
stable,(ii) the polaron state is metastable and the delocalized
state is a ground state, afiil) the polaron does not exist and
only the delocalized state is possible. A similar situation
takes place in the other three cases described by the varia- FiG, 4. Site-centered polaron profiles foj=0: (a) wave-
tional energie€sg;, Egg, andEg;. function envelopep,, and(b) displacement field, correspond to
Having found an optimal value of the variational param-the minima of the variational functiod,(q) plotted as curves 2
eterq for each set of the system parameters, one can plot and 3 in Fig. 3. The system parameters for curves 1 and 2 are the
corresponding two-component polaron profile: the envelopeame as for curves 2 and 3 in Fig. 3, respectively.
¢n [using Egs.(31) and (35)] and the displacement field,
[using Egs(32), (33), (36), and(37)]. Figure 4 demonstrates (39) does not possess a solution. On the other hand, in the
the site-centered polaron profiles for the case0 and two  case without any on-site potentidd£ 1), the polaron solu-
sets of the parameters that correspond to curves 2 and 3 iions are known to exist for any constant-0. Indeed, in the
Fig. 3. The bond-centered polaron profile for the cgsel limit b—1, Eq.(39) becomes
is presented in Fig. 5.

-1.5¢ . , ]
-20 -10 0 10 20

n

i—q “o

with the functionY(q) given explicitly in Appendix B for

As demonstrated in the previous section, the variationakach particular cagsee Eq(B3)]. The left-hand side of Eq.
functionsEg,(b,\,;q) andEg,(b,\,;q), »=0,1, given by  (40) is a monotonically increasing function from zero to in-
Egs.(34), (38), and(B1), do not always admit minima that finity and therefore, for any, this equation always admits a

correspond to self-localized states. To analyze them, it isinique solution. This solution corresponds to the Davydov
convenient to represent the equations for extreig,/dq  soliton in an isolated molecular chdin®’2°

qa Y
V. A CRITERION FOR THE EXISTENCE 1-
OF SELF-LOCALIZED STATES

=0 anddEg,/dq=0 in the form The situation changes drastically in the césel, when
, the left-hand side of Eq39) becomes a convex function that

N o1 equals zero aj=0 andq=1. Letq,,=q,,(b) be the point in

F(biq)= (b_q2)3W(b,q)— £\ 39 the interval 0<q<1 at which the functiorF(b;q) attains a

maximum. If the coupling constant is large enough, the
where the subscriptSy and Brv have been omitted for a line 1/\ will cross the curveF(b;q) at two points, so that
while. The explicit form of the function®V(b;q) is givenin  Eq. (39) will have two roots corresponding to extrema of the
Appendix B[see Eq.(B2)] and the constants (with sub-  variational energy. The smaller root corresponds tpadar-
script v also omittedl are defined by EqQ9A5) and (A10). on) minimum of the energy, while the bigger root corre-
Since eachN is a weakly varying function that is bounded sponds to a maximum of this energy that separates the po-
from above, it follows from Eq(39) that for anyb>1, there  laron minimum and the minimum gt=1 responsible for the
exist sufficiently small values of the paramelewhen Eq. delocalized state.
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n FIG. 6. Diagrams of existence of site-centered polaron states for

FIG. 5. Bond-centered polaron profiles fge=1, (=1.25, and (@ 7=0, and(b) »=1. Solid curves separate the regions of exis-
\,=4: (a) wave-function envelope,, and(b) displacement field tence and nonexistence of polaron solutions, while dashed curves
u, components. separate stable and metastable polaron solutions.

With decreasing\, these two extremal points move to- b— e for which lim,_...q%=2/5. In Fig. §a) we have plot-
wards each other and eventually merge at some critical valued the line\ =B g; (b)=F[b;qn(b)]"* as a solid curve.
of N. With further decrease of, the polaron solution disap- This curve separates the regions of existence and nonexist-
pears completely. We  denote B(b)=maxF(b;q) ence of polaron states. The dashed line, calculated by com-
=F[b;an(b)]. Then the condition for the existence of polaron paring the energy34) in different polaron states with the

solutions, i.e., roots of Eq39), is the inequality zero energy(at g=1), separates stable and metastable po-
laron states. Similar diagrams of the existence of site-
B(b)A>1. (4D centered self-localized solutions have been plotted in Fig.

P ; 6(b) for the casep=1. In this case, there are no analytical
Therefore, the l§,\) plane can be split into two regions by ) , ;
the line B(b)\=1. This line separates the regions of exis-Solutions like Eq.(42) and therefore both the solid and
tence and nonexistence of self-localized states. dashed lines, with tne same meaning as mdF(gi),GNere
To be more precise, we consider first the site-centeregalculated numerically, using Eq4), (39), and(41).

solutions withny=0 and fix the valué=2. In this case, the

function F(2:q) has a maximum at the poing,= \2/3. In- VI. BINDING ENERGY OF THE SELF-LOCALIZED
serting this value fory, into the equatiorF(2;0,m) =\ 2, (QUASIPARTICLE

we find the critical value ol at which the self-trapping The dimensionless binding energy of ttguasjparticle
appears. The self-trapped state exists fongl-4(2/3)>" &, which can be calculated according to Etp), is the low-

In the general case, with any>1, differentiating the agt energy level of the Schiimger equation(8). Using the
function F(b;q) with respect tog, equating the resulting envelopeg, and the displacement field, given by Egs.
expression to zero, and solving the resulting equation, We31)—(33) and (35)—(37) as well as the definitionéA5) and
find the valuegy, in the interval 6<q<1 at which the func-  (A10), this energy can be expressed through the variational

tion F(b;q) reaches a maximum: parameten. The resulting equations are
5b%2—8b+5—(b—1)/250%—22b+ 25 s (1-q)2 (1-g?)3
2= . 42 = — ) =
Gm 2(2_b) ( ) cosk 1+q2 ZAV(b_qZ)ZPSv(biq)i v 0111

This expression is well defined for a>1, including the (43

particular caséb=2 mentioned above, as well as the limit for the S self-trapped states and
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FIG. 7. Effective deformation potentid),, and the lowest en- n

ergy level e calculated numericallysolid lineg and analytically
(dashed linesfor =0 (a=4, B=5, A\ y=5, and{=2). The inset
shows an enlargement of the binding level.

FIG. 8. Height of the pinning barrieAE (solid line) and the
energy differencé&Ez— Eg (dashed lingas functions of the param-
eterp for \=5 and{=2.

¢ _ 2 _n(l_qz)s . = is given by EQ.(38). This result coincides with that found
cosk (1= 2)\V(b_q ) Pes(bia). »=0.1, previously° i.e., the site-centered profile corresponds to a
(44) minimum of the polaron energy, whereas the bond-centered
for the B self-trapped states. profile is associated with a saddle point. Surprisingly, similar
In the particular case=0 andk=0, the discrete Schro calculations of the energig84) and (38) for the casen=1
dinger equatior(8) can be rewritten in the form gave the opposite energy inequality hold: Bheelf-localized
state was found to have lower energy than $state. Thus,
—(@ns1— 200t ©n_1) T Upen=cep, (45) for standing k=0) self-localized states the following two

] . ~inequalities:Eqp<Epq and Eg;<Eg;. Therefore, one can
where U= a(un,1—Un-1)/2 is the deformation potential expect that for a certain intermediate valge 7., the bar-
formed in the chain by &guas)particle (an excitation or an ier defined by the difference AE=A(7)=|Eg(7)
electron. The energy 'Ieveé and thga potential , were ca]— —Eg(7)| will disappear, so that the equalityE(7.)=0
culated by minimization of the discrete energy functionalshoyld be valid. For this purpose, we have calculated nu-
(30), resulting in a numerically exact polaron solution, andmerically the height of this barrier as a function of mini-
then inserting this solution into E¢L2). The results of these mizing the energy functional30). The dependenciedE
numerical calculations have confirmed the analytical results__AE(n) (solid line) and Eg(7)—Eg(#) (dashed ling for
given by Eqs.(32), (33), (36), (37), (43), and (44) to very ) —5 [see Eq(16), k=0] and{=2 are shown in Fig. 8 that
high accuracy. Figure 7 illustrates, for the cage 0, the  jemonstrate the existence of a critical valgeat which the
comparison of the variational approximation given by thexe—_q parrier entirely disappears.
trial function (31) with the corresponding numerically exact

N o We have calculated this critical value for different system
polaron solution found by minimization of the ener(80).

parameters. These results are presented in Table I.

They show that the critical valug. depends very weakly
VII. PINNING AND MOBILITY OF POLARONS on the system parameters and remains within the interval
0.32-0.35. Increase of the coupling constanrt «B/4 or

In general, while propagating along the chain, a narrow

polaron (or another solitary wave, except for the Supersonicdecrease of the on-site parametgrcauses insignificant shift

pulse soliton in the Fermi-Pasta-Ulam type chaiadiates of 7. towards higher values. Note thAE is not PN barrier,

small-amplitude waves, and finally stops because of a sot—)Ut Justits estimate from bgloyv. S
Such a behavior of the pinning barrier gives us a reason to

called Peierls-Nabarr@N) periodic potential relief. The ex- )
istence of such a reliefbarrien is an effect of lattice expect that a movable polaron can exist that does not expe-

discretenes®’ In this section, we extend the studies of the N
PN barrier for the Davydov soliton, carried out previod8ly = TABLEI. Dependence of the critical valug; on the strength of
for the case of an isolated molecular chain, to the case witf'e On-Site potentiak, and the coupling parametar

an on-site potentialbl(>1).

According to Eqs(34) and (38), we have calculated the k=025 k=05 k=1 k=2 = o=3
polaron energy in the&s and B states forp=0 and »=1. 2 0.3339 0.3316
Particularly, for the casg=0 withb=1 atk=0 and forthe 5 0.3385 0.3357 0.3315 0.3266  0.3229
same system parameters, the energy inSistate given by 10 0.3429 0.3395  0.3355  0.3295  0.3260

Eq. (34) appeared to be lower than that in tBestate, which
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FIG. 9. Dynamics of lattice field&) | ¢,(7)|?, and(b) u,(7), in

the chain consisting oll=1000 particles =10, B=4, {=2.5, %0 790 800 810 820 830

o=1, andy=7.=0.325 965).
n

rience any lattice effects. In order to check this, we simulated FIG. 10. Final polaron profiles of lattice fields) | ¢q(7)|?, and
equations of motion(5) and (6) for the critical value 7, _(b) L_Jn(rf), at_flnal_ time instant= ;= 1600, the dynamics of which
—0.325965, using the fourth order Runge-Kutta scheméd displayed in Fig. 9.

with the time step =0.02. This case should correspond to similar simulations fory slightly different from the critical

alue. We tookn=0.24, while the rest of the system param-

functional(30) into the basic equations of motidg) and(6)
reduced to the corresponding dimensionless form through th
scaled wave functionp,(7) and displacement field,(7).
The initial conditions were chosen according to the relations
du,/d7=—-s(u,,.1—Uup,) and¢,(0)= ¢,expikn), whereep,
andu, represent the polaron solution found by minimization Contrary to the one-dimensional acoustic polaron
of the energy(30). Here we have approximately replaced the (Davydov-Scott theoryl? where the self-trapping occurs for
time derivative by the spatial derivative. This is, of course, aall values of the system parameters, we have shown in this
very crude approximation for narrow polaron profiles, but itpaper that the presence of a physically reasonable external
gives a proper initial kick to the polaron. We have chosen then-site potential for each chain molecule leads in some cases
wavevector k=0.4 that corresponds to the velocity to the nonexistence of self-localizédolaron states. It hap-
=20 sink=0.78. The results of simulations are presented inpens that for some parameter values the self-trapping exists,
Fig. 9. while for other values only delocalized states are possible.
Initially, right after the initial kick, the polaron emits We have found the criterion for the existence of self-
some radiation and slows down, but later it separates itselbcalized states given by the inequali@d). In particular, for
from the radiation and propagates with constant velocity thathe existence of polaron states fluygias)particle-lattice cou-
is quite close tes=0.78. The final snapshot of the polaron pling constanty,; or y, should be sufficiently large or the
profile is presented in Fig. 10. As can be seen in these plotstrength x, of the on-site potential should be sufficiently
the profile appears to be very narrow, propagating withoutveak. This criterion is also valid for narrow polaron solu-
significant energy loss. Some tiny radiation can be explainetions which are immobile, so that even for standing one-
by very crude approximation of the initial conditions. dimensional polarons, their formation depends on the system
In order to emphasize the depinning effect, we performegarameters.

ot pinned. The results of these simulations are presented in
ig. 11.

VIIl. CONCLUSIONS
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Chebyshev polynomials. This approach can be applied to
other models of the polaron theory.

Surprisingly, it was found that stable self-localized states
appear to occur with differerfon-site or on-bondsymme-
try. This is due to the different physical meaning of the cou-
pling constantsy; and x, mentioned in the Introduction.
This result prompted us to seek the ratio of these constants
when depinning of a polaron occurs. We have found that it
happens at the valug= x,/(x1+ x2)=0.33 and confirmed
by simulations that the polaron in the chain with this ratio
can propagate freely, similarly to transparent propagation of
narrow topological defects in discrete nonlinear Klein-
Gordon systems!
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APPENDIX A: DISPLACEMENT FIELDS AND

FIG. 11. Dynamics of lattice field&) | ¢,(7)|? and(b) un(7) in CORRESPONDING DNLS EQUATIONS
the chain withN= 1000 particles =10, B=4, {=2.5,0=1, and
7=0.24). 1. Site-centered self-localized states

L . . . Th =0 (x;>0, x»=0
It is important to note that the delocalizéelxciton state a. The casen=0 (x, x2=0)

does always exist in the chain, being therefore in some cases Using Eq.(15) for the particular casg=0, the result Eq.
stable(a ground stateand in other cases metastable. More (25) can be rewritten in terms 0/5]2 ,j=0,1, ..., adollows:
precisely, the following three regimdthree types of solu-

tions) can exist in the chain with an on-site potenti@):the - _

polaron as a ground state and the exciton as a metastable u;=G| — (b~ 3+b 2¢})+(b—b™1) > b ig?|.
state,(ii) the polaron as a metastable state and the exciton as I=2

a (delocalizedl ground state, andiii) the polaron state does (A1)

not exist and only the exciton is a ground state. The analytiy, this series, the first two terms are negative while the others
cal caIcuIatlor]s performeq in this paper allow us to investi-5 o positive. Substituting the serigsl) in Eq. (19) whereR,;
gate the physical mechanisms of the existence and nonexists yefined by Eq(15) with =0 and using the representation

ence of the self-trapping and to find two characteristicfor the polynomiaIsK[zg] given by Eq.(24), we find the
parameter® and\, in terms of which we were able to for- following series for thr(]a displacemeat '

mulate the criterion of the polaron existereee Eq.(41)].

In the simplest case when the polaron is standing gnd o
=0, these parameters are b=1+ky/2K u =GE Ane?, n=1 (A2)
+ Vko/K+ (ko/2K)? and A= x??/JK. For moving po- = A ’

larons, the ratiocg /K and the reduced coupling constant

are renormalized accordingly. If the on-site potential is suf-where the matrix coefficients Aj,, j=01,..., n
ficiently strong or th€quasjparticle-phonon coupling is suf- =1,2, ..., aregiven by

ficiently weak, the chain particles prefer to stay in the well of

the on-site potential and the exciton-phonon interaction can- Apn=—b™", n=1,

not displace them from the potential minima to support a

stationary traveling-wave motion along the chain of a self- Ajn= —(bi+b~Hb™", 1<j=n-1, n=2,

localized state. As illustrated by Fig. 3, the existence of both
self-localized and delocalized solutions results in the appear-
ance of an effective barrier that separates these states.
Although analytical calculations and techniques appear to .
be very lengthy and complicated, the final results presented Aj,=b7!(b"=b™"), j=n+1, n=1. (A3)
by the variational function§34) and(38) seem to be simple
and these are the main findings of the present paper. We have Using the series representatigA2) in Eqg. (8) with »
introduced a whole variety of series that we call hyperbolic=0, we get the following stationary DNLS equation:

Ann= —b™2", n=1,
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[’

Pnr1—2¢n T @poqt 7\020 (Aj,n—l_Aj,n+l)(Pj2<Pn

+(el/cosk)p,=0, n=0, (A4)

where Aj=0, Aj_;=Aj;, and ¢_;=¢,. Here the
(quasjparticle-phonon coupling parametex, is given
through the expression for defined by Eq(16):

No=\|,-0=aB/4(1—-s?)cosk. (A5)

b. The casep=1 (x1=0, x»=>0)

Similarly, using the expressiofl5) at n=1, the series
(25) is rewritten in terms ofp;¢;, 41, j=0,1,..., asfol-
lows:

u;=2G cosk —b_lgooqol-i—(l—b_l)lzl b_jQDj‘Pj+1 .

(AB)

PHYSICAL REVIEW B63 054302

u=G —b’1¢§+(b—1);2 ble?|, (A1l

where we have used the relatigg= ¢, [see Eq(18)]. The
first term of the seriegAll) is negative while the others are
positive. Substituting next the serig&l1l) in Eq. (26),
whereR; is defined by Eq(15) with =0 and using the
representation for the polynomialkel?! and K12¢* % given
by Egs.(24) and(28), we find the displacement field, as a
series

Here the first term is negative while the others are positive.

In the same way as above, using Ef5 with =1, the
explicit formula (24), and the serie$A6), we find that the
series(19) is transformed to

oo

u,=2G cosk >, Binej®j+1, N=1, (A7)
i=o

where the coefficient8;,, j=0,1,..., n=12,...,
given by

are

Bjn= (b 1+b Hb™", 1<j<n-1, n=2,

b+1

1
——— b i(b"—b "), j=n=1.

Bin b+1

(A8)

In a similar way, using the seri¢8\7), Eq.(8) at y=1 is
transformed to

©

(Pn+1_2§0n+(Pnfl+2)\1jZO [(Bj,nfl_ Bjn)‘Pnfl"'(Bjn

—Bjnr1)enr1lejej 1t (e/cosk)p,=0, n=0,
(A9)

whereBj,=0, Bj _;=—Bj1, and¢_;=¢; . The reduced
coupling parametek ; is given by[see Eq(16)]

N1=\|,-1= @B cosk/4(1—s?). (A10)

2. Bond-centered self-localized states
a. The casep=0 (x>0, x»,=0)

In the same way as for th@states, using Eq15) for the

particular casey= 0, the serie$29) can be rewritten in terms

of 7, j=1.2,..., adollows:

Un:szl Cin¢?, n=1, (A12)
where the matrix coefficient§;,, j,n=1,2,..., aregiven
by

Con=—b"2""1 n=1,

Cin=—(bl+b " hHp™" 1<j<n-1, n=2,
Cjn=bJ(b"=b™""1), j=n+1, n=1. (AL3

Similarly, using the series representati@i?2) in Eq. (8)
with =0, one obtains the stationary DNLS equation

o

2
99n+1_2‘:"n+‘Pn—l'f_)\OjZ1 (Cj,n—l_Cj,n+1)QDj ®n

+(elcosk)p,=0, n=1, (Al14)

whereCjo=—Cj1, ¢o=¢1, and the coupling constant, is
given by Eq.(A5).

b. The casep=1 (x1=0, x,>0)

In the same way as for th® states, using the expression
(15 at »=1, the series(29) is rewritten in terms of
(,DjQDjJrl, j=0,1, ..., as

2G cosk

=T

— @5 +(b— 1)1241 bj‘Pj¢j+1]
(A15)

As above, the first term in this series is negative while the
others are positive. Using next E4.5) with »=1, and in-
serting the expression®4), (28), and (A15) in the series
(26), we find

o

Un=2G cosk Y, Dj,¢;@+1, N=1, (A16)
=)

where ¢o=¢; and the coefficientD;,, j=0,1,..., n
=1,2,..., aregiven by

b—n+l

Pon™ = H1

n=1,

Djn=— bi+b Hb "1 1<j<n-1, n=2,

b+l(
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The functions(B1) have small variation in the interval O
=<g=1 and each of them tends b2 if g—1.

The other four function®V(b;q) that are involved in Eq.
Similarly, the corresponding DNLS equation is found from (39) as factors have also small variation and are given ex-

D b= i(b"-b™ "1, j=n, n=1. (Al17)

"b+1

Eq. (8) with =1, using the representatidA16): plicitly by
” _ _ 2 5.2
‘Pn+1_2‘Pn+@n—1+2)\lj§O [(Dj,n—l_Djn)QDn—1+(Djn Wso=ba(2b=1+bg"~2q%),
—Djn+1)@n+110j@j+ 1+ (e/c0sk) =0, n=1, WSlzﬁ(—b+6bq2—q2+bq4—6q4+q6),

(A18)

whereDjo=—Dj1, ¢o=¢;, and the coupling constant;
is given by Eq.(A10).

The nonlinearity in each of the stationary DNLS equa-
tions (A4), (A9), (A14), or (A18) contains infinite series that
in the continuum limit are transformed to integral terms. It

1
Wao=50(1+0d)(3b%~1-3bg’+q*),

can easily be checked that in the limiting cases1 the Bl

coefficients(A3), (A8), (A13), and(A17) take a simple form,

so that the series in the corresponding DNLS equations are

reduced to single cubic nonlinear terms.

APPENDIX B: THE P, W, AND Y FUNCTIONS
AND THEIR BEHAVIOR

The four functionsP(b;q) that appear in Eqs.34) and
(38) are given by

b 4bg? 1

_ v e I _* 2
Pso—1+q2a P ENIER Pgo 4(2b+1 q°),

I:)Bl
_(A-g)[(2b+a)q(1+g?) +b(b+g*)]+2bg*(b+q)

(b+1)(1+q)(1+9g?) '
(B1)

1
:m{(b_l)[b2(1+q_q2+ 8q3_q4

+50°) +bq(1+q+6qg%+149°—99*+79°—-8q°)
+9%(7+60—30°-89°~6q°+30°)1+20°(1-0?)
X(1+a)(3—ag"}. (B2

In each of the four caseSy and B,
tions Y(q) [see Eq.(40)] are defined by

v=1,2, the func-

- (1+g)(1+9?)?
Vo= 1%4 Ya= 371
(1+9%)?
YBo=2_—qz, YBlzm- (B3)

All these four functions have the same limiY--2) when
q—1.
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