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Analytical approach to the Davydov-Scott theory with on-site potential
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We propose an analytical approach to study the one-dimensional acoustic polaron model that includes an
on-site external potential applied to each chain molecule. The key to the approach is an exact discrete solution
for the chain-deformation field given in terms of a~quasi!particle wave function. For this purpose we introduce
a set of polynomial series that resemble the Chebyshev polynomials. We call these series the hyperbolic
Chebyshev polynomials. Using next a properly chosen discrete trial function for the wave function envelope,
we obtain simple expressions for the variational energy of the system. Contrary to an isolated~without any
external potential! molecular chain, the polaron state~Davydov soliton! is shown to exist only for appropriate
system parameters while the delocalized~exciton! state can always exist. As a result, the following three
regimes can be specified for the chain with an on-site potential:~i! the polaron is a ground state and the exciton
is a metastable state,~ii ! the polaron is a metastable state and the exciton is a~delocalized! ground state, and
~iii ! the polaron state does not exist and only the exciton exists, being a ground state. Two characteristic
dimensionless parameters are found in terms of which a criterion of existence of~stable and metastable!
polaron states and their nonexistence is formulated. Finally, the Davydov soliton experiences depinning in a
particular case of system parameters, resulting in a transparent regime of uniform propagation of the soliton
with very small size.

DOI: 10.1103/PhysRevB.63.054302 PACS number~s!: 63.20.Kr, 63.20.Ry, 63.20.Pw
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I. INTRODUCTION

There has been renewed interest in the Davydov sol
and polarons in molecular chains1,2 demonstrated by recen
publications,3–17 which have called into question differen
aspects of polaron dynamics and self-trapping. Historica
one-dimensional polaron models received a major impe
from the work of Davydov and Kislukha,18 who used the
exciton formalism to describe the steady-state propagatio
a self-localized intramolecular excitation~generally, a quan-
tum particle! along a molecular~polypeptide! chain. This
transfer process, often referred to as the Davydov-Scott s
trapping mechanism of energy transfer in protein, involv
high-frequency intramolecular motions~considered by
Takeno19 as classical oscillators! that are coupled to low-
frequency acoustic ~as in the original Davydov
model1–3,7–10,18,20! or optical ~as in the Holstein
model4,6,11–15,21–23! phonon motions.

The purpose of the present paper is to investigate
problem of existence of self-localized~polaron! states in a
molecular chain interacting with its environment, contrary
the original acoustic Davydov model in which the chain
coupled massive molecules is considered as an isolated
ject. Thus, each hydrogen-bonded molecular chain in
a-helix protein or in crystalline acetanilide22,23 is tightly
coupled to a three-dimensional complex skeleton and th
fore each molecule of the chain has an equilibrium posit
given externally. The simplest way to describe the inter
tion of the molecular chain with such an atomic or molecu
periodic environment is to introduce in the acoustic Davyd
Hamiltonian a sequence of harmonic on-site potentials an
place each chain molecule in this potential, allowing
to vibrate with low frequency around the potenti
0163-1829/2001/63~5!/054302~14!/$15.00 63 0543
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bottom.17,24,25 Thus, our generalized polaron Hamiltonia
consists of three parts:

Ĥ5Ĥqp1Ĥph1Ĥqp-ph ~1!

whereĤqp describes a single free quantum particle or qua
particle~an exciton or an extra electron! in the chain,Ĥph is
the phonon Hamiltonian, andĤqp-ph describes the interaction
of the quantum~quasi!particle with acoustic phonons of th
chain.

The first term in the right-hand side of Eq.~1! is the usual
tight-binding Hamiltonian for a quantum~quasi!particle,

Ĥqp5(
n

@E 0an
†an2J~an

†an111an11
† an!#, ~2!

where E0 is the ~quasi!particle energy in the undistorte
chain,J the hopping amplitude~e.g., the dipole-dipole inter-
action strength between intramolecular vibrations, when
chain is undistorted!, andan

†(an) are the Bose or Fermi cre
ation ~annihilation! operators of the~quasi!particle associ-
ated with thenth molecule of the chain.

The second part of Eq.~1! describes the phonon displac
ment field Q̂n interacting ~in the harmonic approximation!
with a periodic substrate potential, so that each chain m
ecule is assumed to be influenced by the local harmonic
tential with a force constantk0:

Ĥph5(
n

F P̂n
2

2M
1

K

2
~Q̂n112Q̂n!21

k0

2
Q̂n

2G . ~3!

HereM is the molecular mass,K is the force constant of the
interaction between molecules, and the lattice field opera
©2001 The American Physical Society02-1
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YAROSLAV ZOLOTARYUK AND J. CHRIS EILBECK PHYSICAL REVIEW B63 054302
P̂n and Q̂n are the momentum and displacement from
equilibrium position of thenth chain molecule.

The third part of the HamiltonianĤ describes the
~quasi!particle-phonon interaction that consists of tw
portions.20 One of these appears under the assumption
~quasi!particle band energy depends linearly on the dista
between the nearest-neighbor molecules asEn5E0
1x1(Qn112Qn21), whereas the appearance of the other
teraction term is associated with the linear dependence o
amplitude of hopping between thenth and (n11)th mol-
ecules:Jn,n115J2x2(Qn112Qn), meaning that the hop
ping amplitude decreases with increase of the distance
tween the adjacent molecules. Thus, the Hamiltonian
describes such a combined~quasi!particle-interaction and
was also introduced in earlier studies20,26 reads

Ĥqp-ph5x1(
n

an
†an~Q̂n112Q̂n21!

1x2(
n

~an
†an111an11

† an!~Q̂n112Q̂n!. ~4!

Using the adiabatic Davydov ansatz1,2 with the corre-
sponding techniques,27 one finds that the Hamiltonian~1!–
~4! results in the following system of two coupled classic
equations of motion:

i\ċn5E0cn2J~cn211cn11!1x1~Qn112Qn21!cn

1x2@~Qn2Qn21!cn211~Qn112Qn!cn11#,

~5!

Q̈n5K~Qn1122Qn1Qn21!2k0Qn1x1~ ucn11u2

2ucn21u2!12x2 Re@cn* ~cn112cn21!#, ~6!

wherecn(t) is the discrete complex-valued wave function
the ~quasi!particle andQn(t) is the classical lattice field o
the molecule’s displacements from their equilibrium po
tions,n50,61, . . . . These equations are complemented
the normalization condition(nucn(t)u251.

In the particular case when the phonon term with the
site oscillators is absent (k050), Eqs.~5! and ~6! reduce to
the usual Davydov model.1,2 In this case, each of the
~quasi!particle-phonon coupling constantsx1 or x2 results in
the existence of self-localized states for all values of
system parameters. Moreover, Eqs.~5! and ~6! are easily
solved in the continuum limit and the self-trapping occu
with the additive coupling constantx5x11x2. Therefore,
the interaction term withx2 was rarely considered in litera
ture. However, the situation in the discrete case appears t
more sophisticated because the physical origin of the c
stantsx1 and x2 is different: the interaction withx1 is a
result of lowering the on-site energyEn under a chain com-
pression, whereas the second (x2) interaction originates
from increase of the hopping amplitudeJn,n11 with this
compression. Therefore, it is not clear what happens t
small ~narrow! Davydov soliton when both these interactio
are present in the theory. The present paper also aim
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investigate how the interplay between the constantsx1 and
x2 results in mobility of the Davydov soliton.

On the other hand, the Hamiltonian~1!–~4! may also be
referred to as the Holstein model21 with a positive~because
K.0) dispersion and a nonlocal electron-phonon coupl
~with the two constantsx1>0 andx2>0). We consider the
following arguments. In the limiting caseK→0, when the
coupling between the on-site oscillators is absent~it occurs
only via the nonlocal electron-phonon coupling!, it is not
known whether polaron solutions exist. Indeed, in the c
tinuum limit ~when the siten is substituted by the spatia
variablex), for the standing continuum envelopew(x) of the
wave functioncn(t), one can derive from Eqs.~5! and ~6!
the nonlinear Schro¨dinger equation with the nonlinearit
(w2)9w ~where the prime denotes the differentiation overx)
that can easily be integrated and analyzed using ph
portrait techniques. As a result, this equation appears no
support solutions of the standard~bell-shaped! type that
would correspond to self-localized states.

However, if we consider the discrete version of th
model, using a variational approach~used in the present pa
per! to find the envelopewn in the form of a discrete trial
function with exponential spatial decay, we find that, co
trary to the continuum limit, the total energy of the syste
attains a minimum, but only if the constantx1

2/Jk0 exceeds a
certain critical value. This means that there exists some c
cal value for the eigenfrequency of the on-site oscillato
above which the self-trapping effect disappears. The pho
dispersion should effectively soften this frequency so that
critical value will increase. This is why for the Davydo
model with an on-site potential, the existence of se
localized states in some cases was numerically observed
in other cases only delocalized states were obtained.24 All
these arguments demonstrate that the problem of the e
tence of self-localized states in the polaron model given
the Hamiltonian~1!–~4! is far from being fully understood.

The results in the present paper are obtained in two st
First, we develop analytical techniques of summation of
whole variety of series using an algebra that is similar to t
of the Chebyshev polynomials. This allows us to obtain
equations expressed only in terms of the envelopewn . Sec-
ond, having in the theory only one lattice fieldwn , we are
able to apply a simple variational approach using onlyone
variational parameter. In this way, it is proved that fin
equations can be analyzed analytically. Particularly, a cr
rion for the existence of self-localized~both stable and meta
stable! states is obtained.

This paper is organized as follows. In the next section,
present the reduced equations of motion that are basic e
tions to be studied throughout this paper. In Sec. III, us
the Chebyshev-like polynomials, we develop a proced
that gives an analytical solution for the lattice displacem
field as a function of the wave-function envelope. In the n
section, we apply a discrete variational approach to find
envelope by minimization. A criterion given as an implic
function of two dimensionless characteristic parameters
derived in Sec. V. The binding energy of the localized~qua-
si!particle is discussed in Sec. VI. This section also confir
a high accuracy of our variational approach. In Sec. VII,
2-2
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estimate the Peierls-Nabarro barrier for the self-localiz
states and find the particular case when polarons are
pinned. Section VIII contains our conclusions. Finally, som
results of analytical calculations are presented in Append
A and B.

II. REDUCED EQUATIONS TO BE STUDIED

For the dimensionless description we introduce sca
time t5v0t/ l , where l is the lattice spacing andv0

5AK/Ml is the sound velocity in the lattice subsystem.
terms of space and time-scaling parameters, both the~quasi-
!particle wave functioncn(t) and the displacement fiel
Qn(t) can be rewritten asfn(t)5exp@ i (E022J)t/\#cn(t)
and un(t)5Qn(t)/ l . Next, we use the representation of t
wave functionfn(t) in the form of a modulated plane wave

fn~t!5wn~t!exp$ i @nk2s~«01«!t#% ~7!

where the characteristic parameters5Jl/\v0 measures the
ratio of amplitudes for transfers from site to site in the~qua-
si!particle and phonon subsystems. Thus, fora-helix protein,
the valuesJ57.8 cm21 and l 54.5 Å are known,20 so that
for velocities v0;103 m/s one obtainss;1. The dimen-
sionless energy«052(12cosk) describes the linear ban
spectrum of the linearized equation~5! and« is the binding
energy of the~quasi!particle to the chain. Using the repre
sentation~7! in Eqs. ~5! and ~6! and equating the real an
imaginary parts of Eq.~5!, we find the following three dis-
crete equations:

«wn52cosk~wn1122wn1wn21!1~a/2!$~12h!

3~un112un21!wn

1h cosk@~un2un21!wn21

1~un112un!wn11#%, ~8!

dwn

dt
5sink$s~wn212wn11!1~ah/2!@~un112un!wn11

2~un2un21!wn21#%, ~9!

d2un

dt2 52~un1122un1un21!2v0
2un1b@~12h!

3~wn11
2 2wn21

2 !/21h coskwn~wn112wn21!#.

~10!

In these equations, the coupling constantsx1 andx2 are
redefined to the dimensionless quantitiesa andb according
to the relations a52l (x11x2)/J and
b52l (x11x2)/Mv0

2.25 We have also incorporated the pa
tition parameterh5x2 /(x11x2), 0<h<1, so thath50
if x250 andh51 if x150.26 The dimensionless frequenc
v05Ak0 /K measures the relative strength of the interm
lecular and on-site interactions. Note that the former inter
tions effectively reduce the eigenfrequency of the on-site
cillators. Finally, the envelope wn(t) satisfies the
normalization condition
05430
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251. ~11!

The reduced equations~8!–~11! are the key objects to be
studied in the present paper. As regards the spectral pa
eter« in Eq. ~8!, it can be expressed in terms of the latti
fieldswn andun as follows. Multiplying both sides of Eq.~8!
by wn and summing them overn, and then using the normal
ization condition~11!, we find

«5cosk(
n

~wn112wn!21
1

2
a(

n
~12h!~un112un21!wn

1
1

2
ah cosk@~un2un21!wn211~un112un!wn11#.

~12!

In this paper we are interested only in traveling wa
~TW! solutions of Eqs.~8!–~11!. For this class of solutions
one can write wn(t)5w(n2st) and un(t)5u(n2st)
wheres5v/v0 is the dimensionless propagation velocity.
the continuum limit, Eq.~9! is transformed to the relation
between the wave numberk and the velocity of wave propa
gations,

s52s sink. ~13!

Note that in the particular case of standing solutionss
50), Eq.~9! simply vanishes (k50). As for Eq.~10!, in the
continuum limit ~again for TW solutions! one can approxi-
mately substitute the time derivative by the discrete ti
derivative: d2un /dt2.s2(un1122un1un21). Then this
equation can be rewritten concisely as

un1122zun1un215Rn ~14!

with the source term

Rn5G~12h!~wn21
2 2wn11

2 !12Gh coskwn~wn212wn11!.

~15!

Here the constantsz and G are defined byz511v0
2/2(1

2s2) and G5b/2(12s2). Therefore, Eq.~14! is appropri-
ate for moving (s.0) solutions if they are sufficiently
smooth from site to site, but it also appears as an exactdis-
creteequation for standing (k50 ands50) solutions.

As mentioned in the previous section, in the limiting ca
when the on-site potential disappears (v0→0 or z→1), the
system of Eqs.~8! and ~14! is reduced to the usual acoust
polaron model.1,2 In this particular case, the differenc
un112un can easily be found from Eqs.~14! and ~15! as a
function ofwn andwn11. Inserting this function into Eq.~8!,
we obtain a stationary discrete nonlinear Schro¨dinger
~DNLS! equation with cubic nonlinearity, the normalized s
lution of which in the continuum limit is well known:
wn(t)5Al/2 sech@l(n2st)#, and «52l2 cosk with the
reduced coupling constant

l5ab~12h1h cosk!2/4~12s2!cosk. ~16!
2-3
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For instance, in the case ofa-helix protein, the mass of a
peptide group isM5114mp , wheremp is the proton mass
and the coupling constant was estimated asx153.4
310211 N. Therefore, the constantl at k50 is of order ten.
Also note that fork50, the constantl does not depend on
the partition parameterh because both the constantsx1 and
x2 are present in the theory additively. As can be seen fr
this solution, the constantl is a characteristic parameter o
the theory, since it determines the soliton size and the en
level «.

III. DECOUPLING PROCEDURE AND HYPERBOLIC
CHEBYSHEV POLYNOMIALS

In a general case whenz.1, we cannot express so easi
the differenceun112un through the envelopewn as in the
limiting casez→1. But this step is necessary in order to g
a nonlinear Schro¨dinger equation given in terms of onlywn .
In this section, using the explicit representation
Chebyshev-like polynomials, we develop a procedure t
allows us to solve this problem. This is the most importa
point of our findings. In this way we are able to decouple
lattice fieldswn andun and we call this scheme a decouplin
procedure.

Let us consider the solutions of the two types of symm
try: the center of thewn profile is assumed to be localized
a lattice site~we call it a site-centered orS state! and thewn
profile is centered in the middle of adjacent lattice sites~call
it a bond-centered orB state!. Next, let us suppose thewn
profile to be centered at the site withn50. Then one can
write w2n5wn (n50,61, . . . ). In theother case, assumin
that thewn profile is centered in the middle between the si
with n50 andn51, we havew2n5wn11 (n50,61, . . . ).
Using these symmetry definitions in Eq.~15!, we find that
R2n52Rn andR2n52Rn11 , n50,61, . . . , for thesite-
and bond-centered profiles, respectively. Using the last r
tions, one finds from Eq.~14! the symmetry properties of th
displacement fieldun . Thus, theS andB symmetry proper-
ties can be summarized as follows:

w2n5wn , u2n52un , R2n52Rn, ~17!

for S symmetry and

w2n5wn11 , u2n52un11 , R2n52Rn11 , ~18!

for B symmetry, wheren50,61, . . . .Below we treat self-
localized states of both symmetries separately.

A. Site-centered self-localized states

In the case of solutions centered at the site withn50, we
have the identitiesR050 andu050, which immediately fol-
low from the symmetry relations~17!. Next, by induction,
one can prove that the solution of the linear difference eq
tion ~14! can be represented in the form

un5Kn21
[2z] u11 (

j 51

n21

Kn212 j
[2z] Rj , n52,3, . . . , ~19!
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whereKn
[2z]5Kn

[2z] (z) is the Green’s function defined by th
recurrence formula

Kn12
[ f (z)]~z!52zKn11

[ f (z)]~z!2Kn
[ f (z)]~z!,

K0
[ f (z)]~z!51, K1

[ f (z)]~z!5 f ~z!, ~20!

with the generating functionf (z) indicated in the square
brackets superscript. It is important that in the particular c
when the generating function isf (z)5z, 1<z,`, the
functionsKn

[ f (z)] can be calculated explicitly:

Kn
[ z]~z![Tn~z!5cosh~n Arcoshz!5~bn1b2n!/2,

b5z1Az221, ~21!

for all integersn50,1, . . . . Since the algebra of these
‘‘hyperbolic,’’ contrary to the usual Chebyshev polynomia
defined in the interval 0<z<1, we call the set of functions
~21! the hyperbolicChebyshev polynomials.28

The next important step is that theKn
[2z] polynomials,

including also those with other generating functionsf (z),
can be expressed explicitly in terms of the polynomi
Tn(z). Indeed, by induction, one can establish the identit

Kn
[2z]2Kn22

[2z] 52Tn , n52,3, . . . . ~22!

Using this identity, we find separately for even and odd s
scripts, the relations that allow us to write the functionsKn

(2z)

through the polynomialsTn :

K2m
[2z]5112(

j 51

m

T2 j , m51,2,. . . ;

K2m11
[2z] 52(

j 50

m

T2 j 11 , m50,1, . . . . ~23!

Finally, using the representation~23! and the explicit for-
mula ~21!, one finds the explicit expression for the polyn
mials Kn

[2z] :

Kn
[2z]5

bn112b2n21

b2b21
, n50,1, . . . . ~24!

Now we need to calculate the displacementu1 in Eq. ~19!.
To this end, we use a boundary condition at the right end
the chain. Particularly, using the zero boundary condit
(limn→`un50), we find from Eq.~19!

u152 lim
n→`

(
j 51

n21

@Kn212 j
[2z] /Kn21

[2z] #Rj

52 lim
n→`

(
j 51

n21
bn2 j2b2n1 j

bn2b2n
Rj52(

j 51

`

b2 jRj . ~25!

Thus, Eqs.~19!, ~24!, and ~25! determine the displace
ment fieldun , n51,2, . . . , as afunction of the envelopewn
for eachz.1. Calculating next the relative displacemen
un112un in terms ofwn and substituting the resulting ex
2-4
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pressions in Eq.~8!, we obtain a stationary DNLS equatio
In the two particular casesh50 (x250) and h51 (x1
50), this equation is derived in Appendix A@see Eqs.~A4!
and ~A9!#.

B. Bond-centered self-localized states

In the case of solutions centered in the middle betw
the sites withn50 andn51, the symmetry properties ar
determined by Eqs.~18!. Using the equationu052u1, by
induction, one can prove that the solution of the linear d
ference equation~14! is represented in the form

un5Kn21
[2z11]u11 (

j 51

n21

Kn212 j
[2z] Rj , n52,3, . . . , ~26!

where the polynomialsKn
[2z11] can also be expressed

terms of the hyperbolic Chebyshev polynomialsTn . Simi-
larly, by induction, one can establish the identity

Kn
[2z11]~z!5Kn21

[2z] ~z!1Kn
[2z]~z!, n51,2, . . . . ~27!

Using this equation and the representation~24!, we find the
explicit expression for the polynomialsKn

[2z11] ,

Kn
[2z11]5

bn112b2n

b21
, n50,1, . . . . ~28!

In the same way as for theSprofiles, the displacementu1
can be calculated, using the zero boundary condition at
right end of the chain. As a result, from Eq.~26! we find

u152 lim
n→`

(
j 51

n21

@Kn212 j
[2z] /Kn21

[2z11]#Rj

52 lim
n→`

(
j 51

n21
bn2 j2b2n1 j

~b11!~bn212b2n!
Rj

52
1

11b21 (
j 51

`

b2 jRj . ~29!

The corresponding DNLS equations are given by Eqs.~A14!
and ~A18!.

IV. CALCULATION OF SELF-LOCALIZED STATES

Whenv05” 0 (b.1), each of the stationary DNLS equa
tions ~A4!, ~A9!, ~A14!, or ~A18! cannot be solved analyti
cally, because even in the continuum limit it becomes
integro-differential equation. Therefore, an appropriate va
tional method should be applied. From this point of view, t
exact representations for the lattice displacement fieldun
given by the series~A2!, ~A7!, ~A12!, and ~A16! with the
corresponding coefficientsAjn , Bjn , Cjn , andD jn @see Eqs.
~A3!, ~A8!, ~13!, and ~A17!# appear to be very useful be
cause they allow us to reduce significantly the number
variational parameters. We use a discrete trial function w
only one variational parameter describing the size of se
localization. As a result, the polaron profiles and energy
found in a simple form.
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First, we notice that the basic equations~8! and ~14! can
be represented as a minimum condition for the discrete
ergy functionalE($wn%,$un%), written through the reduced
Lagrangian functionL:

E52L5cosk(
n

@~wn112wn!21~a/2G cosk!un

3~Rn1zun2un11!#,

z5~b1b21!/2, ~30!

where the constant term with« has been omitted. This func
tional can also be obtained in the standard manner@as for the
equations of motion~5! and ~6!# from the Hamiltonian~1!–
~4!, using the same assumptions and notation that led to
~8! and~14!. Inserting the representation forun given by Eqs.
~A2!, ~A7!, ~A12!, and ~A16! in Eq. ~30!, we get the func-
tional of onelattice field, i.e.,E($wn%). Therefore, a properly
chosen discrete trial function with only one variational p
rameter can be used and its optimal value can be calcul
analytically by minimization of the variational energy~30!.
Below we will apply this variational approach separately
the S andB polaron states.

A. Site-centered self-localized states

Thus, for theS polaron states, the trial function that de
scribes the normalized@see Eq.~11!# envelope profilewn can
be chosen in the form

wn5A12q2

11q2qn, n50,61, . . . . ~31!

Then, according to Eqs.~A2! and ~A7!, we find by straight-
forward calculation that the displacement fieldun is given by
u050 and

un5
b~12q2!2~q2n2b2n!

~12bq2!~b2q2!
G ~32!

if h50 and

un5
2bq~12q2!2~q2n2b2n!

~11q2!~12bq2!~b2q2!
G cosk, ~33!

if h51, wheren51,2, . . . . Inserting next the expression
~31!–~33! in the functional ~30! and using the symmetry
properties of the lattice fieldswn and un @see Eq.~17!# as
well as the definitions~15!, ~A5!, and ~A10!, by direct but
lengthy calculations we obtain

ESn~b,ln ;q!

cosk
52

~12q!2

11q2 2ln

~12q2!3

~b2q2!2 PSn~b;q!, n50,1,

~34!

where the subscriptn50 (n51) corresponds to the caseh
50 (h51) and the functionsPSn(b;q) are presented in Ap-
pendix B @see Eq.~B1!#. Note that both the functionsPSn

have small variation in the interval 0<q<1 and tend tob/2
whenq→1.
2-5
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B. Bond-centered self-localized states

For theB polaron states the trial function for the envelo
wn can be chosen in the form

wn5A12q2

2
qn21, n51,2, . . . . ~35!

Similarly, according to Eqs.~A12!, ~A13!, ~A16!, and~A17!,
we find

un5
b~12q2!2@~11q22!q2n2~b11!b2n#

2~12bq2!~b2q2!
G, ~36!

if h50 and

un5
b~12q2!2

~12bq2!~b2q2!
Fq2n21

2
q~12bq2!1b~bq1q111q2!

~b11!~11q!
b2nGG cosk.

~37!

if h51, wheren51,2, . . . .Next, using in the same manne
as above, the symmetry properties of the lattice fieldswn and
un given by Eqs.~18! as well as the expressions~35!–~37!,
we find that the energy functional~30! is transformed to

EBn~b,ln ;q!

cosk
5~12q!22ln

~12q2!3

~b2q2!2 PBn~b;q!, n50,1,

~38!

where the explicit form of the functionsPBn is also presented
in Appendix B@see Eq.~B1!#. As above, these functions als
tend tob/2 if q→1.

C. Energy surfaces and delocalized states

The four variational functions ESn(b,ln ;q) and
EBn(b,ln ;q), n50,1, given by Eqs.~34! and ~38! are the
basic results of the analytical approach developed in this
per. The two-dimensional plots of one of these functio
namely,F0(q)[ES0(b,l0 ;q)/cosk, are presented in Figs.
and 2, which include the dependence on the parameterl0
andz, respectively.

Both these plots show that the minimum of the variatio
energy F0(q) disappears, for sufficiently small couplin
constantl0 at z fixed ~see Fig. 1 and the curve on the su
face!, or sufficiently largez at l0 fixed ~see Fig. 2!. This is
contrary to the limiting casez→1, when there exists the
continuous transition from the small polaron regime to
large one if the constantl0 tends to zero. In other words, th
polaron regime for a sufficiently big parameterb or a suffi-
ciently weak coupling constantl0, at certain critical values
of these parameters, suddenly disappears.

Figure 3 shows details of the drastic behavior of the
ergy functionF0(q). Here, curve 1 represents the ener
behavior of the system in the limiting casez51, when the
on-site potential is absent. In this case there exists only
minimum in the interval 0,q,1 that corresponds to th
05430
a-
,

l

e

-

ne

polaron solution being a ground state of the system. After
introduce an on-site potential (z.1), the energy surface
changes and another local minimum appears atq51 ~see
curve 2 in the inset of Fig. 3!.

This minimum, at which the variational energyF0(q)
always equals zero@see Eq.~34!#, corresponds to the ex
tended, completely delocalized state. When we decreasl0
~at z fixed! or increasez ~at l0 fixed!, the size of the polaron
profile increases and the energy minimum becomes more
more shallow. At a certain critical value ofl0 or z, the
variational energy at both the minima becomes the sa
~equal to zero! as demonstrated by curve 3 in Fig. 3. Furth
decrease ofl0 or increase ofz results in increasing the en
ergy at the self-localized state that becomes positive, exc
ing the zero energy of the delocalized state. Therefore,
polaron state becomes metastable, whereas the deloca
state becomes a ground state. This situation is illustrated
curve 4 in Fig. 3. Finally, with further decreasingl0 or in-
creasingz, the polaron state disappears and only one m
mum at q51, which corresponds to the delocalized sta
remains~see curve 5!.

FIG. 1. Variational functionF0(q) plotted as a two-dimensiona
surface againstq and l0 at the fixed value of the parameterb(z
51.25). The curve on this surface shows the set of minima of
function F0(q,l0).

FIG. 2. Variational functionF0(q) plotted as a two-dimensiona
surface againstq andz at the fixed valuel055.
2-6
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Thus, we have obtained three possible regimes:~i! the
polaron is a ground state and the delocalized state is m
stable,~ii ! the polaron state is metastable and the delocali
state is a ground state, and~iii ! the polaron does not exist an
only the delocalized state is possible. A similar situati
takes place in the other three cases described by the v
tional energiesES1 , EB0, andEB1.

Having found an optimal value of the variational para
eterq for each set of the system parameters, one can pl
corresponding two-component polaron profile: the envel
wn @using Eqs.~31! and ~35!# and the displacement fieldun
@using Eqs.~32!, ~33!, ~36!, and~37!#. Figure 4 demonstrate
the site-centered polaron profiles for the caseh50 and two
sets of the parameters that correspond to curves 2 and
Fig. 3. The bond-centered polaron profile for the caseh51
is presented in Fig. 5.

V. A CRITERION FOR THE EXISTENCE
OF SELF-LOCALIZED STATES

As demonstrated in the previous section, the variatio
functionsESn(b,ln ;q) andEBn(b,ln ;q), n50,1, given by
Eqs. ~34!, ~38!, and ~B1!, do not always admit minima tha
correspond to self-localized states. To analyze them, i
convenient to represent the equations for extrema]ESn /]q
50 and]EBn /]q50 in the form

F~b;q![
12q2

~b2q2!3 W~b;q!5
1

l
, ~39!

where the subscriptsSn and Bn have been omitted for a
while. The explicit form of the functionsW(b;q) is given in
Appendix B @see Eq.~B2!# and the constantsl ~with sub-
script n also omitted! are defined by Eqs.~A5! and ~A10!.
Since eachW is a weakly varying function that is bounde
from above, it follows from Eq.~39! that for anyb.1, there
exist sufficiently small values of the parameterl when Eq.

FIG. 3. Variational functionF0(z,l0 ;q) against the paramete
q for different values of the parametersz and l0 : z51 andl0

51 ~curve 1!, z51.3 andl052 ~curve 2!, z51.3875 andl052
~curve 3!, z51.415 andl052 ~curve 4!, andz512.5 andl052
~curve 5!.
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~39! does not possess a solution. On the other hand, in
case without any on-site potential (b51), the polaron solu-
tions are known to exist for any constantl.0. Indeed, in the
limit b→1, Eq. ~39! becomes

q

12q
5

Y~q!

l
, ~40!

with the functionY(q) given explicitly in Appendix B for
each particular case@see Eq.~B3!#. The left-hand side of Eq
~40! is a monotonically increasing function from zero to i
finity and therefore, for anyl, this equation always admits
unique solution. This solution corresponds to the Davyd
soliton in an isolated molecular chain.1–3,7,20

The situation changes drastically in the caseb.1, when
the left-hand side of Eq.~39! becomes a convex function tha
equals zero atq50 andq51. Letqm5qm(b) be the point in
the interval 0,q,1 at which the functionF(b;q) attains a
maximum. If the coupling constantl is large enough, the
line 1/l will cross the curveF(b;q) at two points, so that
Eq. ~39! will have two roots corresponding to extrema of th
variational energy. The smaller root corresponds to a~polar-
on! minimum of the energy, while the bigger root corr
sponds to a maximum of this energy that separates the
laron minimum and the minimum atq51 responsible for the
delocalized state.

FIG. 4. Site-centered polaron profiles forh50: ~a! wave-
function envelopewn , and~b! displacement fieldun correspond to
the minima of the variational functionF0(q) plotted as curves 2
and 3 in Fig. 3. The system parameters for curves 1 and 2 are
same as for curves 2 and 3 in Fig. 3, respectively.
2-7
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With decreasingl, these two extremal points move to
wards each other and eventually merge at some critical v
of l. With further decrease ofl, the polaron solution disap
pears completely. We denote B(b)[maxqF(b;q)
5F @b;qm(b)#. Then the condition for the existence of polaro
solutions, i.e., roots of Eq.~39!, is the inequality

B~b!l.1. ~41!

Therefore, the (b,l) plane can be split into two regions b
the line B(b)l51. This line separates the regions of ex
tence and nonexistence of self-localized states.

To be more precise, we consider first the site-cente
solutions withh50 and fix the valueb52. In this case, the
function F(2;q) has a maximum at the pointqm5A2/3. In-
serting this value forqm into the equationF(2;qm)5l0

21,
we find the critical value ofl0 at which the self-trapping
appears. The self-trapped state exists for alll0.4(2/3)5/2.

In the general case, with anyb.1, differentiating the
function F(b;q) with respect toq, equating the resulting
expression to zero, and solving the resulting equation,
find the valueqm in the interval 0,q,1 at which the func-
tion F(b;q) reaches a maximum:

qm
2 5

5b228b152~b21!A25b2222b125

2~22b!
. ~42!

This expression is well defined for allb.1, including the
particular caseb52 mentioned above, as well as the lim

FIG. 5. Bond-centered polaron profiles forh51, z51.25, and
l154: ~a! wave-function envelopewn , and~b! displacement field
un components.
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b→` for which limb→`qm
2 52/5. In Fig. 6~a! we have plot-

ted the linel05B S0
21(b)5F@b;qm(b)#21 as a solid curve.

This curve separates the regions of existence and none
ence of polaron states. The dashed line, calculated by c
paring the energy~34! in different polaron states with the
zero energy~at q51), separates stable and metastable
laron states. Similar diagrams of the existence of s
centered self-localized solutions have been plotted in F
6~b! for the caseh51. In this case, there are no analytic
solutions like Eq.~42! and therefore both the solid an
dashed lines, with the same meaning as in Fig. 6~a!, were
calculated numerically, using Eqs.~34!, ~39!, and~41!.

VI. BINDING ENERGY OF THE SELF-LOCALIZED
„QUASI…PARTICLE

The dimensionless binding energy of the~quasi!particle
«, which can be calculated according to Eq.~12!, is the low-
est energy level of the Schro¨dinger equation~8!. Using the
envelopewn and the displacement fieldun given by Eqs.
~31!–~33! and ~35!–~37! as well as the definitions~A5! and
~A10!, this energy can be expressed through the variatio
parameterq. The resulting equations are

«

cosk
52

~12q!2

11q2 22ln

~12q2!3

~b2q2!2 PSn~b;q!, n50,1,

~43!

for the S self-trapped states and

FIG. 6. Diagrams of existence of site-centered polaron states
~a! h50, and~b! h51. Solid curves separate the regions of ex
tence and nonexistence of polaron solutions, while dashed cu
separate stable and metastable polaron solutions.
2-8
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«

cosk
5~12q!222ln

~12q2!3

~b2q2!2 PBn~b;q!, n50,1,

~44!

for the B self-trapped states.
In the particular caseh50 andk50, the discrete Schro¨-

dinger equation~8! can be rewritten in the form

2~wn1122wn1wn21!1Unwn5«wn, ~45!

where Un5a(un112un21)/2 is the deformation potentia
formed in the chain by a~quasi!particle ~an excitation or an
electron!. The energy level« and the potentialUn were cal-
culated by minimization of the discrete energy function
~30!, resulting in a numerically exact polaron solution, a
then inserting this solution into Eq.~12!. The results of these
numerical calculations have confirmed the analytical res
given by Eqs.~32!, ~33!, ~36!, ~37!, ~43!, and ~44! to very
high accuracy. Figure 7 illustrates, for the caseh50, the
comparison of the variational approximation given by t
trial function ~31! with the corresponding numerically exa
polaron solution found by minimization of the energy~30!.

VII. PINNING AND MOBILITY OF POLARONS

In general, while propagating along the chain, a narr
polaron~or another solitary wave, except for the superso
pulse soliton in the Fermi-Pasta-Ulam type chain! radiates
small-amplitude waves, and finally stops because of a
called Peierls-Nabarro~PN! periodic potential relief. The ex
istence of such a relief~barrier! is an effect of lattice
discreteness.29 In this section, we extend the studies of t
PN barrier for the Davydov soliton, carried out previously30

for the case of an isolated molecular chain, to the case w
an on-site potential (b.1).

According to Eqs.~34! and ~38!, we have calculated the
polaron energy in theS and B states forh50 and h51.
Particularly, for the caseh50 with b51 atk50 and for the
same system parameters, the energy in theS state given by
Eq. ~34! appeared to be lower than that in theB state, which

FIG. 7. Effective deformation potentialUn and the lowest en-
ergy level « calculated numerically~solid lines! and analytically
~dashed lines! for h50 (a54, b55, l055, andz52). The inset
shows an enlargement of the binding level.
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is given by Eq.~38!. This result coincides with that found
previously,30 i.e., the site-centered profile corresponds to
minimum of the polaron energy, whereas the bond-cente
profile is associated with a saddle point. Surprisingly, sim
calculations of the energies~34! and ~38! for the caseh51
gave the opposite energy inequality hold: theB self-localized
state was found to have lower energy than theS state. Thus,
for standing (k50) self-localized states the following tw
inequalities:ES0,EB0 and EB1,ES1. Therefore, one can
expect that for a certain intermediate valueh5hc , the bar-
rier defined by the differenceDE5D(h)[uEB(h)
2ES(h)u will disappear, so that the equalityDE(hc)50
should be valid. For this purpose, we have calculated
merically the height of this barrier as a function ofh, mini-
mizing the energy functional~30!. The dependenciesDE
5DE(h) ~solid line! and EB(h)2ES(h) ~dashed line! for
l55 @see Eq.~16!, k50# andz52 are shown in Fig. 8 tha
demonstrate the existence of a critical valuehc at which the
DE50 barrier entirely disappears.

We have calculated this critical value for different syste
parameters. These results are presented in Table I.

They show that the critical valuehc depends very weakly
on the system parameters and remains within the inte
0.32–0.35. Increase of the coupling constantl5ab/4 or
decrease of the on-site parameterk0 causes insignificant shif
of hc towards higher values. Note thatDE is not PN barrier,
but just its estimate from below.

Such a behavior of the pinning barrier gives us a reaso
expect that a movable polaron can exist that does not e

FIG. 8. Height of the pinning barrierDE ~solid line! and the
energy differenceEB2ES ~dashed line! as functions of the param
eterh for l55 andz52.

TABLE I. Dependence of the critical valuehc on the strength of
the on-site potentialk0 and the coupling parameterl.

l k050.25 k050.5 k051 k052 k053

2 0.3339 0.3316
5 0.3385 0.3357 0.3315 0.3266 0.3229
10 0.3429 0.3395 0.3355 0.3295 0.3260
2-9
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rience any lattice effects. In order to check this, we simula
equations of motion~5! and ~6! for the critical valuehc
50.325 965, using the fourth order Runge-Kutta sche
with the time stepDt50.02. This case should correspond
the transparent polaron motion through the chain, despite
fact that the parameter values were chosen to form a q
narrow polaron profile. Therefore we have substituted
polaron solution obtained before by minimization of t
functional~30! into the basic equations of motion~5! and~6!
reduced to the corresponding dimensionless form through
scaled wave functionfn(t) and displacement fieldun(t).
The initial conditions were chosen according to the relatio
dun /dt.2s(un112un) andfn(0)5wnexp(ikn), wherewn
andun represent the polaron solution found by minimizati
of the energy~30!. Here we have approximately replaced t
time derivative by the spatial derivative. This is, of course
very crude approximation for narrow polaron profiles, bu
gives a proper initial kick to the polaron. We have chosen
wavevector k50.4 that corresponds to the velocitys
52s sink.0.78. The results of simulations are presented
Fig. 9.

Initially, right after the initial kick, the polaron emits
some radiation and slows down, but later it separates it
from the radiation and propagates with constant velocity t
is quite close tos50.78. The final snapshot of the polaro
profile is presented in Fig. 10. As can be seen in these p
the profile appears to be very narrow, propagating with
significant energy loss. Some tiny radiation can be explai
by very crude approximation of the initial conditions.

In order to emphasize the depinning effect, we perform

FIG. 9. Dynamics of lattice fields~a! ufn(t)u2, and~b! un(t), in
the chain consisting ofN51000 particles (a510, b54, z52.5,
s51, andh5hc50.325 965).
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similar simulations forh slightly different from the critical
value. We tookh50.24, while the rest of the system param
eters were kept unchanged, and created the initial condit
in the same way as before. In this case, the polaron did
manage to move further than 12 chain sites and eventu
got pinned. The results of these simulations are presente
Fig. 11.

VIII. CONCLUSIONS

Contrary to the one-dimensional acoustic polar
~Davydov-Scott! theory,1,2 where the self-trapping occurs fo
all values of the system parameters, we have shown in
paper that the presence of a physically reasonable exte
on-site potential for each chain molecule leads in some ca
to the nonexistence of self-localized~polaron! states. It hap-
pens that for some parameter values the self-trapping ex
while for other values only delocalized states are possi
We have found the criterion for the existence of se
localized states given by the inequality~41!. In particular, for
the existence of polaron states the~quasi!particle-lattice cou-
pling constantx1 or x2 should be sufficiently large or the
strengthk0 of the on-site potential should be sufficient
weak. This criterion is also valid for narrow polaron sol
tions which are immobile, so that even for standing on
dimensional polarons, their formation depends on the sys
parameters.

FIG. 10. Final polaron profiles of lattice fields~a! ufn(t f)u2, and
~b! un(t f), at final time instantt5t f51600, the dynamics of which
is displayed in Fig. 9.
2-10
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It is important to note that the delocalized~exciton! state
does always exist in the chain, being therefore in some c
stable~a ground state! and in other cases metastable. Mo
precisely, the following three regimes~three types of solu-
tions! can exist in the chain with an on-site potential:~i! the
polaron as a ground state and the exciton as a metas
state,~ii ! the polaron as a metastable state and the excito
a ~delocalized! ground state, and~iii ! the polaron state doe
not exist and only the exciton is a ground state. The ana
cal calculations performed in this paper allow us to inve
gate the physical mechanisms of the existence and none
ence of the self-trapping and to find two characteris
parametersb andl, in terms of which we were able to for
mulate the criterion of the polaron existence@see Eq.~41!#.
In the simplest case when the polaron is standing andx2
50, these parameters are b511k0/2K
1Ak0 /K1(k0/2K)2 and l5x2l 2/JK. For moving po-
larons, the ratiok0 /K and the reduced coupling constantl
are renormalized accordingly. If the on-site potential is s
ficiently strong or the~quasi!particle-phonon coupling is suf
ficiently weak, the chain particles prefer to stay in the well
the on-site potential and the exciton-phonon interaction c
not displace them from the potential minima to suppor
stationary traveling-wave motion along the chain of a se
localized state. As illustrated by Fig. 3, the existence of b
self-localized and delocalized solutions results in the app
ance of an effective barrier that separates these states.

Although analytical calculations and techniques appea
be very lengthy and complicated, the final results presen
by the variational functions~34! and~38! seem to be simple
and these are the main findings of the present paper. We
introduced a whole variety of series that we call hyperbo

FIG. 11. Dynamics of lattice fields~a! ufn(t)u2 and~b! un(t) in
the chain withN51000 particles (a510, b54, z52.5, s51, and
h50.24).
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Chebyshev polynomials. This approach can be applied
other models of the polaron theory.

Surprisingly, it was found that stable self-localized sta
appear to occur with different~on-site or on-bond! symme-
try. This is due to the different physical meaning of the co
pling constantsx1 and x2 mentioned in the Introduction
This result prompted us to seek the ratio of these const
when depinning of a polaron occurs. We have found tha
happens at the valueh5x2 /(x11x2).0.33 and confirmed
by simulations that the polaron in the chain with this ra
can propagate freely, similarly to transparent propagation
narrow topological defects in discrete nonlinear Klei
Gordon systems.31
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APPENDIX A: DISPLACEMENT FIELDS AND
CORRESPONDING DNLS EQUATIONS

1. Site-centered self-localized states

a. The casehÄ0 (x1Ì0, x2Ä0)

Using Eq.~15! for the particular caseh50, the result Eq.
~25! can be rewritten in terms ofw j

2 , j 50,1, . . . , asfollows:

u15GF2~b21w0
21b22w1

2!1~b2b21!(
j 52

`

b2 jw j
2G .

~A1!

In this series, the first two terms are negative while the oth
are positive. Substituting the series~A1! in Eq. ~19! whereRj
is defined by Eq.~15! with h50 and using the representatio
for the polynomialsKn

[2z] given by Eq. ~24!, we find the
following series for the displacementun :

un5G(
j 50

`

Ajnw j
2 , n>1, ~A2!

where the matrix coefficients Ajn , j 50,1, . . . , n
51,2, . . . , aregiven by

A0n52b2n, n>1,

Ajn52~bj1b2 j !b2n, 1< j <n21, n>2,

Ann52b22n, n>1,

Ajn5b2 j~bn2b2n!, j >n11, n>1. ~A3!

Using the series representation~A2! in Eq. ~8! with h
50, we get the following stationary DNLS equation:
2-11
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wn1122wn1wn211l0(
j 50

`

~Aj ,n212Aj ,n11!w j
2wn

1~«/cosk!wn50, n>0, ~A4!

where Aj 050, Aj ,215Aj 1, and w215w1. Here the
~quasi!particle-phonon coupling parameterl0 is given
through the expression forl defined by Eq.~16!:

l0[luh505ab/4~12s2!cosk. ~A5!

b. The casehÄ1 (x1Ä0, x2Ì0)

Similarly, using the expression~15! at h51, the series
~25! is rewritten in terms ofw jw j 11 , j 50,1, . . . , asfol-
lows:

u152G coskF2b21w0w11~12b21!(
j 51

`

b2 jw jw j 11G .

~A6!
Here the first term is negative while the others are posit
In the same way as above, using Eq.~15! with h51, the
explicit formula ~24!, and the series~A6!, we find that the
series~19! is transformed to

un52G cosk(
j 50

`

Bjnw jw j 11 , n>1, ~A7!

where the coefficientsBjn , j 50,1, . . . , n51,2, . . . , are
given by

B0n52b2n, n>1,

Bjn52
1

b11
~bj 111b2 j !b2n, 1< j <n21, n>2,

Bjn5
1

b11
b2 j~bn2b2n!, j >n>1. ~A8!

In a similar way, using the series~A7!, Eq. ~8! at h51 is
transformed to

wn1122wn1wn2112l1(
j 50

`

@~Bj ,n212Bjn!wn211~Bjn

2Bj ,n11!wn11#w jw j 111~«/cosk!wn50, n>0,

~A9!

where Bj 050, Bj ,2152Bj 1, and w215w1 . The reduced
coupling parameterl1 is given by@see Eq.~16!#

l1[luh515ab cosk/4~12s2!. ~A10!

2. Bond-centered self-localized states

a. The casehÄ0 (x1Ì0, x2Ä0)

In the same way as for theSstates, using Eq.~15! for the
particular caseh50, the series~29! can be rewritten in terms
of w j

2 , j 51,2, . . . , asfollows:
05430
.

u15GF2b21w1
21~b21!(

j 52

`

b2 jw j
2G , ~A11!

where we have used the relationw05w1 @see Eq.~18!#. The
first term of the series~A11! is negative while the others ar
positive. Substituting next the series~A11! in Eq. ~26!,
where Rj is defined by Eq.~15! with h50 and using the
representation for the polynomialsKn

[2z] and Kn
[2z11] given

by Eqs.~24! and~28!, we find the displacement fieldun as a
series

un5G(
j 51

`

Cjnw j
2 , n>1, ~A12!

where the matrix coefficientsCjn , j ,n51,2, . . . , aregiven
by

Cnn52b22n11, n>1,

Cjn52~bj1b2 j 11!b2n, 1< j <n21, n>2,

Cjn5b2 j~bn2b2n11!, j >n11, n>1. ~A13!

Similarly, using the series representation~A12! in Eq. ~8!
with h50, one obtains the stationary DNLS equation

wn1122wn1wn211l0(
j 51

`

~Cj ,n212Cj ,n11!w j
2wn

1~«/cosk!wn50, n>1, ~A14!

whereCj 052Cj 1 , w05w1, and the coupling constantl0 is
given by Eq.~A5!.

b. The casehÄ1 „x1Ä0, x2Ì0…

In the same way as for theS states, using the expressio
~15! at h51, the series~29! is rewritten in terms of
w jw j 11 , j 50,1, . . . , as

u15
2G cosk

b11 F2w1
21~b21!(

j 51

`

b2 jw jw j 11G .

~A15!

As above, the first term in this series is negative while
others are positive. Using next Eq.~15! with h51, and in-
serting the expressions~24!, ~28!, and ~A15! in the series
~26!, we find

un52G cosk(
j 50

`

D jnw jw j 11 , n>1, ~A16!

where w05w1 and the coefficientsD jn , j 50,1, . . . , n
51,2, . . . , aregiven by

D0n52
b2n11

b11
, n>1,

D jn52
1

b11
~bj1b2 j !b2n11, 1< j <n21, n>2,
2-12
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D jn5
1

b11
b2 j~bn2b2n11!, j >n, n>1. ~A17!

Similarly, the corresponding DNLS equation is found fro
Eq. ~8! with h51, using the representation~A16!:

wn1122wn1wn2112l1(
j 50

`

@~D j ,n212D jn!wn211~D jn

2D j ,n11!wn11#w jw j 111~«/cosk!wn50, n>1,

~A18!

whereD j 052D j 1 , w05w1, and the coupling constantl1
is given by Eq.~A10!.

The nonlinearity in each of the stationary DNLS equ
tions ~A4!, ~A9!, ~A14!, or ~A18! contains infinite series tha
in the continuum limit are transformed to integral terms.
can easily be checked that in the limiting caseb→1 the
coefficients~A3!, ~A8!, ~A13!, and~A17! take a simple form,
so that the series in the corresponding DNLS equations
reduced to single cubic nonlinear terms.

APPENDIX B: THE P, W, AND Y FUNCTIONS
AND THEIR BEHAVIOR

The four functionsP(b;q) that appear in Eqs.~34! and
~38! are given by

PS05
b

11q2 , PS15
4bq2

~11q2!3 , PB05
1

4
~2b112q2!,

PB1

5
~12q!@~2b1q!q~11q2!1b~b1q2!#12bq2~b1q!

~b11!~11q!~11q2!
.

~B1!
ys

05430
-

t

re

The functions~B1! have small variation in the interval 0
<q<1 and each of them tends tob/2 if q→1.

The other four functionsW(b;q) that are involved in Eq.
~39! as factors have also small variation and are given
plicitly by

WS05bq~2b211bq222q2!,

WS15
2bq

~11q2!2 ~2b16bq22q21bq426q41q6!,

WB05
1

2
q~11q!~3b22123bq21q4!,

WB15
1

~b11!~11q2!2 $~b21!@b2~11q2q218q32q4

15q5!1bq~11q16q2114q329q417q528q6!

1q3~716q23q228q326q513q6!#12q3~12q2!

3~11q!~32q4!%. ~B2!

In each of the four casesSn andBn, n51,2, the func-
tions Y(q) @see Eq.~40!# are defined by

YS0511q, YS15
~11q!~11q2!2

2~4q2212q4!
,

YB05
2

22q2 , YB15
~11q2!2

q2~32q4!
. ~B3!

All these four functions have the same limit (Y→2) when
q→1.
ys.
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