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We study a dynamic model of relaxor ferroelectrics based on the spherical random-bond—random-field
model and the Langevin equations of motion written in the representation of eigenstates of the random
interaction matrix. The solution to these equations is obtained in the long-time limit where the system reaches
an equilibrium state in the presence of random local electric fields. The complex dynamic linear and third-order
nonlinear susceptibilitiey;(w) and y3(w), respectively, are calculated as functions of frequency and tem-
perature. In analogy with the static case, the dynamic model predicts a narrow frequency dependent peak in
x3(T,»), which mimics a transition into a glasslike state, but a real transition never occurs in the case of
nonzero random fields. A freezing transition can be described by introducing the empirical Vogel-PdEher
behavior of the relaxation timein the equations of motion, with the VF temperatiigeplaying the role of the
freezing temperaturd;. The scaled third-order nonlinear susceptibilay(T,w)=x4(w)/x}(3w) x}(w)3,
where the bar denotes a statistical average dygrshows a crossover from paraelectriclike to glasslike
behavior in the quasistatic regime above The shape ofl(w) and;S(w)—and thus ofa}(T,w)—depends
crucially on the probability distribution of. It is shown that for a linear distribution of VF temperatuiigs
a;(T,w) has a peak nedF; and shows a strong frequency dispersion in the low-temperature region.
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[. INTRODUCTION note that Korneet al!* have reported a relaxor phase in the
dipolar glass Rp_,(ND,),D,PQ, in a narrow range of con-
Relaxor ferroelectricgor relaxors represent a different centration just above the dipolar glass phase, where the sys-
low-temperature state of polar dielectrics, which can be relém is expected to behave as an inhomogeneous antiferro-
garded as an intermediate state between dipolar glasses af§Ctrc: . .
normal ferroelectricd:? Some of the concepts developed for . While the static SRBRF model describes a relaxor system

) in thermodynamic equilibrium, there are a number of phe-
dipolar glasses, suclh alcs)l the Ed\llvards—Andel(ﬁm) order Inomena suggesting that relaxors, in particular their low-
parameter, are applicable to relaxors as well, as recently, \herature state, are dominated by nonequilibrium effects.

shown for PbMgigNb,505 (PMN),® PbSg,Tay,05 (PST)*  Typical examples are the difference between the field-cooled
and Pl_,La(Zr,Tiy_,)1_x403 (PLZT).® In contrast to di- and zero-field-cooled static dielectric constant, and the oc-
polar glasses, where elementary dipole moments exist on theurrence of strong frequency dispersion in both the linear
atomic scale, the relaxor state is characterized by the presnd nonlinear dielectric permittivity at low temperatures. It is
ence of nanosized polar clusters of variable sizes. This picslear that these properties can only be discussed within a
ture constitutes the basis of the superparaelectric thedel ~ dynamic model. In the present paper, we introduce a dy-
of the more recent reorientable polar cluster model off@mic model, which an extension of the SRBRF model to
relaxors2® By including explicitly the long-range frustrated dynamic problems. Following Vugmeister and Rabfve
intercluster interactions of a spin-glass type into this picture2SSuUme that polar clusters can reorient with a characteristic
one arrives at the so-called spherical random-bond—randorr\ﬁlglaxat'on- timer and write dc_)wn the corresponding ange—
: Co in equations of motion, which are based on the static SR-
field (SRBRF model of relaxor ferroelectricswhich is ca-  grg Hamiltonian. These equations explicitly contain the
pable of describing the static behavior of relaxors, such agystrated interactions between the polar clusters and thus
the line shape of quadrupole perturbed NMR in PNRef.  allow us to study the effects of these interactions on both the
3) and PST and the sharp increase of the quasistatic thirdequilibrium and nonequilibrium properties. In particular, we
order nonlinear dielectric constaft. will discuss here the anomalous temperature dependence of
The unusually large value of the static linear dielectricthe nonlinear dielectric susceptibility and the crossover from
permittivity can also be explained within the framework of the paraelectriclike to inhomogeneous ferroelectriclike be-
the SRBRF model if one assumes that the mean value of theavior observed in PMN and PLZTAs in spin glasses, the
random couplingJ, is very close to—but slightly smaller Langevin equations based on the spherical model can be
than—its r.m.s. variancé, whereas in dipolar glasses the solved exactly’? some additional features appear in view of
latter is usually dominant. By including aad hocelectric  the presence of random fielfsHere we will focus on the
field dependence af, into the model, one can furthermore asymptotic solutions corresponding to equilibrium dynamics,
describe the transition from the relaxor to an inhomogeneousuch as observed in a typical dielectric relaxation experi-
ferroelectric state for fieldg exceeding a critical valuE..®  ment.
It should be noted, however, that the random electric fields, In Sec. Il we introduce the uniaxial SRBRF model Hamil-
which exist both in dipolar glass€sand in relaxor,®®  tonian in the representation of eigenstates of the random in-
seem to be much weaker in the latter case. It is interesting tteraction and write down the Langevin equations of motion.
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The asymptotic solution is studied in Sec. Ill, where thetwo stepsl_S First, one introduces ‘“spin-wave” stateS,
static linear and nonlinear susceptibilities are derived. In Sec=N~123, exp(kR)S; next, these are expanded in normal

IV the dynamic linear response is given, and in Sec. V thenodes
corresponding results for the third-order nonlinear response
are derived. Finally, in Sec. VI we present our conclusions.

IIl. DYNAMIC SRBRF MODEL

In general, the polarization ofth polar cluster, i
=1,2,... N, is a three componentn&3) vector §i
=(Six,Sy,S;;), its length being restricted solely by the
spherical conditionEi(éi)Z:SN. In the present work we
will discuss the simpler uniaxialn=1) case— N<S<
+ /N, whereS; is subject to the spherical condition

N
;1 S?=N. (1)
The SRBRF model Hamiltonian is thus
1
H=-32 3SS-2 hS-gEX S, @

where J”
tions, h; local random electric field€ an applied uniform
electric field, andg the appropriate dipole momehtAs

usual,J;; is assumed to be infinitely ranged and distributed

according to Gaussian statistics with average vaj/é& and
cumulant variancgd?/N. The Gaussian random fields are
characterized by the random average

[hihjlay =243 . (€©))

The uniaxial SRBRF mod€PR) has potential applicability to
uniaxial relaxors such as Sr,BaNb,Og (SBN). The

present results can be, however, generalized to the isotropic

n=3 case as long as there is no mixing of tkgy,z
componentg.

The Langevin equations of motion for the variab&&t)
are written as

S
o

I(BH)
IS

—2z()S(H) + &(1). (4)

Here 7 is the characteristic relaxation time for the reorienta-

tion of polar clusters. Equatio) implies thatr is site in-
dependent, however, some variationofcross the system

should in principle not be excluded, resulting in a distribu-

tion of relaxation time:® The functionz(t) plays the role of
a Lagrange multiplier enforcing the spherical conditigpat
all times??

The stochastic Langevin force%(t) ensure the proper

equilibrium distribution and are determined by their en-

semble averages

(&i(D&(t))ay =270 0(t—t"). ©)

are the randomly frustrated intercluster interac-

§=20 (kS 6)
The transformed equation of motigd) becomes explicitly
IS,
7=B[JrZZ(I)JSA+B[hx+g‘1’x(0)E(t)]+éx(t)-

(7)

HereW, (0)= Ny, (0) and we have rescaled the time to a
new dimensionless variabke—t/7. Assuming a fieldE(t)
applied att=0 and introducing the integrating factor

d)x(t):ex;{,&]kt—thdt’z(t’) (8
0
we obtain the solution
t t
S\ = (1S, (0)+ fodtlj:((tl))
X[ Bhy+BgW\(0)E(ty) + & (11)] 9
The correlation function
1
Ctt) =5 2 (SiDS(1))a, (10

must satisfy the equal time relati@(t,t)=1 at all times in
view of the spherical conditiofil). From Eqgs.(9) and (10)

with the aid of Eq.(3) we thus find
pi(1)? >>
o (12 ]

b [t (D)2
8 Afodtlfodt2<< XIS

ik t P (1)?
A fodtlfodt2<< \(ty) y(t2) E(t)E(ta).

(11)

This is an implicit equation for the Lagrange multipligt).
The two types of averages are defined as

1:<<¢>\(t)2s>\(0)2>>0+Zfotdt1<<

1
o=y S = [ dapoai@y: @2

1
(E=x = W07 = [ dap@0rEy, 13

wherepy(J,) andp(J,) are the densities of eigenvalues in

Following the theory of spherical spin glasses we nowthe k#0 andk=0 sector of the spectrum, respectively. The

transform to the representation of eigenstatgék) and ei-
genvaluesJ, of the random matrix;; .*****3This is done in

eigenvalues], have a continuous spectrum2J<J, <2J.
If |Jo|>J, there is also a discrete eigenvalue Jt=J,
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+J213,.1* Here we will only discuss the casdy|<J. Thek 10
#0 density of states is given by the Wigner semicircle 0.12
lawt4 15 8 - 0.08
1  oin ol N 0.04
Po(I) =532 (4"= )" (14) . 0.00
al 0.0 05 10 L5 20
Thek=0 sector, on the other hand, has the def3ity /3
1 2 12\1/2 i
Jy\)= (43— . 15
SN 2m(2+ 2= 303))" M (A9

This density of states has a statistical wei@htLl/N) and is
thus relevant only in averages containing factors of the type T/

2
¥(0) OC.O(N)'. o FIG. 1. Solution of Eq(23) for the Lagrange multipliez(T)
The dielectric polarization of the system can be expressegy-ineqd numerically in zero fieldE(=0) and for A/J%=0.001.

in terms of the solutiort9) as Inset: Proof thaz— BJ>0 at all temperatures.
1 . .
P(t)=— > g¥,(0)¢,(1)S,(0) The averages in Eq6l8) and(19) can be expressed in terms
N X of the generalized averages obtained by adding an imaginary

t by (1) generating fieldy to the variableg, , namely,
2 A
o fodtl<< ¢x(t1)>> Flh) o () << ; >>
X1 = /|

As shown by Cugliandolo and Dedhfor times larger (9 =1y)
than a limiting timet; the system in whici #0 will always  These averages can be evaluated with the aid of @
reach an equilibrium state and will thus be characterized by15) for n=0, differentiatingn times with respect toy, and
equilibrium dynamics. All information about the initial state settingy=0. For example, from Eq<€19) and (20) with n
S\(0) is lost fort>t., i.e., the first term in E(16) becomes =0 andy=0 we find
irrelevant. In the present casd. is estimated ast.

(20

~27JT/A. Typically, the asymptotic regimé>t. is ex- 0l z—r—pBJy
plored in a dielectric relaxation experiment. In the following, xi=xi (0)= B(I2+33)—2B3yz’ (22)
we will limit ourselves to this regime. Also, for simplicity
we will henceforth seg=1. wherer = \/z2— g%J2.
Then=1 average is given by
Ill. STATIC DIELECTRIC RESPONSE
a o Bz -ty 1 283 B
We first consider the case of a static electric fiElt) X1 (Y)=7% bly) iy byt Dy (22)

=E applied att=0. At asymptotic timed/>1 the system .
reaches equilibrium and the Lagrange multipiién) tendsto ~ where z(y)=z—iy/2, r(y)=+z(y) =%, and D(y)

a constant value. Thus the function(8) becomes =B2(3%+33) —28dpz(y).
The above equation fa, Eq. (18), becomes in this nota-
H(H)~e ht (g,=2z-BJ)), (17)  tion:
and we can evaluate the integrals in Edsl) and (16). As- 1
suming that 2> J, for all A (to be justified laterwe de- 1=~ xPN0)o+ BAXH(0)o+ BEXH(0), (23
rive the equation foz B
where the averageg!”'(0), and x*!(0), are obtained by
1- 1 BN 1 settingd,=0 in Egs.(21) and(22), respectively, angt}*(0)
2z—BJ, (2z—BJ,)? is given by Eq.(22) with y=0.
0 0 We will also need thay=2 average
2g2 ! 1 (22 1
A <<(22—,BJ)\)2>>' 19 X[12](0)0=W r—s—;}- (24)
~ The static linear susceptibility,=(JP/JE)go is de- A numerical solutionz(T) of Eq. (23) in zero field €
rived from Eqs.(16) and (17): =0) can be found at all temperatures and is independent of
1 Jo as long agJy|<J. An example is shown in Fig. 1 for
- — A/J?=0.001. The inset shows that BJ is always positive,
el Z). o SESBIS
O\ and since 4 is the largest eigenvalue df one can see that
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indeed 2>2pJ, for all A as assumed earlier. When both static limit «—0 we will define the third-order nonlinear
E+#0 andJy#0, there are in general two complex solutions dynamic susceptibility asys(w)=— x3w). From Egs.
for z(E,T) and the present theory is not applicable. In the(28)—(30) we thus find

following we will only consider the cases in which a real

solution z(T) exists and has a real second derivat#/e _dP, . (31)
— d22/dE? at E=0. Xl =5E )|

For A=0 andE=0, Eq. (23) reduces to the equation 0
derived in Ref. 14, which has the solutiag=(1+ 82J?)/2 1 P
for T=J. For T<<J, however, the solution does not exist and xa(w)=—= P30 (32)
z must be obtained from the saddle-point conditibgjeld- 6 a(Eo/2°|, _,
ing zo=BJ. 0

A numerical evaluation shows that the express@h for In the asymptotic regime, the functiap, (t) in Eq. (16)

the static linear susceptibility fully agrees with the result ob-penaves as
tained by means of replica theory in Ref. 7.
One can also calculate the static third-order nonlinear sus- Py (1)~ ni-2e(®) (33

ceptibilit , which is defined in terms of the expansion . .
PHBILY X3, WhICh IS CEtl I S xpansi where we have defined(t)= f5dt'[z(t")—z], with z rep-

P=x:E—x3E3+ .... (25)  resenting the solution of Eq18). The first part of the re-
sponse(16), which will be proportional to~E, exp(—iwt),

Obviously, x3=—(1/6)(9°P/JE%)c_o. Using Egs. (16), s now given by

(17), and(20) we find

t

X3=x1(0)z5. (26)  P(t)= ﬁ(%) f Jdt(eat e e et c.e.

Evaluatingzy=(d?z/dE?)g_, from Eq. (23) we obtain the (34)
result

A. Linear dynamic susceptibility
Xi1(0)? o
3= T T , (27) The part ofP1(w), which is linear inEy, is trivially ob-
xH(0)o+282Ax1(0)g tained from Eq(34) by noting thate(t)=0 for Eq=0. We

[2] can thus evaluate the integral and using 84) we find

where ;7' (0), is given by Eq.(24) above. The last expres-
sion has been evaluated numerically and found to be pre- 1

cisely equivalent to the result derived in Ref. 7 using the Xl(cu)=[3<< . >> (35
replica formalism. holo

Comparing with Eqs(19) and(20) we realize that the aver-
IV. DYNAMIC RESPONSE ages of the above type can be evaluated with the aid of Eq.
(20), in which we sety=w andn=0, yielding (with 7 re-

We now consider the case of an oscillating electric fleldStored

E(t)=E, cost). This is inserted into Eq.(16). At
asymptotic timeg>t, the response can be written by anal- i N 2_p292_
ogy with Eq(25) a§.6 Xl(w): Z—iw7/2 \/(Z |(0T/2) B J B\]o . (36)

_ A B(I%2+33)—2Jg(z— i w72)
P()~[P,e "'+ Ps,e 3+ ... ]+cc, (28

For w—0 this obviously reduces to the static susceptibility
whereP, and P, are the amplitudes of the first and third (27).

harmonic response, respectively, which are given by The temperature behavior gf () will crucially depend
E £\3 on the temperature variation of the relaxation tin¢&). The
0 0 i i i

Pw=X1,o(w)(— +X1,1(w)(— T (29) SRBRF mode(Z) and the equations of motid#d) cpntaln 92

2 2 information aboutr(T). It has been found empiricall{*

5 5 that some of the properties of relaxors can be described by
Eo Eo assuming a Vogel-FulchéWF) relationship forr, namely,
P3w=X3,o<w>(7 +x3,1(w)(7 to. (0 9aves P b lorn, hamey
U
Here we have introduced the linear dynamic response T=Tg GX%T_TO). 37

X10w), the third-order nonlinear responsegs (w) and
X3olw), etc. We will focus on the first harmonic linear re- whereT is the VF temperature. This expression is valid for
sponsey; o(w), which is equivalent to the dynamic linear T>T, and would lead to a divergence ofor T—T,. There
susceptibilityy;(w) = x1 o(w), and on the third-order nonlin- is noa priori relation betwee, and the parameters of the
ear responsez o(w). The latter is typically measured by SRBRF model. A similar situation occurs in Ising dipolar
monitoring the third harmonic component B{t) at small glasses, where a probability distribution of relaxation times
amplitudes of the fieldEy.> In order to ensure the proper g(In7) has been used in combination with an empirical

054203-4



DYNAMICS OF RELAXOR FERROELECTRICS PHYSICAL REVIEW B3 054203

35 9

30F
T 25t 5
c =
S 20t =]
g g
& 15l s
= o 22

5L

0
_ 12t _
2 2
sl =
g g
S &
s 6L :
= I=

3_

0

1.5

FIG. 2. Real and imaginary parts of the linear susceptibility in  FIG. 3. Real and imaginary parts of the linear susceptibility

the case of a single Vogel-FulcherF) type relaxation timdEq.  averaged over a linear probability distribution of VF temperature
(37)] as functions of temperature for several values of frequency, ag,, with 0<Ty<J.

indicated. Note that the response is strictly zero below the VF tem-

eratureTy=1J. . . .. . . . . .
P 0 ation time (37); (i) a nonsingular distribution of barrier

Debye-type respons&.With 7 lying in the ranger,< = heightsg(U?; (iii) a di_stril:_)utioTn of relaxation ti_meg(ln 7)
< Tmax» the VF temperatur&, has been identified with the Such that its normalizationf ,"*drg(In 7)/7 diverges as
freezing temperatur@;. On the other handry,;, has been 7 . . The first case is illustrated in Fig. 2, where we
fitted to an Arrhenius-type expressian,i,<expE/T). The  show the calculated real and imaginary parts)q{T, )
same approach was found to be applicable to relaxors as0 for several values of frequency assuming a single VF
well.* relaxation time(37). As in Fig. 1 we assumé,=0.9 and

An alternative approach is based on the master equation/Jj2=0.001, as well ad,=J. Such behavior is incompat-
for the reorientation of cluster polarization assuming a VFiple with experiments, which generally show a smooth de-

relaxation time of the typé37), where the barrier helghlS crease oin(T’w) andXé{_(T,ﬂ)) across the region WhefE)

are distributed according to a Gaussian probabilityis expected to be located.
. 2 .
function?® Such an approach was found to be applicable to A more realistic description can be obtained, for example

PMN and PST in the regiof>T,. by assuming a distributiom(T,) of VF temperaturesT,

In ge_n(_a_ral, we can thus introduce the average dy”am'(?vhereTo is allowed to vary in the range<0To<TT2*. Us-

susceptibility ing the relationd(In Ag(In H=dTy(T,) in Eq. (38) and

- e d T choosing a linear distributionv(Tg)=2(1—Ty/J)/J with
xi(w)= f —a(In7)x1(w), (38)  Tp¥=J, we obtain the temperature dependence of the linear
Tmin susceptibility shown in Fig. 3. Here we used the same set of

where the probability distribution of relaxation timgéln ) ~ Parameters asin Fig. 2. In contrast to the single VF tempera-
is physically justified by the fact that relaxors are inherentlyture case, the above distribution leads to nonzero values of

inhomogeneous systems due to compositional disorder. Thugi(®) at all temperatures. The shape of the real and imagi-
one may imagine, for example, that the relaxor system conmary part ofy;(w) is in qualitative agreement with the ob-
sists of a set of macroscopic regions, which are formallyserved relaxation spectra in PM[Ref. 19 and PLZT%
characterized by the same microscopic equation of motion, It should be noted, however, that the above result for the
but differ in the value of the parameter linear susceptibility contains only the contribution of polar
One encounters serious difficulties in attempting to de-clusters. Other contributions may exist—for example, that of
scribe the dynamic response B T,. Formally one could optic phonons—which are not expected to show any anoma-
assume thatr—oo for T<T,, but this will lead to a zero lies nearT;. In general, such contributions can be written as
value of y;(w) =0 at all temperatures<T,. We can single a sum of Debye-like terms, with the possibility of an average
out the following representative casé€:a single VF relax- over the corresponding relaxation times. At present, the
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problem of a realistic relaxation time distribution in relaxors, J,/J.?®> To leading order the result is independent of the
which would be appropriate at all temperatures, has not ygpbarameted, and shows that foA<J? and T<J one has a

been resolved. power-law behaviody;(t)~ (t/7) 2 implying a slow de-
cay and a large difference between the two susceptibilities,
B. Zero-field-cooled susceptibility which has been observed experimentailyOn the other

hand, forT>J the asymptotic behavior is a combination of

power law and exponential, i.e.dx,(t)~(t/7) 2 exp

[—2(z—BI)t/7]. Thus in this regime the difference decays

much faster and the two susceptibilities become indistin-
 axy(w) 7t guishable on a typical experimental time scale.

Tetf= — 18 lim (?— (39)

w

In analogy with Ising spin glass&sand dipolar glassé%
one can introduce an effective relaxation time for the low-
frequency response

w—0

V. NONLINEAR DIELECTRIC SUSCEPTIBILITY
Returning to Eq.(31) and using the above definition of

X[ll](y) from Eq. (22) in which we sely= w7, we obtain the To calculate the third-order partial derivative in £§2)

we return to Eq(34), in which ¢(t) is now a function of,.

result In general,p(t) will be a sum of terms, which are even
X[ll](wT) powers _oone’—'i“’t. We will focus on the second-order term
Teffzzﬂ 7 lim———-. (40 ~Ege 2!, Introducing the function
w—0 X1()
It will be shown later that the real part of the nonlinear X(t)= o"2<p(t)2 (44)
susceptibility ys(w) is also proportional toy!!!(w) and in d(Eol2)

Eg=0
the static limit shows a sharp peak at the “freezing” tem-
peratureT;~J for A<J?, while it actually diverges ifA we can express the third partial derivative in E8Q) as
=0. Sincey;(w) is a well behaved function of temperature,

it follows that 7.¢; increases as-(T—J) ! on approaching *Ps, st [ o=t g (t—t1)

T, however, it remains finite af;. Thus the behavior of HES2)? =—6pe f dt;e V(e nET
Toss MimMics the freezing transition in this case. A true freez- 0

ing transition afT =T, can be described by assuming a VF X[X(t) = X(ty)] (45)
temperature dependence of which is then transferred to v

Tett Via Eq. (40). The functionX(t) will be calculated from Eq(11) in the

Whenr; is large, the system will only reach equilibrium asymptotic limit. Considering only the terms, which asymp-

at timest> 7.¢¢, which may become very long. In measuring totically behave as-e~2“! and taking the second derivative
the static susceptibility; one should distinguish between yjith respect toE /2 leads to

the field-cooled and zero-field-cooled susceptibiliff® and

X5FC, respectively. Herg/ [ © is given by Eq.(19) and cor-

responds to an experiment carried out on a time stale 0=-4

> 74¢r. ON the other handy$"© can be obtained by turning

t t t
fdtl<<e*29A(Hl>>>o—232Af dtlf dt,
0 0 0

on a field E(t;)=E at time t;=0 and measuring the re- gy (Z—ty—ty)
sponseP(t) at timet>t, as described by Eq16). Thus we X((em WETTRN )6 I[[X(1) = X(ty)]
can write
t t
aPt t t + ZJ dt J dt e—g)\(Zt—tl—tz) e_iw(tl+t2)_
Xti(t):_( ):ﬁf dt1<<—%( )>> (42) A7)t | Al %
JE 0 i (ty)

(46)
and using Eq(17) we find

—— 1_e_(22—BJ}\)t/T
X1 (t)_B<<22——M : (42)

_ 1
24— 2iwt
Fort—co this reduces to the previous res(l®), which cor- +pe << (gx—iw)2>> ' (47)
responds tg(fc. The difference between the two suscepti-
bilities Sy (t)=x"°—x™¢

The last double integral becomes for asymptotic valuets of

(1) is given by We now apply the Laplace transform to E46) using the

o~ (22 )UIr definition

5X1(t)=,3<<22_—M>> =Bft:cdt1<<e_(22_ﬁj”)tl>>- )
(43) X(p)= fo dt e PIX(t) (48)

The value of the integral can be estimated by first using Egs.
(13) and (15 and expanding the integrand in powers of and obtain the result
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= _
G e

The averages can be expressed in terms of the generalized res(f)ses

The functionX(t) can be obtained by the inverse Laplace transform. Its behavior is determined by theppeles
+ipy of X(p). A numerical evaluation shows that all poles are such &t 0. At asymptotic times only those poles for
which p,=0 will be relevant. There is only one such pole, namelys — 2i w leading to

(49

Xlll](w)e—zmt

—x1(2
Xl(O)O_Xl(w)0+EZA[X[ll](O)o‘F Xl(mozi:)l( =

BZ

X(t)~(7) . (50)

Inserting this expression into E¢5), evaluating the integral, and returning to E§2), we obtain the final result for the
complex third-order nonlinear susceptibilitywith 7 restoregt

2 (o w)— 3w
Xg(w):(%> X1 ( 7) [x1(@) — x1(3w)] . (51)

(00 xa(2a)
xl<0>o—xl<w>o+ﬁzA[x5”<0)o+ T A

Here y1Y(w7) is given by Eq.(22) with y=w7, andy;(w)  suggested thaas(T) could also be extracted from the dy-
by Eq.(36). namic linear and nonlinear susceptibilities by considering the
This expression may now be averaged over the distribufollowing generalized functio®*

tion of relaxation timeg as argued in the paragraph preced- _
ing Eq.(39). In Fig. 4 the real and imaginary parts pf(®) al(T.w) = x3(®)

. (T o)==-"—=—=. (52)
are plotted as functions of temperature for several values of X1(3w)xi(w)3
frequency. In analogy with the case gf(w) above, a VF
behavior(37) of = and a linear distribution of VF tempera- In Fig. 5,a5(T, ) is plotted as a function of temperature
tures Ty has been used. The values of the parameters arfer the same set of parameters as in Fig. 4. Each of the three
again Jo/J=0.9 andA/J?=0.001. The real pary4(T,w) factorsin Eq.(52) has been averaged over the linear distri-
has a sharp peak ne@i=J, whose origin can be traced back bution of To. Obviously,as(T,w) develops a peak ned
to the function y}'!(w) appearing in Eq(51). As in the =Jat all frequencies shown. On the highside of the peak,
linear susceptibility case, a strong frequency dispersion i&s(T) is independent of frequency and agrees with the static
evident. In the limit of small frequencies, i.esmo<1, the as. Near the peak and on its loW-side, however, strong
behavior ofy}(T) is the same as in the static case studied by'€duency dispersion appears. Recent experiments in PMN

replica theory. At high frequencies and low temperatures, and PLZT(Ref. 5 indicate that the high- quasistatic part of
a;(T) exhibits a crossover between the paraelectriclike de-

x3(T,0) ma); Eecgrlne n;:gatl\(e dqe to the Iasrt] factor n thecreasing behavior and a glasslike increasing behavior on ap-
_rmmer;torto q(t t)) Wbose wgaglna_tlry part ctr?_nges Sl'dgn proachingT;. This type of behavior is characteristic of re-
IS effect cannot be observed easlly, Since this WOU Ter,y 4 farroelectrics. The crossover can be qualitatively

quire a measurement of the nonliﬂear susceptibility in thedescribed by the present dynamic SRBRF model, as shown
range where the absolute value 9§(T,w) is extremely n the inset of Fig. 5. The model also correctly predicts the
small compared to its peak value. It is easily verified that inpnset of strong frequency dispersionaf(T,w) at low tem-

the limit —0, Eq.(51) reduces to the static resu7). peratures, which has been observed in both PMN and PLZT.
It has been shown in the static thebtigat a crucial quan-

tity, which can discriminate between the dipolar glasslike
and ferroelectric behavior, is ngt;(T) but rather the res-
caled static nonlinear susceptibilit93=x3lx‘1‘. In spin We have presented a dynamic model of uniaxial relaxor
glasses without random fields(T) diverges afl;, andina ferroelectrics based on the recently developed static spherical
relaxor it develops a peak ne@iy, whereas in a ferroelectric random-bond—random-fiekSRBRP model’ Following the

with long-range ordea; decreases with decreasing tempera-theory of spherical models of spin glas§es the order-
ture on approaching the critical temperatilite'® It has been  parameter field is assumed to obey the Langevin equation of

VI. CONCLUSIONS
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% 6k ," i m“_ 10° FIG. 5. Temperature dependence of the scaled nonlinear suscep-
[ R o= 71 el -c
; H '| —. wt,=10" tibility aj(T,)=x3(®)/x1(3w)x;(w)® obtained with the same
3 I! “ parameter values as in Figs. 2—4. The inset shows the crossover
. A I 4 A from the decreasing paraelectriclike to increasing glasslike behavior
I j’f’ ‘| in the quasistatic regime above the peak.
,r ||"
‘ . .
Ty has been set equal to the static “freezing” temperature
. T, which is determined by the random bond strength pa-

14 16 rameterJ.
The actual shape of(T,w) and y3(T,w), where the bar
FIG. 4. Calculated temperature dependence of the real anfl€@ns an average overor equivalently ovefTo, strongly
imaginary parts of the third-order nonlinear susceptibility averagede€pends on the probability distribution of relaxation times
over a linear distribution of, using the same parameter values asg(In 7).
in Figs. 2 and 3. Within the framework of the dynamic SRBRF model we
have also calculated the scaled dynamic nonlinear suscepti-

motion written in the representation of eigenstates of thé’!“ty_aé,(T’“’):Xé(“’)/Xi(gw)Xi(“’)3’_"",h'Ch allows one to
random interaction matrix with the spherical condition beingdiScriminate betwezeAn the ferroelectriclike and glasslike be-
enforced at all times. The equations of motion are exactly’@vior of relaxo_ré.' In the quasistatic regime abov,
solvable in the asymptotic limit where the relaxor system@s(T.®) is practically independent ab and its temperature
reaches an equilibrium state. The linear and the third-ordefl€épendence shows a crossover between paraelectriclike and
nonlinear dynamic response functions have been derived. 1@lasslike behavior on approaching; from above. This
the staticw— O limit these results are precisely equivalent to crossover behavior has recently been observed both in PMN
the static linear and nonlinear susceptibilitesand x5, re-  and PLZT® The calculated shape af;(T,w) and y3(T,»),
spectively, obtained earlier by the replica metfiod. and hence of3(T,w), strongly depends on the probability
In analogy with the static case, the dynamic theory doeslistribution of relaxation timeg(In 7). In the present work
not predict a sharp transition into a dipolar glasslike statewe did not attempt to investigate in detail the effects of
Rather, in the case of weak random fields the third-ordeg(In 7) on the behavior of these quantities; however, we have
susceptibility shows a narrow peak at a temperaflife  shown that if one assumes a linear distribution of VF tem-
which mimics tTehfrefezing transition. Withinlthe context of & peratures T,, the predicted behavior ofy,(T,w) and
e o S0 (T,0) is in ualtatve agreement wih experiments i
9 > long ; ' SYSTMb0 N (Refs. 5, 19, and 24and PLZT2°50n the other hand,
However, the dynamic SRBRF model contains no informa-_, . -
tion on the behavior of the relaxation timeappearing in the 33(T,w) obtained in this manner ha:'s a peak nearJ and
. : ; hows a strong frequency dispersion beldw. The pre-
equations of motion, and does not lead to the divergence 03 9 ‘! y disp W P
the effective relaxation time on approachimg. In order to 'Cted. peak 4|n a3(T’.(") has not been observed
describe the observed freezing transition one should ther@xperlmentall)?,_ suggesting that one should perhap_s search
fore introduce a divergent behavior of This can be done, for a m(_)re_reahstlc dlstr|bL_Jt|og(In 7). This problem will be
for example, by assuming a Vogel-FulchstF) law for the ~ dealt with in a future publication.
temperature behavior of in accordance with empirical
findings2® however, this will suppress the dynamic response
at all temperatures lower than the VF temperatlize We
have shown that by introducing a probability distribution of = This work was supported by the Ministry for Science and
VF temperatured, one can obtain linear and nonlinear re- Technology of the Republic of Slovenia. One of the authors
sponse functions which remain finite at all temperatures, ifR.P) is grateful to Silvio Franz and to Boris E. Vugmeister
qualitative agreement with experiments. The largest value dfor helpful suggestions.
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