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Dynamics of relaxor ferroelectrics

R. Pirc, R. Blinc, and V. Bobnar
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We study a dynamic model of relaxor ferroelectrics based on the spherical random-bond–random-field
model and the Langevin equations of motion written in the representation of eigenstates of the random
interaction matrix. The solution to these equations is obtained in the long-time limit where the system reaches
an equilibrium state in the presence of random local electric fields. The complex dynamic linear and third-order
nonlinear susceptibilitiesx1(v) and x3(v), respectively, are calculated as functions of frequency and tem-
perature. In analogy with the static case, the dynamic model predicts a narrow frequency dependent peak in
x3(T,v), which mimics a transition into a glasslike state, but a real transition never occurs in the case of
nonzero random fields. A freezing transition can be described by introducing the empirical Vogel-Fulcher~VF!
behavior of the relaxation timet in the equations of motion, with the VF temperatureT0 playing the role of the

freezing temperatureTf . The scaled third-order nonlinear susceptibilitya38(T,v)5x̄38(v)/x̄18(3v)x̄18(v)3,
where the bar denotes a statistical average overT0, shows a crossover from paraelectriclike to glasslike

behavior in the quasistatic regime aboveTf . The shape ofx̄1(v) andx̄3(v)—and thus ofa38(T,v)—depends
crucially on the probability distribution oft. It is shown that for a linear distribution of VF temperaturesT0 ,
a38(T,v) has a peak nearTf and shows a strong frequency dispersion in the low-temperature region.

DOI: 10.1103/PhysRevB.63.054203 PACS number~s!: 64.70.Pf, 77.22.2d, 77.84.Dy
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I. INTRODUCTION

Relaxor ferroelectrics~or relaxors! represent a differen
low-temperature state of polar dielectrics, which can be
garded as an intermediate state between dipolar glasse
normal ferroelectrics.1,2 Some of the concepts developed f
dipolar glasses, such as the Edwards-Anderson~EA! order
parameter, are applicable to relaxors as well, as rece
shown for PbMg1/3Nb2/3O3 ~PMN!,3 PbSc1/2Ta1/2O3 ~PST!,4

and Pb12xLax(ZryTi12y)12x/4O3 ~PLZT!.5 In contrast to di-
polar glasses, where elementary dipole moments exist on
atomic scale, the relaxor state is characterized by the p
ence of nanosized polar clusters of variable sizes. This
ture constitutes the basis of the superparaelectric model1 and
of the more recent reorientable polar cluster model
relaxors.2,6 By including explicitly the long-range frustrate
intercluster interactions of a spin-glass type into this pictu
one arrives at the so-called spherical random-bond–rand
field ~SRBRF! model of relaxor ferroelectrics,7 which is ca-
pable of describing the static behavior of relaxors, such
the line shape of quadrupole perturbed NMR in PMN~Ref.
3! and PST,4 and the sharp increase of the quasistatic th
order nonlinear dielectric constant.3,5

The unusually large value of the static linear dielect
permittivity can also be explained within the framework
the SRBRF model if one assumes that the mean value o
random couplingJ0 is very close to—but slightly smalle
than—its r.m.s. varianceJ, whereas in dipolar glasses th
latter is usually dominant. By including anad hocelectric
field dependence ofJ0 into the model, one can furthermor
describe the transition from the relaxor to an inhomogene
ferroelectric state for fieldsE exceeding a critical valueEc .8

It should be noted, however, that the random electric fie
which exist both in dipolar glasses10 and in relaxors,2,6,9

seem to be much weaker in the latter case. It is interestin
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note that Korneret al.11 have reported a relaxor phase in th
dipolar glass Rb12x(ND4)xD2PO4 in a narrow range of con-
centration just above the dipolar glass phase, where the
tem is expected to behave as an inhomogeneous antife
electric.

While the static SRBRF model describes a relaxor sys
in thermodynamic equilibrium, there are a number of ph
nomena suggesting that relaxors, in particular their lo
temperature state, are dominated by nonequilibrium effe
Typical examples are the difference between the field-coo
and zero-field-cooled static dielectric constant, and the
currence of strong frequency dispersion in both the lin
and nonlinear dielectric permittivity at low temperatures. It
clear that these properties can only be discussed with
dynamic model. In the present paper, we introduce a
namic model, which an extension of the SRBRF model
dynamic problems. Following Vugmeister and Rabitz2,6 we
assume that polar clusters can reorient with a character
relaxation timet and write down the corresponding Lang
vin equations of motion, which are based on the static S
BRF Hamiltonian. These equations explicitly contain t
frustrated interactions between the polar clusters and
allow us to study the effects of these interactions on both
equilibrium and nonequilibrium properties. In particular, w
will discuss here the anomalous temperature dependenc
the nonlinear dielectric susceptibility and the crossover fr
the paraelectriclike to inhomogeneous ferroelectriclike
havior observed in PMN and PLZT.5 As in spin glasses, the
Langevin equations based on the spherical model can
solved exactly;12 some additional features appear in view
the presence of random fields.13 Here we will focus on the
asymptotic solutions corresponding to equilibrium dynami
such as observed in a typical dielectric relaxation exp
ment.

In Sec. II we introduce the uniaxial SRBRF model Ham
tonian in the representation of eigenstates of the random
teraction and write down the Langevin equations of motio
©2001 The American Physical Society03-1
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The asymptotic solution is studied in Sec. III, where t
static linear and nonlinear susceptibilities are derived. In S
IV the dynamic linear response is given, and in Sec. V
corresponding results for the third-order nonlinear respo
are derived. Finally, in Sec. VI we present our conclusio

II. DYNAMIC SRBRF MODEL

In general, the polarization ofi th polar cluster, i

51,2, . . . ,N, is a three component (n53) vector SW i
5(Six ,Siy ,Siz), its length being restricted solely by th
spherical condition( i(SW i)

253N. In the present work we
will discuss the simpler uniaxial (n51) case2AN,Si,
1AN, whereSi is subject to the spherical condition

(
i 51

N

Si
25N. ~1!

The SRBRF model Hamiltonian is thus

H52
1

2 (
i j

Ji j SiSj2(
i

hiSi2gE(
i

Si , ~2!

where Ji j are the randomly frustrated intercluster intera
tions, hi local random electric fields,E an applied uniform
electric field, andg the appropriate dipole moment.7 As
usual,Ji j is assumed to be infinitely ranged and distribut
according to Gaussian statistics with average valueJ0 /N and
cumulant varianceJ2/N. The Gaussian random fieldshi are
characterized by the random average

@hihj #av5Dd i j . ~3!

The uniaxial SRBRF model~2! has potential applicability to
uniaxial relaxors such as Sr12xBaxNb2O6 ~SBN!. The
present results can be, however, generalized to the isotr
n53 case as long as there is no mixing of thex,y,z
components.7

The Langevin equations of motion for the variablesSi(t)
are written as

t
]Si~ t !

]t
52

]~bH!

]Si
22z~ t !Si~ t !1j i~ t !. ~4!

Heret is the characteristic relaxation time for the reorien
tion of polar clusters. Equation~4! implies thatt is site in-
dependent, however, some variation oft across the system
should in principle not be excluded, resulting in a distrib
tion of relaxation times.2,6 The functionz(t) plays the role of
a Lagrange multiplier enforcing the spherical condition~1! at
all times.12

The stochastic Langevin forcesj i(t) ensure the prope
equilibrium distribution and are determined by their e
semble averages

^j i~ t !j j~ t8!&av52td i j d~ t2t8!. ~5!

Following the theory of spherical spin glasses we n
transform to the representation of eigenstatescl(k) and ei-
genvaluesJl of the random matrixJi j .14,12,13This is done in
05420
c.
e
e
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two steps:15 First, one introduces ‘‘spin-wave’’ statesSk
5N21/2( i exp(ikRi)Si ; next, these are expanded in norm
modes

Sl5(
k

cl~k!Sk . ~6!

The transformed equation of motion~4! becomes explicitly

]Sl

]t
5b@Jl22z~ t !#Sl1b@hl1gCl~0!E~ t !#1jl~ t !.

~7!

HereCl(0)5ANcl(0) and we have rescaled the time to
new dimensionless variablet→t/t. Assuming a fieldE(t)
applied att50 and introducing the integrating factor

fl~ t !5expFbJlt22E
0

t

dt8z~ t8!G ~8!

we obtain the solution

Sl~ t !5fl~ t !Sl~0!1E
0

t

dt1
fl~ t !

fl~ t1!

3@bhl1bgCl~0!E~ t1!1jl~ t1!#. ~9!

The correlation function

C~ t,t8!5
1

N (
l

^Sl~ t !Sl~ t8!&av ~10!

must satisfy the equal time relationC(t,t)51 at all times in
view of the spherical condition~1!. From Eqs.~9! and ~10!
with the aid of Eq.~3! we thus find

15 ^̂ fl~ t !2Sl~0!2&&012E
0

t

dt1KK fl~ t !2

fl~ t1!2LL
0

1b2DE
0

t

dt1E
0

t

dt2KK fl~ t !2

fl~ t1!fl~ t2!LL
0

1b2g2E
0

t

dt1E
0

t

dt2KK fl~ t !2

fl~ t1!fl~ t2!LL E~ t1!E~ t2!.

~11!

This is an implicit equation for the Lagrange multiplierz(t).
The two types of averages are defined as

^^ f l&&0[
1

N (
l

f l5E dJlr0~Jl! f ~Jl!; ~12!

^^ f l&&[
1

N (
l

Cl~0!2f l5E dJlr~Jl! f ~Jl!, ~13!

wherer0(Jl) and r(Jl) are the densities of eigenvalues
the kÞ0 andk50 sector of the spectrum, respectively. T
eigenvaluesJl have a continuous spectrum22J,Jl,2J.
If uJ0u.J, there is also a discrete eigenvalue atJm5J0
3-2
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DYNAMICS OF RELAXOR FERROELECTRICS PHYSICAL REVIEW B63 054203
1J2/J0.
14 Here we will only discuss the caseuJ0u,J. The k

Þ0 density of states is given by the Wigner semicirc
law14,15

r0~Jl!5
1

2pJ2 ~4J22Jl
2!1/2. ~14!

The k50 sector, on the other hand, has the density15

r~Jl!5
1

2p~J21J0
22J0Jl!

~4J22Jl
2!1/2. ~15!

This density of states has a statistical weightO(1/N) and is
thus relevant only in averages containing factors of the t
Cl(0)2}O(N).

The dielectric polarization of the system can be expres
in terms of the solution~9! as

P~ t !5
1

N (
l

gCl~0!fl~ t !Sl~0!

1bg2E
0

t

dt1KK fl~ t !

fl~ t1!LL E~ t1!. ~16!

As shown by Cugliandolo and Dean,13 for times larger
than a limiting timetc the system in whichDÞ0 will always
reach an equilibrium state and will thus be characterized
equilibrium dynamics. All information about the initial sta
Sl(0) is lost fort@tc , i.e., the first term in Eq.~16! becomes
irrelevant. In the present case,tc is estimated astc
'2tJT/D. Typically, the asymptotic regimet@tc is ex-
plored in a dielectric relaxation experiment. In the followin
we will limit ourselves to this regime. Also, for simplicity
we will henceforth setg51.

III. STATIC DIELECTRIC RESPONSE

We first consider the case of a static electric fieldE(t)
5E applied att50. At asymptotic timest/t@1 the system
reaches equilibrium and the Lagrange multiplierz(t) tends to
a constant valuez. Thus the function~8! becomes

fl~ t !;e2glt; ~gl[2z2bJl!, ~17!

and we can evaluate the integrals in Eqs.~11! and ~16!. As-
suming that 2z.bJl for all l ~to be justified later! we de-
rive the equation forz:

15KK 1

2z2bJl
LL

0

1b2DKK 1

~2z2bJl!2LL
0

1b2E2KK 1

~2z2bJl!2LL . ~18!

The static linear susceptibilityx15(]P/]E)E50 is de-
rived from Eqs.~16! and ~17!:

x15b KK 1

gl
LL . ~19!
05420
e

d

y

The averages in Eqs.~18! and~19! can be expressed in term
of the generalized averages obtained by adding an imagi
generating fieldiy to the variablegl , namely,

x1
[n]~y![bKK 1

~gl2 iy !(n11)LL . ~20!

These averages can be evaluated with the aid of Eqs.~12!–
~15! for n50, differentiatingn times with respect toiy , and
settingy50. For example, from Eqs.~19! and ~20! with n
50 andy50 we find

x15x1
[0]~0!5

z2r 2bJ0

b~J21J0
2!22bJ0z

, ~21!

wherer[Az22b2J2.
The n51 average is given by

x1
[1]~y!5

b

2

z~y!2r ~y!

D~y! F 1

r ~y!
2

2bJ0

D~y!G1
b3J0

2

D~y!2 , ~22!

where z(y)[z2 iy /2, r (y)[Az(y)22b2J2, and D(y)
[b2(J21J0

2)22bJ0z(y).
The above equation forz, Eq. ~18!, becomes in this nota

tion:

15
1

b
x1

[0]~0!01bDx1
[1]~0!01bE2x1

[1]~0!, ~23!

where the averagesx1
[0] (0)0 and x1

[1] (0)0 are obtained by
settingJ050 in Eqs.~21! and~22!, respectively, andx1

[1] (0)
is given by Eq.~22! with y50.

We will also need then52 average

x1
[2]~0!05

1

8bJ2Fz2

r 3 2
1

r G . ~24!

A numerical solutionz(T) of Eq. ~23! in zero field (E
50) can be found at all temperatures and is independen
J0 as long asuJ0u,J. An example is shown in Fig. 1 fo
D/J250.001. The inset shows thatz2bJ is always positive,
and since 2J is the largest eigenvalue ofJl one can see tha

FIG. 1. Solution of Eq.~23! for the Lagrange multiplierz(T)
obtained numerically in zero field (E50) and for D/J250.001.
Inset: Proof thatz2bJ.0 at all temperatures.
3-3
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indeed 2z.2bJl for all l as assumed earlier. When bo
EÞ0 andJ0Þ0, there are in general two complex solutio
for z(E,T) and the present theory is not applicable. In t
following we will only consider the cases in which a re
solution z(T) exists and has a real second derivativez9
5d2z/dE2 at E50.

For D50 and E50, Eq. ~23! reduces to the equatio
derived in Ref. 14, which has the solutionz05(11b2J2)/2
for T>J. For T,J, however, the solution does not exist a
z must be obtained from the saddle-point condition,14 yield-
ing z05bJ.

A numerical evaluation shows that the expression~21! for
the static linear susceptibility fully agrees with the result o
tained by means of replica theory in Ref. 7.

One can also calculate the static third-order nonlinear s
ceptibility x3, which is defined in terms of the expansion

P5x1E2x3E31 . . . . ~25!

Obviously, x352(1/6)(]3P/]E3)E50. Using Eqs. ~16!,
~17!, and~20! we find

x35x1
[1]~0!z09 . ~26!

Evaluatingz09[(d2z/dE2)E50 from Eq. ~23! we obtain the
result

x35b2
x1

[1]~0!2

x1
[1]~0!012b2Dx1

[2]~0!0

, ~27!

wherex1
[2] (0)0 is given by Eq.~24! above. The last expres

sion has been evaluated numerically and found to be
cisely equivalent to the result derived in Ref. 7 using t
replica formalism.

IV. DYNAMIC RESPONSE

We now consider the case of an oscillating electric fi
E(t)5E0 cos(vt). This is inserted into Eq.~16!. At
asymptotic timest@tc the response can be written by ana
ogy with Eq.~25! as16

P~ t !;@Pve2 ivt1P3ve2 i3vt1•••#1c.c., ~28!

wherePv and P3v are the amplitudes of the first and thir
harmonic response, respectively, which are given by

Pv5x1,0~v!S E0

2 D1x1,1~v!S E0

2 D 3

1 . . . ; ~29!

P3v5x3,0~v!S E0

2 D 3

1x3,1~v!S E0

2 D 5

1 . . . . ~30!

Here we have introduced the linear dynamic respo
x1,0(v), the third-order nonlinear responsesx1,1(v) and
x3,0(v), etc. We will focus on the first harmonic linear re
sponsex1,0(v), which is equivalent to the dynamic linea
susceptibilityx1(v)5x1,0(v), and on the third-order nonlin
ear responsex3,0(v). The latter is typically measured b
monitoring the third harmonic component ofP(t) at small
amplitudes of the fieldE0.19 In order to ensure the prope
05420
-

s-

e-
e

e

static limit v→0 we will define the third-order nonlinea
dynamic susceptibility asx3(v)52x3,0(v). From Eqs.
~28!–~30! we thus find

x1~v!5
]Pv

]~E0/2!
U

E050

; ~31!

x3~v!52
1

6

]3P3v

]~E0/2!3U
E050

. ~32!

In the asymptotic regime, the functionfl(t) in Eq. ~16!
behaves as

fl~ t !;e2glt22w(t), ~33!

where we have definedw(t)[*0
t dt8@z(t8)2z#, with z rep-

resenting the solution of Eq.~18!. The first part of the re-
sponse~16!, which will be proportional to;E0 exp(2ivt),
is now given by

P~ t !5bS E0

2 D E
0

t

dt1^̂ e2gl(t2t1)&&e22[w(t)2w(t1)]e2 ivt11c.c.

~34!

A. Linear dynamic susceptibility

The part ofP1(v), which is linear inE0, is trivially ob-
tained from Eq.~34! by noting thatw(t)50 for E050. We
can thus evaluate the integral and using Eq.~31! we find

x1~v!5b KK 1

gl2 iv LL . ~35!

Comparing with Eqs.~19! and~20! we realize that the aver
ages of the above type can be evaluated with the aid of
~20!, in which we sety5v and n50, yielding ~with t re-
stored!

x1~v!5
z2 ivt/22A~z2 ivt/2!22b2J22bJ0

b~J21J0
2!22J0~z2 ivt/2!

. ~36!

For v→0 this obviously reduces to the static susceptibil
~21!.

The temperature behavior ofx1(v) will crucially depend
on the temperature variation of the relaxation timet(T). The
SRBRF model~2! and the equations of motion~4! contain no
information aboutt(T). It has been found empirically17,2,6

that some of the properties of relaxors can be described
assuming a Vogel-Fulcher~VF! relationship fort, namely,

t5t0 expS U

T2T0
D , ~37!

whereT0 is the VF temperature. This expression is valid f
T.T0 and would lead to a divergence oft for T→T0. There
is no a priori relation betweenT0 and the parameters of th
SRBRF model. A similar situation occurs in Ising dipol
glasses, where a probability distribution of relaxation tim
g(ln t) has been used in combination with an empiric
3-4
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Debye-type response.18 With t lying in the rangetmin,t
,tmax, the VF temperatureT0 has been identified with the
freezing temperatureTf . On the other hand,tmin has been
fitted to an Arrhenius-type expressiontmin}exp(E/T). The
same approach was found to be applicable to relaxors
well.19

An alternative approach is based on the master equa
for the reorientation of cluster polarization assuming a
relaxation time of the type~37!, where the barrier heightsU
are distributed according to a Gaussian probabi
function.2,6 Such an approach was found to be applicable
PMN and PST in the regionT.T0.

In general, we can thus introduce the average dyna
susceptibility

x̄1~v!5E
tmin

tmax dt

t
g~ ln t!x1~v!, ~38!

where the probability distribution of relaxation timesg(ln t)
is physically justified by the fact that relaxors are inheren
inhomogeneous systems due to compositional disorder. T
one may imagine, for example, that the relaxor system c
sists of a set of macroscopic regions, which are forma
characterized by the same microscopic equation of mot
but differ in the value of the parametert.

One encounters serious difficulties in attempting to
scribe the dynamic response atT,T0. Formally one could
assume thatt→` for T<T0, but this will lead to a zero
value ofx1(v)50 at all temperaturesT<T0. We can single
out the following representative cases:~i! a single VF relax-

FIG. 2. Real and imaginary parts of the linear susceptibility
the case of a single Vogel-Fulcher~VF! type relaxation time@Eq.
~37!# as functions of temperature for several values of frequency
indicated. Note that the response is strictly zero below the VF t
peratureT05J.
05420
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ation time ~37!; ~ii ! a nonsingular distribution of barrie
heightsg(U); ~iii ! a distribution of relaxation timesg(ln t)
such that its normalization*tmin

tmaxdt g(ln t)/t diverges as

tmax→`. The first case is illustrated in Fig. 2, where w
show the calculated real and imaginary parts ofx1(T,v)
50 for several values of frequency assuming a single
relaxation time~37!. As in Fig. 1 we assumeJ050.9J and
D/J250.001, as well asT05J. Such behavior is incompat
ible with experiments, which generally show a smooth d
crease ofx18(T,v) andx19(T,v) across the region whereT0

is expected to be located.
A more realistic description can be obtained, for examp

by assuming a distributionw(T0) of VF temperaturesT0,
whereT0 is allowed to vary in the range 0,T0,T0

max. Us-
ing the relationd(ln t)g(ln t)5dT0w(T0) in Eq. ~38! and
choosing a linear distributionw(T0)52(12T0 /J)/J with
T0

max5J, we obtain the temperature dependence of the lin
susceptibility shown in Fig. 3. Here we used the same se
parameters as in Fig. 2. In contrast to the single VF temp
ture case, the above distribution leads to nonzero value
x̄1(v) at all temperatures. The shape of the real and ima
nary part ofx̄1(v) is in qualitative agreement with the ob
served relaxation spectra in PMN~Ref. 19! and PLZT.20

It should be noted, however, that the above result for
linear susceptibility contains only the contribution of pol
clusters. Other contributions may exist—for example, tha
optic phonons—which are not expected to show any ano
lies nearTf . In general, such contributions can be written
a sum of Debye-like terms, with the possibility of an avera
over the corresponding relaxation times. At present,

s
-

FIG. 3. Real and imaginary parts of the linear susceptibi
averaged over a linear probability distribution of VF temperatu
T0, with 0,T0,J.
3-5
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problem of a realistic relaxation time distribution in relaxo
which would be appropriate at all temperatures, has not
been resolved.

B. Zero-field-cooled susceptibility

In analogy with Ising spin glasses21 and dipolar glasses22

one can introduce an effective relaxation time for the lo
frequency response

te f f52 ib lim
v→0

]x1~v!21

]v
. ~39!

Returning to Eq.~31! and using the above definition o
x1

[1] (y) from Eq. ~22! in which we sety5vt, we obtain the
result

te f f5
1

2
b t lim

v→0

x1
[1]~vt!

x1~v!2
. ~40!

It will be shown later that the real part of the nonline
susceptibilityx3(v) is also proportional tox1

[1] (v) and in
the static limit shows a sharp peak at the ‘‘freezing’’ tem
peratureTf'J for D!J2, while it actually diverges ifD
50. Sincex1(v) is a well behaved function of temperatur
it follows that te f f increases as;(T2J)21 on approaching
Tf , however, it remains finite atTf . Thus the behavior of
te f f mimics the freezing transition in this case. A true free
ing transition atTf5T0 can be described by assuming a V
temperature dependence oft, which is then transferred to
te f f via Eq. ~40!.

Whente f f is large, the system will only reach equilibrium
at timest@te f f , which may become very long. In measurin
the static susceptibilityx1 one should distinguish betwee
the field-cooled and zero-field-cooled susceptibility,x1

FC and
x1

ZFC , respectively. Herex1
FC is given by Eq.~19! and cor-

responds to an experiment carried out on a time scat
@te f f . On the other hand,x1

ZFC can be obtained by turning
on a field E(t1)5E at time t150 and measuring the re
sponseP(t) at timet.t1 as described by Eq.~16!. Thus we
can write

x1
ZFC~ t !5

]P~ t !

]E
5bE

0

t

dt1KK fl~ t !

fl~ t1!LL , ~41!

and using Eq.~17! we find

x1
ZFC~ t !5b KK 12e2(2z2bJl)t/t

2z2bJl
LL . ~42!

For t→` this reduces to the previous result~19!, which cor-
responds tox1

FC . The difference between the two suscep
bilities dx1(t)[x1

FC2x1
ZFC(t) is given by

dx1~ t !5b KK e2(2z2bJl)t/t

2z2bJl
LL 5bE

t/t

`

dt1^̂ e2(2z2bJl)t1&&.

~43!

The value of the integral can be estimated by first using E
~13! and ~15! and expanding the integrand in powers
05420
,
et

-

-

-

s.

J0 /J.23 To leading order the result is independent of t
parameterJ0 and shows that forD!J2 andT<J one has a
power-law behaviordx1(t);(t/t)21/2, implying a slow de-
cay and a large difference between the two susceptibilit
which has been observed experimentally.19 On the other
hand, forT.J the asymptotic behavior is a combination
power law and exponential, i.e.,dx1(t);(t/t)23/2 exp
@22(z2bJ)t/t#. Thus in this regime the difference deca
much faster and the two susceptibilities become indis
guishable on a typical experimental time scale.

V. NONLINEAR DIELECTRIC SUSCEPTIBILITY

To calculate the third-order partial derivative in Eq.~32!
we return to Eq.~34!, in whichw(t) is now a function ofE0.
In general,w(t) will be a sum of terms, which are eve
powers ofE0e6 ivt. We will focus on the second-order term
;E0

2e22ivt. Introducing the function

X~ t !5
]2w~ t !

]~E0/2!2 U
E050

~44!

we can express the third partial derivative in Eq.~32! as

]3P3v

]~E0/2!3 U
E050

526be2ivtE
0

t

dt1eiv(t2t1) ^̂ e2gl(t2t1)&&

3@X~ t !2X~ t1!#. ~45!

The functionX(t) will be calculated from Eq.~11! in the
asymptotic limit. Considering only the terms, which asym
totically behave as;e22ivt and taking the second derivativ
with respect toE0/2 leads to

0524F E
0

t

dt1^^e
22gl(t2t1)&&022b2DE

0

t

dt1E
0

t

dt2

3^^e2gl~2t2t12t2!&&0G @X~ t !2X~ t1!#

1b2E
0

t

dt1E
0

t

dt2^^e
2gl~2t2t12t2!&&e2 iv(t11t2).

~46!

The last double integral becomes for asymptotic values ot

1b2e22ivtKK 1

~gl2 iv!2LL . ~47!

We now apply the Laplace transform to Eq.~46! using the
definition

X̃~p!5E
0

`

dt e2ptX~ t ! ~48!

and obtain the result
3-6
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X̃~p!5
b2

2~p12iv!

KK 1

~gl2 iv!2LL
KK 1

gl
LL

0

2KK 1

gl1p/2LL
0

1b2DF KK 1

gl
2LL

0

2KK 1

gl~gl1p!LL
0

G . ~49!

The averages can be expressed in terms of the generalized responses~22!.
The functionX(t) can be obtained by the inverse Laplace transform. Its behavior is determined by the polespk5pk8

1 ipk9 of X̃(p). A numerical evaluation shows that all poles are such thatpk8<0. At asymptotic times only those poles for
which pk850 will be relevant. There is only one such pole, namely,p0522iv leading to

X~ t !;S b2

2 D x1
[1]~v!e22ivt

x1~0!02x1~v!01b2DFx1
[1]~0!01

x1~0!02x1~2v!0

2iv G . ~50!

Inserting this expression into Eq.~45!, evaluating the integral, and returning to Eq.~32!, we obtain the final result for the
complex third-order nonlinear susceptibility~with t restored!:

x3~v!5S b2

2 D x1
[1]~vt! @x1~v!2x1~3v!#

x1~0!02x1~v!01b2DFx1
[1]~0!01

x1~0!02x1~2v!0

2ivt G . ~51!
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Herex1
[1] (vt) is given by Eq.~22! with y5vt, andx1(v)

by Eq. ~36!.
This expression may now be averaged over the distr

tion of relaxation timest as argued in the paragraph prece

ing Eq.~39!. In Fig. 4 the real and imaginary parts ofx̄3(v)
are plotted as functions of temperature for several value
frequency. In analogy with the case ofx̄1(v) above, a VF
behavior~37! of t and a linear distribution of VF tempera
tures T0 has been used. The values of the parameters
again J0 /J50.9 andD/J250.001. The real partx̄38(T,v)
has a sharp peak nearT.J, whose origin can be traced bac
to the functionx1

[1] (v) appearing in Eq.~51!. As in the
linear susceptibility case, a strong frequency dispersion
evident. In the limit of small frequencies, i.e.,vt0!1, the
behavior ofx̄38(T) is the same as in the static case studied
replica theory.7 At high frequencies and low temperature
x̄38(T,v) may become negative due to the last factor in
numerator of Eq.~51!, whose imaginary part changes sig
This effect cannot be observed easily, since this would
quire a measurement of the nonlinear susceptibility in
range where the absolute value ofx̄38(T,v) is extremely
small compared to its peak value. It is easily verified tha
the limit v→0, Eq. ~51! reduces to the static result~27!.

It has been shown in the static theory7 that a crucial quan-
tity, which can discriminate between the dipolar glassl
and ferroelectric behavior, is notx3(T) but rather the res-
caled static nonlinear susceptibilitya35x3 /x1

4. In spin
glasses without random fieldsa3(T) diverges atTf , and in a
relaxor it develops a peak nearTf , whereas in a ferroelectric
with long-range ordera3 decreases with decreasing tempe
ture on approaching the critical temperatureTc .19 It has been
05420
-
-

of

re

is

y
,
e

-
e

n

-

suggested thata3(T) could also be extracted from the dy
namic linear and nonlinear susceptibilities by considering
following generalized function:16,24

a38~T,v!5
x̄38~v!

x̄18~3v!x̄18~v!3
. ~52!

In Fig. 5,a38(T,v) is plotted as a function of temperatur
for the same set of parameters as in Fig. 4. Each of the t
factors in Eq.~52! has been averaged over the linear dis
bution of T0. Obviously,a38(T,v) develops a peak nearTf

.J at all frequencies shown. On the high-T side of the peak,
a38(T) is independent of frequency and agrees with the st
a3. Near the peak and on its low-T side, however, strong
frequency dispersion appears. Recent experiments in P
and PLZT~Ref. 5! indicate that the high-T quasistatic part of
a3(T) exhibits a crossover between the paraelectriclike
creasing behavior and a glasslike increasing behavior on
proachingTf . This type of behavior is characteristic of re
laxor ferroelectrics. The crossover can be qualitativ
described by the present dynamic SRBRF model, as sh
in the inset of Fig. 5. The model also correctly predicts t
onset of strong frequency dispersion ina38(T,v) at low tem-
peratures, which has been observed in both PMN and PLZ5

VI. CONCLUSIONS

We have presented a dynamic model of uniaxial rela
ferroelectrics based on the recently developed static sphe
random-bond–random-field~SRBRF! model.7 Following the
theory of spherical models of spin glasses12,13 the order-
parameter field is assumed to obey the Langevin equatio
3-7
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motion written in the representation of eigenstates of
random interaction matrix with the spherical condition bei
enforced at all times. The equations of motion are exa
solvable in the asymptotic limit where the relaxor syste
reaches an equilibrium state. The linear and the third-or
nonlinear dynamic response functions have been derived
the staticv→0 limit these results are precisely equivalent
the static linear and nonlinear susceptibilitiesx1 andx3, re-
spectively, obtained earlier by the replica method.7

In analogy with the static case, the dynamic theory d
not predict a sharp transition into a dipolar glasslike sta
Rather, in the case of weak random fields the third-or
susceptibility shows a narrow peak at a temperatureTf ,
which mimics the freezing transition. Within the context of
dynamic model the freezing transition would correspond
the divergence of the longest relaxation time in the syst
However, the dynamic SRBRF model contains no inform
tion on the behavior of the relaxation timet appearing in the
equations of motion, and does not lead to the divergenc
the effective relaxation time on approachingTf . In order to
describe the observed freezing transition one should th
fore introduce a divergent behavior oft. This can be done
for example, by assuming a Vogel-Fulcher~VF! law for the
temperature behavior oft in accordance with empirica
findings,2,6 however, this will suppress the dynamic respon
at all temperatures lower than the VF temperatureT0. We
have shown that by introducing a probability distribution
VF temperaturesT0 one can obtain linear and nonlinear r
sponse functions which remain finite at all temperatures
qualitative agreement with experiments. The largest valu

FIG. 4. Calculated temperature dependence of the real
imaginary parts of the third-order nonlinear susceptibility avera
over a linear distribution ofT0, using the same parameter values
in Figs. 2 and 3.
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T0 has been set equal to the static ‘‘freezing’’ temperat
Tf , which is determined by the random bond strength
rameterJ.

The actual shape ofx̄1(T,v) andx̄3(T,v), where the bar
means an average overt or equivalently overT0, strongly
depends on the probability distribution of relaxation tim
g(ln t).

Within the framework of the dynamic SRBRF model w
have also calculated the scaled dynamic nonlinear susc
bility a38(T,v)5x̄38(v)/x̄18(3v)x̄18(v)3, which allows one to
discriminate between the ferroelectriclike and glasslike
havior of relaxors.5,24 In the quasistatic regime aboveTf ,
a38(T,v) is practically independent ofv and its temperature
dependence shows a crossover between paraelectriclike
glasslike behavior on approachingTf from above. This
crossover behavior has recently been observed both in P
and PLZT.5 The calculated shape ofx̄1(T,v) and x̄3(T,v),
and hence ofa38(T,v), strongly depends on the probabilit
distribution of relaxation timesg(ln t). In the present work
we did not attempt to investigate in detail the effects
g(ln t) on the behavior of these quantities; however, we ha
shown that if one assumes a linear distribution of VF te
peratures T0, the predicted behavior ofx̄1(T,v) and
x̄3(T,v) is in qualitative agreement with experiments
PMN ~Refs. 5, 19, and 24! and PLZT.20,5 On the other hand,
a38(T,v) obtained in this manner has a peak nearTf.J and
shows a strong frequency dispersion belowTf . The pre-
dicted peak in a38(T,v) has not been observe
experimentally,24 suggesting that one should perhaps sea
for a more realistic distributiong(ln t). This problem will be
dealt with in a future publication.
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FIG. 5. Temperature dependence of the scaled nonlinear sus

tibility a38(T,v)5x̄38(v)/x̄18(3v)x̄18(v)3 obtained with the same
parameter values as in Figs. 2–4. The inset shows the cross
from the decreasing paraelectriclike to increasing glasslike beha
in the quasistatic regime above the peak.
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