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Effective surface impedance of polycrystals under anomalous skin effect conditions
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~Received 21 December 1999; revised manuscript received 24 April 2000; published 4 January 2001!

The effective impedance of strongly anisotropic polycrystals has been investigated under the conditions of
extremely anomalous skin effect. We were interested in finding out how the value of the effective impedance
depends on the geometry of the Fermi surface of a single crystal grain. The previously obtained nonperturba-
tive solution based on the application of the impedance~the Leontovich! boundary conditions was used to
calculate the effective impedance of a polycrystalline metal. Some model Fermi surfaces were examined. In the
vicinity of the electronic topological transition the singularities of the effective impedance related to the change
of the topology of the Fermi surface were calculated. Our results show that though a polycrystal is an isotropic
medium in average, it is not sufficient to consider it as a metal with an effective spherical Fermi surface, since
this can lead to the loss of some characteristic features of extremely anomalous skin effect in polycrystals.
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I. INTRODUCTION

Polycrystals, being one of the states of crystalline me
are special, but very widespread case of inhomogene
solid media, where the inhomogeneity is due to the mis
entation of discrete single crystal grains. Macroscopic pr
erties of polycrystalline solids can be described in the fram
work of different models of an effective isotropic medium
The problem is to calculate characteristics of such an iso
pic medium when the corresponding parameters of sin
crystalline grains are known.

In our opinion the most accurate and physically meani
ful method of calculation of effective characteristics of po
crystals goes back to the pioneering works of Lifshitz a
co-workers.1–3 In the framework of this method it is assume
that the polycrystalline medium can be described as an
fective isotropic medium that is perturbed by random spa
fluctuations caused by the orientational fluctuations of
grains.

The system we consider is a single-phase polycrystal
metal. It consists of discrete grains, each of which ha
regular crystalline structure. The properties of each grain
anisotropic, and crystallographic axes of the grains are
domly oriented with respect to a fixed set of laboratory ax
Then characteristics of the material measured in the lab
tory coordinate system are stochastic functions of positio

In the general case an effective characteristic of a po
crystal is not a function of its value in the single crystal on
but depends on statistical properties of the medium. A
rule, spatial fluctuations can be taken into account accura
only if in the original single crystal the anisotropy of th
characteristic is small and perturbation theory is applica
The zero order term of the perturbation series is the sin
crystal characteristic averaged over all possible orientat
of crystallites. The next order terms depend on the mome
of the stochastic functions~see, for example, Ref. 4! that are
the elements of the tensor single crystal characteristic m
sured with respect to the set of the laboratory axes. Th
0163-1829/2001/63~5!/054202~15!/$15.00 63 0542
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moments can be calculated for a model polycrystal, or th
are assumed to be known characteristics of the medi
There are no regular methods allowing us to calculate ef
tive characteristics of polycrystals when anisotropy is stro

In the case of strong anisotropy exact solutions can
found very rarely. One such example is the calculation of
effective static conductivity of a two-dimensional polycry
tal, where, due to a specific symmetry transformation
lowed by the equations of the problem, the exact result
been obtained for arbitrary values of two princip
conductivities.5 This result does not depend on the statisti
properties of the medium~on the correlators of the conduc
tivity in different points of the polycrystal!.

The calculation of an effective characteristic of a po
crystal involves the calculation of random fields arising fro
the inhomogeneity of the medium~see Refs. 1–3!. As a re-
sult, the calculation of effective characteristics of an u
bounded polycrystal is simpler than the calculation of effe
tive characteristics related to phenomena, where the sam
surface must be taken into account. In the former case
problem is reduced to an algebraic problem, while in t
latter one an integral equation must be solved~for details see
Refs. 6–10!. The calculation of the effective surface impe
ance associated with the reflection of an averaged elec
magnetic wave is an example of a problem related to
sample surface. In the framework of perturbation theory
effective impedance of weakly anisotropic metal polycryst
was calculated in Refs. 8–10. Unexpectedly, it was fou
out that for such a complex problem an exact solution can
obtained. Recently, it was shown11,12 that the effective im-
pedance of strongly anisotropic polycrystalline metals can
calculated in the frequency region of the local impedan
~the Leontovich! boundary conditions applicability.13,14

Due to very high conductivity of metals, usually the pe
etration depth of electromagnetic field into a metald is much
smaller compared with the vacuum wave lengthl52pc/v.
If in the same timed!a, wherea is a characteristic length
©2001 The American Physical Society02-1
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describing the inhomogeneity of the surface, the local imp
ance boundary conditions

Et5 ẑ@n,Ht#, ~1!

allows us to solve an electrodynamic problem external w
respect to the metal. In Eq.~1! Et andHt are the tangentia
components of electricE and magneticH vectors at the
metal surface andn is the unit normal vector to this surface
The two-dimensional tensorẑ is the surface impedance ten
sor of the metal. In the order of magnitudeuzabu;d/l!1
(a,b51,2). Up to the terms of the order ofd/a the tensorẑ
is an ordinary multiplying operator. If the metal surface is
inhomogeneous one, the elements ofẑ depend on the posi
tion at the surface. For a polycrystalline metal with the fl
surface,a is of the order of the mean size of a grain, and t
dependence of the impedance on position is defined by
orientation of the grains at the surface.

Sometimes it is sufficient to know the reflected elect
magnetic field averaged over the surface inhomogenei
By analogy with Eq.~1!, we define the effective surface im
pedance tensor by the equation

^Et&5 ẑef@n,^Ht&#. ~2!

The angular brackets denote an average over the ensemb
realizations of the polycrystalline structure. If the polycry
talline medium is statistically homogeneous and untextur
in the frequency region relevant to the local impedan
boundary conditions

ẑef5zefÎ 5^ẑ~xi!&, ~3!

where Î is the two-dimensional unit matrix andxi is the
two-dimensional position vector at the surface~see Refs. 11,
12!. Since the only property of the medium that affects on
point averages is the rotation of the crystallographic axe
the grain with respect to the laboratory coordinate system
Eq. ~3! ^•••& correspond to the averaging over all possib
rotations of the crystallographic axes of a grain at the m
surface.

The conception of the effective surface impedance is v
if a!l. Since the stochastic fields are damped out at a
tance of the order ofa from the metal surface, in this cas
beginning with a distanced, a!d!l, the total electromag-
netic field equals to its averaged value defined byẑef . In
what follows we assume that

d!a!l. ~4!

The result of Refs. 11,12, Eq.~3!, is a nonperturbative one
with respect to the dispersion of the values of the element
the local impedance tensor. The first correction to the eff
tive impedance due to the local impedance fluctuations12 is
zef

1 ;Z2(d2/al), where Z25Š@ ẑ(xi)2^ẑ&#2/(^z&)2
‹. How-

ever, the local impedance boundary conditions~1! are correct
only if d/a!1. The terms of the order ofd2/al are outside
of the framework of the local impedance boundary con
tions applicability, and the correctionzef

1 has to be omitted
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within the accuracy of the initial equations, Eqs.~1!. Conse-
quently, Eq.~3! allows us to calculate the effective imped
ance of strongly anisotropic polycrystals. Feinberg obtain
a similar result while calculating the effective dielectric co
stant for radio waves propagating along the earth surfac15

Equation ~3! is applicable under the conditions of bo
normal and anomalous skin effect. The conditions of norm
skin effect correspond to the low frequency region whel
!d andvt!1 (l is the electron mean free path andt is the
electron relaxation time!. In Refs. 11,12 the effective imped
ance of various strongly anisotropic polycrystalline med
has been calculated under the conditions of normal skin
fect. In sufficiently clean metals, skin effect clearly shows
anomalous character when the temperature is low and
electron mean free pathl exceeds the penetration depthd. At
the same time, the frequencyv can be much less than 1/t.

In the present publication we concentrate on the anal
of the effective surface impedance of polycrystalline met
under the conditions of extremely anomalous skin effectl
@d, vt!1). In this case the relation between the currenj
and the electric field strengthE is nonlocal and Maxwell’s
equations turn into the system of integrodifferential equ
tions. We would like to point out that in the papers of Li
shitz et al.,1–3 as well as in the following studies~as an ex-
ample we cite Refs. 16–18!, calculations of effective
characteristics of polycrystals were based on the solution
differential equations with stochastic coefficients. The stu
of anomalous skin effect in polycrystals appears to be
first example of an analysis of stochastic integrodifferen
equations.

The characteristic features of the surface impedance
single crystal metals under the conditions of extrem
anomalous skin effect can be found in a lot of textbooks
electron theory of metals~see, for example, Ref. 19!. Here
we only mention the ones we need in our analysis of
effective impedance of polycrystals.

First, the impedance of single crystals is sensitive to o
entation of the surface with respect to the crystallograp
axes. Secondly, under the conditions of anomalous skin
fect the impedance depends on the geometry of the Fe
surface of the metal. The Fermi surfaces of real metals
extremely complex and differ significantly for differen
metals.19,20 In certain metals they are closed surfaces~sets of
individual identical surfaces, each of which is situated in
respective Brillouin zone!, in other metals the Fermi surface
are open, passing through the whole momentum sp
Thirdly, the inequalityl @d, or kl@1 (k5uku, k is the elec-
tromagnetic field wave vector!, selects electrons from ‘‘the
belt’’ kvF50 at the Fermi surface,vF is the velocity of an
electron on the Fermi surface. Other electrons
ineffective19 and do not take part in the reflection of electr
magnetic waves. As a result, the leading term of the imp
ance does not depend on the electron mean free pathl.

When calculating the impedance of a polycrystal, an
eraging over the orientation of the crystallographic axes
the grain at the metal surface with respect to the direction
the normal to the surface has to be done~see below!. When
the direction of the normal to the metal surface chang
2-2
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EFFECTIVE SURFACE IMPEDANCE OF POLYCRYSTALS . . . PHYSICAL REVIEW B 63 054202
‘‘the belt’’ moves along the Fermi surface. Thus, the impe
ance of the polycrystal is defined by all electrons from
Fermi surface even under the conditions of extrem
anomalous skin effect. The averaging leads to an isotrop
tion. It is usual to think of an isotropic metal as of a me
with a spherical Fermi surface. The question is, if this e
dently model assumption is correct for the description
anomalous skin effect in polycrystals.

Our results show that being a characteristic of a med
which is isotropic on the average, the effective impedance
a polycrystal composed of single crystal grains with comp
Fermi surface depends on the details of the geometry of
Fermi surface. According to Refs. 11,12 the calculation
the effective impedance of polycrystals involves two ste
The first step is the calculation of the impedance of the cr
tal metal for an arbitrary orientation of the crystallograph
axes with respect to the metal surface. The second step i
averaging over all possible orientations of the crysta
graphic axes. The first step requires the definition of el
trons providing the maximal contribution to the conductiv
whenkl@1. It is well known, the more the conductivity, th
less the impedance. The second step~the averaging! selects
the calculated impedances choosing the maximal. Thus,
effective impedance is the result of solution of a nontriv
minimax problem.

The outline of this paper is as follows. In Sec. II under t
conditions of anomalous skin effect the general express
for the effective impedance of a polycrystalline metal co
posed of single crystal grains with an arbitrary Fermi surfa
is obtained. In Sec. III we calculate the effective impedan
for different model Fermi surfaces. In Sec. IV we analyze
effect of the change of the topology of the Fermi surface
the value of the effective impedance of polycrystals.

II. EFFECTIVE IMPEDANCE OF POLYCRYSTAL
UNDER CONDITIONS OF ANOMALOUS SKIN EFFECT

A. The local surface impedance calculation

To make use of Eq.~3!, we need to know the explici
form of the local impedanceẑ(xi). Let us assume that th
grains are sufficiently large:

a@ l . ~5!

In this case the current densityj in a grain is nearly the sam
as in the single crystal rotated with respect to the labora
axes in the same way as the given particular grain. Con
quently,ẑ(xi) approximately equals to the impedance of t
single crystal whose crystallographic axes are rotated w
respect to the laboratory axes in the same way as the on
the grain at the pointxi .

It is known21 that when the relaxation time approximatio
~the t approximation! is used and the specular reflection
conductive electrons from the metal surface is assumed
problem of the surface impedance calculation, detecting
main features of the anomalous skin effect, is simplified s
nificantly. ~For the detailed discussion see Ref. 10.! In this
case the elements of the surface impedance tensor of a s
crystal metal are
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zab5
1

pE0

`

zab~k!dk, ~6a!

where the Fourier coefficientszab(k) are expressed in term
of the elements of the reciprocal tensorzab

21(k),

zab
21~k!52

c

2iv Fk2dab2
4p iv

c2
sab~k!G . ~6b!

The two-dimensional tensorzab (a,b51,2) is defined with
respect to the laboratory coordinate system. The axes 1
2 of this coordinate system are placed on the metal sur
and the axis 3 is directed along the normaln to the surface.

In Eqs.~6a!,~6b! s ik(k) are the Fourier coefficients of th
elements of the conductivity tensor calculated for the u
bounded single crystal metal. In thet approximation19,21

s ik~k!5
2e2t

~2p\!3E v ivk

v@11 ikvt#
dS, ~7!

where the integration is carried out over the Fermi surface
one Brillouin zone. The Fermi surface is defined by an eq
tion «(p)5«F ; «F is the Fermi energy;v(p)5]«(p)/]p is
the velocity of an electron at the Fermi surface andv
5uv(p)u. When calculating the surface impedance the wa
vectork is supposed to be directed along the normal to
metal surface.

It is of interest that in the limitkl@1 (l;vt) in spite of
such complicated dependence ofs ik(k) on the Fermi surface
geometry, the conductivity tensor averaged over all orien
tions of the crystallographic axes is given by the very sim
expression10

^s ik~k!&5sa~k!~d ik2kikk /k2!, sa~k!5
pe2SF

2~2p\!3k
,

~8!

whereSF is the total area of the Fermi surface. Equations~8!
define the Fourier coefficients of the elements of the cond
tivity tensor of an isotropic conductor with a spherical Fer
surface. The impedance of such a conductor iszab
5zadab , where

za5
2~12 iA3!

3A3
S vda

c D , da5S 4pc2\3

ve2SF
D 1/3

; ~9!

da is the relevant electric field penetration depth.21

For slightly anisotropic polycrystals Eqs.~9! define the
effective impedance in the zeroth approximation with resp
to anisotropy. Apparently, the small anisotropy means eit
that the Fermi surface is regularly close to a sphere~for
example, it is an ellipsoid with nearly equal principal axe!,
or the ‘‘weight’’ of the regions where the Fermi surface d
viates from the sphere is small. With regard to the effect
impedance calculation the Fermi surface anisotropy can
considered small, if

D25U 4

pSF
2
E E dS1 dS2~nW 1nW 2!2

A12~nW 1nW 2!2
21U!1. ~10!
2-3
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In Eq. ~10! the double integration is carried out over th
Fermi surface;nW 5v(p)/v(p). Equation~9! gives the leading
term of the expression for the effective impedance. The fi
correction toza is proportional toD2 ~see Ref. 12!. When
anisotropy is strong, Eqs.~9! are inapplicable. In what fol-
lows, we usesa , za , andda only as characteristic values o
the conductivity, the impedance and the penetration de
relating to the given Fermi surface.

In view of the following averaging of the local surfac
impedance tensor~6!, we rewrite Eq.~7! for the conductivity
s ik(k) in the form

s ik~k!5sa~k!Sik~k!; ~11a!

wheresa is given by Eq.~8! andSik(k) is a dimensionless
tensor. As a rule, whenkl@1, leading terms in the expres
sions for the elements of this tensor depend on the Fe
surface geometry and the orientation of the crystallograp
axes only:

Sik~k/k!5
4

SF
E n inkd~kv/kv !dS, n i5

v i

v
~11b!

and k5(0,0,k). It is clearly seen that only electrons from
‘‘the belt’’ kv50 contribute to the elements of the tens
Sik . Usually the elementsSab(k/k) (a,b51,2) of the ten-
sor Sik(k/k) are of the order of unity and, consequently, t
transverse conductivitiessab are of the order ofsa . In the
same approximation the elementsSi3(k/k)50;i 51,2,3.
When in Eqs.~7! next terms in the small parameter 1/kl are
taken into account,s i3(k);sa /kl. If by any reason the tan
gential elementsSab of the tensor~11b! are equal to zero, al
the elements of the tensors ik(k);sa /kl. In Sec. III we
examine several examples of such extraordinary situati
but here we restrict ourselves to Eqs.~11b!.

Usually it is most covenient to calculate the elements
the tensorŜ with respect to the crystallographic axes. Letg
denote the rotation of the crystallographic axes with resp
to the laboratory axes through the three Euler ang
uk ,ck ,wk . There are some different ways of the Eul
angles definition.22 In our calculations we supposed that t
set of crystallographic unit vectorsei

(cr) was obtained from
the fixed set of the laboratory unit vectorsei by three sequen
tial rotations:~1! the rotation about the anglewk about the
axis 3;~2! the rotation of the obtained set of the unit vecto
about the angleuk about the new axis 2;~3! the rotation of
the obtained set of the unit vectors about the angleck about
the new axis 3. The rotation matrix was defined asa ik

5(eiek
(cr)).

Let ki
(cr) be the components of the wave vector a

Sik
(cr)(k) be the elements of the tensorŜ with respect to the se

of crystallographic axes. Thenki
(cr)(g)5ka3i , and, accord-

ing to Eq. ~11b!, the elementsSik
(cr)(k) are functions of the

Euler angles. Finally, the elements of the conductivity ten
with respect to the laboratory axes are

s ik~k;g!5sa~k!Sik~g!; Sik~g!5a ip~g!akq~g!Spq
(cr)~g!.

~12!
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Now we can write down the Fourier coefficientszab(k)
in terms of the elements of the dimensionless tensorŜ(g):

zab~x;g!52 i
2vda

c
dax@x3dab2 iZab~g!#/z~x;g!;

~13a!

Z11~g!5S22~g!; Z12~g!5S12~g!; Z22~g!5S11~g!.
~13b!

Here x5kda @da is defined by Eq.~9!# and the function
z(x;g) is

z~x;g!5@x32 iS1~g!#@x32 iS2~g!#, ~13c!

whereS1(g) andS2(g) are the principal values of the two
dimensional tensorSab(g):

S1,2~g!5
1

2
@S11~g!1S22~g!6R~g!#,

R~g!5A@S11~g!2S22~g!#214S12
2 ~g!. ~13d!

Equation~13c! defines the poles of the integrand in the e
pressions~6a! for the elements of the impedance tens
zab(g). After the integration is carried out~the method of
integration can be found, for example, in Ref. 21!, we obtain
the elements of the impedance tensor as functions ofg:

z11~g!5
1

2
za$@S1

21/3~g!1S2
21/3~g!#

1s~g!@S1
21/3~g!2S2

21/3~g!#%, ~14a!

z22~g!5
1

2
za$@S1

21/3~g!1S2
21/3~g!#

2s~g!@S1
21/3~g!2S2

21/3~g!#%, ~14b!

with za from Eq. ~9! and

s~g!5
@S11~g!2S22~g!#

R~g!
. ~14c!

In Eqs.~13!,~14! the dependence of all the terms on the Eu
angles~on the setg) is shown explicitly. We do not write
down the expression forz12, since that element of the loca
impedance tensor does not contribute tozef .

B. The effective surface impedance calculation

In accordance with Eq.~3! the elements of the tensorẑef
are the averages over the rotationsg of the local impedance
tensor~14!. With regard to our definition of the Euler angle
the direct calculation showed that the Euler anglewk entered
only the expression for the functions(g). The structure
of this function was: s(g)5S(uk ,ck)sin 2wk
1C(uk ,ck)cos 2wk . We also showed that the nondiagonal e
ementS12 of the tensorŜ(g) depended on the anglewk in the
same way as the functions(g). Then, after the averaging
over the anglewk , it is evident that
2-4
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zef5
1

2
za^S1

21/3~uk ,ck!1S2
21/3~uk ,ck!&,

^•••&5
1

4pE0

p

sinuk dukE
0

2p

•••dck . ~15!

With the aid of Eq.~15!, the effective surface impedance
a polycrystalline metal can be calculated~at least numeri-
cally!, if the equation of the Fermi surface of the origin
single crystal is known.

Equation~15! is rather formal. Below we present the fo
mulas obtained from Eq.~15! for a Fermi surface which is a
surface of revolution. The derivation of Eqs.~16! is pre-
sented in Appendix A.

Let the rotation axis of the Fermi surface coincide w
the crystallographic axisz. ~For axially symmetric Fermi sur
faces we use a subscript' for the vectors in the plane per
pendicular to the axisz. The subscriptsz and' are used only
for the vectors written with respect to crystallographic axe!
Let the equation of the Fermi surface written with respec
the crystallographic axes be«F5«(p' ,pz), p'5up'u. For
such a surface the functionsS1,2 depend on the spherica
Euler angleuk only:

S15
16

SF sinuk tanuk
E p'F~p' ,tanuk!dp' ;

S25
16 tanuk

SF sin3uk
E p'

dp'

F~p' ,tanuk!
, ~16a!

where

F~p' ,tanuk!5Av'
2 tan2uk2vz

2

vz
2

. ~16b!

Consequently, the averaging is reduced to the integra
over the Euler angleuk :

^Sa
21/3&5E

0

p/2

sinukSa
21/3duk ; a51,2. ~17!

We introduced the transverse speed of an electron on
Fermi surfacev'5]«(p' ,pz)/]p' and the projection of an
electron velocity on the axisz: vz5]«(p' ,pz)/]pz . In Eqs.
~16a! the integration is carried out over the part of the Fer
surface, wherevz.0 and the radicand of the functio
F(p' ,tanuk) is positive. If the Fermi surface is a multipl
connected surface, the integration is spread over all of
parts.

Equations~16! and ~17! are rather simple. They allow to
analyze the influence of the Fermi surface geometry on
value of the effective surface impedance.

In conclusion of this section we would like to note th
Eq. ~15! @as well as Eqs.~16! and ~17!# for the effective
impedance are based on the approximation~11b! for the el-
ements of the conductivity tensors ik(k), which is supposed
to be true for an arbitrary orientation of the wave vectork
with respect to the crystallographic axes. In this case
difference betweenzef and za is in a real numerical facto
05420
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21/31S2
21/3&. Then, comparing Eqs.~15! and ~9!, we

see that effectively the polycrystal is an isotropic conduc
with the spherical Fermi surface, whose area is equalSF

(a) ,

SF
(a)5SFF1

2
^S1

21/31S2
21/3&G23

, ~18!

SF is the true area of the Fermi surface. Of course, in t
case the effective impedance reproduces all the main cha
teristic features of the impedance of an isotropic me
Namely,zef does not depend on the mean free pathl, and the
relation between the real and the imaginary parts ofzef is
given by the factor (12 iA3) which enters the expression~9!
for za . Several examples of the Fermi surfaces for wh
these general rules are not true are presented below in S
III B and III C.

III. EFFECTIVE SURFACE IMPEDANCE
OF POLYCRYSTALS COMPOSED OF THE GRAINS

WITH SOME MODEL FERMI SURFACES

In this section, we present some examples of the effec
impedance calculation for different model polycrystals. W
assume that Fermi surfaces of original single crystals h
rather simple forms. Although the examples discussed be
cannot be directly related to real metals, they allow us
solve the problem accurately~up to numerical factors! and to
show clearly the dependence of the effective impedance
the geometry of the Fermi surface.

A. Ellipsoidal Fermi surface

Let the Fermi surface be an uniaxial ellipsoid. Such
surface is the simplest example of a closed nonspher
Fermi surface. With respect to the crystallographic axes,
equation of the Fermi surface is

«F5
1

2m'

p'
2 1

1

2mz
pz

2 . ~19!

Let us set

p* 5~2m'«F!1/2, m5mz /m' . ~20!

If m!1, the Fermi surface is close to a disk; ifm@1, it is a
needle-shaped one. In terms ofp* andm the areaSF of the
surface~19! is SF54pp

*
2 Q(m),

Q~m,1!5
1

2 H 11
m

2A12m
lnF11A12m

12A12m
G J ,

Q~m.1!5
1

2 H 11
m

Am21
arcsinAm21

m J . ~21!

We calculated the functionsS1,2(uk) according to Eqs.
~16!:

S1~uk ;m!5
m

Q~m!Acos2uk1m sin2uk

,

2-5
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S2~uk ;m!5
m

Q~m!@cos2uk1m sin2uk#
3/2

. ~22!

If the ellipsoid is strongly flattened or strongly elongated,
least one of the principle values of the tensorSab ~they are
S1 and S2) is singularly small:S1(2);m if m!1, and S2
;1/m if m@1. In other words, at least one of the princip
conductivities is singularly small compared with the av
aged conductivitysa .

With regard to Eq.~17!, our result for the effective im-
pedance in the case of the ellipsoidal Fermi surface~19! is

zef
(el)5zaZ~m!, ~23a!

whereza is defined by Eq.~9! and

Z~m!5
1

2 S Q~m!

m D 1/3E
0

1

dx M1/6~x;m!@11M1/3~x;m!#;

M ~x;m!5x21m~12x2!. ~23b!

The functionZ(m) is presented in Fig. 1. When the ellipso
is strongly flattened or strongly elongated,Z(m)@1:

Z~m!'
5

8 S 1

2m D 1/3

if m!1 and

Z~m!'
p

8 S pm

4 D 1/3

if m@1. ~23c!

Consequently, in these cases the effective impedancezef
(el)

@za . Finally, according to Eq.~18! the effective area of the
Fermi surface~19! relating to the effective impedance calc
lation is SF

(a)5SFZ23(m).
Thus, although usuallyza can be used as an estimate

the effective impedance of a polycrystal, there are situati
when zef differs from za significantly. In our example tha
are the cases of strongly flattened and strongly elong
ellipsoidal Fermi surfaces~19!. At such surfaces for an arbi
trary directed vectork ‘‘the belts’’ kv50 are very small.
They are placed mainly near the vertexes of the ellipso

FIG. 1. The functionZ5Z(m) defined by Eq.~23b!.
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This is the reason why in these cases at least one of
principle conductivities is much less thansa and, conse-
quently, the effective impedance is much greater thanza .

An elongated ellipsoid resembles a cylinder. The case
an open cylindrical Fermi surface is discussed in the n
subsection.

B. Open cylindrical Fermi surface

The simplest model of an open Fermi surface is an in
nitely long cylindrical tube. Let the axisz of the crystallo-
graphic coordinate system be the cylindrical axis. The eq
tion of such a surface in a certain Brillouin zone is

«F5
p'

2

2m
; 2pm,pz,pm , ~24!

where 2pm is the length of Brillouin zone along the directio
z. ~In terms of the electron number densityn we havepm
5np2\3/m«F .)

For the cylindrical Fermi surface~24!, an electron veloc-
ity v is in the plane perpendicular to the axisz. Sincevz
50, when calculating the effective impedance we cannot
Eqs. ~16! directly. We have to repeat the calculation beg
ning from the derivation of the proper expressions for t
elements of the tensorŜ.

First of all let us show that in this case to calculate t
impedance, it is not sufficient to know the elements of t
tensor Ŝ only up to the leading terms~11b! of the series
expansion in powers of the small parameter 1/kl. Indeed, if
we make use of Eqs.~11b! and calculate the elements of th
tensorŜ with respect to the crystallographic coordinate sy
tem and then pass to the laboratory coordinate system
the aid of Eq.~12!, it easy to see that

S11~g!5
4

p sinuk
sin2 wk , S12~g!52

2

p sinuk
sin 2wk ,

S22~g!5
4

p sinuk
cos2wk , ~25!

and, of course,S135S235S3350. With regard to Eqs.~13d!
this means that one of the principal values of the tensorSab ,
namely,S2, is equal zero. Next, ifS250, the denominator in
the expressions~13a! for the Fourier coefficients of the ele
ments of the impedance tensor isz(x5kda ;g)5x3@x3

2 iS1(g)#, and the integrals~6a! defining the impedancezab
diverge. To get rid of the divergence, we have to calcul
the next terms of the tangential conductivities.

We use Eq.~7! and by analogy with Eq.~11a! we write
the elements of the conductivity tensor in the form

s ik5sa~k!Sik~g;1/kl !, ~26!

with sa defined by Eq.~8!, whereSF54ppmA2m«F is the
lateral area of the cylinder. The simple form of the Fer
surface allowed us to calculate the elements of the ten
Sik(g;1/kl) for an arbitrary value of 1/kl. With this result in
hand we calculated the principle valuesS1(g;1/kl) and
S2(g;1/kl) up to the terms of the order of 1/kl:
2-6
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S1~g;1/kl !'
4

p sinuk
F12

1

kl sinuk
G ;

S2~g;1/kl !'
4

pkl
cot2uk . ~27!

The anomalously small conductivitys25saS2 contrib-
utes to the leading terms in the expressions~6a! for the ele-
ments the impedance tensorzab(g). It defines unusual be
havior of the surface impedance of a metal with t
cylindrical Fermi surface. First, simple direct calculatio
showed: the additional small factor 1/kl in the expression for
S2 results in the additional big factor (l /da)1/4 in the expres-
sions for the elements of the surface impedance tensor;da is
defined by Eq.~9!. @It can be easily seen after the substituti
of the dimensionless variablex5kda in the expressions fo
the Fourier coefficientszab(k;g).] Next, the poles of the
integrand of Eq.~6a! are the zeros of the functionz(x;g)
defined by Eq.~13c!. However, now the poles related t
S2(g;1/kl) are not the roots of the third-degree equation
of the fourth-degree equationx424i cot2 uk /p50. We
showed that as a result, for the single crystal with the cy
drical Fermi surface the relation between the real and
imaginary parts of the surface impedance was defined no
the usual factor (12 iA3), but by the factore23ip/8.

The aforementioned specific features are inherent in p
crystals composed of the single crystal grains with the cy
drical Fermi surface. After calculating the elements of t
single crystal impedance tensorzab(g) and consequent av
eraging with respect to all possible rotationsg, we obtained

zef
(cyl)5

1

8 S vda

c D S l

4pda
D 1/4

e23ip/8G2~1/4!, ~28!

whereG(x) is the gamma function. We see that the absol
value of zef

(cyl) is much greater than the typical valueuzau:
uzef

(cyl)u;uzau( l /da)1/4 @compare Eqs.~28! and ~9!#.

C. Cubic Fermi surface

Let the Fermi surface be a cube. Let the origin of the
of the crystallographic axes be at the center of the cube. W
respect to crystallographic axes the sides of the cube are
planes

pi
(cr)56pF ~ i 51,2,3!; ~29!

the edges of the cube are the intersections of the planes~29!.
At the sides of the cube the velocityv i

(cr)56vF ~on the
opposite sides the directions of the vectorv are opposite!; the
Fermi energy is«F5vp.

The surface~29! is not the surface of revolution and, con
sequently, Eqs.~16! are not applicable. Moreover, it is ev
dent that for an arbitrary direction of the wave vectork there
are no ‘‘belts’’ on the cubic Fermi surface wherekv50.
This means that the approximation~11! for s ik(k;g), as well
as the general equations~15!, are not applicable either. So, i
this case, the starting point of our calculation was the gen
expression~7! for the Fourier coefficientss ik(k).
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When the Fermi surface is a cube for an arbitrary value
the parameterkl5kvFt, it is very easy to perform the inte
gration in Eq.~7! with respect to crystallographic coordina
system. It is evident that the only nonzero elements of
tensors ik

(cr) are its diagonal elements. With respect to the
of laboratory axes the elements of the tensors ik(k;g) are

s ik~k;g!5saSik~kl;g!,

Sik~kl;g!5
4kl

3p (
q51

3
a iqakq

@11~kl !2a3q
2 #

; ~30!

sa is given by Eq.~8! with SF being the lateral area of th
cube:SF524pF

2 .
Whenkl@1 from Eqs.~30! it follows that for almost all

the Euler angles the series expansion of all the element
the tensorSik begins with the terms of the order of 1/kl.
Thus, whenkl@1, for the cubic Fermi surface all the ele
ments of the conductivity tensor have the additional fac
1/kl and are much less than the characteristic conducti
sa . It worth to be mentioned, that nevertheless the eleme
of the averaged conductivitŷs ik(k;g)& as before are given
by Eqs.~8!. The point is that if we neglect 1 in the denom
nator of the expression forSik , the averaging of Eqs.~30!
lead to divergent integrals.

However, no divergence of the integrals~6a! occurred
when Sik'Fik /kl (Fik5(q51

3 a iqakq /a3q
2 ) were used to

calculate the Fourier coefficientszab(k;g). We showed that
in the same way as in the case of the cylindrical Fermi s
face, due to the additional small factor 1/kl the poles of
zab(k;g) were the roots of fourth degree equations.

When the calculated Fourier coefficientszab(k;g) were
substituted in Eq.~6a! and the integration was carried ou
we obtained the elements of the impedance tensorzab

(cube)(g)
of a single crystal with the cubic Fermi surface. They d
pended on all of the three Euler angles and showed the s
specific features as in the case of the cylindrical Fermi s
faces. Namely, they had the additional big factor (l /da)1/4,
and the relations between their real and imaginary parts w
defined by the unusual factore23ip/8.

These specific features survive in polycrystals. After t
averaging ofzab

(cube)(g) with respect to all possible rotation
g we obtained the effective impedance in the case of
cubic Fermi surface:

zef
(cube)5

N

4 S vda

c D S 3p l

da
D 1/4

e23ip/8; N5^F1
21/41F2

21/4&,

~31!

whereF1(2) were the principle values of the two-dimension
tensorFab . Numerical evaluation of the factorN gave N
50.892.

Of course, there are no cubic Fermi surfaces in real l
But there are metals whose Fermi surfaces are close to p
hedrons~see, for example, Ref. 23!. In this connection, let us
estimate when smoothing of the edges and the vertexe
the cube does not lead to a substantial change of the re
~31!. Since the value of the local surface impedance~and,
consequently, the value of the effective impedance! is de-
2-7
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INNA M. KAGANOVA AND MOISEY I. KAGANOV PHYSICAL REVIEW B 63 054202
fined by the elements of the conductivity tensors ik(k), it is
sufficient to estimate when the contribution tos ik(k) from
the smoothing regions is much less than the contribu
from the sides of the cube. According to Eqs.~30! and ~8!,
when kl@1 the contribution to the conductivity from th
sides of the cube is of the order ofs (cube);e2pF

2/k(kl)\3.
Supposedpv is the characteristic size of the smoothin

region near the vertexes of the cube. With regard to Eqs.~11!
the contribution to the conductivity from the regions near
vertexes is of the order ofds (v);e2(dpv)2/k\3. Next, the
characteristic size of the smoothing region in the direct
along an edge of the cube is of the order ofpF . Suppose
dped is the characteristic size of the smoothing region in
directions perpendicular to the edge. Then the contributio
the conductivity from the regions near the edges is of
order of ds (ed);e2pFdped/k\3. If dped;dpv;dp, the
value ofdp is limited by the inequalityds (ed)!s (cube):

ds (v),ds (ed)!s (cube), if dp!
pF

kl
. ~32!

With respect to polycrystals with nearly cubic Fermi su
faces, Eq.~32! defines the limits of the result~31! applica-
bility.

Usually under the conditions of extremely anomalous s
effect, the impedance does not depend on the mean free
l ~see, for example, Ref. 19!. This general conclusion is in
applicable for some specific Fermi surfaces. Our res
show that it fails for an open cylindrical and for a cub
Fermi surface~or more generally, when the Fermi surface
a polyhedron!. This conclusion is true both for single crysta
and polycrystals. In these cases the effective impedance
pends on the mean-free pathl and significantly exceeds th
characteristic valueuzau: uzefu;( l /da)1/4uzau. In addition the
relation between the real and the imaginary parts of the
fective impedance is defined by unusual fac
exp(23ip/8).

Equations~28! and~31! were obtained as a result of dire
calculations and formally no further explanations are need
However, the calculations are rather tedious, and the ans
is not obvious. To visualize the result we use the Pipp
method.24 Pippard called it the method of ineffective ele
trons.

Following Pippard, under the conditions of extreme
anomalous skin effect the impedance can be calculated in
same way as in the case of normal skin effect, if we take i
account that only a small part of conduction electrons p
portional tod/ l ~electrons from ‘‘the belt’’ at the Fermi sur
face! takes part in the reflection of electromagnetic wav
Pippard used the standard formulas for the penetration d
and the surface impedance, where the conductivitysn
;ne2l /pF was replaced by the effective valuesP
;sn(d/ l ).

In other words, due to ‘‘the belts,’’ we cannot simply om
1 in the denominator of expression~7! for the conductivity
s ik(k). Now let us suppose that in the limitkl@1 when
calculating the principal values of the transverse conducti
sab(k) for a given direction of the wave vectork, we can
neglect 1 without the divergence of the integrals over
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Fermi surface at least for one of the principal values. Th
this principal value iskl; l /d times less than the regula
value of the conductivity. Since the impedance is defined
the smaller of the principal conductivities, the addition
small factord/ l appears in the effective conductivity. The
sP;sn(d/ l )2. Consequently,

dP;
c

AisPv
;S c2l 2

isnv D 1/4

and zP;
vdP

c
; l 1/4e23ip/8.

Note that the Pippard method allows us to define all
dimensional factors correctly, as well as the relation betw
real and imaginary parts of the impedance.

If for a single crystal metal this situation takes place fo
finite interval of the directions of the wave vectork ~or, in
other words, for a finite interval of the Euler anglesg), the
relationz; l 1/4 remains valid for the polycrystal too. The la
is true since when averaging the leading term is defined
the Euler angles corresponding to the maximal values of
local impedance. All the conditions mentioned above are
alized for polycrystals composed of the single crystal gra
with cubic or cylindrical Fermi surfaces. Consequently, th
impedance has to be proportional tol 1/4.

IV. EFFECTIVE IMPEDANCE IN VICINITY
OF ELECTRONIC TOPOLOGICAL TRANSITION

The possibility to observe the effect of a change of top
ogy of the Fermi surface on the properties of electrons w
predicted by Lifshitz.25 The change of topology of the Ferm
surface, the electronic topological transition, takes pla
when the Fermi energy equals one of the critical values«c
determined by band edges, the Van Hove singularities, lo
maxima and minima of the function«(p). As a consequence
of such a change, the properties of a metal determined by
Fermi surface electrons exhibit singularities with differe
critical exponents. Under the conditions of extremely anom
lous skin effect the sensitivity of kinetic properties to th
structure of the Fermi surface defines their strong dep
dence on the parameter«F2«c . An attempt to review theo-
retical papers devoted to the electronic topological transit
has been done in Ref. 26.

Two basic types of topological transitions are possi
depending on the type of the critical point. They are~1!
formation of a new void of the Fermi surface or disappe
ance of an existing void when the critical point correspon
to a local extremum of the function«(p) and~2! creation or
disruption of a neck when the critical point corresponds t
conic point of the Fermi surface.

Usually the singularities of the surface impedance in
vicinity of the electronic topological transition are calculat
for some chosen orientations of the crystallographic a
with respect to the metal surface~see, for example, Refs. 27
28!. The question we are analyzing in this section is whet
the singularities related to the electronic topological tran
tion ‘‘survive’’ in polycrystals, which, in effect, are isotropic
metals. We will show that the singularities do ‘‘survive,
and the effective surface impedance of polycrystals exhi
2-8
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nontrivial behavior in the vicinity of the electronic topolog
cal transition.

Even without calculations it is easy to understand t
when a new little void of the Fermi surface appears,
derivative of the effective impedance has a jump. Rea
suppose we examine a single crystal metal in the vicinity
a critical point corresponding to an extremum of the funct
«(p). Then the newly appeared void is an ellipsoid. Und
the conditions of extremely anomalous skin effect, it is us
to assume that even for electrons of the small void the m
free pathl→`. Next, the surface impedance is proportion
to SF

21/3. After the formation of the new voidSF5S01Sv ,
whereS0 is the area of the main part of the Fermi surfa
andSv;u«F2«cu is the area of the new void. Consequent
in the vicinity of the critical point the impedancez5z0
1dz, wheredz50 until the formation of the void, anddz
;Sv is the addition to the impedance caused by the app
ance of the new void. Thus, the derivative]z/]«F has a
jump when«F5«c .

When calculating the effective impedance, we have
average the impedance of the single crystal with respec
all possible rotationsg. Since the singular addition to th
impedance caused by the formation of a new ellipsoidal v
has the same sign and is of the same order for all the or
tations of the crystallographic axes with respect to the m
surface, the averaging does not change the result qua
tively. The derivative ofzef also has a jump when«F5«c .
Note, if «F is changed by some external effect~e.g., by ap-
plying pressure or adding impurities!, d«F is linear with re-
spect to a small change of the external parameter. Then
derivative of the impedance has a jump with respect to
parameter too.

If the topological transition leads to creation or disrupti
of a neck of the Fermi surface, the character of the effec
impedance singularity cannot be obtained without the ca
lation. The point is that the orientation of the neck defines
preferred direction,’’ and the averaging strongly affects
value of the surface impedance. In what follows, we exa
ined a polycrystal composed of the single crystal grains w
the Fermi surface of a corrugated cylinder type. This
ample provides a rather general description of the singula
near the conic point.

As an example of ‘‘an exotic’’ topological transition, w
analyzed the case of the Fermi surface of the wurzite cry
type for «c corresponding to disappearance of the toroi
hole of the Fermi surface and appearance of the new ova
void ~see Sec. IV B!.

A. Fermi surface of corrugated cylinder type

Let the polycrystal be composed of single crystal gra
whose Fermi surface with regard to the crystallographic a
is defined by the equation

«F5
p'

2

2m'

1«c cos
ppz

pm
, 2pm,pz,pm . ~33!

The topology of the Fermi surface changes at the pointpz
50 when«F5«c . Namely,~1! if «F,«c , the Fermi surface
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is a closed surface@in each Brillouin zone there are tw
separated parts belonging to two different closed surfa
Fig. 2~a!#, ~2! if «F5«c , the Fermi surface has a conic poi
for p50, and a neck is formed@see Fig. 2~b!#, and ~3! if
«F.«c , the Fermi surface is an open one@see Fig. 2~c!#.

FIG. 2. The cross section of the Fermi surface of a corruga
cylinder type:~a! «F,«c , the Fermi surface is a closed surface;~b!
«F5«c , the Fermi surface has a conic point;~c! «F.«c , the Fermi
surface is an open surface.
2-9
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We set

«F /«c511d«, ~34!

and calculated the effective impedance forud«u!1. Since
the area of the Fermi surfaceSF varies under the variation o
the Fermi energy«F , it is not convenient to useza defined
by Eq. ~9! as the characteristic value of the surface imp
ance. We introduced new characteristics of the Fermi sur
independent of«F :

pc5
m'«c

pm
; Sc54ppc

2 ; m5p2
m'«c

pm
2

. ~35!

Note, the parameterm defines the local geometry of th
Fermi surface in the vicinity of the conic point:m
5m' /mz

ef(p50), wheremz
ef(p)5]2«(p)/]pz

2 is one of the
elements of the effective masses tensor. At the pointp50
we havemz

ef(p50)5pm
2 /p2«c .

We used Eqs.~16! and~17! to calculate the effective im
pedance. By analogy with Eq.~9! we introduced

zc5
2~12 iA3!

3A3
S vdc

c D , dc5S 4pc2\3

ve2Sc
D 1/3

~36a!

(zc did not depend on«F) and wrote Eq.~17! in the form

zef
(c)5zcZ~d«;m!. ~36b!

Next, instead of the Euler angleuk we introduced w
5tan2uk /m and substitutedx5p' /ppc for p' in Eqs.~16!.
The obtained expression for the functionZ(d«;m) was

Z~d«;m!5
m

24p1/3E0

`@S̃1
21/31S̃2

21/3#

~11mw!3/2
dw, ~36c!

S̃1~w;m,d«!5
A11wm

wm E xF~x;w;m,d«!dx;

S̃2~w;m,d«!5
~11wm!3/2

wm E x dx

F~x;w;m,d«!
,

F~x;w;m,d«!5A mwx2

12~11d«2mx2/2!2
21. ~36d!

The requirement for the radicand of Eq.~36d! to be positive
combined with inequalities defining the intervals ofx varia-
tion on the Fermi surface gave the domain of integration

Let S1(2)
(0) be the functionsS̃1(2) for d«50 ~the Fermi

energy corresponds to the conic point!. Let zef
(0) be the effec-

tive impedance relevant to this Fermi energy. With regard
Eqs.~36! we have

zef
(0)5zcZ0~m!; Z0~m!5Z~d«50;m!. ~37!

The functionZ0(m) is presented in Fig. 3.
Let dzef

(c) be dzef
(c)(d«)5zef

(c)(d«)2zef
(0) . If ud«u!1, with

regard to Eq.~36c! the leading term of the expression fo
dzef

(c) is
05420
-
ce

o

dzef
(c)~d«!5

zcm

6~4p!1/3E0

` dw

~11mw!3/2F DS̃1

@S1
(0)#4/3

1
DS̃2

@S2
(0)#4/3G ,

~38!

whereDS̃a5Sa
(0)(w;m)2S̃a(w;m,d«).

Below we present the results obtained when calculat
dzef

(c)(d«) for d«,0 andd«.0. The details of the calcula
tion are straightforward, but rather lengthy and tedious.
Appendix B we outline the main steps of the calculatio
Here we would like to note only, that in both cases the m
contribution todzef

(c) arises from the grains whose orient
tions are defined by inequalityw5tan2uk /m.1.

So, in the vicinity of the critical point (ud«u!1) our final
result fordzef

(c) is

dzef
(c)'2~signd«!

zc

3 S m

2p D 5/3 a (6)

~11m!2
~ ud«u/2!3/4lnud«u,

~39a!

FIG. 3. The functionZ5Z0(m) defining the effective imped-
ance when the Fermi surface~33! has the conic point.

FIG. 4. The singularity of the effective impedance in the vicin
of the electronic topological transition for the case of the neck f
mation:z(d«)53dzef

(c)(d«)(11m)2(2p/m)5/3/zc .
2-10
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a (2)5E
0

1~11x4!dx

A12x4
, a (1)5E

0

1~12x4!dx

A11x4
; ~39b!

a (2)'1.75 corresponds tod«,0, and a (1)'0.77 corre-
sponds tod«.0.

These equations describe the singularity of the effec
impedance of polycrystals in the vicinity of the electron
topological transition when the Fermi surface passes thro
the conic point~Fig. 4!. We would like to note that, first, this
singularity is stronger than when a new void appears: at
conic point the derivative]zef

(c)/]«F has the infinitely large
jump. Secondly, since the expression fordzef

(c) depends on
the characteristics of the Fermi surface only through the
rameterm, only the local geometry of the Fermi surface
the vicinity of the conic point affects the singularity of th
effective impedance@according to the definition~35!, m is
the ratio of the effective masses at the pointp50]. This
allows us to think that Eqs.~39! are relevant to the genera
case of creation/disruption of the neck of the Fermi surf
in polycrystalline metals.

B. Fermi surface of wurzite type crystals

Let the polycrystal be composed of single crystal gra
with an energy spectrum of wurzite type crystals.19,26 The

FIG. 5. The equienergy surfaces~40! are obtained by rotation
about the axispz of the curves shown in~a! for the energies 0,«
,«c

1 and ~b! for the energies«.«c
1 .
05420
e
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e
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dispersion relation for such crystals written down with r
spect to the crystallographic coordinate system is

«6~p!5
1

2m'

~p'6p0!21
1

2mz
pz

2 , ~40!

where the effective massesm' andmz are positive.
There are two critical energies«c

6 corresponding to the
change of topology of the equienergy surface~40!. The first
critical energy«c

2 ~we set«c
250) corresponds to the bottom

of the conduction band. Here a new void of the equiene
surface related to minus sign in Eq.~40! appears. When«F

5«c
2 , the critical pointsp'5p0 form a circle in the momen-

tum space. If 0,«,«c
15p0

2/2m' , the equienergy surface
are toroids with elliptical crossection in the planes contain
the axispz @Fig. 5~a!#. When the energy equals to the critic
value«c

1 , the hole in the toroid disappears and a new void
ovaloid shape related to plus sign in Eq.~40! appears@Fig.
5~b!# at the pointp'5pz50. Thus, the pointp'5pz50 is
an isolated critical point.

For the Fermi energies from the interval 0,«F,«c
1 we

calculatedzef
w5zef

(,) as a function of«F /«c
1 . For«F.«c

1 we
wrote down the value of the effective impedancezef

w5zef
(.) as

a sum

zef
(.)~«F /«c

1!5zef
(,)~«F /«c

1!1Dz. ~41!

Here zef
(,)(«F /«c

1) is the extension of the functionzef
(,) to

the region«F /«c
1.1, andDz describes the singularity of th

effective impedance in the vicinity of the topological trans
tion related to the critical energy«c

1 .
We performed the calculation with the aid of Eq

~16!,~17!. Some main interim formulas are presented in A
pendix C. As in the previous subsection, it is reasonable
introduce a characteristic impedancezw independent of the
Fermi energy. With regard to the equation of the Fermi s
face ~40! and Eq.~9! we set

zw5
2~12 iA3!

3A3
S vdw

c D , dw5S pc2\3

ve2m'«c
1D 1/3

. ~42!

The direct calculations showed that for 0,«F,«c
1 the

effective impedance was

zef
(,)~«F /«c

1!5zwS «c
1

«F
D 1/6

BS mz

m'
D . ~43a!

The functionB(z) is defined by Eqs.~C2! of Appendix C.
For z!1 andz@1 we have

B~z!'
5

16S 4

pzD
1/3

if z!1; B~z!'
p

8

z1/6

ln z
if z@1.

~43b!

According to Eq.~43a!, when the Fermi energy is near th
bottom of the band («F!«c

1) the effective impedance ha
the singularityzef

(,);zw(«c
1/«F)21/6. In this case the Ferm

surface~40! contracts to a circumferencep'5p0 ; pz50. As
a result, the conductivity is unusually small and the impe
2-11
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ance is extremely large. Next, the effective impedance
creases significantly when toroids are strongly flatten
(mz /m'!1) or strongly elongated (mz /m'@1). ~Compare
with the cases of strongly flattened and strongly elonga
ellipsoids discussed in Sec. III A.! Generally, it can be state
that the surface impedance increases significantly, when ‘
dimension’’ of the Fermi surface decreases.

When «F.«c
1 , the Fermi surface~40! consists of two

parts: the external one is a part of the toroid«F5«2(p); the
internal one is a part of the ovaloid«F5«1(p). The straight-
forward calculation of the functionDz @see Eq.~41!# showed
that near the point of the topological transition, when
,d«5(«F2«c

1)/«c
1!1, the correction to the impedanc

was

Dz52zwd«3/2CS m3

m'
D , ~44a!

where the functionC(z) is defined by Eqs.~C3! of Appendix
C. Forz!1 andz@1 we had

C~z!'
1

36Apz5/6S 1

2p D 1/3G~1/6!

G~2/3!
if z!1;

C~z!'
1

120z1/6
if z@1, ~44b!

G(x) is the gamma function. We see the singularity rela
to the new void formation at the isolated critical point@see
Eq. ~44a!#, is weaker than in the case of a neck formati
@see Eqs.~39!#. It is also weaker than in the case of the ne
void appearance in the vicinity of an extremum of the fun
tion «(p).

V. CONCLUSIONS

The calculation of the surface impedance of polycrys
line metals is a logical result of the development of elect
theory of metals. The possibility to calculate the surface
sistance of a polycrystalline metal with high accuracy~in
fact, exactly! when the local impedance~the Lentovich!
boundary conditions are valid,11,12 was a stimulus to investi
gate all the kinds of different physically meaningful situ
tions. Anomalous skin effect is one of these situations. T
present analysis relating to extremely anomalous skin eff
together with Refs. 8–12, where the cases of normal s
effect and the infrared spectrum region~see Ref. 9! were
examined, completes the theory of skin effect in polycr
tals. In the intermediate case, whend is of the order ofl, an
analytic expression for the impedance of a single cry
metal ~the starting point of our calculation! can be obtained
only after rather significant simplifications~see, for example
Ref. 29!. The obtained results are applicable in all the ca
when the surface resistance is of interest.

Suppose the impedance of an individual single crys
grain is its phenomenological characteristic correspondin
a flat metal-vacuum interface, then Eq.~3! must be consid-
ered as the basic formula of the theory. In contrast to ot
effective characteristics calculated with the aid of the meth
05420
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of Lifshitz and Rosenzweig,1 the spatial correlators of the
local impedance do not enter the expression for the effec
impedance. Taking account of these correlators falls outs
the limits of the accuracy of the local impedance bound
conditions. This allows us to consider Eq.~3! as an exact
formula.

When under the conditions of extremely anomalous s
effect the generally accepted approximation~11! for the con-
ductivity s ik(k) is valid for all the directions of the wave
vectork, Eq. ~15! solves the problem of the effective imped
ance calculation. Then the obtained results do not cha
qualitatively the concept of the polycrystalline metal being
effect an isotropic metal. In this case Eq.~18! allows us to
calculate the areaSF

(a) of the effective spherical surface de
fined with regard to anomalous skin effect correctly.

Often when polycrystals are examined, measurement
the impedance under the conditions of extremely anoma
skin effect are used to estimate the area of the Fermi surf
With regard to the measurement of the specific resistancr
51/s the obtained result is used to calculate the elect
mean free path. Of course, this method can be used, if
anisotropy of the single crystal grains is small. However
the anisotropy is strong, the results of the measurem
must be handled with care. First, our results show that
calculated areaSF

(a) is not the real area of the Fermi surfac
the numerical factor in Eq.~18! can significantly differ from
unity. Next, the effective static conductivity of a strong
anisotropic polycrystal does not equal to the static cond
tivity, averaged over all possible rotations of the grains. T
difference can be very big~see Ref. 30!. ThenSF

(s) that enters
the equation for the static conductivity of the polycrystal
an effective area defined with regard to the static conduc
ity. Of course,SF

(s)ÞSF
(a) , and this difference has to be take

into account when estimating the electron mean free pat
When the Fermi surface is an axially symmetric surfa

the expression for the effective impedance, Eqs.~16! and
~17!, is much simpler. However, the Fermi surfaces of t
majority of real metals are extremely complex. They ha
many voids of different shapes and symmetry. If one of
voids is axially symmetric, but not all the others, Eqs.~16!
and~17! are inapplicable. We can use these equations on
the Fermi surface is axially symmetric as a whole, or if t
leading terms in the expression~11b! for elements of the
tensorŜ are defined by an axially symmetric void.

When calculating the effective impedance for some d
ferent model Fermi surfaces~Sec. III!, several problems were
the object of our analysis. First of all, an ellipsoidal Fer
surface is the first necessary step, when after the analys
an isotropic conductor~the conductor with the spherica
Fermi surface!, we turn to the case of real anisotropic pol
crystals. On the other hand the results of Sec. III A also
be applied to bismuth type semimetals and some degene
semiconductors. In this case, however, these results hav
be generalized, since as a rule the Fermi surfaces of s
metals and degenerate semiconductors are the sets of
soids. The cases of extremely anisotropic ellipsoids, in ad
tion to being an illustration of the significant change of t
effective area of the Fermi surface@see Eqs.~23!#, can be
2-12
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helpful when low-dimensional systems are analyz
strongly flattened ellipsoids (m!1) are relevant for the de
scription of quasi-one-dimensional conductors; stron
elongated ellipsoids (m@1) are relevant for the descriptio
of quasi-two-dimensional conductors.

The analysis of metals with cylindrical~Sec. III B! and
cubic ~Sec. III C! Fermi surfaces shows that the effecti
impedance of polycrystals can differ from the impedance
an isotropic metalqualitatively. By a qualitative difference
we mean the dependence ofzef on the mean free pathl under
the conditions of extremely anomalous skin effect and
unusual relation between its imaginary and real parts@see
Eqs.~28! and~31!#. On the other hand, the results of Sec.
can be used as the first approximation under the descrip
of real polycrystals. In particular, the Fermi surfaces
quasi-two-dimensional metals are slightly corrugated cy
ders. Apparently, there are metals with a nearly cubic m
void of the Fermi surface~see, for example, Ref. 23!. By a
main void we mean the one where electrons providing
conductivity of the metal are found.

One of the most important phenomena related to the
ometry of the Fermi surface is the electronic topologi
transition.25 Extremely anomalous skin effect is one of ph
nomena where the influence of the topological transit
manifests itself clearly. Our analysis shows that polycrys
also have singularities of the effective impedance due to
topological transition~the singularities ‘‘survive’’ in poly-
crystals!. When in the vicinity of the critical point the im
pedance of the single crystal metal is not very sensitive to
orientation of the crystallographic axes with respect to
metal surface, the effective impedance of the polycrystal
the singularity of the same kind. If the impedance of t
single crystal metal depends on the orientation of the c
tallographic axes essentially~for example, when a neck o
the Fermi surface is formed!, the character of the singularit
can change@see Eqs.~39!#.

One of the methods allowing to observe the topologi
transition, is applying of external pressure. In this case
must be taken into account that in a polycrystalline sam
the stresses are different in different grains and the trans
is blurred. It is better to use polycrystals where the inhom
geneity of the stresses is minimal. Maybe the results of R
31 will be useful for the choice of such polycrystals.

The results of Sec. III and IV confirm the following con
clusion: if the anisotropy of the Fermi surface is essent
the averaging necessary when calculating the effective
pedance of polycrystals does not liquidate the influence
the geometry of the Fermi surface. In other words, it is
sufficient to think about a polycrystal as of a metal with
effective spherical Fermi surface, since in this case, so
characteristic features of extremely anomalous skin effec
polycrystals can be missed.
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APPENDIX A

Let the Fermi surface of a single crystal metal be a s
face of revolution«F5«(p' ,p3). To calculate the functions
S1,2(g) defined by Eqs.~13d!, we start with the calculation
of elements of the tensorŜ @see Eq.~11b!# with respect to the
crystallographic axes. We use the polar coordinatesp' ,f.
Since with regard to our definition of the elements of t
rotation matrix k(cr)5k(2sinuk cosck ,sinuk sinck ,cosuk),
in Eq. ~11b! d(kv/kv)5(v/v' sinuk)d@vzcotuk /v'2cos(ck
1f)#. Then carrying out the integration with respect to t
anglef, we obtain the elements of the tensorŜ(cr)(g):

S11
(cr)~g!5

8

SF sinuk
$F11cos 2ck@2 cot2ukF22F1#%;

~A1a!

S12
(cr)~g!52

8 sin 2ck

SF sinuk
@2 cot2ukF22F1#;

S13
(cr)~g!5

16 cosck cotuk

SF sinuk
F2 ; ~A1b!

S22
(cr)~g!5

8

SF sinuk
$F12cos 2ck@2 cot2ukF22F1#%;

~A1c!

S23
(cr)~g!52

16 sinck cotuk

SF sinuk
F2 ; S33

(cr)~g!5
16

SF sinuk
F2 .

~A1d!

Here the functionsF1(uk) andF2(uk) are

F1~uk!5E v'
2 p'dp'

vzAv'
2 2vz

2 cot2uk

,

F2~uk!5E vzp'dp'

Av'
2 2vz

2 cot2uk

. ~A2!

The integration is carried out over the region of the Fer
surface, wherevz.0 andv'

2 2vz
2 cot2uk.0.

We use Eqs.~A1a!–~A1d! and Eq.~A2! to calculate the
elements of the tensorŜ with respect to the laboratory coor
dinate system. With regard to Eq.~12! we obtain

S11~g!5
8

SF sinuk
@F~uk!2cos 2wkF~uk!#;

S225
8

SF sinuk
@F~uk!1cos 2wkF~uk!#; ~A3a!

S12~g!52
8 sin 2wk

SF sinuk
F~uk!; Si3~g!50; ~ i 51,2,3!.

~A3b!

F~uk!5F1~uk!1F1~uk!;
2-13
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F~uk!5F1~uk!2
~11cos2uk!

sin2uk

F2~uk!. ~A4!

Now it is easy to see that the functionsR(g) and s(g)
defined by Eq.~13d! and Eq.~14c!, respectively, are

R~g!5
16

SF sinuk
F~uk!, s~g!52cos 2wk . ~A5!

The expressions~16! for the functionsS1,2(uk) are the
result of substitution of Eqs.~A3! and Eqs.~A5! into Eqs.
~13d!.

APPENDIX B

Here we present the formulas related to the Fermi s
faces of the corrugated cylinder type~33!. With regard to
Eqs.~36!, first of all we have to calculate the functionsS̃1(2) .
To specify the domains of integration in Eqs.~36d!, we take
into account that the radicand of the expression
F(x;w;m,d«) vanishes whenx5x6 ,

x6
2 5

2

g
@~12w!1d«6D~w;d«!#;

D~w;d«!5A~12w!222d«w. ~B1a!

Sinceud«u!1, we set

D~w;d«!5u12wu22~sgnd«!h (6)~w;ud«u!, ~B1b!

where the small additionsh (2)(w;ud«u) and h (1)(w;ud«u)
correspond tod«.0 andd«,0, respectively.

Let us begin with the cased«,0. Here for all w the
domain of integration in Eqs.~38d! is x1,x,xm , where
xm5A2(22ud«u)/m is the maximal value ofx5p' /ppc al-
lowed by the equation of the Fermi surface~33!.

With regard to Eq.~B1b! when calculating the function
DS̃a(w;d«), (a51,2) the regionsw,1 andw.1 have to
be examined separately. If 0,w,1, h (2)(w;ud«u)
<Aud«u/2. Whenw.1, ud«u/2<h (,)(w;ud«u)<Aud«u/2.

We showed that if 0,w,1, DS̃a(w);h (2). If w.1 up
to the leading terms inh (2)

DS̃1~w!52
1

m2
A11mw

w
Aw21

w
h (2)~w;ud«u!

3 ln h (2)~w;ud«u!, ~B2a!

DS̃2~w!5
1

m2 S 11mw

w D 3/2A w

w21
h (2)~w;ud«u!

3 ln h (2)~w;ud«u!. ~B2b!

Consequently, the regionw.1 provided the main contribu
tion to dzef

(c) whend«,0.
Now we start with the case«F /«c.1 that isd«.0. Our

analysis showed that here three intervals ofw variation,
namely 0,w,w2 , w2,w,w1 and w1,w,` „w6
05420
r-

r

511d«6Ad«(21d«)…, have to be examined separate
Simple algebra allowed to determine three different doma
of integration in Eqs.~36d! with regard to the three interval
of w variation. We showed that whend«!1, only w from
the intervalw1,w,` contributed to the leading term o
the expression~38! for dzef

(c)(d«).
It was found out that forw.w1 the leading terms in the

expressions forDS̃1(2)(w) were given by Eq.~B2a! and Eq.
~B2b!, respectively, whereh (1)(w;d«) was substituted for
h (2)(w;ud«u) and the signs changed. In this case the cal
lation of dzef

(c)(d«) was reduced to the calculation of th
integral ~38! over the regionw1,w,`. The difference in
the numerical factorsa (2) anda (1) entering Eq.~39a! arose
from this last integration.

APPENDIX C

When Eqs.~16!,~17! are used to calculate the effectiv
impedance for the energy spectrum of the wurzite type cr
tals ~40!, it is convenient to use

f ~uk!5
cotuk

Amz /m'1cot2uk

~C1a!

in place of the Euler angleuk . Then the averaging in Eq
~17! corresponds to integration with respect tof:

^•••&5Amz

m'
E

0

1 ~••• !d f

@11 f 2~mz /m'21!#3/2
. ~C1b!

When 0,«F,«c
1 , the Fermi surface is the toroid«F

5«2(p). Our calculation showed that the functionB(z) in
Eq. ~43a! for zef

(w) was

B~z!5
z1/3

4 E
0

1 d f

@11 f 2~z21!#5/3

3H B1~ f !1F z

11 f 2~z21!
G 1/3

B2~ f !J ~C2a!

and

B1~ f !5FE~A12 f 2!2 f 2K~A12 f 2!

12 f 2 G21/3

,

B2~ f !5FK~A12 f 2!2E~A12 f 2!

12 f 2 G21/3

; ~C2b!

K(k) andE(k) are full elliptic integrals of the first and the
second kind, respectively.

When«F.«c
1 , the Fermi surface consists of the extern

toroidal part@«F5«2(p)# and the internal ovaloid part@«F
5«1(p)#. It is worth to be mentioned, that in this case,
Eqs.~16! not only an additional domain of integration relate
to the internal part of the Fermi surface appears, but
domain of integration related to the external part of t
Fermi surface also changes.
2-14
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We calculatedzef
(.)(«F /«c

1) for an arbitrary value of the
parameterd«5(«F2«c

1)/«c
1.0. Near the point of the to-

pological transition, 0,d«!1, our result forDz(d«) was
given by Eq.~44a!, where the functionC(z) was
n
os

s

05420
C~z!5
z1/3

36E0

1 @B1~ f !#4d f

@11 f 2~z21!#5/3A12 f 2
~C3!

with the functionB1( f ) from Eq. ~C2b!.
ves

t,

s

-

p.
1I.M. Lifshitz and L.N. Rosenzweig, Zh. E´ksp. Teor. Fiz.16, 967
~1946!.

2I.M. Lifshitz and G.D. Parkhomovskii, Zh. E´ksp. Teor. Fiz.20,
175 ~1950!.

3I.M. Lifshitz, M.I. Kaganov, and V.M. Tzukernic,Selected Works
of I.M. Lifshitz ~Nauka, Moscow, 1987!.

4V.I. Tatarskii, Zh. Eksp. Teor. Fiz.46, 1399 ~1964! @Sov. Phys.
JETP19, 946 ~1964!#.

5A.M. Dykhne, Zh. Eksp. Teor. Fiz.59, 110 ~1970! @Sov. Phys.
JETP32, 63 ~1970!#.

6I.M. Kaganova and A.A. Maradudin, Phys. Scr.T44, 104~1992!.
7I.M. Kaganova, Phys. Rev. B51, 5333~1995!.
8I.M. Kaganova and M.I. Kaganov, Phys. Lett. A173, 473~1993!.
9I.M. Kaganova and M.I. Kaganov, Waves Random Media3, 177

~1993!.
10I.M. Kaganova and M.I. Kaganov, J. Low Temp. Phys.22, 712

~1996!.
11A.M. Dykhne and I.M. Kaganova, Physica A241, 154 ~1997!.
12A.M. Dykhne and I.M. Kaganova, Phys. Rep.288, 263 ~1997!.
13M.A. Leontovich, Investigation on Radiowaves Propagatio

~Publishing House of the Academy of Science of USSR, M
cow, 1948!.

14L.D. Landau and E.M. Lifshitz,Electrodynamics of Continuou
Media ~Pergamon, Oxford, 1984!.

15E.L. Feinbeg, J. Phys.~France! 9, 1 ~1945!; 10, 4 ~1946!.
16L.L. Bonilla and J.B. Keller, J. Mech. Phys. Solids33, 241

~1985!.
-

17P. Bussemer, K. Hehl, S. Kassam, and M.I. Kaganov, Wa
Random Media2, 113 ~1991!.

18C. Pecharroman and J.E. Iglesias, Phys. Rev. B49, 7137~1994!.
19I.M. Lifshitz, M.Ya. Asbel’, and M.I. Kaganov,Electron Theory

of Metals~Consultants Bureau, New York, 1973!.
20A.P. Cracknell and K.C. Wong,The Fermi Surface. Its Concep

Determination, and Use in the Physics of Metals~Clarendon
Press, Oxford, 1973!.

21E.M. Lifshitz and L.P. Pitaevskii,Physical Kinetics~Pergamon,
Oxford, 1981!.

22G.Ya. Lyubarskii,The Application of Group Theory in Physic
~Pergamon Press, Oxford, 1960!.

23V.I. Nezhankovskii, Pis’ma Zh. Eksp. Teor. Fiz.51, 191 ~1990!
@JETP Lett.51, 217 ~1990!#.

24A.B. Pippard, Proc. R. Soc. London, Ser. A191, 385 ~1947!.
25I.M. Lifshitz, Zh. Eksp. Teor. Fiz.38, 1569 ~1960! @Sov. Phys.

JETP11, 1130~1960!#.
26Ya.M. Blanter, M.I. Kaganov, A.V. Pantsulaya, and A.A. Varla

mov, Phys. Rep.245, 160 ~1994!.
27M.I. Kaganov and P. Kontrares, Zh. Eksp. Teor. Fiz.106, 1814

~1994! @JETP79, 985 ~1994!#.
28N.A. Zimbovskaya and V.I. Okulov, Fiz. Met. Metalloved.61,

230 ~1986!.
29M.I. Kaganov, G.Ya. Lyubarskii, and E. Chervonko, Zh. Eks

Teor. Fiz.101, 1351~1992! @Sov. Phys. JETP74, 725 ~1992!#.
30Yu.A. Dreizin and A.M. Dykhne, Zh. Eksp. Teor. Fiz.84, 1756

~1983! @Sov. Phys. JETP57, 1024~1983!#.
31I.M. Kaganova and A.L. Roitburd, Solid State Phys.31, 1 ~1989!.
2-15


