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Effective surface impedance of polycrystals under anomalous skin effect conditions
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The effective impedance of strongly anisotropic polycrystals has been investigated under the conditions of
extremely anomalous skin effect. We were interested in finding out how the value of the effective impedance
depends on the geometry of the Fermi surface of a single crystal grain. The previously obtained nonperturba-
tive solution based on the application of the impedafibe Leontovich boundary conditions was used to
calculate the effective impedance of a polycrystalline metal. Some model Fermi surfaces were examined. In the
vicinity of the electronic topological transition the singularities of the effective impedance related to the change
of the topology of the Fermi surface were calculated. Our results show that though a polycrystal is an isotropic
medium in average, it is not sufficient to consider it as a metal with an effective spherical Fermi surface, since
this can lead to the loss of some characteristic features of extremely anomalous skin effect in polycrystals.
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[. INTRODUCTION moments can be calculated for a model polycrystal, or they
are assumed to be known characteristics of the medium.
Polycrystals, being one of the states of crystalline mediaThere are no regular methods allowing us to calculate effec-
are special, but very widespread case of inhomogeneous/e characteristics of polycrystals when anisotropy is strong.
solid media, where the inhomogeneity is due to the misori- In the case of strong anisotropy exact solutions can be
entation of discrete single crystal grains. Macroscopic propfound very rarely. One such example is the calculation of the
erties of polycrystalline solids can be described in the frameeffective static conductivity of a two-dimensional polycrys-
work of different models of an effective isotropic medium. tal, where, due to a specific symmetry transformation al-
The problem is to calculate characteristics of such an isotrolowed by the equations of the problem, the exact result has
pic medium when the corresponding parameters of singlgeen obtained for arbitrary values of two principal
crystalline grains are known. conductivities® This result does not depend on the statistical
In our opinion the most accurate and physically meaningproperties of the mediurfon the correlators of the conduc-
ful method of calculation of effective characteristics of poly- tivity in different points of the polycrystal

crystals 90es back to the pioneering works of Lifshitz and  The calculation of an effective characteristic of a poly-
co-workers.™In the framework of this method it is assumed crystal involves the calculation of random fields arising from

that the polycrystalline medium can be described as an e he inhomogeneity of the mediufsee Refs. 1-3 As a re-
fective isotropic medium that is perturbed by random spatia ult, the calculation of effective characteristics of an un-

fluctuations caused by the orientational fluctuations of the ' . polycrystal is simpler than the calculation of effec-

grains. . . . ._tive characteristics related to phenomena, where the sample
The system we consider is a single-phase polycrystalllné ) '
metal. It consists of discrete grains, each of which has éurface must be taken into account. In the former case the

regular crystalline structure. The properties of each grain arBroPlem is reduced to an algebraic problem, while in the
anisotropic, and crystallographic axes of the grains are rarfat{er one an integral equation must be solied details see
domly oriented with respect to a fixed set of laboratory axesRefS- 6—10. The calculation of the effective surface imped-
Then characteristics of the material measured in the labor@iNce associated with the reflection of an averaged electro-
tory coordinate system are stochastic functions of position. magnetic wave is an example of a problem related to the
In the general case an effective characteristic of a polysample surface. In the framework of perturbation theory the
crystal is not a function of its value in the single crystal only, effective impedance of weakly anisotropic metal polycrystals
but depends on statistical properties of the medium. As avas calculated in Refs. 8—10. Unexpectedly, it was found
rule, spatial fluctuations can be taken into account accuratelgut that for such a complex problem an exact solution can be
only if in the original single crystal the anisotropy of the obtained. Recently, it was showr? that the effective im-
characteristic is small and perturbation theory is applicablepedance of strongly anisotropic polycrystalline metals can be
The zero order term of the perturbation series is the singlealculated in the frequency region of the local impedance
crystal characteristic averaged over all possible orientationghe Leontovich boundary conditions applicability:**
of crystallites. The next order terms depend on the moments Due to very high conductivity of metals, usually the pen-
of the stochastic functionsee, for example, Ref)4hat are  etration depth of electromagnetic field into a meta much
the elements of the tensor single crystal characteristic meamaller compared with the vacuum wave lengyth 27c/ w.
sured with respect to the set of the laboratory axes. Thesk in the same times<<a, wherea is a characteristic length

0163-1829/2001/63)/05420215)/$15.00 63 054202-1 ©2001 The American Physical Society



INNA M. KAGANOVA AND MOISEY |. KAGANOV PHYSICAL REVIEW B 63054202
describing the inhomogeneity of the surface, the local impedwithin the accuracy of the initial equations, E@$). Conse-
ance boundary conditions quently, Eq.(3) allows us to calculate the effective imped-
ance of strongly anisotropic polycrystals. Feinberg obtained
) a similar result while calculating the effective dielectric con-
. . stant for radio waves propagating along the earth surfface.
allows us to solve an electrodynamic problem external with Equation (3) i licabl der th dit f both
respect to the metal. In E@l) E; andH, are the tangential quation(3) is applica e under the conditions of bo
normal and anomalous skin effect. The conditions of normal

components of electri&€ and magneticH vectors at the Kin off d he low f ; i

metal surface and is the unit normal vector to this surface. SKIN effect corréspon to the low frequency region when

The two-dimensional tensd is the surface impedance ten- <oandwor<l (lis the electron mean free path ands the
P electron relaxation time In Refs. 11,12 the effective imped-

sor of the metal. In the order of magnitu@ig, 5| ~ 6/A <1 ) . : . .

- - ance of various strongly anisotropic polycrystalline media
(a,ﬁ—l,?). Up to t.he terms of the order 6fa the tensorg has been calculated under the conditions of normal skin ef-
is an ordinary multiplying operator. lf the metal surface is ANfect. In sufficiently clean metals, skin effect clearly shows an
inhomogeneous one, the elements{adepend on the posi-  anomalous character when the temperature is low and the
tion at the surface. For a polycrystalline metal with the flatg|ectron mean free pattexceeds the penetration degthAt

surfacea is of the order of the mean size of a grain, and they,o same time. the frequenay can be much less than-/
dependence of the impedance on position is defined by mis- |, 16 hresent publication we concentrate on the analysis

orientation of the grains at the surface. of the effective surface impedance of polycrystalline metals

Sometimes it is sufficient to know the reflected electro- . :
S : ..._under the conditions of extremely anomalous skin efféct (
magnetic field averaged over the surface inhomogeneities.

By analogy with Eq(1), we define the effective surface im- >i’ ﬁ7<|1)' In tfr_usldcase th;rglat|on| bet;/veeg the Curﬂ?m
pedance tensor by the equation and the electric field strength is nonlocal and Maxwell’'s

equations turn into the system of integrodifferential equa-
(E)=Zof N (HOT. ) tiqns. We chgnuld like to point out thaj[ in the papers of Lif-

shitz et al,*~> as well as in the following studie@s an ex-
The angular brackets denote an average over the ensembleayhple we cite Refs. 16-18 calculations of effective
realizations of the polycrystalline structure. If the polycrys-characteristics of polycrystals were based on the solution of
talline medium is statistically homogeneous and untexturedgifferential equations with stochastic coefficients. The study
in the frequency region relevant to the local impedancey anomalous skin effect in polycrystals appears to be the
boundary conditions first example of an analysis of stochastic integrodifferential
equations.

The characteristic features of the surface impedance of

single crystal metals under the conditions of extremely

where| is the two-dimensional unit matrix ank is the  gnomalous skin effect can be found in a lot of textbooks of
two-dimensional position vector at the surfdsee Refs. 11,  gjactron theory of metalésee, for example, Ref. 19Here

12)_. Since the o_nIy property of the medium that affgcts ONeyye only mention the ones we need in our analysis of the
point averages is the rotation of the crystallographic axes Ofsactive impedance of polycrystals.
the grain with respect to the laboratory coordinate system, in First, the impedance of single crystals is sensitive to ori-

Eq. (3) (---) correspond to the averaging over all possiblegnation of the surface with respect to the crystallographic
rotations of the crystallographic axes of a grain at the metalyes Secondly, under the conditions of anomalous skin ef-
surface. _ _ , __fect the impedance depends on the geometry of the Fermi

The conception of the effective surface impedance is valid face of the metal. The Fermi surfaces of real metals are

if a<\. Since the stochastic fields are damped out at a dissxiremely complex and differ significantly for different
tance of the order o& from the metal surface, in this case metalst®2°|n certain metals they are closed surfatests of

beginning with a distancd, a<d<A\, the total electromag-  ingividual identical surfaces, each of which is situated in its
netic field equals to its averaged value definedZly In  respective Brillouin zongin other metals the Fermi surfaces
what follows we assume that are open, passing through the whole momentum space.
Thirdly, the inequality > 8, orkl>1 (k=|k|, k is the elec-
tromagnetic field wave vectprselects electrons from “the

4
) . belt” kvp=0 at the Fermi surfacej is the velocity of an
The result of Refs. 11,12, E(B), is a nonperturbative one gjectron on the Fermi surface. Other electrons are

with respect to the dispersion of the values of the elements Qfetfective’® and do not take part in the reflection of electro-
the local impedance tensor. The first correction to the effec‘magnetic waves. As a result, the leading term of the imped-

E.=Z[n,H],

Ler=Lefl = (L)), 3

o<<a<ih.

tive impedance due to the local impedance fluctuatioiss
(e~ Z%(8%aN), where Z2=([(x) —(0)1?/((£))?). How-
ever, the local impedance boundary conditichsare correct
only if 5/a<1. The terms of the order af?/a\ are outside

of the framework of the local impedance boundary condi-
tions applicability, and the correctio{'éf has to be omitted

ance does not depend on the electron mean freelpath
When calculating the impedance of a polycrystal, an av-

eraging over the orientation of the crystallographic axes of

the grain at the metal surface with respect to the direction of

the normal to the surface has to be ddsee below. When

the direction of the normal to the metal surface changes,
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“the belt” moves along the Fermi surface. Thus, the imped- 1 (=
ance of the polycrystal is defined by all electrons from the §aﬁ:;f Lap(k)dK, (6a)
Fermi surface even under the conditions of extremely 0
anomalous skin effect. The averaging leads to an isotropizawhere the Fourier coefficients,s(k) are expressed in terms
tion. It is usual to think of an isotropic metal as of a metal of the elements of the reciprocal tens{q]é(k),
with a spherical Fermi surface. The question is, if this evi-
dently model assumption is correct for the description of 1
anomalous skin effect in polycrystals. {ap(K)=— 2w

Our results show that being a characteristic of a medium
which is isotropic on the average, the effective impedance of he two-dimensional tensdr,; («,8=1,2) is defined with
a polycrystal composed of single crystal grains with complexespect to the laboratory coordinate system. The axes 1 and
Fermi surface depends on the details of the geometry of th2 of this coordinate system are placed on the metal surface
Fermi surface. According to Refs. 11,12 the calculation ofand the axis 3 is directed along the normato the surface.
the effective impedance of polycrystals involves two steps. In Eqgs.(6a),(6b) o (k) are the Fourier coefficients of the
The first step is the calculation of the impedance of the cryselements of the conductivity tensor calculated for the un-
tal metal for an arbitrary orientation of the crystallographicbounded single crystal metal. In theapproximatiof®2*
axes with respect to the metal surface. The second step is the

. . . . 2

averaging over all possible orientations of the crystallo- 2e°r Vilk
graphic axes. The first step requires the definition of elec- (k)= (2wﬁ)3f v[1+ikvr]
trons providing the maximal contribution to the conductivity . o ) ) )
whenkI>1. It is well known, the more the conductivity, the where the integration is carried out over the Fermi surface in
less the impedance_ The second im averagingse|ects Qne Brillouin Zone.. The Fermi .SUrface is defined by an.equa'
the calculated impedances choosing the maximal. Thus, tHéoNn €(p) =& ; &f is the Fermi energyy(p) = de(p)/dp is
effective impedance is the result of solution of a nontrivialthe Vvelocity of an electron at the Fermi surface and
minimax problem. =|v(p)|. When calculating the surface impedance the wave

The outline of this paper is as follows. In Sec. Il under thevectork is supposed to be directed along the normal to the
conditions of anomalous skin effect the general expressiofmetal surface.
for the effective impedance of a polycrystalline metal com- It is of interest that in the limikl>1 (I~vr) in spite of
posed of single crystal grains with an arbitrary Fermi surfacesuch complicated dependenceogf(k) on the Fermi surface
is obtained. In Sec. Ill we calculate the effective impedancedeometry, the conductivity tensor averaged over all orienta-
for different model Fermi surfaces. In Sec. IV we analyze thetions of the crystallographic axes is given by the very simple
effect of the change of the topology of the Fermi surface orfXpressio
the value of the effective impedance of polycrystals.

47w

kzéaﬁ_7oaﬁ(k) . (Gb)

ds, @)

2 ’7Te25|:
(oik(k)) = 0oa(K) (dik—kike/K®),  oa(k)= ——,
Il. EFFECTIVE IMPEDANCE OF POLYCRYSTAL 2(27h)°k
UNDER CONDITIONS OF ANOMALOUS SKIN EFFECT 8
A. The local surface impedance calculation whereS: is the total area of the Fermi surface. Equati(8)s

_ . define the Fourier coefficients of the elements of the conduc-
To make use of Eq(3), we need to know the explicit ity tensor of an isotropic conductor with a spherical Fermi
form of the local impedancé(x). Let us assume that the surface. The impedance of such a conductor Jiss

grains are sufficiently large: ={a0,4p, Where
as|. (5) 2(1-i43) ( AN <4wczh3) v .
a:— ’ a: o ;
In this case the current densijtyn a grain is nearly the same 3\/§ ¢ we’Se

as in the single crystal rotated with respect to the Iaboratoryg;a is the relevant electric field penetration depth.
axes in Ehe same way as the given particular grain. Conse- gqr slightly anisotropic polycrystals Eq¢9) define the
quently,{(x;) approximately equals to the impedance of theeffective impedance in the zeroth approximation with respect
single crystal whose crystallographic axes are rotated witho anisotropy. Apparently, the small anisotropy means either
respect to the laboratory axes in the same way as the ones thfat the Fermi surface is regularly close to a sphéoe
the grain at the poink;. example, it is an ellipsoid with nearly equal principal axes

It is knowrf! that when the relaxation time approximation or the “weight” of the regions where the Fermi surface de-
(the 7 approximation is used and the specular reflection of viates from the sphere is small. With regard to the effective
conductive electrons from the metal surface is assumed, thenpedance calculation the Fermi surface anisotropy can be
problem of the surface impedance calculation, detecting theonsidered small, if
main features of the anomalous skin effect, is simplified sig- .

4 f f dS; dSy(vyv,)? 1
wSt

nificantly. (For the detailed discussion see Ref.)1@. this AZ—
V1= (1)

case the elements of the surface impedance tensor of a single <l (10

crystal metal are
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In Eq. (10) the double integration is carried out over the Now we can write down the Fourier coefficientgs(k)

Fermi surfacep=Vv(p)/v(p). Equation(9) gives the leading in terms of the elements of the dimensionless ter&on):
term of the expression for the effective impedance. The first
correction to{, is proportional toA? (see Ref. 12 When

A — 205, 3 ; )
anisotropy is strong, Eqg9) are inapplicable. In what fol- Lap(Xiy) = =1 == OaX[X"Fap = 1Zap(V) 12X 7);

lows, we user,, {,, andd, only as characteristic values of (133

the conductivity, the impedance and the penetration depth

relating to the given Fermi surface. Zi(y)=Sody); ZiA¥)=Sia(v); Zyv)=S1(7y).
In view of the following averaging of the local surface (13b

impedance tensdb), we rewrite Eq(7) for the conductivity _ : - -
o (K) in the form I;(irey;( iskﬁa [ 8, is defined by Eq.9)] and the function

Tik(K)=oa(k) S (k); (113 2%, 7)=[C-iSy(NIX°=iSy(y)]. (139

whereo, is given by Eq.(8) and S (k) is a dimensionless whereS,(y) andS,(y) are the principal values of the two-
tensor. As a rule, whekl>1, leading terms in the expres- dimensional tenso8,():
sions for the elements of this tensor depend on the Fermi

surface geometry and the orientation of the crystallographic 1
axes only: S1A7)= 5 [Su(Y) + S V) =R(Y)],
4 i _ _ 2 2
S (k/k) = S_J vind(kviko)dS, ,,i:% (11b) R(%) = V[S1(y) = Sl 7) 1*+4SiL 7). (13d
F

Equation(130) defines the poles of the integrand in the ex-
and k=(0,0Kk). It is clearly seen that only electrons from pressions(6a) for the elements of the impedance tensor
“the belt” kv=0 contribute to the elements of the tensor {,z(). After the integration is carried outhe method of
Sik- Usually the elementS, g(k/k) (a,5=1,2) of the ten-  integration can be found, for example, in Ref).2ke obtain
sor S, (k/k) are of the order of unity and, consequently, thethe elements of the impedance tensor as functiong: of
transverse conductivities,; are of the order ofr,. In the 1
same approximation the elemen;(k/k)=0;i=1,2,3. _ - ~13 ~1/3
When in Egs(7) next terms in the small parameteklLare fu(7)= 2 Gl S (TS ()]
taken into accounty;3(k) ~ o, /Kl. If by any reason the tan-

—-1/3 _ —1/3
gential element§,; of the tenso(11b) are equal to zero, all (S My =S (vl (143
the elements of the tensar; (k)~o,/kl. In Sec. lll we 1
examine several examples of such extraordinary situations, Lol y)= 5 CAIS Y9+ S, V()]

but here we restrict ourselves to Eg$1b).

Usually it is most covenient to calculate the elements of 13 13
the tensorS with respect to the crystallographic axes. het SIS =S ] (14D
denote the rotation of the crystallographic axes with respeawith ¢, from Eq.(9) and
to the laboratory axes through the three Euler angles
O, ¥, 0. There are some different ways of the Euler _ [S1(¥) — Spa ¥)] 14
angles definitiorf? In our calculations we supposed that the (v)= R(y) (149

set of crystallographic unit vectos® was obtained from
the fixed set of the laboratory unit vectasdy three sequen- In Egs.(13),(14) the d(_apendence of _aI_I the terms on the I_Euler
angles(on the sety) is shown explicitly. We do not write

tial rotations:(1) the rotation about the angle, about the / .
axis 3;(2) the rotation of the obtained set of the unit vectorsdoWn the expression faf;,, since that element of the local

about the angle, about the new axis 2(3) the rotation of impedance tensor does not contribute/ta
the obtained set of the unit vectors about the amgl@bout _ ) _
the new axis 3. The rotation matrix was defined &g B. The effective surface impedance calculation

=(e,q((°') ' In accordance with Eq(3) the elements of the tensdk;
Let k{*) be the components of the wave vector andare the averages over the rotationsf the local impedance
S,ﬂfr)(k) be the elements of the tens®wwith respect to the set tensor(14). With regard to our definition of the Euler angles
of crystallographic axes. Thek{)(y)=kag;, and, accord- the direct calculation showed that the Euler angjeentered
ing to Eq.(11b), the elements{’(k) are functions of the only the expression for the functios(y). The structure
Euler angles. Finally, the elements of the conductivity tensopf ~ this  function  was:  s(y)=S(6y,#)sin 2p,
with respect to the laboratory axes are +C(6k.r)cos 2p. We also showed that the nondiagonal el-
ementS, , of the tensoS(y) depended on the angig, in the
oi(K;y)=0a(K)Si(y); Sk(y)zaip(y)akq(y)sgcé)( V). same way as the functios(y). Then, after the averaging
(12 over the anglepy, it is evident that
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1 I s 3(S; 3+, 3. Then, comparing Eqg15) and (9), we
fer=5 CalS1 (O, 1) + S, (0, ), see that effectively the polycrystal is an isotropic conductor
with the spherical Fermi surface, whose area is e,

-3

1 T 2
<...>:EJ'O SmgkdekL o dey. (15 , (18

S‘Fa>=SFB<Sl”3+SZ“3>

Se is the true area of the Fermi surface. Of course, in this
case the effective impedance reproduces all the main charac-
teristic features of the impedance of an isotropic metal.
Namely, s does not depend on the mean free gatind the
relation between the real and the imaginary partg gfis
given by the factor (i+/3) which enters the expressi¢®)

for {,. Several examples of the Fermi surfaces for which
these general rules are not true are presented below in Secs.

With the aid of Eq.(15), the effective surface impedance of
a polycrystalline metal can be calculatéat least numeri-
cally), if the equation of the Fermi surface of the original
single crystal is known.

Equation(15) is rather formal. Below we present the for-
mulas obtained from Ed15) for a Fermi surface which is a
surface of revolution. The derivation of Eqgl6) is pre-
sented in Appendix A.

Let the rotation axis of the Fermi surface coincide with

the crystallographic axia (For axially symmetric Fermi sur- 1B and IIIC.

faces we use a subscript for the vectors in the plane per-

pendicular to the axis The subscriptg andL are used only Il EFFECTIVE SURFACE IMPEDANCE

for the vectors written with respect to crystallographic axes. ~OF POLYCRYSTALS COMPOSED OF THE GRAINS

Let the equation of the Fermi surface written with respect to WITH SOME MODEL FERMI SURFACES

the crystallographic axes be-=#(p, .p,), p. =|p.|. For In this section, we present some examples of the effective

such a surface the functiorss, , depend on the spherical jnnedance calculation for different model polycrystals. We

Euler angled, only: assume that Fermi surfaces of original single crystals have
16 rather simple forms. Although the examples discussed below

51:_—f p, ®(p, ,tand)dp, ; cannot be directly related to real metals, they allow us to
Sk sin 6y tan b solve the problem accuratefyp to numerical factojsand to

show clearly the dependence of the effective impedance on
B 16tan9kJ' dp, the geometry of the Fermi surface.

(168

© Sesing, PL®(p, tangy)’
A. Ellipsoidal Fermi surface
where . o o
Let the Fermi surface be an uniaxial ellipsoid. Such a
v2tarfo,—v?2 surface is the simplest example of a closed nonspherical
O(p, ,tanby)= —22 (16b) Fermi surface. With respect to the crystallographic axes, the
Uz equation of the Fermi surface is
Consequently, the averaging is reduced to the integration 1 1
over the Euler angl@y: ep==—p2+=—p> (19
Foom, ™ " 2m,"%
/2
(Sa_lB):f sing,S, Y3d6,; a=12. (17 Let us set
0
_ 12 _
We introduced the transverse speed of an electron on the P.=(2miep)™,  p=m,/m, . (20

Fermi surface), =ds(p, ,p,)/dp, and the projection of an |t ,, <1 the Fermi surface is close to a diskyit>1, it is a

electron velocity on the axis v,=de(pL ,P2)/Jp;- IN EAS.  needle-shaped one. In termsmf and u the areaS: of the
(169 the integration is carried out over the part of the Fermisurface(lg) is 5F=47Tpi Qp),

surface, wherev,>0 and the radicand of the function

O (p, ,tandy) is positive. If the Fermi surface is a multiply 1 u 1+ ’_l—,u
connected surface, the integration is spread over all of its Q(,u<l)=—[1+ In }
parts. 2 2V1=p [1-N1-p

Equations(16) and(17) are rather simple. They allow to
analyze the influence of the Fermi surface geometry on the

1 n fu—1
. : >1)==¢1+ arcsimy/ —. (21
value of the effective surface impedance. Q(u>1) 2[ /_,u— 1 “w }

In conclusion of this section we would like to note that
Eqg. (15 [as well as Eqs(16) and (17)] for the effective ; ;
impedance are based on the approximatibtb) for the el- (16\)/Ye caleulated the function$, {¢) according to Eqs.
ements of the conductivity tensert, (k), which is supposed
to be true for an arbitrary orientation of the wave vedtor “
with respect to the crystallographic axes. In this case the Si(O; )= ' ,
difference betweerdy and £, is in a real numerical factor Q(u) VoS O+ sirP o,
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3 y ' " y " This is the reason why in these cases at least one of the
principle conductivities is much less than, and, conse-
250 1 quently, the effective impedance is much greater than
An elongated ellipsoid resembles a cylinder. The case of
of | an open cylindrical Fermi surface is discussed in the next
subsection.
N1s5F

B. Open cylindrical Fermi surface

1F 1 The simplest model of an open Fermi surface is an infi-
nitely long cylindrical tube. Let the axis of the crystallo-
graphic coordinate system be the cylindrical axis. The equa-

0.5 . . ) - .

tion of such a surface in a certain Brillouin zone is

N N p?

° ! i Iog?p) 2 ‘ 8 SF:ﬁ; ~Pm<Pz<Pm; (24)

FIG. 1. The functionz=2Z(u) defined by Eq(23b). where 2, is the length of Brillouin zone along the direction
z (In terms of the electron number densitywe havep,

© =nm’h3Imeg.)
So(O; )= - et (22 For the cylindrical Fermi surfac€4), an electron veloc-
Q(u)[cOS G+ w SirP by ] ity v is in the plane perpendicular to the axisSincev,

If the ellipsoid is strongly flattened or strongly elongated, at= 0, When calculating the effective impedance we cannot use
least one of the principle values of the ten&gy; (they are Egs. (16) directly. We have to repeat the calculation begin-
S, andS,) is singularly small:S; )~ u if <1, ands, ning from the derivation of the proper expressions for the
~1u if u>1. In other words, at least one of the principle elements of the tens@. o
conductivities is singularly small compared with the aver- First of all let us show that in this case to calculate the
aged conductivityor, . impedance, it is not sufficient to know the elements of the
With regard to Eq(17), our result for the effective im- tensorS only up to the leading termgllb) of the series
pedance in the case of the ellipsoidal Fermi surfd® is expansion in powers of the small parametekl 1Indeed, if
(el we make use of Eq$l1b) and calculate the elements of the
Cer = dal(m), (233 tensorS with respect to the crystallographic coordinate sys-

where{, is defined by Eq(9) and tem and then pass to the laboratory coordinate system with
the aid of Eq.(12), it easy to see that

1/3
Z(p)= %(%) fldx MM8(x; ) [ 1+MM(x; 1)];

0 Sp(y)= Wsinﬂksmz ks SiAy)=— wsineksm 2¢y,
M(x; ) =X+ u(1—x3). (23b) 4
The functionZ(u) is presented in Fig. 1. When the ellipsoid S v) = mcoschk, (25

is strongly flattened or strongly elongatef{,u)>1:
i i gatat{n) and, of courseS;3=S,3= S33=0. With regard to Eqs(13d)

5(1\¥ this means that one of the principal values of the teSQr,
Z(p)~ 5(2—) if u<1 and namely,S,, is equal zero. Next, i6,=0, the denominator in
K the expression§l3g for the Fourier coefficients of the ele-
(w1 ments of the impedance tensor "E{X=k'53;y)=X3[X3
Z(p)=~ 5(7) if u>1. (230 —_|Sl(y)], and thg mtegraISG_a) defining the impedancg, g
diverge. To get rid of the divergence, we have to calculate
Consequently, in these cases the effective impedgffte  the next terms of the tangential conductivities. -
> (.. Finally, according to Eq(18) the effective area of the W€ use Eq(7) and by analogy with Eq11a we write
Fermi sur{a)ce(lg) relating to the effective impedance calcu- the elements of the conductivity tensor in the form
lation is S =SeZ 7 3(w). o e
Thus, although usually, can be used as an estimate of = a(K)Si(7:1KkD), (26)
the effective impedance of a polycrystal, there are situationsiith o, defined by Eq(8), whereS-=4mp,,\/2meg is the
when g differs from ¢, significantly. In our example that lateral area of the cylinder. The simple form of the Fermi
are the cases of strongly flattened and strongly elongatesurface allowed us to calculate the elements of the tensor
ellipsoidal Fermi surface€l9). At such surfaces for an arbi- S (y;1/kl) for an arbitrary value of k1. With this result in
trary directed vectok “the belts” kv=0 are very small. hand we calculated the principle valu&(vy;1/kl) and
They are placed mainly near the vertexes of the ellipsoidS,(y;1/kl) up to the terms of the order ofKilf
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When the Fermi surface is a cube for an arbitrary value of
; the parametekl=kv 7, it is very easy to perform the inte-
gration in Eq.(7) with respect to crystallographic coordinate
4 system. It is evident that the only nonzero elements of the
S,(y; 1K1y~ —cot b, (270 tensora{™” are its diagonal elements. With respect to the set
kl of laboratory axes the elements of the tensgi(k;y) are

. 1
~ Kklsin6y

Si(y;1kl)~

T Sin 6y

The anomalously small conductivity,= o,S, contrib- oK y) = 0.Si(Kl: ),
utes to the leading terms in the expressié®a for the ele-
ments the impedance tensdgs(y). It defines unusual be- akl 2 e a
havior of the surface impedance of a metal with the Skl y)= — _ ThaTka . (30)
cylindrical Fermi surface. First, simple direct calculations 37 =1 [1+(kI)%aj,]

showed: the additional small factorkl/in the expression for
S, results in the additional big factot/(8,)* in the expres-
sions for the elements of the surface impedance terdgds
defined by Eq(9). [It can be easily seen after the substitution
of the dimensionless variable=kd, in the expressions for
the Fourier coefficients ,z(k;y).] Next, the poles of the

o4 is given by Eq.(8) with S¢ being the lateral area of the
cube:Sg=24pZ.

Whenkl>1 from Eqgs.(30) it follows that for almost all
the Euler angles the series expansion of all the elements of
the tensorS;, begins with the terms of the order ofkl/
: . ) Thus, whenkl>1, for the cubic Fermi surface all the ele-
Ljnézggn%yofé%%%aﬁaovtvhe?/ezrerﬁzveft:;e ;glne ??Zﬁ;{eyg to ments of the conductivity tensor have the ad_ditional fac_:tpr
S,(v;1kl) are not the roots of the third-degree equation putt/K! @nd are much less than the characteristic conductivity
of the fourth-degree  equationc®—4i cof f/7=0. We ’a: It worth to be mentioned, that nevertheless the elements

showed that as a result, for the single crystal with the cylin-Of the averaged conductiviti(k; 7)) as before are given

drical Fermi surface the relation between the real and tth Eqs.(8). The pomt_ is that if we neglect .l in the denomi-
imaginary parts of the surface impedance was defined not b atgr of d’;he expression Ifc&k’ the averaging of Eq430)
the usual factor (+i+/3), but by the factoe 378, ead to |vergent(j|ntegra S ¢ the i d
The aforementioned specific features are inherent in poly- However, no |vergenc3e of the |nt2egra(léa) occurre
crystals composed of the single crystal grains with the cylin VNN Sk~ Fik/kl (Fi=24_1@iqakq/a5,) were used to
drical Fermi surface. After calculating the elements of the,CaICUI":lte the Fourler_ coefficientsz(k; v). We showed that
single crystal impedance tensgg,(y) and consequent av- in the same way as in the case of the cylindrical Fermi sur-

: : : ; ; face, due to the additional small factorkll/the poles of
th t to all ble rotatiop btained ’ .
eraging with respect to all possible rotatiopsive obtaine Lap(K;y) were the roots of fourth degree equations.

1/ ws |\ When the calculated Fourier coefficientss(k;y) were

g“ij'):g(—a)(df 5 ) e 3I78r2(1/4), (28)  substituted in Eq(6a and the integration was carried out,
¢ TOa we obtained the elements of the impedance teg§§?*\ )

whereI'(x) is the gamma function. We see that the absolutedf a single crystal with the cubic Fermi surface. They de-

value of £&" is much greater than the typical vallig,: pended on all of the three Euler angles and showed the same

| £ ~| 2,0 (11 5,) Y [compare Eqs(28) and (9)]. specific features as in the case of the cylindrical Fermi sur-

faces. Namely, they had the additional big factbrsg)*,

and the relations between their real and imaginary parts were

defined by the unusual facter 378,

Let the Fermi surface be a cube. Let the origin of the set These specific features survive in polycrystals. After the

of the crystallographic axes be at the center of the cube. WitAveraging ofggcgbe)( v) with respect to all possible rotations

C. Cubic Fermi surface

respect to crystallographic axes the sides of the cube are thg e obtained the effective impedance in the case of the
planes cubic Fermi surface:
(=+pe (i=1,23; (29 (cube)_ N [ @%a) (3l R —14_ - —1/4
_ _ e 72| 7¢ 3 e ; N=(F{ 7"+F; ),
the edges of the cube are the intersections of the pl@@s a

At the sides of the cube the velocit®=+uvg (on the (3D
opposite sides the directions of the veotare oppositg the  whereF, ,) were the principle values of the two-dimensional

Fermi energy isg=vp. tensorF 5. Numerical evaluation of the factdd gave N
The surfacd29) is not the surface of revolution and, con- =0.892.
sequently, Eqs(16) are not applicable. Moreover, it is evi-  Of course, there are no cubic Fermi surfaces in real life.

dent that for an arbitrary direction of the wave vedtahere  But there are metals whose Fermi surfaces are close to poly-
are no “belts” on the cubic Fermi surface wheke=0. hedrongsee, for example, Ref. 23n this connection, let us
This means that the approximatighl) for o (k;y), as well  estimate when smoothing of the edges and the vertexes of
as the general equatiofik5), are not applicable either. So, in the cube does not lead to a substantial change of the result
this case, the starting point of our calculation was the generdB1). Since the value of the local surface impedaiaed,
expression7) for the Fourier coefficients (k). consequently, the value of the effective impedarisede-
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fined by the elements of the conductivity tensgg(k), it is Fermi surface at least for one of the principal values. Then
sufficient to estimate when the contribution dg (k) from  this principal value iskl~1/5 times less than the regular
the smoothing regions is much less than the contributiorvalue of the conductivity. Since the impedance is defined by
from the sides of the cube. According to E¢30) and (8), the smaller of the principal conductivities, the additional
when kI>1 the contribution to the conductivity from the small factord/l appears in the effective conductivity. Then

sides of the cube is of the order of "~ e2pZ/k(kl)%>. op~ay(8/1)?. Consequently,

Supposedp, is the characteristic size of the smoothing
region near the vertexes of the cube. With regard to BEids. c c2|2\ v ®8% L4 e
the contribution to the conductivity from the regions near the dp~ — “\Tow and §p~T~I e °Ims,
vertexes is of the order ofo (") ~e?(6p,)?/kh3. Next, the lopw n

characteristic size of the smoothing region in the direction ) ]

along an edge of the cube is of the ordermf. Suppose Note that the Pippard method allows us to define all the
5peqis the characteristic size of the smoothing region in thedimensional factors correctly, as well as the relation between
directions perpendicular to the edge. Then the contribution t§88! and imaginary parts of the impedance.

the conductivity from the regions near the edges is of the If for a single crystal metal this situation takes place for a
order of so€d~ €2Pr OPeg/ KA. If Speg~ Sp,~ op, the finite interval of the directions of the wave vector(or, in
) v ,

value of 8p is limited by the inequalityso- (e o-(cube) othe_r words, for a f_inite in_terval of the Euler anglgy, the
relationZ~ ¥ remains valid for the polycrystal too. The last
_ Pe is true since when averaging the leading term is defined by
S, so(*N<glebe) if sp< PR (32)  the Euler angles corresponding to the maximal values of the
local impedance. All the conditions mentioned above are re-
With respect to polycrystals with nearly cubic Fermi sur-alized for polycrystals composed of the single crystal grains
faces, Eq.(32) defines the limits of the resuiB1) applica-  With cubic or cylindrical Fermi surfaces. Consequently, their
bility. impedance has to be proportionallfé'.

Usually under the conditions of extremely anomalous skin
effect, the impedance does not depend on the mean free path
| (see, for example, Ref. 19This general conclusion is in-
applicable for some specific Fermi surfaces. Our results
show that it fails for an open cylindrical and for a cubic  The possibility to observe the effect of a change of topol-
Fermi surfaceor more generally, when the Fermi surface is ogy of the Fermi surface on the properties of electrons was
a polyhedron This conclusion is true both for single crystals predicted by LifshitZ> The change of topology of the Fermi
and polycrystals. In these cases the effective impedance dsurface, the electronic topological transition, takes place
pends on the mean-free pdtland significantly exceeds the when the Fermi energy equals one of the critical valsigs
characteristic valugl,|: [Zed~ (178" ¢4l. In addition the  determined by band edges, the Van Hove singularities, local
relation between the real and the imaginary parts of the efmaxima and minima of the functios(p). As a consequence
fective impedance is defined by unusual factorof such a change, the properties of a metal determined by the
exp(—3im/8). Fermi surface electrons exhibit singularities with different

Equationg28) and(31) were obtained as a result of direct critical exponents. Under the conditions of extremely anoma-
calculations and formally no further explanations are neededous skin effect the sensitivity of kinetic properties to the
However, the calculations are rather tedious, and the answetructure of the Fermi surface defines their strong depen-
is not obvious. To visualize the result we use the Pippardience on the parameteg— .. An attempt to review theo-
method?* Pippard called it the method of ineffective elec- retical papers devoted to the electronic topological transition
trons. has been done in Ref. 26.

Following Pippard, under the conditions of extremely Two basic types of topological transitions are possible
anomalous skin effect the impedance can be calculated in thgepending on the type of the critical point. They dfe
same way as in the case of normal skin effect, if we take intdormation of a new void of the Fermi surface or disappear-
account that only a small part of conduction electrons proance of an existing void when the critical point corresponds
portional to /1 (electrons from “the belt” at the Fermi sur- to a local extremum of the functios(p) and(2) creation or
face takes part in the reflection of electromagnetic wavesdisruption of a neck when the critical point corresponds to a
Pippard used the standard formulas for the penetration dep#bnic point of the Fermi surface.

IV. EFFECTIVE IMPEDANCE IN VICINITY
OF ELECTRONIC TOPOLOGICAL TRANSITION

and the surface impedance, where the conductivity Usually the singularities of the surface impedance in the
~né’l/ps was replaced by the effective valuerp vicinity of the electronic topological transition are calculated
~an(dI). for some chosen orientations of the crystallographic axes

In other words, due to “the belts,” we cannot simply omit with respect to the metal surfa¢see, for example, Refs. 27,
1 in the denominator of expressidi) for the conductivity  28). The question we are analyzing in this section is whether
oix(k). Now let us suppose that in the limil>1 when the singularities related to the electronic topological transi-
calculating the principal values of the transverse conductivitytion “survive” in polycrystals, which, in effect, are isotropic
a,.p5(K) for a given direction of the wave vectér, we can  metals. We will show that the singularities do “survive,”
neglect 1 without the divergence of the integrals over theand the effective surface impedance of polycrystals exhibits
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nontrivial behavior in the vicinity of the electronic topologi-
cal transition.

Even without calculations it is easy to understand that
when a new little void of the Fermi surface appears, the
derivative of the effective impedance has a jump. Really,
suppose we examine a single crystal metal in the vicinity of
a critical point corresponding to an extremum of the function
e(p). Then the newly appeared void is an ellipsoid. Under
the conditions of extremely anomalous skin effect, it is usual
to assume that even for electrons of the small void the mean
free pathl —o. Next, the surface impedance is proportional
to S- 3. After the formation of the new voi&:=S,+S, ,
where S, is the area of the main part of the Fermi surface
andS,~|e—&.| is the area of the new void. Consequently,
in the vicinity of the critical point the impedancé= ¢,

+ 8¢, where 5§¢=0 until the formation of the void, and¢

~S, is the addition to the impedance caused by the appear-
ance of the new void. Thus, the derivativé/der has a
jump whengg=¢..

When calculating the effective impedance, we have to
average the impedance of the single crystal with respect to
all possible rotationsy. Since the singular addition to the
impedance caused by the formation of a new ellipsoidal void
has the same sign and is of the same order for all the orien-
tations of the crystallographic axes with respect to the metal
surface, the averaging does not change the result qualita-
tively. The derivative of¢ also has a jump wheag=¢..
Note, if e is changed by some external efféetg., by ap-
plying pressure or adding impuritieSeg is linear with re-
spect to a small change of the external parameter. Then the
derivative of the impedance has a jump with respect to this
parameter too.

If the topological transition leads to creation or disruption
of a neck of the Fermi surface, the character of the effective
impedance singularity cannot be obtained without the calcu-
lation. The point is that the orientation of the neck defines “a
preferred direction,” and the averaging strongly affects the
value of the surface impedance. In what follows, we exam-
ined a polycrystal composed of the single crystal grains with
the Fermi surface of a corrugated cylinder type. This ex-
ample provides a rather general description of the singularity
near the conic point.

As an example of “an exotic” topological transition, we
analyzed the case of the Fermi surface of the wurzite crystal
type for e, corresponding to disappearance of the toroidal
hole of the Fermi surface and appearance of the new ovaloid
void (see Sec. IVR

A. Fermi surface of corrugated cylinder type

Let the polycrystal be composed of single crystal grains8
whose Fermi surface with regard to the crystallographic axeg,,
is defined by the equation

2
P P2
—+8C COS_p s “Pm<Pz<Pm-
m

3 (33

eF

@)

P

HYSICAL REVIEW B 63 054202

Pz

- Pm

Px

)

N

N

= - Pm

Pz

©

| I

e

3 \ 5
o

Pz

Px

NN
/N

= - Pm

FIG. 2. The cross section of the Fermi surface of a corrugated
cylinder type:(a) eg<e, the Fermi surface is a closed surfaf®;
=g, the Fermi surface has a conic poifd) er>¢., the Fermi
rface is an open surface.

is a closed surfac¢in each Brillouin zone there are two
separated parts belonging to two different closed surfaces,

Fig. 2@], (2) if eg=¢, the Fermi surface has a conic point

The topology of the Fermi surface changes at the ppijnt
=0 wheneg=¢.. Namely,(1) if eg<e., the Fermi surface
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We set 350 "
eple.=1+ Je, (34 300[
and calculated the effective impedance fée|<1. Since os0f
the area of the Fermi surfa& varies under the variation of
the Fermi energy, it is not convenient to usé, defined 200

Zo(W)

by Eq. (9) as the characteristic value of the surface imped-
ance. We introduced new characteristics of the Fermi surface  1sof
independent ok :

100

m, ec ,M &c

P.= , Se=4mpy; p=mt——. (35 s0f
m m
Note, the parameter defines the local geometry of the % 2 ; é, ;3 10
Fermi surface in the vicinity of the conic pointu H

=m, /mf(p=0), wherem®(p) = 3%¢(p)/dp? is one of the
elements of the effective masses tensor. At the ppiaD
we havem§ (p=0)= pm/w €c-

We used Eqs(16) and(17) to calculate the effective im-

FIG. 3. The functionZ=Z,(u) defining the effective imped-
ance when the Fermi surfa¢g3) has the conic point.

pedance. By analogy with E¢Q) we introduced (c)( Se)= fent ©_ dw AS, + AS,
6(477)1/3 0 (l+/~LW 3/2 [S(O)]4/3 [SZO)]4/3 !
(1-iV3) [ w6, 4mc2h3\ (38)
ZCZT ¢ | %7 s (36a ~ ~
e > whereAS, =S (w; 1) — Sy (W; i, 5¢).
(. did not depend or ) and wrote Eq(17) in the form Below we present the results obtained when calculating
© 8¢9 (6¢) for 5e<0 andse>0. The details of the calcula-
Lef = {cZ( b ). (36b)  tion are straightforward, but rather lengthy and tedious. In

Appendix B we outline the main steps of the calculation.
Here we would like to note only, that in both cases the main
contribution to 5§(C) arises from the grains whose orienta-

tions are defined by inequality=tarf 6, /u>1.

1 f‘”[NSl 1’3+~S£ v3) So, in the vicinity of the critical point|@e|<1) our final

Next, instead of the Euler angl®, we introducedw
=tarf 6,/ u and substituteck=p, /p. for p, in Egs.(16).
The obtained expression for the functidde; u) was

Z(be, )= dw, 360 result forsZl9 is
(9eipe) 24713 )0 (1+/.LW)3/2 (369
Lol m 53 (%)
- Vi+w 8¢9~ — (signs. —(— e|12)%4n| 5|,
Sl(W;u,58)=W—Mf XD (X;W; p, 5g)dX; bei (siome)3 | 27 (1+ )2(| el/2)"n|éel
a (399
- (1+W,u)3’2f x dx
: - 0.2
Sa(Wi e, 02) wu d(x;w;u,d¢)’
0.1
®( 5¢) \/ pt 1. (360
X;W; i, 8e) = -1. I
K 1—(1+ de— px2l2)? 0
The requirement for the radicand of E§6d) to be positive 04
combined with inequalities defining the intervals»obaria- &
tion on the Fermi surface gave the domain of integration. No2t
Let S{}}) be the funcuonssl(z) for 5e=0 (the Fermi
energy corresponds to the conic poiritet g(o) be the effec- -0.3¢
tive impedance relevant to this Fermi energy. With regard to
Egs.(36) we have -0.4f
(9=0Zo(w); Zo(w)=2(8e=0;u).  (37) oy pye . Yy Y
The functionZy(w) is presented in Fig. 3. 5
Let 88 be 679 (5e) =P (5e)— (). If | 5| <1, with FIG. 4. The singularity of the effective impedance in the vicinity
regard to Eq.(360 the leading term of the expression for of the electronic topological transition for the case of the neck for-
8¢9 is mation: z( &) =369 (8e) (1+ w) (27! w) > ¢ .
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Pz dispersion relation for such crystals written down with re-

® spect to the crystallographic coordinate system is
a

2y 12 40
e (p)=5— (pl—po) 2m, Pz (40)

Px where the effective masses, andm, are positive.

There are two critical energi&sf corresponding to the
change of topology of the equienergy surf4d6). The first
critical energye. (we sete. =0) corresponds to the bottom
of the conduction band. Here a new void of the equienergy
surface related to minus sign in E@0) appears. Whesg
=g, , the critical pomtspl po form a circle in the momen-
tum space. If &e<e, p0/2mi, the equienergy surfaces
are toroids with eIIipticaI crossection in the planes containing
the axisp, [Fig. 5@]. When the energy equals to the critical
valuee_ , the hole in the toroid disappears and a new void of

Pz
® ovaloid shape related to plus sign in E40) appears[Fig.
5(b)] at the pointp, =p,=0. Thus, the poinp, =p,=0 is
Po

an isolated critical point.

For the Fermi energies from the intervak@r<e_; we
calculated?¥= ¢ as a function ok /e Forg,:>s we
wrote down the value of the effective impedar@’(‘g’& { g) as
asum

Px

(0 epled) = (eplel)+ AL (42)

Here 7 (e /e) is the extension of the functiot;) to

the reglons,:/sC >1, andA ¢ describes the singularity of the
effective impedance in the vicinity of the topological transi-
tion related to the critical energy, .

FIG. 5. The equienergy surfac¢s0) are obtained by rotaton ~ We performed the calculation with the aid of Egs.
about the axig, of the curves shown i) for the energies &¢  (16),(17). Some main interim formulas are presented in Ap-

<e! and(b) for the energieg>¢; . pendix C. As in the previous subsection, it is reasonable to
introduce a characteristic impedangg independent of the
) Jl(1+X4)dX (+) fl(l—x“)dx (39b) Fermi energy. With regard to the equation of the Fermi sur-
= —_—, o = —’
0 V1 0 J1ix face (40) and Eq.(9) we set
a'7)~1.75 corresponds t@s<0, and o' ™’~0.77 corre- 2(1-iy3) [ w$ wC%h
(=175 ponds tés<0, and a(*)~0.77 (1-iy3) [ wé, 23 |13
sponds tode >0. %ZW < | W] - (42
These equations describe the singularity of the effective w€m, &g

impedance of polycrystals in the vicinity of the electronic
topological transition when the Fermi surface passes through
the conic poini(Fig. 4). We would like to note that, first, this
singularity is stronger than when a new void appears: at the ~ 1/6
conic point the derivativeZ{S/der has the infinitely large () (eplel)= gw( ) B(—Z) (43a
jump. Secondly, since the expression wg? depends on m,

the characteristics of the Fermi surface only through the pathe functionB(z) is defined by Eqs(C2) of Appendix C.
rameteru, only the local geometry of the Fermi surface in Eor z<1 andz>1 we have

the vicinity of the conic point affects the singularity of the

The direct calculations showed that for@g<e_ the
effective impedance was

effective impedancéaccording to the definitiori35), u is 4\ 16
the ratio of the effective masses at the pait0]. This (Z)N_(_Z) if z<1; B(Z)~§|_ if z>1.
allows us to think that Eq939) are relevant to the general (430
case of creation/disruption of the neck of the Fermi surface
in polycrystalline metals. According to Eq(43a, when the Fermi energy is near the
. ) bottom of the banddz<e_) the effective impedance has
B. Fermi surface of wurzite type crystals the singularityZ$;)~ ¢, (g2 /e¢) ~ V8. In this case the Fermi

Let the polycrystal be composed of single crystal grainssurface(40) contracts to a circumferengg =pg; p,=0. As
with an energy spectrum of wurzite type crystat€® The  a result, the conductivity is unusually small and the imped-
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ance is extremely large. Next, the effective impedance inof Lifshitz and Rosenzweidj,the spatial correlators of the
creases significantly when toroids are strongly flattenedocal impedance do not enter the expression for the effective
(m,/m, <1) or strongly elongatednf,/m,>1). (Compare impedance. Taking account of these correlators falls outside
with the cases of strongly flattened and strongly elongateghe limits of the accuracy of the local impedance boundary
ellipsoids discussed in Sec. lllAGenerally, it can be stated conditions. This allows us to consider E@) as an exact
that the surface impedance increases significantly, when “thgyrmula.
dimension” of the Fermi surface decreases. When under the conditions of extremely anomalous skin
When eg>¢. , the Fermi surfacd40) consists of two  effect the generally accepted approximatiad) for the con-
parts: the external one is a part of the torejd=¢ " (p); the  ductivity o, (k) is valid for all the directions of the wave
internal one is a part of the ovaloigt =" (p). The straight-  ectork, Eq. (15) solves the problem of the effective imped-
forward calculation of the functiod { [see Eq(41)] showed  4nce calculation. Then the obtained results do not change
that near the+ point of the topological transition, when 04 ajitatively the concept of the polycrystalline metal being in
<de=(er—e&c)/ec <1, the correction to the impedance effect an isotropic metal. In this case EG8) allows us to

was calculate the are&® of the effective spherical surface de-
ms fined with regard to anomalous skin effect correctly.
AL=— §W583’2C(m—), (443 Often when polycrystals are examined, measurements of
an

the impedance under the conditions of extremely anomalous
where the functiorC(z) is defined by Eqs(C3) of Appendix  skin effect are used to estimate the area of the Fermi surface.

C. Forz<1 andz>1 we had With regard to the measurement of the specific resistance
=1/o the obtained result is used to calculate the electron
1 1\®re) mean free path. Of course, this method can be used, if the

C(z)= 36250 27 T(23) if z<1; anisotropy of the single crystal grains is small. However, if

the anisotropy is strong, the results of the measurements

must be handled with care. First, our results show that the
if 751, (44p  calculated are&( is not the real area of the Fermi surface:
1206 the numerical factor in Eq18) can significantly differ from
nity. Next, the effective static conductivity of a strongly
nisotropic polycrystal does not equal to the static conduc-
tivity, averaged over all possible rotations of the grains. The
difference can be very bigee Ref. 30 ThenS® that enters
the equation for the static conductivity of the polycrystal is
an effective area defined with regard to the static conductiv-
ity. Of course S+ S | and this difference has to be taken
into account when estimating the electron mean free path.

When the Fermi surface is an axially symmetric surface,

The calculation of the surface impedance of polycrystalthe expression for the effective impedance, Ed$) and
line metals is a logical result of the development of electror(17), is much simpler. However, the Fermi surfaces of the
theory of metals. The possibility to calculate the surface remajority of real metals are extremely complex. They have
sistance of a polycrystalline metal with high accurgay =~ many voids of different shapes and symmetry. If one of the
fact, exactly when the local impedancéhe Lentovich ~ Voids is axially symmetric, but not all the others, E¢k6)
boundary conditions are valid;**was a stimulus to investi- and(17) are inapplicable. We can use these equations only if
gate all the kinds of different physically meaningful situa- the Fermi surface is axially symmetric as a whole, or if the
tions. Anomalous skin effect is one of these situations. Théeading terms in the expressiadlb) for elements of the
present analysis relating to extremely anomalous skin effectensorS are defined by an axially symmetric void.
together with Refs. 8—12, where the cases of normal skin When calculating the effective impedance for some dif-
effect and the infrared spectrum regi¢see Ref. 9 were  ferent model Fermi surfacéSec. Ill), several problems were
examined, completes the theory of skin effect in polycrys-the object of our analysis. First of all, an ellipsoidal Fermi
tals. In the intermediate case, whérns of the order of, an  surface is the first necessary step, when after the analysis of
analytic expression for the impedance of a single crystaén isotropic conductolthe conductor with the spherical
metal (the starting point of our calculatiprtan be obtained Fermi surfacg we turn to the case of real anisotropic poly-
only after rather significant simplificatiorisee, for example, crystals. On the other hand the results of Sec. lll A also can
Ref. 29. The obtained results are applicable in all the casebe applied to bismuth type semimetals and some degenerate
when the surface resistance is of interest. semiconductors. In this case, however, these results have to

Suppose the impedance of an individual single crystabe generalized, since as a rule the Fermi surfaces of semi-
grain is its phenomenological characteristic corresponding tonetals and degenerate semiconductors are the sets of ellip-
a flat metal-vacuum interface, then E8) must be consid- soids. The cases of extremely anisotropic ellipsoids, in addi-
ered as the basic formula of the theory. In contrast to othetion to being an illustration of the significant change of the
effective characteristics calculated with the aid of the methodffective area of the Fermi surfa¢eee Eqs(23)], can be

C(7)~

I'(x) is the gamma function. We see the singularity relatedg
to the new void formation at the isolated critical pojsee
Eq. (443], is weaker than in the case of a neck formation
[see Eqgs(39)]. It is also weaker than in the case of the new
void appearance in the vicinity of an extremum of the func-
tion e(p).

V. CONCLUSIONS
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helpful when low-dimensional systems are analyzed: APPENDIX A
strongly flattened ellipsoidsi{<<1) are relevant for the de-
scription of quasi-one-dimensional conductors; stronglyfa
elongated ellipsoidsy>1) are relevant for the description S
of quasi-two-dimensional conductors.

The analysis of metals with cylindricdaBec. 111 B) and

Let the Fermi surface of a single crystal metal be a sur-
ce of revolutione=¢(p, ,p3). To calculate the functions
1 v) defined by Eqs(13d), we start with the calculation

of elements of the tens&@[see Eq(11b)] with respect to the
cubic (Sec. 11O Fermi surfaces shows that the effective crystallographic axes. We use the polar coordingtese.

imp.edanC(_a of poncrys_taI; can differ from the impedance ofrsolgifor\:v Itr?] ;ﬁﬁaﬂ?ﬂ}i Ig(ui gﬁ%:gg’: w:];itnhgk ;Lelzzecngiesf the
an isotropic metatjualitatively By a qualitative difference in Eq. (110 s(kv/ko) = (v/v, Sin6)Jdv,Cot Ac/v, —COSH.
n’]i n;gsg_:_gigeogeg‘?g;ﬁgf gz;rr;ear;eznsg'iee?;gn::dr the+ ¢)]- Then carrying out the integration with respect to the

iti X y u i . SN/ -
unusual relation between its imaginary and real ppsee angle ¢, we obtain the elements of the tenssf"(y):
Egs.(28) and(31)]. On the other hand, the results of Sec. llI

can be used as the first approximation under the description S{%)(y)= {F1+cos 22 cof o, F,—F,]};

of real polycrystals. In particular, the Fermi surfaces of Sk sin b
guasi-two-dimensional metals are slightly corrugated cylin- (Ala)
ders. Apparently, there are metals with a nearly cubic main 8 sin 2
void of the Fermi surfac¢see, for example, Ref. 23By a SN ()= — Sin 2 2 coRO.F,—F.1:
; ) T 12°(7) : [2 cot' O F,—F4];
main void we mean the one where electrons providing the Sk sin 6

conductivity of the metal are found.
One of the most important phenomena related to the ge- (o) 16 cosyy cot b,

[ [ i i Si3(V=—<ap F2 (Alb)
ometry of the Fermi surface is the electronic topological 13 Sr sin 6, 2
transition®® Extremely anomalous skin effect is one of phe-
nomena where the influence of the topological transition 8
manifests itself clearly. Our analysis shows that polycrystals ((y)= SFs,Te{F 1—C0S 2 2 cot O F ,— F]};
also have singularities of the effective impedance due to the k (Alc)
topological transition(the singularities “survive” in poly- ¢
crystalg. When in the vicinity of the critical point the im-

pedance of the single crystal metal is not very sensitive to thes(z%r)( y)=— w . 3(3630( y)= 1_6 =
orientation of the crystallographic axes with respect to the Sk sin 6 S sin 6
metal surface, the effective impedance of the polycrystal has (Ald)

the singularity of the same kind. If th_e imp_edance of theHere the functions ,(6,) andF,(6,) are
single crystal metal depends on the orientation of the crys-

tallographic axes essentialljor example, when a neck of 20 4

the Fermi surface is formedthe character of the singularity Fl(ek):f viPLOP ’
can changgsee Eqs(39)]. v v —vZcof by

One of the methods allowing to observe the topological
transition, is applying of external pressure. In this case it v,p,dp,
must be taken into account that in a polycrystalline sample FolO) = | 57—
the stresses are different in different grains and the transition Vu?—v3 cof b,
is blurred. It is better to use polycrystals where the inhomo—_l_he intearation is carried out over the region of the Eermi
geneity of the stresses is minimal. Maybe the results of Ref. 9 2_ 2 o 9
31 will be useful for the choice of such polycrystals. Surface, where,>0 andv) —v; cot'g>0.

The results of Sec. Ill and IV confirm the following con- W€ use Eas(Ala)—~(Ald) and Eq.(A2) to calculate the
clusion: if the anisotropy of the Fermi surface is essential€lements of the tensc with respect to the laboratory coor-
the averaging necessary when calculating the effective imdinate system. With regard to E(L2) we obtain
pedance of polycrystals does not liquidate the influence of
the geometry of the Fermi surface. In other words, it is not

(A2)

sufficient to think about a polycrystal as of a metal with an Su(7)= Sk sin Gk[F( Ok) = c0s 2P (61 ]
effective spherical Fermi surface, since in this case, some
characteristic features of extremely anomalous skin effect in 8
polycrystals can be missed. Szfm[':(@k) +cos2p ()], (A3a)
8 sin 2p ]
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(1+cog6y)

D(O)=F1(6) — 20
k

Fa(6k). (Ad)

Now it is easy to see that the functioRy) and s(vy)
defined by Eq(13d) and Eq.(140), respectively, are

16
R()’):m@(@k), S(y)=—cos2p,. (A5)
The expressiongl6) for the functionsS, H 6,) are the
result of substitution of EqQ4A3) and Egs.(A5) into Egs.

(130.

APPENDIX B
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=148+ 5e(2+ 8¢)), have to be examined separately.
Simple algebra allowed to determine three different domains
of integration in Eqs(36d) with regard to the three intervals
of w variation. We showed that whefe <1, only w from

the intervalw , <w< contributed to the leading term of
the expressioti38) for 579 (s¢).

It was found out that fow>w, the leading terms in the
expressions f0A~Sl(2)(W) were given by Eq(B2a) and Eq.
(B2b), respectively, wherey™)(w; 8¢) was substituted for
7(7)(w;|8¢|) and the signs changed. In this case the calcu-
lation of 5{9(8e) was reduced to the calculation of the
integral (38) over the regionw , <w<~. The difference in
the numerical factora{ ™) anda(™) entering Eq(39a arose
from this last integration.

Here we present the formulas related to the Fermi sur-

faces of the corrugated cylinder tyg83). With regard to

Eqgs.(36), first of all we have to calculate the functio§§(2).
To specify the domains of integration in Eq386d), we take

APPENDIX C

When Egs.(16),(17) are used to calculate the effective
impedance for the energy spectrum of the wurzite type crys-

into account that the radicand of the expression fortals(40), it is convenient to use

O (x;w; u,de) vanishes whex=x_. ,
, 2
xtz;[(l—w)+ Se = A(w;dg)];

A(W; 8e)=(1—wW)?—28ew.

Since|de| <1, we set

(Bla)

A(w;8g)=|1—w|—2(sgnde) ") (w;|5e]), (Blb)

where the small additiong~)(w;|8s|) and 5" (w;|8s|)
correspond taSe >0 andde <0, respectively.

Let us begin with the casée<0. Here for allw the
domain of integration in EqY380) is x, <x<Xgp, Where
Xm=v2(2—|8e|)/ n is the maximal value ok=p, /=p,. al-
lowed by the equation of the Fermi surfa(S3).

With regard to Eq(B1b) when calculating the functions

AS,(w;8¢), (a=1,2) the regionsv<1 andw>1 have to
be examined separately. If <ov<1, 77 (w;|de|)
<\[8e]/2. Whenw>1, | 5e|l2< () (w;| e |) < V] b¢[/2.

We showed that if &ew<1, AS, (W)~ 7). If w>1 up
to the leading terms im(™)

AByw) = — AT YL O i sel)
(W)=—— — ) (w;| Se
MZ w w

xIn 77 (w;| sel),

3/2\/7 .
v (w;|de|)

XIn 7()(w;| S¢e)).

(B2a)

1+ puw
W

~ 1
AB,(w)= =
7

(B2b)

Consequently, the regiown>1 provided the main contribu-
tion to 6¢(9 when 6e<O0.

Now we start with the caseg/e.>1 that isée>0. Our
analysis showed that here three intervalswofvariation,
namely O<w<w_, w_<w<w, and w,<w<o (W

Cot0k
\/mZ/mi-i-COF@k

in place of the Euler angl®,. Then the averaging in Eq.
(17) corresponds to integration with respectfto

_ /&J‘l (...)df (Clb)
()= m; Jo[1+f3(m,/m, —1)]3?

When 0<er<e!, the Fermi surface is the toroidg
=g~ (p). Our calculation showed that the functi®{z) in
Eq. (439 for ¢ was

Z1/3 1 df
Bl2)= Tjo [1+12(z—1)]%°

f(6)= (Cla

1/3
X[B1(f)+ T f-1) Bo(f); (C2a
and
EGI-)-2K(V1-)| ®
By(f) = . ,
1—f

K(VI—f2)—E(V1—13)| *°

B,(f)= ( 1)_f2( )l . (C2b

K(k) andE(k) are full elliptic integrals of the first and the
second kind, respectively.

Whene:>¢_ , the Fermi surface consists of the external
toroidal partfeg=¢ " (p)] and the internal ovaloid paftg
=g"(p)]. It is worth to be mentioned, that in this case, in
Egs.(16) not only an additional domain of integration related
to the internal part of the Fermi surface appears, but the
domain of integration related to the external part of the
Fermi surface also changes.
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We calculated: (e /&) for an arbitrary value of the
parameterde = (s —e_ )/e. >0. Near the point of the to-
pological transition, 8 de<<1, our result forA{(ds) was
given by Eq.(44a, where the functiorC(z) was

PHYSICAL REVIEW B 63 054202

28 1 [Ba(f)]*df

36 Jo[1+f2(z—1)]5RV1-f2
with the functionB4(f) from Eq. (C2b).
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