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Direct solution of the diffraction pattern of a crystal with planar faulting
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A direct formalism for the solution of the diffraction pattern from the faulted layer crystal is derived. The
proposed method is not specific for any crystal structure. The solution avoids the need for specific planar
faulting models and has a direct physical meaning. The correlation distribution function between lateral dis-
placed layers can be directly obtained from the diffracted intensities. The solution was compared successfully
to a Monte Carlo trial and error method for the fcc structure. The developed formalism was used to determine
the layer-layer correlation distribution function of the Gd2Co17 faulted layer structure.
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I. INTRODUCTION

It has long been known that the occurrence of pla
faulting in layer crystals could have drastic effects on
materials properties and behavior. Stacking faults are usu
presented by considering disorder in the stacking seque
along the@111# direction in face-centered-cubic~fcc! crystals
or along the@001# stacking sequence in hexagonal comp
~hcp! crystals. Yet stacking faults are found in a variety
materials used in a wide range of applications.

Studies of stacking fault defects comes from early wo
of Landau1 and Lifschitz.2 Hendricks and Teller3 discussed
planar faulting in fcc and hcp crystals using correlation pro
ability matrices. Wilson4 and Warren5 used a different ap-
proach based on a difference equation, which became
method usually described in x-ray textbooks.6,7 Jagodinski8

further extended the difference equation method. Rece
Velteropet al.9 lifted some of the simplifying assumptions o
the Warren formalism to extend its use to nonuniform fa
probabilities and textured samples.

Most procedures for the analysis of planar faulted la
crystals have relied on particular models for the occurr
faults in particular crystal systems~see for example Refs
5,8, and 9!. The most common model, used in fcc and h
structures, is to assume the occurrence of simple planar f
ing of two types, stacking faults and twinning, also known
deformation and growth faulting. Both type of planar fau
ing are described by their probability of occurrencea andb.
The models also assume that individual planar fault occur
independent events.

Deformation faults involve a ’’jump’’ in the otherwise
perfect stacking sequence. The fault results in appare
missing layers in the sequence. A twin fault, on the ot
hand, involves a change in the stacking order, which in
0163-1829/2001/63~5!/054109~10!/$15.00 63 0541
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case of the fcc structure results in a reversion of the stack
sequence.

The Warren5 theory for stacking faults and twinning, a
though the most common used, is hard to follow, and
relation between measurable quantities from the diffract
pattern witha and b, was obtained for a particular crysta
system~namely fcc, hcp, and bcc! after several simplifying
assumptions. Velteropet al.9 emphasizes in three assum
tions made in Warren formalism that:~i! all components
have equal integrated intensities,~ii ! fault densities are very
small, and~iii ! fault densities are equal for all crystallites.

Other models rely on the Warren theory and add furt
modeling of the peaks for particular profile fittin
functions.10

Berliner and co-workers, in a series of papers,11–13 intro-
duced a Monte Carlo method for simulation of the diffracti
pattern from faulted structures. The method also relies o
particular model of planar disorder, and although easily
tensible to other models, it still depends on the ingenuity
the researcher to propose an adequate model for the faul
The formalism uses a trial and error procedure without cl
matching criteria.

In this paper we present a direct solution for the lay
layer correlation probability distribution function from
powder diffraction pattern of a faulted crystal. The propos
formalism avoids the need for trial and error procedures
does not need to assume a particular model for the pla
faulting. The paper is organized as follows. In Sec. II w
develop the proposed formalism. The solution obtained w
be compared to the Monte Carlo method proposed by B
liner et al.11–13 for a fcc structure in Sec. III, and in Sec. IV
the meaning and use of the obtained layer-layer correla
probability distribution will be discussed. Finally in Sec.
the same formalism will be used to determine the layer-la
correlation function for the Gd2Co17 layer structure.
©2001 The American Physical Society09-1
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II. DIFFRACTION IN A LAYERED CRYSTAL

A. General solution for a single crystal

A layer crystal is built by the assembly of identical laye
perfectly periodic in two dimensions. To the perfectly pe
odic layer a two dimensional lattice can be associated w
lattice vectorruv5ua1vb whereu,v are integers and (a,b)
define a primitive cell for the bidimentional lattice~Fig. 1!.
A three dimensional layer crystal of sizeN13N23N3 can be
represented by the sum of two vectors, a vectorRw that goes
from the origin of object space to thew layer in the crystal
and the vectorruv . Let L(r ) represent the layer crystal, the
we can write

L~r!5r~r! ^ S (
u52(N1/2)

N1/2

(
v52(N2/2)

N2/2

d~rab2ruv!D
3 (

w50

N321

d~R2Rw!, ~1!

where ^ represents the convolution operator andr, the ob-
ject space vector, has been written as the sum of two vec
r5rab1R, rab being parallel to the crystal layers.d represent
the Dirac delta andr(r) the density of scatterers. The fir
term between parentheses describes the two dimensiona
tice associated with the layers. In general Eq.~1! does not
describe a three dimensional lattice, asRw does not necessar
ily represent a lattice vector. According to kinematical d
fraction theory, the amplitude of a diffracted wave, in un
of the amplitude scattered by a single scattering center,
be the Fourier transform of the density of scatterers in ob
space.7 If Fm(r* ) is the Fourier transform of the scattere
densityrm(r) ~the so called structure factor!, the correspond-
ing diffracted intensity forN1 ,N2 nodes will then be

FIG. 1. Schematic representation of a layer crystal. A bidim
sional periodic lattice can be associated with the layers. The q
tity (a,b) defines a unit cell within the layer lattice withr(r) den-
sity of scatterers. A object space vectorr, pointing to the (u,v)
node in thew layer, can be written as the sum of two vectorsr
5Rw1ruv .
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h

rs

lat-

ill
ct

I c~r* !5Fm
2 ~r* !S sin~N1ph!

sin~ph! D S sin~N2pk!

sin~pk! D
3 (

w50

N321

(
w850

N321

exp@2p i r*•~Rw2Rw8!#, ~2!

r*5ha*1kb*1 lc* being a reciprocal space vector with r
ciprocal base vectors (a* ,b* ,c* ) dual to the object space
base vectors (a,b,c).

Interference effects can be described by the interfere
function7

F~r* !5
I c~r* !

NFm
2 ~r* !

.

If we rearrange terms in Eq.~2! and callD5w2w8, the
interference function will be given forN1 ,N2@1

F~r* !5
N1N2

N3
S (

ho52`

`

(
ko52`

`

d~h2ho!d~k2ko!D
3H N312 (

D51

N322

(
w50

N3212D

cos@2pr*•~Rw2Rw¿D!#J .

~3!

The term inside the curly brackets in Eq.~3! is the con-
tribution of the layer arrangement to the interference fu
tion. We will therefore, in what follows and for the remain
der of the paper, only consider this term, which we w
denote byQ(r* )

Q~r* !511
2

N3
(
D51

N322

(
w50

N3212D

cos@2pr*•~Rw2Rw¿D!#.

~4!

If we take Fm(r* ) to be a slowly varying function of
reciprocal coordinates, the intensity diffracted atr*5hoa*
1kob*1 lc* , whereho ,ko are integers, will be proportiona
to Q(r* ) in the neighborhood of a integerl 0 value.

B. Diffraction of a layered crystal with constant lateral
displacements

Let us consider a layer crystal where the displaceme
perpendicular to the stacking direction, of any layer w
respect to an arbitrary one chosen as the origin, is an inte
multiple of a minimal displacement vectorrwD5xa1yb. The
Rw vector which goes from the origin of the object space
the origin of thew layer can be decomposed in a later
displacement vector parallel torwD and a displacement vecto
along the stacking direction~Fig. 2!

Rw5srwD1
wc

n
,

with s andw being integers,n the number of layers forming
a unit cell, and takingc as the lattice vector along the stac
ing direction. If we takeM to be the number of differen

-
n-
9-2
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DIRECT SOLUTION OF THE DIFFRACTION PATTERN . . . PHYSICAL REVIEW B63 054109
lateral displacementsrwD possible in the crystal, the expre
sion Eq.~4! for Q(r* ) can be written as

Q~r* !511
2

N3
(
D51

N321

(
s52(M21)

M21

Ns~D!

3cosF2ps~hx1ky!12p
D l

n G , ~5!

whereNs(D) is the number of pairs of layers,D layers apart
(D pairs!, with lateral displacement, one with respect to t
other, ofsrwD . For a given valueD, N32D will be the total
number of D pairs for a crystal withN3 layers height.
Ps(D)5Ns(D)/(N32D) will then be the probability of find-
ing in the crystal aD pair with lateral displacementsrwD .
Writing Eq. ~5! in terms ofPs(D) and taking the limit for an
infinite crystal along the stacking direction we arrive at t
following expression forQ(r* )

Q~r* !5112 (
D51

`

(
s52(M21)

M21

Ps~D!

3cosF2ps~hx1ky!12p
D l

n G . ~6!

From Eq. ~6! it is clear that for reflectionsr*5ha*
1kb*1 lc* such that

hx1ky5p p50,1,2, . . . , ~7!

wherep is an integer, the diffracted intensity does not d
pend on the particular stacking disorder.

FIG. 2. Schematic representation of a layer crystal with cons
lateral displacement shown perpendicular to the stacking direc
The position of each layerRw can be described by the sum of
vectorw/nc parallel to the stacking direction and an integer num
of times a vectorrwD parallel to the layer lattice. IfM is the number
of different lateral displacement thenM rwD will be a translational
vector of the bidimentional lattice.n is the number of layers tha
form a unit cell of heightucu.
05410
-

From the bidimentional periodicity of the layers,M rwD is
a translation vector of the associated lattice~Fig. 2! and Eq.
~6! for Q(r* ) reduces to

Q~r* !5112 (
D51

` H P0~D!cosS 2p
D l

n D
1 (

s51

(M21)/2

~Ps~D!1PM2s~D!!cos@2ps~hx1ky!#

3cosS 2p
D l

n D1~PM2s~D!2Ps~D!!

3sin@2ps~hx1ky!#sinS 2p
D l

n D J M odd, ~8a!

Q~r* !5112 (
D51

` H @P0~D!1PM /2~D!#cosS 2p
D l

n D
1 (

s51

(M /2)21

~Ps~D!1PM2s~D!!

3cos@2ps~hx1ky!#cosS 2p
D l

n D
1~PM2s~D!2Ps~D!!

3sin@2ps~hx1ky!#sinS 2p
D l

n D J M even ,

~8b!

which describes the dependence of the diffracted intensit
the stacking order through thePs(D).

C. The case of a powder sample

From the periodicity of the layer lattice, a displaceme
(M2s)rwD is crystallographically equivalent to a displac
ment 2srwD . If we fix a coordinate system to a random
oriented powder sample, aD pair with displacementsrwD ,
from one crystal, is related to aD pair with displacement
2srwD from another crystal by a rigid motion. Therefore, th
probability Ps(D) andPM2s(D) in a powder sample should
be the same,14 and expression Eq.~8! for a powder sample
can be written as

Q~r* !5112 (
D51

`

G~D!cosS 2p
D l

n D , ~9!

with

G~D!5P0~D!12 (
s51

(M21)/2

Ps~D!cos@2ps~hx1ky!# Modd,

~10a!

nt
n.

r
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G~D!5@P0~D!1PM /2#

12 (
s51

(M /2)21

Ps~D!cos@2ps~hx1ky!# M even.

~10b!

Equation~9! express the fact that the interference functi
Q(r* ), which is proportional to the diffracted intensity, is
cosines series ofG(D), and thereforeG(D) can be obtained
from Q(r* ) as a cosine transform

G~D!5
1

nE2(n/2)

n/2

Q~r* !cosS 2p
D l

n DdlD51,2, . . . .

~11!

The relation betweenQ(r* ) andG(D) expressed by Eq
~11! shows the possibility of obtaining thePs functions di-
rectly from the measured diffraction pattern. If we meas
Q(r* ) for as many (h,k) values as unknownPs that we
have, Eq.~10! together with Eq.~11! will lead to a linear set
of equations which can be solved for eachPs . Ps is, at most,
the maximum information you can get from a powder d
fraction pattern regarding the stacking order of an ensem
of crystallites, as long as the crystallites can be conside
individually to behave as infinite crystals. When the dens
of planar faulting is low the assumption of noninteracti
occurrence of faults, such as those described bya and b,
holds. Yet, if the crystal structure has heavy planar faulti
the stacking fault occurring in neighboring layers should
teract and a description based solely in independenta andb
probabilities is no longer valid. Velteropet al.9 lifted the
simplification made by Warren,6 who omitted terms witha2

and b2, in order to use the same methods to higher pla
faulting density. Yet, in their work, the description based
independent probabilities of simple planar faulting, describ
by a and b is kept, which still limits the validity of the
method to not to high density of planar faulting. The use
Eq. ~11! avoids the need of any prior assumption of the ty
of staking fault occurring in the crystals, and gives mo
05410
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complete information on the underlying stacking order fro
which usually used parameters can be obtained.

III. SIMULATIONS IN A FCC CRYSTAL

Berliner et al. proposed and successfully used a Mon
Carlo trial and error method for the solution of layered cry
tal with stacking faults.12 Here the method is briefly de
scribed. A particular model for occurrence of planar faulti
is assumed for a layer crystal. For a fcc structure, the oc
rence of single stacking faults in the otherwise perfect
quence is governed by the probability of occurrencea. The
occurrence of twinning is described by the probabilityb. An
ensemble of crystals are computer grown using pairs of r
dom generated numbers: one for asserting the actual oc
rence of a fault and a second one for discriminating betw
the two types of faults. The size of the crystal grown in th
way was above 500 layers, where convergence of the res
was found. The number of crystal grown in each trial w
10 000. The diffraction pattern of the ensemble of particle
then simulated and compared to the experimental patt
Faulting probabilities,a andb, are changed until an appro
priate match is found. In a fcc structure there are three p
tions for the layers usually calledA, B, andC.15 The position
of the layers can be described by integer multiples of
vector

rwD5 1
3 a2 1

3 b, ~12!

where the number of different displacement vectors can b
(M53,s50(A),1(B),2(C)). In such case we will be dealing
with three probabilitiesP0 , P1, andP2. In a powder sample
P15P2, and therefore the following relation between pro
abilities will hold:

P05122P1 .

Taking into account the expressions forG(D) Eq. ~10!,
for a fcc structure we will arrive at

G~D!5P0~D!1~12P0~D!!cos@2/3p~h2k!#, ~13!
t-

e
n

n

FIG. 3. Plot ofe as a figure of merit~see text!
describing the convergence of the diffraction pa
tern from aN3 layers height finite crystal to the
diffraction pattern of an infinite crystal with in-
creasingN3. The inset plots the difference in th
diffraction pattern from a 500 layer crystal and a
infinite crystal. The maximum intensity value i
each pattern was normalized to 1000 counts.
9-4
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FIG. 4. Comparison between theP0 function obtained from Monte Carlo simulation, and theP0 function obtained by the use of Eq.~11!
and Eq.~13! ~see details in text!. The third column plots the differences between bothP0 functions. Deformation faults were the only one
considered.
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and the normalizing condition for the diffraction pattern in
close packed fcc structure can be written as

cosS 2

3
p~h2k! D5

1

3E23/2

3/2

Q~r* !cosS 2p

3
l Ddl. ~14!

Let us define« as the sum, over all values of l, of th
absolute value of the difference between the diffraction p
tern of an infinite crystal and the diffraction pattern of a fin
size crystal

«5( uQ`~ l !2QN3
~ l !u. ~15!

The diffraction pattern of the finite crystal can be calc
lated using
05410
t-

-

QN3
~r* !511

2

N3
(
D51

N321

~N32D!S P0~D!

1@12P0~D!#cosF2p

3
~h2k!G D cosS 2p

3
D l D ,

which is equivalent to the expression obtained in Ref.
while theQ` can be calculated using expression~9! for an
infinite crystal powder sample, using the appropriate para
eters for a fcc crystal structure. As the number of layersN3
in the finite size crystal increases,« should tend to zero; this
is precisely the behavior observed in Fig. 3. The inset of
figure shows the difference between the diffraction pattern
the infinite crystal and the 500 layer crystal, which sho
that for such sizes the powder sample effectively behave
an ensemble of infinite sized crystal.
9-5
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FIG. 5. Comparison between theP0 function obtained from Monte Carlo simulation, and theP0 function obtained by the use of Eqs.~11!
and~13! ~see details in text!. The third column plots the differences between bothP0 functions. Twin faults were the only ones considere
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For a crystal with interlayer distance of around 0.2 n
~valid for some pure metals such as fcc iron or hcp cobalt! an
effective ‘‘infinite’’ 500 layer crystal will be those with a
length, along the stacking direction, of at least 0.1mm. In the
case of some rare earth-transition metal binary alloys, wh
the interlayer distance is around 4 nm, the effective ‘‘in
nite’’ crystal will be one with length of at least 2mm. From
the above analysis we believe that the infinite crystal
sumption is, for a wide range of cases, not a strong one
should be noticed that for crystallite sizes below 100 n
peak broadening due to small grain size is an additional
tor affecting the peak profile.6

Following expressions~7! and ~12!, in a fcc structure the
reflections affected by planar disorder along the@111# direc-
05410
re

-
It
,
c-

tion will be those withh2kÞ3p, wherep is an integer. For
the perfect fcc stacking sequence we should expect ide
that the interference functionQ(r* ) would be a sequence o
delta functions at the reciprocal lattice positions (ho ,ko ,l o),
where all three reciprocal coordinates are integers.16 If we
substitute this ‘‘perfect’’Q(r* ) function in Eq.~11! then the
P0 function will be P0(D)51 if D53p;0 if DÞ3p(pPZ),
which is the P0 function we should expect for a
ABCABCABCABC. . . perfect sequence as simple visu
inspection of the sequence shows.

A series ofa-faulted crystals were simulated using th
Berliner12 method, and diffraction patterns were calculat
from such ensembles. The simulated diffraction patte
were then solved forP0 using Eqs.~11! and ~13!, and the
9-6
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obtained values forP0 were compared to the ones known f
the simulated crystal. Figure 4 shows a comparison betw
the actualP0 function and the calculated one for increasi
values of thea parameter. The same procedure was follow
but now withb-faulted crystal, Fig. 5 shows the correspon
ing results. A good match is found in both cases between
actual P0 values and the calculated ones. Discrepancy
tween the simulated and calculatedP0 values increases with
D. This can be explained as a result of numerical precisio
the calculation. The discrete nature of the diffraction d
does not allow the direct use of Eq.~11!, but involves instead
a discrete cosine transform of the same equation. The us
a discrete cosine transform imposes limiting conditions
the sampling interval of the diffraction data in order to obta
the P0 function with enough accuracy up to a specifiedD
value.

IV. THE Ps CORRELATION FUNCTION

The Ps functions have been usually overlooked in t
treatment of planar faulting in layer crystal. The reason
this can be found in that up to nowPs has not been a func
tion obtainable from measurable quantities from the diffr
tion pattern.Ps functions carry a lot more information tha
other parameters, such asa andb.

Long-range correlation between layers, and theref
long-range order, can be quantitatively asserted from thePs
function with the added benefit that no planar faulting mo
assumption is needed. Furthermore, thePs function obtained
is averaged over the hole ensemble of crystallites and th
fore avoids the need for considering fault density equal
each crystallite.

Correlation between layers can be considered to be
when theP0 function stops oscillating and tends to a co
stant value of probability~in the case of a fcc structure th
value should be 1/3!. If we defineDc as the minimalD value
for which the P0 function has stopped oscillating, then w
can define the maximum correlation distance between la
to beDc and therefore the long-range order to be preser
up to this distance~Fig. 6!. An appropriate window around

FIG. 6. Definition of theDc parameter describing the distanc
above which all correlation between the displacement ofD pairs is
lost.
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the nonoscillating value ofP0 can be defined to fine tune th
long-range order distance.

As stacking disorder increases,Dc should decrease. Fig
ure 7 shows the loss of long-range order with increas
diffraction peak width at half maximum~FWHM! for a
simulated pattern of a fcc structure with deformation fa
disorder.

The Ps function can also be used to obtain the differe
average environments of the atoms in the structure and t
probability of occurrence, which can be further used in c
culation of other physical properties.

V. Gd2Co17 LAYER STRUCTURE

R2Co17 ~R: rare earth! compounds have been studied i
tensively because of their favorable magnetic properties
permanent magnets applications~see, e.g., a review article b
Strnat17 and the papers cited therein!. R2Co17 alloys can be
found in two crystallographic modifications, one describ
by a rhombohedral crystal system (Th2Zn17-type structure!
and the other by an hexagonal crystal system (Th2Ni17-type
structure!.18 Both structures differ in being different stackin
sequences of identical layers.19 The layer can be considere
to be formed by two planes of atoms, a Co9 bidimensional
plane and a mixed R2Co8 plane. In the mixed plane a pair o
Co atoms lie above and below the plane, which are usu
referred to as the dumbbell site. The rhombohedral stack
order corresponds to a sequenceABCABCABC. . . , while
the hexagonal sequence corresponds to aABABAB. . .
stacking order~Fig. 8!. The minimum lateral displacemen
vector between the layers is the same as in the fcc struc
described by Eq.~12! ~see Fig. 9!.

It has been argued that fault and polytypes in the R2Co17
compounds should be an important factor in the magn
behavior of the alloy, especially on the magnetic anisotro
and magnetostriction.19

As we go from the lighter rare earth to the heavier on
the structure at room temperature changes from rhombo
dral to hexagonal, for the intermediate rare earth ato
heavy planar faulting has been observed.20

In order to quantify the occurrence of planar faulting
Gd2Co17, which lies at the intermediate range of the ra
earth series, high resolution x-ray diffraction measurem
were carried out at the LNLS synchrotron facility in Camp
nas, Brazil. The sample was obtained from 99.9 wt % pu
starting material, which were melted several times to achi
homogeneity and further annealed at 1273 K for 2 week

Diffraction patterns were recorded with a step size
0.0066°, and the rhombohedral structure was indexed f
the pattern. Reflections withh2kÞ3N showed broadening
which we associate with planar faulting. Figure 10 shows
diffraction pattern around the~300! and ~024! peaks. While
the ~300! reflections have a FWHM value of 0.06° the~024!
reflection showed a FWHM value of 0.14°, which furth
affirms that the broadening seems to be associated with
nar faulting. The diffraction pattern was deconvoluted f
instrumental broadening using Si standard powder and c
verted from 2u values to l values using the lattice paramete
of Gd2Co17. The Gd2Co17 lattice parameters were calculate
9-7



a

E. ESTEVEZ-RAMSet al. PHYSICAL REVIEW B 63 054109
FIG. 7. Loss of long-range order, described by theP0(D) distribution function, with increasing diffraction peak broadening for
simulated fcc crystal with deformation fault disorder.
an
s

nc h
7
n

from the diffraction pattern using a least square fit with
internal standard.21 The interval in l values that resulted wa
0.0009. From the diffraction pattern, the interference fu
tion was determined and further normalized. TheP0 function
was determined from Eqs.~11! and~13!. Linear fit for back-
05410
-

ground subtraction was used. The obtainedP0 correlation
function is shown in Fig. 11.

As expected theP0 correlation function decreases wit
increasing delta value. TheDc value was determined to be 7
layers. No shift of the~024! peak could be determined withi
9-8
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the precision of the measurement. The form of theP0 corre-
lation found does not resemble neither thea-faulted or the
b-faulted correlation function as seen in Figs. 4 and 5. T
Gd2Co17 structure is intermediate between the rhombohed
and the hexagonal crystal structure; random individual pla
faults as those described bya andb should not be the kind
of faulting occurring in this alloy. Random individual faul
ing does not lead to a transformation between the two
dered layer stacking sequence. TheP0 correlation function
determined shows modulation, which we think is an indic
tion of complex planar faulting with the occurrence of com
bined stacking faults. This is a case where simpler anal
based on prior assumed models like those ofa andb should
fail.

The quality of the obtainedP0 function as shown in Fig.
11 can be seen as a result of the special care taken in
gathering and processing of the diffraction data. Usual c
sideration when using the Fourier transform in diffracti
studies is valid for the proposed treatment. Special care
to be taken to include in the analysis of the reflections
long tails of the peak profile, in the Gd2Co17 sample, and the
well resolved character of the~024! reflection makes this
treatment easier. Noise in the signal also affects the hig
harmonics in the Fourier transform, which applies equally

FIG. 8. The two stacking sequences in R2Co17 alloys, which
leads to an hexagonal and rhombohedral crystal system.

FIG. 9. Possible lateral positions of the mixed layers in R2Co17

alloys.
05410
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our case; the high resolution and high signal-noise ratio w
assured with the use of the synchrotron radiation. Fluctua
of the P0 values are negligible untilD590 layers.

VI. CONCLUSION

A direct formalism for the solution of the diffraction pa
tern from the faulted layer crystal has been derived. T
solution avoids the need for specific planar faulting mode
The diffraction intensity from a powder sample was found
be the trigonometric series of a linear function of thePs(D),

FIG. 10. Diffraction pattern of Gd2Co17.

FIG. 11. P0 correlation function of the Gd2Co17 sample derived
from the cosine transform of the diffraction pattern of Fig. 10.
9-9
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the probability of finding two layersD layers apart and lat
erally displaced from each other a vectorsrwD . Ps(D) can be
calculated trough the cosine transform of the diffracted
tensity function. Crystals larger than 500 layers in heig
were found to behave like effective ‘‘infinite’’ crystals. Th
solution was successfully compared to a Monte Carlo t
and error method for the fcc structure. Long-range order
correlation can be easily derived from thePs function. A Dc
value can be defined above which all correlations betweeD
pairs is lost. Relation between the usual parameters,a andb,
andDc can be found as well.

The formalism derived here was applied to the Gd2Co17
structure where planar faulting was expected to occur.
delta value beyond which correlation between layers is
was found to be 77 layers. ThePs function obtained showed
05410
n-
ht

al
nd

he
st

negligible fluctuations up toD590 layers. The kind of fault-
ing that should be expected in this structure should not
described in terms of simple random individual faulting, y
our method can derive reliable structural information fro
the diffraction pattern.
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