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Direct solution of the diffraction pattern of a crystal with planar faulting
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A direct formalism for the solution of the diffraction pattern from the faulted layer crystal is derived. The
proposed method is not specific for any crystal structure. The solution avoids the need for specific planar
faulting models and has a direct physical meaning. The correlation distribution function between lateral dis-
placed layers can be directly obtained from the diffracted intensities. The solution was compared successfully
to a Monte Carlo trial and error method for the fcc structure. The developed formalism was used to determine
the layer-layer correlation distribution function of the &, faulted layer structure.
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[. INTRODUCTION case of the fcc structure results in a reversion of the stacking
sequence.

It has long been known that the occurrence of planar The WarreR theory for stacking faults and twinning, al-
faulting in layer crystals could have drastic effects on thethough the most common used, is hard to follow, and the
materials properties and behavior. Stacking faults are usuallselation between measurable quantities from the diffraction
presented by considering disorder in the stacking sequengmattern witha and 8, was obtained for a particular crystal
along the/111] direction in face-centered-cubifcc) crystals  system(namely fcc, hcp, and bgafter several simplifying
or along the[001] stacking sequence in hexagonal compactassumptions. Velteropt al® emphasizes in three assump-
(hcp crystals. Yet stacking faults are found in a variety of tions made in Warren formalism thati) all components

materials used in a wide range of applications. have equal integrated intensiti€g) fault densities are very
Studies of stacking fault defects comes from early workssmall, and(iii) fault densities are equal for all crystallites.
of Landad and Lifschitz> Hendricks and Tellérdiscussed Other models rely on the Warren theory and add further

planar faulting in fcc and hcp crystals using correlation prob-modeling of the peaks for particular profile fitting
ability matrices. Wilsoft and Warreh used a different ap- fU”CtiO_”S%O _ _ .

proach based on a difference equation, which became the Berliner and co-workers, in a series of papers; Intro- -
method usually described in x-ray textbo&l?s.]agodinsla duced a Monte Carlo method for simulation of the dlﬁract|on
further extended the difference equation method. Recentl attern from faulted structures. The method also relies on a

Velteropet al? lifted some of the simplifying assumptions of tanrtlichIJIa: mc;ge: (r)rf p()jlalnaritdli;iﬁrger, irc]jd alrt]ht(;]ugif:] ea:ﬂi){ ex]:

the Warren formalism to extend its use to nonuniform faultc > o'c 0 Other modes, it S epends on he Ingenuity o
robabilities and textured samples the researc_her to propose an adequate model for_the faulting.

P . The formalism uses a trial and error procedure without clear

Most procedures for the analysis of planar faulted Iayerm atching criteria.

crystal_s have_ relied on particular models for the occurring In this paper we present a direct solution for the layer-
faults in particular crystal systemisee for example RefS. |aver correlation probability distribution function from a
5,8, and 9. The most common model, used in fcc and heppoyder diffraction pattern of a faulted crystal. The proposed
structures, is to assume the occurrence of simple planar faulfprmalism avoids the need for trial and error procedures and
ing of two types, stacking faults and twinning, also known asgoes not need to assume a particular model for the planar
deformation and growth faulting. Both type of planar fault- faulting. The paper is organized as follows. In Sec. Il we
ing are described by their probability of occurrencandB.  develop the proposed formalism. The solution obtained will
The models also assume that individual planar fault occurs ase compared to the Monte Carlo method proposed by Ber-
independent events. liner et al**~*3for a fcc structure in Sec. I, and in Sec. IV

Deformation faults involve a “jump” in the otherwise the meaning and use of the obtained layer-layer correlation
perfect stacking sequence. The fault results in apparentlgrobability distribution will be discussed. Finally in Sec. V
missing layers in the sequence. A twin fault, on the otheithe same formalism will be used to determine the layer-layer
hand, involves a change in the stacking order, which in theorrelation function for the GgCo; layer structure.
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FIG. 1. Schematic representation of a layer crystal. A bidimen-, If we rearrangg terms in E(.QZ) and callA=w-w’, the
sional periodic lattice can be associated with the layers. The quarmten(erence function will be given faN; ,N,>1
tity (a,b) defines a unit cell within the layer lattice wiii(r) den- LN - -
sity of scatterers. A object space vectrpointing to the (,v) o N1lN2 . B
node in thew layer, can be written as the sum of two vectors Hr)= ho;oc kg;% d(h=ho) o(k—ko)
N3—2 Ng—1-A
X [

=Ryt Iy -
N3+2 >, > co§2mr*-(R,— Rm)]].
A=1 w=0

Il. DIFFRACTION IN A LAYERED CRYSTAL
A. General solution for a single crystal (3)

A layer crystal is built by the assembly of identical layers
perfectly periodic in two dimensions. To the perfectly peri-
odic layer a two dimensional lattice can be associated wit
lattice vectorr,,=ua+uvb whereu,v are integers anda(b)

The term inside the curly brackets in E®) is the con-
ﬁribution of the layer arrangement to the interference func-
tion. We will therefore, in what follows and for the remain-

define a primitive cell for the bidimentional latti¢€ig. 1). ger cif tge palper, only consider this term, which we wil
A three dimensional layer crystal of sikg X N, X N5 can be enote byQ(r”)

represented by the sum of two vectors, a ve&gthat goes N3—2 Ny—1-A

from the origin of object space to the layer in the crystal o(r*)=1+— >, > cog2mrt - (Ry—Rysa)].

and the vector, . Let £(r) represent the layer crystal, then N3 £=1 w=o

we can write (4)

If we take F,(r*) to be a slowly varying function of

N,/2 Np/2 reciprocal coordinates, the intensity diffractedrath,a*
L(r)=p(r)® 2 E S(rap—ruw) +k,b* +1c*, whereh, ,k, are integers, will be proportional
u==(N2/2) v="(N2/2) to Q(r*) in the neighborhood of a integés value.
Ng—1
X E S(R—R,), (1) B. Diffraction of a layered crystal with constant lateral
w=0

displacements

Let us consider a layer crystal where the displacement,
where® represents the convolution operator andhe ob-  perpendicular to the stacking direction, of any layer with
ject space vector, has been written as the sum of two vectokgspect to an arbitrary one chosen as the origin, is an integer
r=rap+R, Iy being parallel to the crystal layeré.represent  multiple of a minimal displacement vectng, =xa+yb. The
the Dirac delta angb(r) the density of scatterers. The first R , vector which goes from the origin of the object space to
term between parentheses describes the two dimensional |Qh-e origin of thew |ayer can be decomposed in a lateral
tice associated with the layers. In general Eb). does not  displacement vector parallel tg, and a displacement vector
describe a three dimensional lattice Rysdoes not necessar- along the stacking directio(Fig. 2)
ily represent a lattice vector. According to kinematical dif-
fraction theory, the amplitude of a diffracted wave, in units wce
of the amplitude scattered by a single scattering center, will Ry=srmt T
be the Fourier transform of the density of scatterers in object
spac€. If F(r*) is the Fourier transform of the scatterers with s andw being integersn the number of layers forming
densityp,(r) (the so called structure faciothe correspond- a unit cell, and taking as the lattice vector along the stack-
ing diffracted intensity folN,,N, nodes will then be ing direction. If we takeM to be the number of different
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A From the bidimentional periodicity of the layetdr, is
a translation vector of the associated lattiE&y. 2) and Eq.
2rya (6) for Q(r*) reduces to
- Al
e Q(r*)=1+2>, { Po(A)co 2m—
A=1
+ D (Pg(A)+Py_o(A))cog2ms(hx+ky)]
SR Pre—— s=1
o R Al
3r - unit cell X cog 27— | +(Py-_s(A) —Pg(A))
C wA ' M=3 o3 n
o , [ Al
wA > X sin 2m@s(hx+Kky)]sin 27TF M odd, (8a

FIG. 2. Schematic representation of a layer crystal with constant
lateral displacement shown perpendicular to the stacking direction.
The position of each layeR, can be described by the sum of a
vectorw/nc parallel to the stacking direction and an integer number

- Al
Q(f*)Zl-FZAE:1 [[PO(A)+ PM/Z(A)]COS{ 2777)

of times a vector,,, parallel to the layer lattice. If1 is the number

of different lateral displacement thevir,, will be a translational

vector of the bidimentional latticen is the number of layers that
form a unit cell of heightc.

lateral displacemerdr,, possible in the crystal, the expres-
sion Eq.(4) for Q(r*) can be written as

Ng-1  M-1

>

A=1

Q(r)=1+

N NS(4)

s=—(M—-1)

Al
xco{Zws(hx+ky)+27-rF , (5)

whereNg(A) is the number of pairs of layera, layers apart
(A pairg, with lateral displacement, one with respect to the
other, ofsr,,, . For a given valué\, N3—A will be the total
number of A pairs for a crystal withN; layers height.
Ps(A)=Ng(A)/(N3—A) will then be the probability of find-
ing in the crystal aA pair with lateral displacemersr,,, .
Writing Eq. (5) in terms ofP¢(A) and taking the limit for an
infinite crystal along the stacking direction we arrive at the
following expression forQ(r*)

M

Qr*)=1+2, Ps(A)
A=1

-1
s=—(M-1)

Al
XCO{ZWS(hX-i—ky)—I-ZWF . (6)

From Eqg. (6) it is clear that for reflectiong*=ha*
+kb*+1c* such that

hx+ky=p p=0,12..., (7)

wherep is an integer, the diffracted intensity does not de-
pend on the particular stacking disorder.

(M/2)—1
+ 521 (Ps(A)+Py_o(A))

X cog 2ws(hx+ ky)]cos( ZWAFI)

+(Pu-s(A)—Ps(4))

X sin 2ws(hx+ ky)]sin( 277%) ] M even,
(8b)

which describes the dependence of the diffracted intensity in
the stacking order through they(A).

C. The case of a powder sample

From the periodicity of the layer lattice, a displacement
(M —=s)r,a is crystallographically equivalent to a displace-
ment —sr,, . If we fix a coordinate system to a randomly
oriented powder sample, & pair with displacemensr,, ,
from one crystal, is related to A pair with displacement
—sr,a from another crystal by a rigid motion. Therefore, the
probability P(A) andPy,_(A) in a powder sample should
be the samé? and expression Eq8) for a powder sample
can be written as

oo

Al
o(r*)=1+2>, G(A)cos{Zw—), (9)
A=1 n
with
(M—1)/2
G(A)=Pg(A)+2 2 Py(A)cog2ms(hx+ky)] Modd,
(10a
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G(A)=[Po(A)+Pyp] complete information on the underlying stacking order from

(Mi2)=1 which usually used parameters can be obtained.

+2 521 Ps()cog2ms(hx+ky)] M even. IIl. SIMULATIONS IN A FCC CRYSTAL
(10b) Berliner et al. proposed and successfully used a Monte
Carlo trial and error method for the solution of layered crys-
Equation(9) express the fact that the interference functiontg| with stacking fault$? Here the method is briefly de-
Q(r*), which is proportional to the diffracted intensity, is a scribed. A particular model for occurrence of planar faulting
cosines series d&(A), and therefor&s(A) can be obtained s assumed for a layer crystal. For a fcc structure, the occur-

from Q(r*) as a cosine transform rence of single stacking faults in the otherwise perfect se-
quence is governed by the probability of occurreacelhe
G(A)= EJ“’Z Q(r*)cos(erﬂ) diA=12 . occurrence of twinning is described by the probabiftyAn
NJ—(n2) n o ensemble of crystals are computer grown using pairs of ran-

(11 dom generated numbers: one for asserting the actual occur-
rence of a fault and a second one for discriminating between
The relation betwee®(r*) andG(A) expressed by Eq. the two types of faults. The size of the crystal grown in this
(11) shows the possibility of obtaining thés functions di-  way was above 500 layers, where convergence of the results
rectly from the measured diffraction pattern. If we measurgyas found. The number of Crysta| grown in each trial was
Q(r*) for as many [,k) values as unknowrPs that we  10000. The diffraction pattern of the ensemble of particles is
have, Eq(10) together with Eq(11) will lead to a linear set  then simulated and compared to the experimental pattern.
of equations which can be solved for ede Psis, at most,  Faulting probabilitiese and 3, are changed until an appro-
the maximum information you can get from a powder dif- priate match is found. In a fcc structure there are three posi-
fraction pattern regarding the stacking order of an ensemblfons for the layers usually calle B, andC.*® The position

of crystallites, as long as the crystallites can be consideregf the layers can be described by integer multiples of the
individually to behave as infinite crystals. When the densityyector

of planar faulting is low the assumption of noninteracting
occurrence of faults, such as those describedxbgnd g, rwa=3sa—xb, (12
holds. Yet, if the crystal structure has heavy planar faulting
the stacking fault occurring in neighboring layers should in-
teract and a description based solely in independeannd 8

where the number of different displacement vectors can be 3
(M=3,5=0(A),1(B),2(C)). In such case we will be dealing
with three probabilitie$,, P,, andP,. In a powder sample

robabilities is no longer valid. Velteropt al?® lifted the . .
Eimplification made byg\Narre‘ﬁwho omittSd terms withy? Pé|= P2, arllltjhthlzrefore the following relation between prob-
abilities will hold:

and 82, in order to use the same methods to higher planaf
faulting density. Yet, in their work, the description based on Po=1-2P;.

independent probabilities of simple planar faulting, described

by a and B is kept, which still limits the validity of the Taking into account the expressions 8(A) Eq. (10),
method to not to high density of planar faulting. The use offor a fcc structure we will arrive at

Eqg. (11) avoids the need of any prior assumption of the type

of staking fault occurring in the crystals, and gives more G(A)=Py(A)+(1—Py(A))cog 2/3m(h—k)], (13
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FIG. 3. Plot ofe as a figure of merifsee text
describing the convergence of the diffraction pat-
tern from aN; layers height finite crystal to the
diffraction pattern of an infinite crystal with in-
creasingN;. The inset plots the difference in the
diffraction pattern from a 500 layer crystal and an
infinite crystal. The maximum intensity value in
each pattern was normalized to 1000 counts.
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FIG. 4. Comparison between tiffy function obtained from Monte Carlo simulation, and ®gfunction obtained by the use of E(L1)
and Eq.(13) (see details in text The third column plots the differences between bBghfunctions. Deformation faults were the only ones

considered.

and the normalizing condition for the diffraction pattern in a

close packed fcc structure can be written as

3<2 B . ’277)
co 3w(h—k))—3f3/2Q(r )cos(glrdl. (14

On, (1)

+[1—PO(A)]COS{ 3

N3—1
(M=l 2 (NsA)<Po(A)
3 A=1

2

(h=k)

s

i

Let us definee as the sum, over all values of |, of the which is equivalent to the expression obtained in Ref. 12,
absolute value of the difference between the diffraction patwhile the Q.. can be calculated using expressi@ for an
tern of an infinite CryStal and the diffraction pattern of a finite infinite Crysta| powder Samp|e, using the appropriate param-
eters for a fcc crystal structure. As the number of laygs
in the finite size crystal increasesshould tend to zero; this

size crystal

6= |0.()—Qu,-

(19

is precisely the behavior observed in Fig. 3. The inset of the
figure shows the difference between the diffraction pattern of

the infinite crystal and the 500 layer crystal, which shows

The diffraction pattern of the finite crystal can be calcu-that for such sizes the powder sample effectively behaves as
lated using an ensemble of infinite sized crystal.
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FIG. 5. Comparison between tig function obtained from Monte Carlo simulation, and thgfunction obtained by the use of Eq4.1)
and(13) (see details in text The third column plots the differences between b@gfunctions. Twin faults were the only ones considered.

For a crystal with interlayer distance of around 0.2 nmtjon will be those withh—k=# 3p, wherep is an integer. For
(valid for some pure metals such as fcc iron or hep colalt  the perfect fec stacking sequence we should expect ideally
effective “infinite” 500 layer crystal will be those with a that the interference functio@(r*) would be a sequence of
length, along the stacking direction, of at leastnl Inthe  delta functions at the reciprocal lattice positiots, (.l ),
case of some rare earth-transition metal binary alloys, wher@ghere all three reciprocal coordinates are intedei$.we
the interlayer distance is around 4 nm, the effective “infi- substitute this “perfect”Q(r*) function in Eq.(11) then the
nite” crystal will be one with length of at leasti2n. From P, function will be Py(A)=1 if A=3p;0 if A#3p(pe 2),
the above analysis we believe that the infinite crystal aswhich is the Py function we should expect for a
sumption is, for a wide range of cases, not a strong one. A BCABCABCABC. . perfect sequence as simple visual
should be noticed that for crystallite sizes below 100 nmjnspection of the sequence shows.
peak broadening due to small grain size is an additional fac- A series of a-faulted crystals were simulated using the
tor affecting the peak profilg. Berlinet? method, and diffraction patterns were calculated

Following expression§7) and(12), in a fcc structure the from such ensembles. The simulated diffraction patterns
reflections affected by planar disorder along fth&1] direc-  were then solved foP, using Egs.(11) and (13), and the

054109-6



DIRECT SOLUTION OF THE DIFFRACTION PATTERN. .. PHYSICAL REVIEW B3 054109

10 the nonoscillating value d?, can be defined to fine tune the
long-range order distance.
As stacking disorder increases, should decrease. Fig-
ure 7 shows the loss of long-range order with increasing
A diffraction peak width at half maximunifFWHM) for a
0.6 \LC simulated pattern of a fcc structure with deformation fault
»

0.8 1

disorder.
O 44l A The P function can also be used to obtain the different
e [TV \oPeee average environments of the atoms in the structure and their
u L probability of occurrence, which can be further used in cal-
0.2 1 J culation of other physical properties.
L
00 =l . . . . V. Gd,Co,; LAYER STRUCTURE
o} 10 20 30 40 50

R,Co,7 (R: rare earthcompounds have been studied in-
tensively because of their favorable magnetic properties for
FIG. 6. Definition of theA, parameter describing the distance PErmanent magnets applicatiasee, e.g., a review article by

above which all correlation between the displacement gfairs is ~ Strnat’ and the papers cited thergirR,Coy; alloys can be
lost. found in two crystallographic modifications, one described

, by a rhombohedral crystal system (Fm,+type structurg
obtained values foP, were compared to the ones known for 54 the other by an hexagonal crystal system,KFh-type
the simulated crystal. Figure 4 shows a comparison betweegy, g 18 Both structures differ in being different stacking
the actualP, function and the calculated one for increasing equences of identical layé'&The layer can be considered
values of thex parameter. The same procedure was followe 0 be formed by two planes of atoms, aJuidimensional
but now with 8-faulted crystal, Fig. 5 shows the correspond- | . . :

ane and a mixed JCog plane. In the mixed plane a pair of

ing results. A good match is found in both cases between th o atoms lie above and below the plane, which are usually

actual P V?'“es and the calculated ones. _D|screpancy ber'eferred to as the dumbbell site. The rhombohedral stacking
tween the simulated and calculatBeg values increases with

A. This can be explained as a result of numerical precision ir?rder corresponds 1o a sequertBCABCABC. . ., while
’ X P aI[She hexagonal sequence corresponds t&ABRABAB. ..
. . . tacking order(Fig. 8. The minimum lateral displacement
go dei:cnrg:ealézvsvirtmzetrde::g(t)?rieo?ftriq-igrggtémﬂt\i/gr? '[‘r?]t:iie v?ctor between the layers is the same as in the fcc structure
q : described by Eq(12) (see Fig. 9.

a discrete cosine transform imposes limiting conditions in .
the sampling interval of the diffraF::tion data in%rder to obtain It has téeenharglgeg that fault and pfolytype_s 'T]tlaé:@” .
the P, function with enough accuracy up to a specifited compounds shou € an 'T“po”am actor in t € ”f‘agne“c
valueo behavior of the _all_oy, especially on the magnetic anisotropy
: and magnetostrictiof?
IV. THE P, CORRELATION FUNCTION As we go from the lighter rare earth to the heavier ones,
the structure at room temperature changes from rhombohe-
The Py functions have been usually overlooked in thedral to hexagonal, for the intermediate rare earth atoms
treatment of planar faulting in layer crystal. The reason forheavy planar faulting has been obser¢&d.
this can be found in that up to noRg has not been a func- In order to quantify the occurrence of planar faulting in
tion obtainable from measurable quantities from the diffrac-Gd,Co,;, which lies at the intermediate range of the rare
tion pattern.Pg functions carry a lot more information than earth series, high resolution x-ray diffraction measurement
other parameters, such asand . were carried out at the LNLS synchrotron facility in Campi-
Long-range correlation between layers, and thereforamas, Brazil. The sample was obtained from 99.9 wt % purity
long-range order, can be quantitatively asserted fromPthe starting material, which were melted several times to achieve
function with the added benefit that no planar faulting modehomogeneity and further annealed at 1273 K for 2 weeks.
assumption is needed. Furthermore, Ehegunction obtained Diffraction patterns were recorded with a step size of
is averaged over the hole ensemble of crystallites and ther®.0066°, and the rhombohedral structure was indexed from
fore avoids the need for considering fault density equal fothe pattern. Reflections with—k+# 3N showed broadening
each crystallite. which we associate with planar faulting. Figure 10 shows the
Correlation between layers can be considered to be loddiffraction pattern around thé800) and (024) peaks. While
when theP, function stops oscillating and tends to a con-the (300 reflections have a FWHM value of 0.06° tf@24)
stant value of probabilityin the case of a fcc structure this reflection showed a FWHM value of 0.14°, which further
value should be 1}3If we defineA. as the minimalA value  affirms that the broadening seems to be associated with pla-
for which the P, function has stopped oscillating, then we nar faulting. The diffraction pattern was deconvoluted for
can define the maximum correlation distance between layeigstrumental broadening using Si standard powder and con-
to be A, and therefore the long-range order to be preservedterted from 2 values to | values using the lattice parameters
up to this distancéFig. 6). An appropriate window around of Gd,Co,;. The GdCoyy, lattice parameters were calculated

054109-7



E. ESTEVEZ-RAMSet al.

I(arb. units)

0 1
|
.
1 ™
o
) o0
=
c |
=
a oo
rali
o
=
J X
o0
g A
4] 1
|
2

I(arb. units)

Po

Po

Po

PHYSICAL REVIEW B 63 054109

1.0 P © @ P © @ P & & & & o P & @ p

0.8

0.6 1

0.4 1

0.2

0.0

1.0 1 p

0.8 1 [ ]

0.6 1

0.4 -

0.2

Ll

0.0 +®

1.0 4

08 | P

0.6

0.4

0.2

0 10 20 A 30 40 50

FIG. 7. Loss of long-range order, described by ®¢A) distribution function, with increasing diffraction peak broadening for a

simulated fcc crystal with deformation fault disorder.

from the diffraction pattern using a least square fit with anground subtraction was used. The obtairfgg correlation
internal standard! The interval in | values that resulted was function is shown in Fig. 11.

0.0009. From the diffraction pattern, the interference func-
increasing delta value. Thk, value was determined to be 77
layers. No shift of th€024) peak could be determined within

tion was determined and further normalized. Thefunction
was determined from Eqg$ll) and(13). Linear fit for back-

As expected theP, correlation function decreases with
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FIG. 8. The two stacking sequences in(®,; alloys, which I
leads to an hexagonal and rhombohedral crystal system.

the precision of the measurement. The form of fhecorre-
lation found does not resemble neither #adaulted or the
B-faulted correlation function as seen in Figs. 4 and 5. The
Gd,Coy structure is intermediate between the rhombohedral B
and the hexagonal crystal structure; random individual planai
faults as those described lyand 8 should not be the kind -
of faulting occurring in this alloy. Random individual fault-
ing does not lead to a transformation between the two or- B
dered layer stacking sequence. Tig correlation function
determined shows modulation, which we think is an indica- [
tion of complex planar faulting with the occurrence of com- G
bined stacking faults. This is a case where simpler analysis
based on prior assumed models like those @nd 8 should
fail. 20
The quality of the obtaine®, function as shown in Fig.
11 can be seen as a result of the special care taken in the

gathering and processing of the diffraction data. Usual con- - the hiah luti d hiah sianal-noi i
sideration when using the Fourier transform in diffraction ©U" €as€; the high resoiution and nigh signai-noise ratio was

studies is valid for the proposed treatment. Special care haasssured with the use of the_synchrptron radiation. Fluctuation
to be taken to include in the analysis of the reflections theOf the P, values are negligible untih =90 layers.

long tails of the peak profile, in the G@o,; sample, and the

well resolved character of thé24) reflection makes this VI. CONCLUSION

treatment easier. Noise in the signal also affects the higher

harmonics in the Fourier transform, which applies equally to A direct formalism for the solution of the diffraction pat-
tern from the faulted layer crystal has been derived. The

solution avoids the need for specific planar faulting models.
The diffraction intensity from a powder sample was found to
be the trigonometric series of a linear function of thgA),

I(arb. units)

FIG. 10. Diffraction pattern of GaCo,5.

1.0 =
|
a 1 ]
oed || [, Gd,Co_.
b 0.6
” -
O 044
0.2
0.0 4 T T T T T T T T T 1
0 20 40 60 80 100
A
FIG. 9. Possible lateral positions of the mixed layers yC8, FIG. 11. P, correlation function of the G&Lo,; sample derived
alloys. from the cosine transform of the diffraction pattern of Fig. 10.
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the probability of finding two layera layers apart and lat- negligible fluctuations up td =90 layers. The kind of fault-
erally displaced from each other a vecsof, . Ps(A) can be ing that should be expected in this structure should not be
calculated trough the cosine transform of the diffracted in-described in terms of simple random individual faulting, yet
tensity function. Crystals larger than 500 layers in heightour method can derive reliable structural information from
were found to behave like effective “infinite” crystals. The the diffraction pattern.
solution was successfully compared to a Monte Carlo trial
and error method for the fcc structure. Long-range order and
correlation can be easily derived from tReg function. AA,
value can be defined above which all correlations betwleen  We wish to thank Professor R. Grossinger for helpful dis-
pairs is lost. Relation between the usual parametes)dB3,  cussion and encouragement. The CLAF is gratefully ac-
andA. can be found as well. knowledge for partial financial support. E.E.-R. would like to
The formalism derived here was applied to the,Go;  thank the Third World Academy of Science for financial as-
structure where planar faulting was expected to occur. Thsistance within the South-South fellowship. LNLS at Campi-
delta value beyond which correlation between layers is loshas is gratefully acknowledged for financial assistance and
was found to be 77 layers. THe, function obtained showed for providing an outstanding scientific environment.

ACKNOWLEDGMENTS

*Corresponding author. Email address: estevez@lae.ff.oc.uh.cu **R. Berliner and R. J. Gooding, Acta Crystallog6, 98 (1994).

"Email address: martinez@sdi.imre.oc.uh.cu 14This more general argument for a powder sample is similar to the
*Email: arbelio@lae.ff.oc.uh.cu analysis, usually found in textbooks on x-ray diffracti@ee for
BEmail: lora@lae.ff.oc.uh.cu example Refs. 6 and)/that leads, in a fcc structure powder
L. Landau, Phys. Z. Sowjetunial?, 579 (1937). sample, to the conclusion thBygc=Pace-
2M. Lifschitz, Phys. Z. Sowjetunioi2, 623(1937. 15see any book on crystallography for example, B. V. Vainshtein,
3Hendricks and E. Teller, J. Chem. Phy§, 147 (1942. Modern CrystallographySpringer, Berlin, 1994
4A. J. C. Wilson, Proc. R. Soc. London, Ser.180, 277 (194)). 16Proper account for forbidden reflections must be taken into ac-
SB. E. Warren, Prog. Met. Phy8, 147 (1959. count, in the fcc structure, reflections with(k, ,l,) of mixed
B. E. Warren X-Ray Diffraction(Addison-Wesley, Reading, MA, parity are forbidder(see Ref. &
1969. 7K. J. Strnat, inFerromagnetic Materialsedited by E. P. Wohl-
"A. Guinier, X-Ray Diffraction(Freeman, San Francisco, 1963 farth and K. H. J. BuschoWNorth-Holland, Amsterdam, 1988
8H. Jagodzinski, Acta Crystallog®, 201(1949; 2, 208(1949; 2, Vol. 4, p. 131.
298 (1949. 18K Kumar, J. Appl. Phys63, R13(1988.
9L. Velterop, R. Delhez, Th. H. Keijser, E. J. Mittemeijer, and D. *°C. W. Allen, D. L. Kuruzar, and A. E. Miller, IEEE Trand0,
Reefman, J. Appl. CrystallogB3, 296 (2000. 716 (1974).
0p_ scardi and M. Leoni, J. Appl. Crystallo@2, 671 (1999. 20C. W. Allen and D. L. Kuruzar, 33rd Annual Proceedings Elec-
1R, Berliner and S. A. Werner, Phys. Rev.38, 3586(1986. tron Microscopy Society America, Las Vegas, Nevada, 1975,
2R Berliner, O. Fajen, H. G. Smith, and R. L. Hitterman, Phys. edited by G. Bailey, p. 38.
Rev. B40, 12 086(1989. 2'H. Toraya and M. Kitamura, J. Appl. Crystallog3, 282(1990.

054109-10



