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Unusual temperature dependence of the London penetration depth in all-organic
B"-(ET),SFCH,CF,SO; single crystals
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The temperature dependence of the in-play€T), and interplane) , (T), London penetration depth was
measured in the metal-free all-organic supercondygte(ET),SFKCH,CF,SO; (T.~5.2 K). A)\”(T)fxT3 up
to 0.5T., a power law previously observed only in materials thought tg{veave superconductors., is
larger than the sample dimensions down to the lowest temperai@s K), implying an anisotropy of
N /)\“%400— 800.
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Despite intensive study, neither the pairing mechanisnresistivity is about 0.2)cm?® Two crystals—0.5% 0.5x 0.3
nor the symmetry of the order parameter has been conclunm?® and 0.8<0.6x 0.3 mn?—were used for measurements.
sively established in organic superconductors of theéEach had a transition temperature of approximately 5.2 K. A
k-(BEDT-TTF),X class.(Henceforth “BEDT-TTF” willbe  third crystal was used to measure the absolute penetration
abbreviated as “ET.Y For the most thoroughly investigated depth. The penetration depth was measured with an 11 MHz
materials, «-(ET),Cu(NCS), (T.~95 K) and tunnel-diode driverLC resonator® Samples were mounted
«-(ET),CUN(CN),]Br (T.~12 K), there is some evidence On @ movable sapphire stage with temperature controllable
for d-wave pairing-2 However, recent penetration depth from 0.35 to 50 K. The low noise levelAfq,/fo

X ~ 710 . -y .
measurements revealed an unusual fractional power-lawr2<10 =, resulted in a sensitivity oA <0.5 A for our

variation, AN(T)=T¥2 unlike that of any other samples. An rf field of magnitudd ,.~0.03 Oe was applied

superconductof. While this exponent is consistent with a either perpendicular to the conducting planes to probe

three-fluid mode?, it is also suggestive of a magnetic exci- AX(T) or along thea axis to probeAA, (T). The entire

tation. In this paper we report penetration depth measureqryos'{"jlt was surrounded by a triplemetal shield that re-

S . duced the stray dc field to less than 0.005 Oe. Small values
ments inf3 -(ET)>SKCH,CF,S0;, a recgn_tly synth§5|zeq of magnetic fields and perfect reversibility ensure that the
all-organic superconductor free of metallic ions and in which

. L - . L samples were in the Meissner state and that the observed
magnetism is likely to be negligible. This material is @ asults are not due to vortices

strongly two-dimensional, extreme type-ll superconductor g resonator frequency shift due to the superconducting
with T,~5.2 K. It is metallic between 10 and 150 K and sampleAf=f(T)—f, is given by°

semiconducting from 150 and up to 410*Rhe upper criti-

cal field parallel to the conducting planes exceeds the Pauli Af Vs A R

limit by 18%, raising the possibility of either an inhomoge- Ty m( 1—§taan

neous pairing stat€ or a spin triplet order parametéie

determine the London penetration depth for supercurrentgheref, is the frequency in the absence of a samplgjs

both along &) and perpendicularX ) to the conducting the sample volumey, is the effective coil volume, anl is

planes. The penetration depth is extremely anisotropic, witlthe effective demagnetization factor. The apparatus and

A roughly 800 times larger thax, . Notably,)\”ocT3, which  sample-dependent constantf,=V4fq/[2Vo(1—N)] was

might imply an energy gap with nodes, but it is difficult to measured by removing the sample from the @o#itu® For

reconcile with eithep- or d-wave models in two dimensions. A<R, tanhR/A~1, and the change iR with respect to its

We suggest that this power law may arise from the unusuatalue at low temperature i&AN=—5fR/Af,, where &f

phonon spectrum in this material. =Af(T)—Af(Tn- In the parallel orientationH||ab) we
Single crystals of3”-(ET),SkCH,CF,SO; were grown  had to use the full expression E@) to estimatex, due to

at Argonne National Laboratory by an electrocrystallizationthe weak screening in that direction.

technique described elsewhér@he high-conductance lay- Figure 1 shows the frequency variation measured in two

ers correspond to thab plane and the* axis is normal to  orientations for zero dc magnetic field. Fad|(ab) the rf

the planes. This designation is similar to cuprates, while difscreening is controlled by, (T) and is much weaker than in

ferent from thex-(ET),X materials. The room-temperature the (H||c*) orientation, where the relevant screening length

interplane resistivity is roughly 70Q cm while the in-plane is N\ (T). Since all three crystal dimensions were roughly
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0163-1829/2001/63)/0525064)/$15.00 63 052506-1 ©2001 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B 63 052506

T,
or 5 0 0.41 0.51 0.59 0.65
-2000 L |
—_ at Hl|lc sample2| . |
N -4000 |
T - payd
y— 3 o -
< 6000 —_
E
=2
-8000 | —_2f 7
<
, — , < sample 1
0 2 4 6 1l J
T (K) . .
- _ dan/d(T®) = 0.07 pm/K
FIG. 1. Frequency variation in paralleA€,) and perpendicular o ~ ) . ) , ) . ) L]
(Af)) orientations of the magnetic with respect to superconducting 0 10 20 30 40
layers. Usual notation in terms of current flow is used. Inset: ex- 3,3
panded view ofAf (T). Note substantial difference in shielding T (K )

ability for two orientations. ) ]
FIG. 3. AN(T) measured in two different crystalgData for

comparable, this indicates that is several hundred times sample 2 are offset for claritySolid lines show fits toI'® power

larger than\. The inset shows an expanded view of the law.

Af, (T) curve. From the total frequency variation and using

Eqg. (1) we estimaten | (0)~800 pm. 0.35 K and the method is less reliable than for cuprate su-
To date, there have been no reported measurements of therconductors. We estimate a value\gfT=0)=1—-2 um,

zero-temperature penetration depti(T=0). We recently in rough agreement with values for other ET compounds,

developed a new method to determingT=0) that relies and leading to an anisotropy of 400—800. Our measurements

upon the change in screening of an Al-coated sample as thgovide only the average &\ (T). Microwave conductiv-

temperature is reduced from aboVE,(Al) to below ity measurements revealed a small in-plane anisotropy of ap-

T.(A).™ The inset to Fig. 2 shows the data obtained in aproximately 1.35 with a maximum along theaxis’

single crystal of Y BaCuO;_ 5 (Y-Ba-Cu-O. The method Figure 3 shows the low temperature variationAof(T)

yields a value of 0.1450.01 um, which is within 5% of observed in two samples ¢’-(ET),SFCH,CF,S0;. Data

literature values. The mainframe of Fig. 2 shows the methodor sample 2 is offset for clarity. The horizontal axisTs

applied tog”-(ET),SKCH,CF,S0;. SinceT,, of this mate-  showing thatAX (T)« T2 with a slope of 0.07um/K3. The

rial is only 5.2 K, its penetration depth is still changing at cubic power law is obeyed up te-T /2. The Al-coated

sample, shown in Fig. 2, also showad (T) T3, but below

6 T.(Al) the signal from B”-(ET),SKCH,CF,SO; is
- screened by the Al coating. Both tine=3 exponent and the
5 . wide range over which it holds are unusual and have not
I ] been observed in cuprate superconductors. To highlight the
4 i differences among superconductors, we plot in Fig. 4 the
I normalized low-temperature variation of the penetration
= 3 i depth in  k-(ET),Cu(NCS), (uppermost curve
g_ I B"-(ET),SKCH,CF,SO; (middle curve, and polycrystal-
=, 1 line Nb for comparison. Solid lines are the fits 792, T2,
‘é and wA(0)/2T exp(—A(0)/T) variations. All data were

taken in the same apparatus.
It is possible that3”-(ET),SKCH,CF,SO; has an ex-

/ 0 5 10 15 | tremely anisotropis-wave order parameter and tfié varia-
0 T (K) ] tion is an effective, intermediate-temperature power law that
0o t'.) ' 1'0 ' 1'5 %0 only holds above the low-temperature exponential region.

Our numerical calculations show that anisotrogigvave
T (KS) states, at least in weak coupling, do not exhibiavariation
over any extended range. In fact, the data in Fig. 3 shows a
FIG. 2. Measurements of the absolute value }{0) in  slight downwarddeviation fromT? at the lowest tempera-
B"-(ET),SK;CH,CF,S0;. Inset: Same technique applied to Y-Ba- tures, implying a decrease in the exponent—just the opposite
Cu-O. of exponential suppression. Strictly speaking, it is the power-
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' ' ' ' ' ' B"-(ET),SFKCH,CF,SG0; is strongly two dimensional and
both d- andp-wave states must have line nodes perpendicu-
lar to the ab plane, giving a lineafT dependence. AT3
dependence would then require an angular variation of the
gap near the node, () ¢*/3, for which there is no obvious
justification. Previous tunnel-diode measurements of the pen-
etration depth inUPt;, believed by many to be p-wave
superconductor, revealed intermediate exponents ranging
from n=2-4 depending upon surface preparafibfiow-
ever, lower-frequency measurements on the same samples
gave lower power lawsn=1-2) for reasons not under-
stood, but possibly related to surface dissipation. Supercon-
ducting quantum interference device measurements of the
penetration depth in the heavy fermion material YBgave
n=2, which could arise either from point nodes or impurity
scattering®>'®® The latter might be an issue in
FIG. 4. Comparison of the temperature variationsof(T) in B ~(ET)2SFCH,CF,S0; since, at the low end, our data

different systems. From bottom to top: polycrystalline kmlid ~ Show a slight tendency towa(d a lower power law, possibly
line is a fit to a standard weak-couplingwave BCS low- N=2.Recent measurements in,BuQ,, also thought to be a

0.004

/a0 (T)

= 0.002

AL

0.000 k
0.0

temperature expansion with A(0)/T.=1.76);  p-wave superconductor, have showr-T* in one sample,
B"-(ET),SK,CH,CF,S0O; (solid line is a fit to T%);  attributed to a combination of impurity scattering and nonlo-
k-(ET),Cu(NCS), (solid line is a fit toT%?). cality in a superconductor with line nod¥s.

B"-(ET),SKCH,CF,S0; is an extreme type-ll material and
law variation of the superfluid densipg that is most directly  nonlocality is unlikely to be an issue until one reaches tem-
related to the structure of the gap\(T) is the measured peratures of order&\)T.~0.05 K1’ Finally, on general
guantity and its temperature variation only asymptoticallygroundsp-wave pairing is favored in materials with a ten-
approaches that gbs. The superfluid density versus tem- dency toward ferromagnetism, for which there is no evidence
perature was calculated froto\|(T) for A|(0)=0.5, 1, 2, in this material. Although the discovery of a new pairing
and 5um. In each case, we found that a cubic power lawsymmetry is appealingp”-(ET),SKCH,CF,SO; is suffi-
remained the best fit, although the range over which it helatiently complex that other possibilities should be considered.
was reduced for smaller choices Xf(0). Recent heat-capacity measurements suggest a strong-

It is also possible that a small tilt of the# axis relative to  couplings-wave BCS state. They also indicate the presence
the field may induce interplane supercurrents and create asf optical modes in the 20—40 K energy rarf§&ome time
admixture of both\|(T) and X (T) in the data. If the ap- ago, it was shown theoretically that with the coupling of
plied field is tilted by# relative to thec* axis the additional electrons to low frequency, localized vibrations can give a
contribution to the observed frequency shift is givet’y ~ temperature dependence to the effective mass and thus a
power law to the London penetration depth over and above
that due to the superfluid fractidf.For example, a phonon
density of stateg)(E) varying asE? may give rise to a'®
power law for ans-wave superconductor in the absence of

The alignment was checked at room temperature by revertex corrections. Under most circumstances vertex correc-
peatedly attaching a sample to the sapphire rod with vacuunions raise the power td® making the effect extremely
grease and measuring the divergence of a laser beam remall, but this may not be true here. Our data suggest that
flected off the sample surface. The average alignment erraftrong-coupling calculations involving a realistic phonon
was never more than 2°. To be conservative, we considerespectrum may be relevant for organic superconductors. We
a misalignment of 5° and using the data Kk, (T) from  also wish to stress the desirability of NMR measurements in
Fig. 1, calculated a maximum misalignment error of 4% ing"-(ET),SF,CH,CF,S0O; to help determine the parity of the
our determination ofAN(T) versus temperature. This value order parameter.
is too small to change our conclusion about the presence of
ann=3 exponent. We wish to thank M. B. Salamon for useful discussions

A T° variation of\ is unusual, but was predicted for a and for providing results on §RuG, prior to publication.
three-dimensiongt-wave superconductor with an equatorial Research at Urbana was supported through the State of Illi-
line of nodes: the so-called polar state with(k) OIS ICR funds. Research at Argonne was supported by the

Aao13 . . , U.S. Department of Energy, Office of Basic Energy Sci-
=Ao(T)k-1.*Here,| is the axis of gap symmetry, which oo5  Division of Materials Sciences, under Contract No.
must lie parallel to the vector potentialin order to obtain a  \-31-109-ENG-38. Research at Portland State University
cubic power law. Ifl is perpendicular té the dependence is was supported by NSF Grant No. CHE-9904316 and the Pe-
linear in T. The relevance to our data is questionable sincdroleum Research Fund ACS-PRF 34624-AC7.
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