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Breakdown of the perturbative renormalization group for S=1 random
antiferromagnetic spin chains
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We investigate the application of a perturbative renormalization gt®@ method to random antiferro-
magnetic Heisenberg chains with arbitrary spin size. At zero temperature we observe that initial arbitrary
probability distributions develop a singularity a&=0, for all values of spinS. When the RG method is
extended to finite temperatures, without any additional assumptions, we find anomalous reS#t$ fdhese
results lead us to conclude that the perturbative scheme is not adequate to study random ch&eslwith
Therefore a random singlet phase in its more restrictive definition is only assured for spin-1/2 chains.
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Low-dimensional random quantum magnetic systemsexistence or not of the RS phase in e 1 RAQ chains, as
have become an object of increasing interest in recent yearproposed in previous zero temperature studies using the
Despite the apparent simplicity, quantum spin chains show 8DH method® '3 Actually, within the MDH approximation
wealth of physical properties which have attracted the attenthe existence of the RS phase is assured only for the spin-1/2
tion of both theoretical and experimental physicists. It is gen-chains.
erally accepted that quantum antiferromagnetic spin-1/2 The random magnetic systems are described by the
chains in the presence of disorder exhibit, at low temperaHeisenberg Hamiltonian:
tures, a random singléRS) phase characterized by power
law behavior of thermodynamic quantiti€$.This has, in e
fact, been observed in several experiménfsTheoretically, H= 21 JiSi.Sii1, (1)
the phase was revealed by a real space renormalization group o
(MDH) approacH. These results have motivated many au-whereJ;>0 is the nearest neighbor antiferromagnetic inter-

thors to study the physical properties of other random antizction andS; are quantum spin operators. The exchange cou-
ferromagnetic quantuRAQ) chains withS=1. In this case  pjings are random variables distributed according to a given
there are additional pr_oblems, as for ex_ample, what happerb'}obab”ity distribution P,(J;,Q), with a cutoff Q. The

to the Haldane gap of integer spins chiiimsthe presence of  MDH method consists in eliminating the pair of spins with
disorder. In fact, the possibility of the energy gap being supype strongest couplingg=Q) in the random chain by con-

pressed by disorder, driving the system to a RS phase hagjering the interactionJ; and Js) with the neighboring
become a very attractive matter for investigation. In particu-pins of this pair as a perturbatiésee Fig. 1

lar, theS=1 RAQ chains has been exhaustively studied by
several method%:® Many authors have employed extended .-~ ' '°"
versions of the MDH scheme to explore the ground statéiNdSs is given by

properties of the model. In the course of these investigations, .

some authors suggested the existence of random singlet Ho=J25;.Ss. (2
phase in the spin-1 chain in the strong disorder regime.
On the other hand, studies based quexact diagonaliz4tion,
guantum Monte CarlMC) simulation,” and density matrix = = s =2
renormalization grousdDMRG) technique¥ found that the H1=J1S,.5,+J35;. 5. )
Haldane phase is quite robust against randomness.

The Hamiltonian for the strongly coupled pair of spézs

These spins are weakly coupled to the neighbors via

In view of these controversial results and the fact that a) e . . %i-0 o . o
most calculations for spin-1 chains have been done=a0, S S S s
we were motivated to extend the MDH analysis to finite ! ’ i ‘
temperature. Our goal was to generalize the MDH recursion
relations to study the thermodynamic behavior of chains with
arbitrary spin size. We performed careful numerical proce- ¥y
dures to iterate our generalized MDH equations at finite tem- b e °
perature. The anomalous results we have obtained for the s, s,
free energy and are presented in this communication indicate
that the MDH approach breaks down for chains wik 1. FIG. 1. Spins and coupling constants involved in the elimination

Therefore, we argue that it is impossible to conclude on théransformation(a) to (b).
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We calculate the free energy of the system formeoﬁpy

S,, S;, andS, through perturbation theory in second order
of H, (see Ref. 1 After some simple but extensive calcula-

tions we come with the results:

’ 1 2/12 2
F'=Fo= 3 [S(S+ DI+ I3)V«(BQ) 4)

with
1 2 1
Fo=—S(S+1)Q—=In>, (2i+1)ex;{——i(i+1)3ﬂ}
B =0 2
(5
and
2 JiJs
I'=38(S+1) 5~ Ws(BQ), (6)

where 8=1/kgT and the functions V and W are given by

Vs(y)

2S
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- 2S
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=0

1
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The fixed form of P;(J;,Q2) determines the low-
temperature behavior of the thermodynamic quantities. The
exponenta gives rise to logarithmic corrections in the ther-
modynamic functions.

The great merit and the reason for the success of the
MDH theory* was to show that the characteristic RS phase
behavior of spin-1/2 chain is universal. More specifically, it
is independent of the original distribution of exchange cou-
plings. The MDH approach represented a considerable
progress with respect to previous methttfs which re-
quired an initial distribution of bonds with a particular form.
Actually, in order to reproduce the power law dependence of
the low temperature thermodynamic quantities observed ex-
perimentally, the previous models required an initial distri-
bution already with a power law behavidt’

We turn now to the numerical simulation of chains with
spinsS=1 andS=3/2. Each chain is composed Nfspin-S
objects with periodic boundary conditiongwith N
=50,000). We carried out the averages over ten different
configurations for eacR;(J;,{)) to obtain the free energy of
the system. We start by choosing the exchange coupling
from an uniform distributiorP;(J; ,{}) given by

1-A
0 otherwise.

for A<J=<1

Py(Ji, Q)= (11)

The parametenA represents the strength of the initial disor-
der of the couplings. The cage=0 represents the strong
disorder limit because the distribution becomes extremely
broad in a logarithmic scale; namely, infinitesimally weak
bonds appear. The weak disorder regime is represented by
finite values ofA. The distribution, in this case, presents a
gapA.

We have studied the flow of the initial coupling distribu-
tion, Eq.(11), for the spin-1 chain for the following cases:
A=0,A=0.05,A=0.1, andA =0.2. We found that for any
A, successive elimination transformations give rise to
weaker and weaker couplings as the cut@fdecreasesn-
dependently of the temperatuieor sufficiently smalll, i.e.,
after a sufficient number of eliminations, the distribution
P;(J;,Q2) becomes peaked a=0 and, as in the F0

Equations(4)—(8) are the generalization of the MDH equa- ¢45¢l0-13¢can be approximated by a power law. We should
tions for the thermodynamic properties of RAQ chains withygint out that the convergence to a power law depends on the

arbitrary spin size. For S1/2 we recover the original MDH
recursion relation$.The S=1 case has already been studied

in the limit of very low temperature¥.

value of A. It is faster in the case of the gapless=0)
initial distribution. As in the case of spin-1/2 chainghe
ower-law exponent obtained for ti&=1 chain is nonuni-

When the decimation process is carried out for a spin-1/gersq: it depends on temperature and cutoff, although
chain the distributiorP;(J; ,{1), independently of the form weakly. In Fig. 2 we present, for completeness, the power-
of the original distribution of antiferromagnetic bonds, rather|\ pbehavior ofP,(J;,Q) with exponenta=0.38 obtained

quickly approaches a fixed form singularJt 02

a Ji -1+«
Py(J ,m~5(5 ®(0-J) ©
with
1
a=—T5. (10

from an initial distribution withA =0, at a fixed temperature
kgT=0.100.

Now we focus on the free energy per spin and the specific
heat of the spin-1 chain. In Fig. 3 we show the plot of the
specific heat versus temperatygven in units of()). De-
spite the power-law dependenceRf(J; 1) at low energies
described above, we find a nonphysical behavior in the free
energy of the system. For intermediate temperatures, the free
energy gives rise to a negative specific hésde Fig. 3.
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700 T T TABLE I. Renormalized coupling for chains wit6=1/2 and
10° . i i S=1 obtained with clusters of size 2, 4, 6, and 8. We have taken
600 40,38 . Ji=Q=1.
10° | E : . .
500 | . Cluster size Spin-1/2 Spin-1
a0 | 10 ¢ 1 2 0.500 000 1.333333
S 4 0.377992 1.881373
& 0 | L T AT 0° | 6 0.312648 2.597776
8 0.270 240
200 | .
coupled pair of spins and its neighbors are not sufficiently
100 7 weak, the perturbative scheme fails, giving rise to the spuri-
ous result observed in the free energy. At higher tempera-
i 0.05 o1 e=n=gas tures kgT>0.372) the MDH method gives correct results
J, for the thermodynamic propertié$. There the function

W, (BQ)<3/4 cancel the coefficient 4/3 df [see Eq(8)],

thus validating the present approach, independently of the
starting distribution. In addition, when one considers distri-
butions with a finite gagweakly disordered distributions

e breakdown of the MDH formalism is most pronounced.

t
Nonetheless, at very low temperatures the free energy an|9n - o i
thus the specific heat is well-behaved, being described by acte Jfrgzib;;%gf doebr'::lr:gr;g(,): ttkI](;WV:lr};pg;att;gegségheBSri(;o_l

power 'aW(See. Inset of Fig. B These_ very low temperature creasing), the initial distribution will not generate infinitesi-
features are similar to the random singlet phase of the disor

dered spin-1/2 chaihMoreover, at higher temperatures, the glu&;][:zie\rl]vt(leyal;mgﬂur)llngs to ensure that the product is
free energy curve is again well-behaved and gives rise to a In the spin-3/2 chain we performed the decimation pro-

physically meaningful specific heat. cess b : : . N
. . y starting with a uniform gapless probability distribu-
The presence of the factoiSeS+1)/3 in Eq.(6), which Despite the larger coefficient in E@®), P;(J;,Q) still

defines the renormalized couplidg, plays an important role develops a power-law behavior as the cutfbecomes suf-

in our discussion. In the case of the spin-1 chain it is 4/3. Atf- - ; .

. _ iciently small. However, this convergence is much slower
low temperatures gT<0.311), the funct|onW1(ﬁQ) IS than that for a spin-1 chain. Now the couplingfswhich are
!arger than 3/4, consequently, when the COL_'pI'ngS nelghborIélrger than the decimated out couplify are statistically
ing the (?Ut.OﬁQ are not small enough, couplings larger thanpredominant. The effect of the breakdown of the MDH
thpse eliminated may be _genera{esée Egs(6) and(8)]. In method in the free energy of tHi&=3/2 chain is more dra-
th|s. low temperature regime, although the_ cutoff decr.egsel::hatic yielding a negative specific heat even in the very low
rapidly, large couplings are generated with non-negligibl

. . emperature limit.
probability. When the couplings between the strongly Tﬂese results has led us to try to improve the MDH trans-

formation in two directions: first we considered the decima-
tion of larger spin clusters. In order to gain an insight on
0.020 - — whether or not this procedure would work, it was sufficient
) to carry out the decimation at zero temperature. The intent
. was to investigate whether the perturbation scheme, using
0010 - .t . larger clusters, would decrease the factor appearing in the
. expression for the new coupling’. We have carried out
numerically the decimation process for RAQ chains with
both spinS=1/2 andS=1, considering clusters with 2, 4, 6,
and 8 spins. In our numerical calculations we considered, for
simplicity, J;=Q =1, where thel;’s stand for the bonds be-
tween neighboring spins in the cluster. The results for the
case of a cluster with only two spins can be directly com-
pared with the value 1/2 and 4/3 of the original MDH pro-
cedure[see EQq.(6)] in the S=1/2 andS=1 RAQ chains,
~0.20 . . . . . respectively. We list the results in Table I. In the case of a
0.00 0.05 0.10 T 015 020 0.25 spin-1/2 chain the results indicate that the MDH scheme is
always improved. However, the resulting values for larger
FIG. 3. Low temperature behavior of the specific heat of theclusters in the spin-1 chain makes clear that the problem
random spin-1 chain foA =0. Inset: the power-law behavior with remains unsolved.
exponent equal to 0.77. We also tried to improve the MDH scheme by consider-

FIG. 2. Power-law behavior oP;(J;,Q) in the low-energy
limit, at kgT=0.1Q). Inset: the Log-log plot of;(J; Q) yields
the exponentr=0.38.
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ing terms of higher order in the perturbation expansion, atbility of the generated coupling being larger than the one
zero temperature. In that case, our purpose was to investigagdiminated is statistically negligible. The singular form of

whether the higher order corrections would decrease the fag,(J;,Q)) dominates the thermodynamic properties which
tor 25(S+1)/3 in Eq. (6). We have thus calculated the  are also described by power laws. Of course this is in strong
=0 renormalized coupling, for the spin-1 chain, up to thirdcontrast with the robust and universal character of the RS

order in{}, which is given by phase for the spin-1/2 chain, which is indeed a new fixed
point}?

1 I i ite-

3 RT: 2 n summary, at zero temperature there is not a safe crite

V=3 dst Q2(J1J3+‘]1J3)' (12 rion to discuss the possibility of the occurrence of the RS

] ) ) phase in the RAQ chains. In fact, it was necessary to extend
Once again, we come upon a result which reinforces that thg,e MDH scheme, foB=1, to finite temperature to establish

MDH formalism is not suitable to describe the low tempera-ne fajlure of the perturbative approach. In view of the results
ture properties of the RAQ chains wi® 1 [defined in Eq.  \ye have obtained, we strongly claim that the MDH proce-
(1]. Moreover, in the fourth-order correction to the renor- 4 re is not adequate to study the RAQ chains v@th1l

malized bond biquadratic exchange couplings are generategefined in Eq(1). Moreover, the existence of a RS phase at

In this case we should consider these interactions alreadyyy temperature is a property assured only for spin-1/2 RAQ
from the beginning in the Hamiltonian model. Finally we hains.

call attention that starting with a power law distribution, the
MDH procedure works very well. In this case, only pairs of The authors are grateful to the Brazilian agencies
spins weakly coupled are present in the chain and the prod=APERJ and CNPq for financial support.
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