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Current-determined orbital magnetization in a metallic magnet
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In the framework of density functional theory a calculation of the orbital magnetization for a metallic
magnet is carried out, obtaining it from the orbital current density. A gauge freedom inherent in this calculation
is discussed. Choosing the compoungBSb, we calculate the orbital current density from which we obtain the
corresponding magnetization in the Trammel gauge. We compare the properties of the magnetization with the
properties of thd-electron and the orbital angular momentum densities.
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The magnetization seemingly should be a fundamental .
physical quantity which supplies information about the den- IN=2 ji(r—a), (©)
sity of the magnetic dipole moments at a given peinThe '

situation is, however, more complex. In the case of the spifyherej;(r—a;) is the current density of the atom at position
magnetization the corresponding dipole moments are indeegl The atomic currents are assumed to be defined in all of

carried by the electrons and this point of view has a soundpace and vanish at infinity. Thus the magnetization of the
basis elaborated a long time ago by Gorddrhere is, how- crystal takes the form

ever, no elemental dipole moment responsible for the orbital
magnetization. In this case it rather is the orbital current that
is the underlying fundamental quantity and its connection M(r)zZ m;(r—g), 4)
with the magnetization requires special attention. :
_Re_cently co_n5|derable_ progress has_ been ma_de in f'rs\sx'/heremi(r) is defined byji(r)=cV xm(r).
principles studies of the intra-atomic spin magnetization for ) . . .
. . . ) . The magnetic moment of the atans obtained by partial
atoms in solids. In particular, it was shown that the spin. .
. . S . integration as
magnetization at different points in the atomic sphere may be
noncollinea=® A first-principles study of the intra-atomic 1
orbital magnetization has not been made as yet. It is the mi:J drmi(r)=—f drr xji(r). (5)
purpose of this paper to begin filling in the gap by an ap- 2c
proach that is based on a recent review article by Hirst.

For stationary systems with a time-independent orbitaf! IS €asily seen that the atomic moment is invariant with
current densityd(r) the orbital magnetizatioM(r) is de- respect to the gauge used for the definition of the magneti-
fined by the formula zationm;(r). Thus the atomic moment is uniquely defined

within a given cellular construction. On the other hand, the
spatial form of the magnetization depends on the choice of a
J(r)=cVXM(r), (1) gauge.

As is discussed by Hirstthe orbital magnetization can be
wherec is the speed of light. This definition of the magneti- represented as a sum of longitudinal and transverse parts.
zation is in line with Maxwell’s equations and has been dis-The transverse part is gauge invariant, whereas the longitu-
cussed thoroughly by HirstAccording to this equation the dinal part of the magnetization depends on the choice of the
magnetizationM (r) implies the current(r) uniquely, but gauge. The gauge influences the spatial dependence of the
the converse is not true. Rather, the replacemeM @f) by ~ magnetization strongly. For instance, the *“solenoidal”
M’(r) with gauge corresponding to the vanishing longitudinal orbital

magnetization is inconvenient for many purposes since even
M’(r)=M(r)+Vg(r) (2) for.currents exponentially localized in an f";\tom the magneti-
zation would fall off very slowly for large distances from the
center of the atom.
In the present paper, to provide an example of the calcu-
ed orbital magnetization well localized within the atomic
sphere, we report a calculation using the Trammel gaige

does not change the current. Hgyg) is an arbitrary scalar

function.Therefore, to obtain the magnetization a gauge mu:?gt

be chosen. One of the possibilities is described below.
The definition(1) of the magnetization, although correct

and very general, does not allow us to introduce a physical 1 (e

quantity as the mean magnetization of a ferromagnetic sys- mi(r)= _f dX\ ArXi(AT). (6)

tem since an arbitrary constant can be addet{o). The Cla

mean magnetization and the atomic magnetic moments may

be introduced with the use of the cellular construction. In this Before we turn to the actual calculations, it is important to

construction the current density is decomposed as comment on the relation between magnetization and angular
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momentum density. Using the relaticf)ﬁrx(ﬁ/i)V for the
angular momentum operator, E¢) can be rewritten in the )
form ) !

mi=—Mderli<r>, 7 .

wherel(r) is the density of the orbital angular momentum. -
Equality (7) is used in density-functional-theory calculations

to evaluate the atomic orbital moments. Although the inte-
gration of the angular momentum density gives the value of
the atomic magnetic orbital moment this density cannot be )
treated as an orbital magnetization since ‘

—CVX[ugl(r)]#j(r) 8

and the conditior(1) is not satisfied.
We begin with the calculation of the orbital current

B e ~ ~ FIG. 1. The orbital current in the plane passing through the
In=> L (DPY(r) = ¢(r)py*(r)] (9 center of a U atom and orthogonal to the atomic moment.

occ

as the fundamental gauge-independent quantity. plésehe

momentum operator, the sum extends over occupied states Q'—’L:FC’LCC'-’R'“)R"“)' (12)
andy(r) are one-electron wave functions. In the calculations ) )

the ASW methoflis used which is based on the decomposi-The calculations are carried out for the compounghj for

tion of the electron wave functions in a series of SphericaWhICh a detailed discussion of the magnetic structure can be

harmonics. Inside each atomic sphere the electron state cpund in Refs. 6,10. _ o
be represented in the form In Fig. 1 we show the calculated orbital current density in

the plane passing through the centéraoU atom and or-
N thogonal to the atomic moment. A remarkable feature of the
Y(r)=2 c R(r)Yy(r), (100 orbital current is its fast decrease near the boundary of the
- atomic sphere. Thus the orbital current is localized inside the

whereR, are radial functionsy, are spherical harmonick, corresponding atom. _
is an abbreviation for two indicen. Substitution of Eq. In Fig. 2 we show contours of equal magnitude of the
(10) into Eq. (9) results in the following expression for the Orbital current. Different densities of the contours reflect dif-

contribution to the current density from the state given byferent spatial variations of the current at different points.
Eq. (10): Dense contours correspond to fast variation of the magnitude
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Heree, ,e,,e, are the unit vectors of the spherical coordinate
system,f and ¢ are the polar angles,

d
PL’L:CECL’ERI(r)RI’(r) (11

FIG. 2. Contour plot of the orbital current in the same plane as
and in Fig. 1.
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FIG. 3. Radial dependence of the magnitude of the orbital cur- FIG. 4. Difference between the magnetization and the angular
rent, orbital magnetization, angular moment density, and density offomentum density in the same plane as in Fig. 1.
the f electrons multiplied by 2.

decreases as well. There is, however, no such strong influ-

of the in-plane current. The blank circular regions corre-ence of the spin polarization and the spin-orbit coupling on
spond to the extrema in thevariation of the current value. the particle § density.
(The blank circle at the center results from the minimum The fact that the orbital current almost vanishes at the
value of ther mesh) This is clearly seen by comparing Fig. sphere boundary is very important for the determination of
2 with the radial dependence of the current shown in Fig. 3the atomic moment. Indeed, in general the decomposi8pn
Indeed each maximum or minimum in the radial dependencef the total current into overlapping atomic currents is not
is distinguished by an area with a small number of contoutnique. Since in the present case the overlap of the atomic
lines in Fig. 2. currents is very small we can neglect it and assign to each
Some of the contours in Fig. 2 appear to be circular symatom the orbital current in the corresponding atomic sphere
metric. Detailed inspection, however, shows that the form ofissuming that outside the sphere the current is zero.
the contours deviates from a perfect circle. The symmetry of If the value of the current at the atomic sphere boundary
both current and charge densities is determined uniquely big significant, the determination of the orbital magnetization
the symmetry of the crystal and magnetic structures of thédecomes a more complex computational problem. The value
system® of the atomic orbital moment depends in this case on the
We compared the in-plane current densfig. 2) and the  chosen form of the overlapping atomic currents. Note that an
corresponding 5 particle density and found a clear correla- attempt to avoid the consideration of overlapping currents by
tion between the regions of fast and slow variation of the twaassigning to each atom the total current within its atomic
physical quantities. This correlation is also seen in the radiasphere is not satisfactory since in this case Ex}. must
dependencies of these quantities shown in Fig. 3. Botlinclude an additional term depending on the value of the
maxima and the minimum of the curves are at similar valuesnagnetization on the sphere boundary. This makes the value
of the radius. Since the current density depends not only oof the atomic moment gauge dependent.
the value but also on the spatial derivatives of the wave The orbital magnetization obtained from the orbital cur-
functions and, furthermore, contains the difference of tworent density yields the radial dependence of the magnetiza-
terms[see Eq.(9)] the particle and current densities differ tion shown in Fig. 3, where the radial dependence of the
substantially. In particular, the relative heights of the peakslensity of the orbital angular momentum is also presented.
are different. Although, upon integration, both quantities give the same
The faster decrease of the orbital current upon approachralue of the atomic orbital moment, their spatial dependen-
ing the sphere boundary compared with that of tliepar-  cies differ significantly. The form of the angular momentum
ticle density(Fig. 3) can be explained by the fact that in the density reflects basically the form of the charge and current
nonmagnetic and nonrelativistic limits the orbital magnetiza-densities, although the relative heights of the two maxima
tion vanishes at each point of space. Since both the spidiffer substantially. The form of the orbital magnetization
polarization of the potential seen by electrons and theurve differs strongly from the form of the angular momen-
strength of the spin orbit coupling decrease quickly upontum density. In particular, the radial dependence of the mag-
approaching the sphere boundary, the value of the curremietization does not possess two maxima and a minimum and
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the orbital magnetization in the Trammel gauge peaks closeween the two integrals is less than Gglfor the value of the

to the nucleus than the angular momentum density. atomic moment, which is close to 4. The error of about
This gauge stresses the intra-atomic character of the o2% is tolerable for most purposes.

bital magnetism. It, however, does not provide a clear corre- Summarizing, we report an attempt of a consistent calcu-

spondence of the particle density with the orbital magnetizalation of the orbital magnetization in the framework of den-

tion. Indeed, a rather large magnetization value is obtained &ty functional theory, in this case obtaining the magnetiza-

regions Of space Where the partic'e density Vanishes_ tion from the current del.’]SIty. We stress tha.t although the
In Fig. 4 we graph the difference between the magnetizaangu!ar momentum der!5|ty provides t_he correct value of the

tion in the Trammell gauge and the angular momentum den@tomic orbital moment, it does not satisfy Efj) and cannot

sity. As was mentioned, the latter is used in density funcP® Used to represent the orbital magnetization. Since the or-

bital magnetization is subject to gauge freedom, the choice

tional calculations to evaluate the orbital magnetic moment. f the most convenient aauae should be made with account
The different lengths and directions of the arrows show agairg gaug

the sizable difference in the spatial dependencies of the tw pr the physical problem under consideration.

guantities. However, as was said before, upon integrating This work was stimulated by discussions with L.L. Hirst.

over the sphere these differences compensate. Actually, ifihe help of K. Knpfle in performing numerical calculations

the calculations performed this compensation is not completis gratefully acknowledged. This work was supported by
since the value of the current at the sphere boundary, aSFB 252 Darmstadt, Frankfurt, Mainz of the Deutsche For-
though very small, is not exactly zero. The difference be-schungsgemeinschafbFG).
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