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Current-determined orbital magnetization in a metallic magnet

M. Todorova, L. M. Sandratskii, and J. Ku¨bler
Institut für Festkörperphysik, Technische Universita¨t Darmstadt, D-64289 Darmstadt, Germany

~Received 29 June 2000; published 11 January 2001!

In the framework of density functional theory a calculation of the orbital magnetization for a metallic
magnet is carried out, obtaining it from the orbital current density. A gauge freedom inherent in this calculation
is discussed. Choosing the compound U3Sb4 we calculate the orbital current density from which we obtain the
corresponding magnetization in the Trammel gauge. We compare the properties of the magnetization with the
properties of thef-electron and the orbital angular momentum densities.
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The magnetization seemingly should be a fundame
physical quantity which supplies information about the de
sity of the magnetic dipole moments at a given pointr . The
situation is, however, more complex. In the case of the s
magnetization the corresponding dipole moments are ind
carried by the electrons and this point of view has a so
basis elaborated a long time ago by Gordon.1 There is, how-
ever, no elemental dipole moment responsible for the orb
magnetization. In this case it rather is the orbital current t
is the underlying fundamental quantity and its connect
with the magnetization requires special attention.

Recently considerable progress has been made in
principles studies of the intra-atomic spin magnetization
atoms in solids. In particular, it was shown that the s
magnetization at different points in the atomic sphere may
noncollinear.2–6 A first-principles study of the intra-atomi
orbital magnetization has not been made as yet. It is
purpose of this paper to begin filling in the gap by an a
proach that is based on a recent review article by Hirst.7

For stationary systems with a time-independent orb
current densityJ(r ) the orbital magnetizationM (r ) is de-
fined by the formula

J~r !5c“3M ~r !, ~1!

wherec is the speed of light. This definition of the magne
zation is in line with Maxwell’s equations and has been d
cussed thoroughly by Hirst.7 According to this equation the
magnetizationM (r ) implies the currentJ(r ) uniquely, but
the converse is not true. Rather, the replacement ofM (r ) by
M 8(r ) with

M 8~r !5M ~r !1“g~r ! ~2!

does not change the current. Hereg(r ) is an arbitrary scalar
function.Therefore, to obtain the magnetization a gauge m
be chosen. One of the possibilities is described below.

The definition~1! of the magnetization, although corre
and very general, does not allow us to introduce a phys
quantity as the mean magnetization of a ferromagnetic
tem since an arbitrary constant can be added toM (r ). The
mean magnetization and the atomic magnetic moments
be introduced with the use of the cellular construction. In t
construction the current density is decomposed as
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J~r !5(
i

j i~r2ai !, ~3!

wherej i(r2ai) is the current density of the atom at positio
ai . The atomic currents are assumed to be defined in a
space and vanish at infinity. Thus the magnetization of
crystal takes the form

M ~r !5(
i

mi~r2ai !, ~4!

wheremi(r ) is defined byj i(r )5c“3mi(r ).
The magnetic moment of the atomi is obtained by partial

integration as

mi5E dr m i~r !5
1

2cE dr r 3 j i~r !. ~5!

It is easily seen that the atomic momentmi is invariant with
respect to the gauge used for the definition of the magn
zation mi(r ). Thus the atomic moment is uniquely define
within a given cellular construction. On the other hand, t
spatial form of the magnetization depends on the choice
gauge.

As is discussed by Hirst,7 the orbital magnetization can b
represented as a sum of longitudinal and transverse p
The transverse part is gauge invariant, whereas the long
dinal part of the magnetization depends on the choice of
gauge. The gauge influences the spatial dependence o
magnetization strongly. For instance, the ‘‘solenoida
gauge corresponding to the vanishing longitudinal orb
magnetization is inconvenient for many purposes since e
for currents exponentially localized in an atom the magn
zation would fall off very slowly for large distances from th
center of the atom.

In the present paper, to provide an example of the ca
lated orbital magnetization well localized within the atom
sphere, we report a calculation using the Trammel gauge7,8

mi~r !5
1

cE1

`

dl lr3 j i~lr !. ~6!

Before we turn to the actual calculations, it is important
comment on the relation between magnetization and ang
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momentum density. Using the relationl̂5r3(\/ i )“ for the
angular momentum operator, Eq.~5! can be rewritten in the
form

mi52mBE dr l i~r !, ~7!

where l(r ) is the density of the orbital angular momentum
Equality ~7! is used in density-functional-theory calculatio
to evaluate the atomic orbital moments. Although the in
gration of the angular momentum density gives the value
the atomic magnetic orbital moment this density cannot
treated as an orbital magnetization since

2c¹3@mBl~r !#Þ j ~r ! ~8!

and the condition~1! is not satisfied.
We begin with the calculation of the orbital current

J~r !5(
occ

e

2m
@c* ~r !p̂c~r !2c~r !p̂c* ~r !# ~9!

as the fundamental gauge-independent quantity. Herep̂ is the
momentum operator, the sum extends over occupied s
andc(r ) are one-electron wave functions. In the calculatio
the ASW method9 is used which is based on the decompo
tion of the electron wave functions in a series of spheri
harmonics. Inside each atomic sphere the electron state
be represented in the form

c~r !5(
L

cLRl~r !YL~ r̂ !, ~10!

whereRl are radial functions,YL are spherical harmonics,L
is an abbreviation for two indiceslm. Substitution of Eq.
~10! into Eq. ~9! results in the following expression for th
contribution to the current density from the state given
Eq. ~10!:

e\

2m
2 Im (

LL8s
H er PL8L~r i !Ylm* ~ r̂ i !Yl 8m8~ r̂ i !

1euFA2l 811

2l 813
A~ l 811!22um8u2Ylm* ~ r̂ i !Y( l 811)m8~ r̂ i !

2cosu~ l 811!Ylm* ~ r̂ i !Yl 8m8~ r̂ i !G 1

sinu
QL8L~r i !

1ef

im8

sinu
QL8L~r i !Ylm* ~ r̂ i !Yl 8m8~ r̂ i !J .

Hereer ,eu ,ef are the unit vectors of the spherical coordina
system,u andf are the polar angles,

PL8L5cL* cL8

d

dr
Rl~r !Rl 8~r ! ~11!

and
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QL8L5
1

r
cL* cL8Rl~r !Rl 8~r !. ~12!

The calculations are carried out for the compound U3Sb4 for
which a detailed discussion of the magnetic structure can
found in Refs. 6,10.

In Fig. 1 we show the calculated orbital current density
the plane passing through the center of a U atom and or-
thogonal to the atomic moment. A remarkable feature of
orbital current is its fast decrease near the boundary of
atomic sphere. Thus the orbital current is localized inside
corresponding atom.

In Fig. 2 we show contours of equal magnitude of t
orbital current. Different densities of the contours reflect d
ferent spatial variations of the current at different poin
Dense contours correspond to fast variation of the magnit

FIG. 1. The orbital current in the plane passing through
center of a U atom and orthogonal to the atomic moment.

FIG. 2. Contour plot of the orbital current in the same plane
in Fig. 1.
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of the in-plane current. The blank circular regions cor
spond to the extrema in ther variation of the current value
~The blank circle at the center results from the minimu
value of ther mesh.! This is clearly seen by comparing Fig
2 with the radial dependence of the current shown in Fig
Indeed each maximum or minimum in the radial depende
is distinguished by an area with a small number of cont
lines in Fig. 2.

Some of the contours in Fig. 2 appear to be circular sy
metric. Detailed inspection, however, shows that the form
the contours deviates from a perfect circle. The symmetry
both current and charge densities is determined uniquely
the symmetry of the crystal and magnetic structures of
system.6

We compared the in-plane current density~Fig. 2! and the
corresponding 5f particle density and found a clear correl
tion between the regions of fast and slow variation of the t
physical quantities. This correlation is also seen in the ra
dependencies of these quantities shown in Fig. 3. B
maxima and the minimum of the curves are at similar val
of the radius. Since the current density depends not only
the value but also on the spatial derivatives of the wa
functions and, furthermore, contains the difference of t
terms @see Eq.~9!# the particle and current densities diffe
substantially. In particular, the relative heights of the pe
are different.

The faster decrease of the orbital current upon approa
ing the sphere boundary compared with that of the 5f par-
ticle density~Fig. 3! can be explained by the fact that in th
nonmagnetic and nonrelativistic limits the orbital magneti
tion vanishes at each point of space. Since both the
polarization of the potential seen by electrons and
strength of the spin orbit coupling decrease quickly up
approaching the sphere boundary, the value of the cur

FIG. 3. Radial dependence of the magnitude of the orbital c
rent, orbital magnetization, angular moment density, and densit
the f electrons multiplied byr 2.
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decreases as well. There is, however, no such strong in
ence of the spin polarization and the spin-orbit coupling
the particle 5f density.

The fact that the orbital current almost vanishes at
sphere boundary is very important for the determination
the atomic moment. Indeed, in general the decomposition~3!
of the total current into overlapping atomic currents is n
unique. Since in the present case the overlap of the ato
currents is very small we can neglect it and assign to e
atom the orbital current in the corresponding atomic sph
assuming that outside the sphere the current is zero.

If the value of the current at the atomic sphere bound
is significant, the determination of the orbital magnetizati
becomes a more complex computational problem. The va
of the atomic orbital moment depends in this case on
chosen form of the overlapping atomic currents. Note that
attempt to avoid the consideration of overlapping currents
assigning to each atom the total current within its atom
sphere is not satisfactory since in this case Eq.~5! must
include an additional term depending on the value of
magnetization on the sphere boundary. This makes the v
of the atomic moment gauge dependent.

The orbital magnetization obtained from the orbital cu
rent density yields the radial dependence of the magnet
tion shown in Fig. 3, where the radial dependence of
density of the orbital angular momentum is also presen
Although, upon integration, both quantities give the sa
value of the atomic orbital moment, their spatial depend
cies differ significantly. The form of the angular momentu
density reflects basically the form of the charge and curr
densities, although the relative heights of the two maxi
differ substantially. The form of the orbital magnetizatio
curve differs strongly from the form of the angular mome
tum density. In particular, the radial dependence of the m
netization does not possess two maxima and a minimum

FIG. 4. Difference between the magnetization and the ang
momentum density in the same plane as in Fig. 1.
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the orbital magnetization in the Trammel gauge peaks clo
to the nucleus than the angular momentum density.

This gauge stresses the intra-atomic character of the
bital magnetism. It, however, does not provide a clear co
spondence of the particle density with the orbital magnet
tion. Indeed, a rather large magnetization value is obtaine
regions of space where the particle density vanishes.

In Fig. 4 we graph the difference between the magnet
tion in the Trammell gauge and the angular momentum d
sity. As was mentioned, the latter is used in density fu
tional calculations to evaluate the orbital magnetic mome
The different lengths and directions of the arrows show ag
the sizable difference in the spatial dependencies of the
quantities. However, as was said before, upon integra
over the sphere these differences compensate. Actually
the calculations performed this compensation is not comp
since the value of the current at the sphere boundary,
though very small, is not exactly zero. The difference b
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tween the two integrals is less than 0.1mB for the value of the
atomic moment, which is close to 4.0mB . The error of about
2% is tolerable for most purposes.

Summarizing, we report an attempt of a consistent cal
lation of the orbital magnetization in the framework of de
sity functional theory, in this case obtaining the magneti
tion from the current density. We stress that although
angular momentum density provides the correct value of
atomic orbital moment, it does not satisfy Eq.~1! and cannot
be used to represent the orbital magnetization. Since the
bital magnetization is subject to gauge freedom, the cho
of the most convenient gauge should be made with acco
for the physical problem under consideration.
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The help of K. Knöpfle in performing numerical calculation
is gratefully acknowledged. This work was supported
SFB 252 Darmstadt, Frankfurt, Mainz of the Deutsche F
schungsgemeinschaft~DFG!.
1W. Gordon, Z. Phys.50, 630 ~1928!.
2L. Nordström and D.J. Singh, Phys. Rev. Lett.76, 4420~1996!.
3T. Oda, A. Pasquarello and R. Car, Phys. Rev. Lett.80, 3622

~1998!.
4D.M. Bylander and L. Kleinman, Phys. Rev. B60, 9916~1999!.
5H. Eschrig and V.D.P. Servedio, J. Comput. Chem.20, 23 ~1999!.
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