Phonon dispersion of indium along [111]

A. S. Bakulin and A. W. Overhauser

Department of Physics, Purdue University, West Lafayette, Indiana 47907

H. Kaiser and S. A. Werner

Department of Physics and Astronomy and Research Reactor Center, University of Missouri, Columbia, Missouri 65211

J. A. Fernandez-Baca and H. G. Smith

Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6393 (Received 5 September 2000; published 10 January 2001)

The phonon spectrum of indium along $[111]$, measured by inelastic neutron scattering, is reported. The two shear modes at the zone-boundary point $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ are split slightly (on account of a 7.5% tetragonal distortion). They have very low frequencies, ~ 0.7 and 1.0 THz, compared to the longitudinal mode, ~ 3.4 THz. These measurements verify the theoretical dispersion predicted by the dynamic pseudopotential theory of phonons for free-electron-like metals.

DOI: 10.1103/PhysRevB.63.052301 PACS number(s): 63.20.Dj

Measurement of the phonon spectrum of indium by inelastic neutron scattering is difficult because of the large thermal-neutron absorption cross section (194 b). Nevertheless, data along $[100]$, $[001]$, $[110]$, and $[101]$ have been presented.¹ (The crystal structure of In is face-centered tetragonal; i.e., were it not for a 7.5% tetragonal extension along its c axis, In would be fcc.) Finding the experimental

dispersion along $[111]$ is the purpose of this study. It is of special interest on account of the recent discovery of anomalous x-ray diffraction peaks at half-integral (hkl) points in reciprocal space. 2

The thermal expansion of In along its *c* axis is extremely anomalous³ (i.e., it is negative above 280 K). A search for a

FIG. 1. Predicted phonon dispersion in In along $[qqq]$, calculated in Ref. 2 and based on the dynamic pseudopotential model (Ref. 4), applied to In (Ref. 6). (1 THz= 4.136 meV/h).

FIG. 2. Inelastic scattering caused by the T_1 phonon at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $\frac{1}{2}$), measured at $(-\frac{3}{2}, \frac{5}{2}, \frac{1}{2})$.

TABLE I. Crystal geometry and spectrometer characteristics. Monochrometers and analyzers were vertically focusing. Scan range: $[0 \le q \le 0.5]$. Collimation for the first two points of the T_1 branch was (40-20- $20-40$).

	Surface	Scan			Monochrometer Analyzer Collimation (min) E_f (meV) T (K)		
		T_1 [-1, 1, 0] $(-2+q,2+q,q)$	PG(002)	PG(002)	$40-40-40-40$	14.56	150
T ₂	[0, 0, 1]	$(q, q, 2 + q)$	Be(101)	PG(002)	48-60-80-70	14.8	150
L	[1, 1, 1]	$(2+q,2+q,2+q)$	Be(101)	PG(002)	48-60-40-240	30.5	75

possible broken symmetry was inconclusive because the intensities of the half-integral x-ray peaks were found to be proportional to *T*. Consequently they arise from thermaldiffuse scattering (TDS) by phonons. The theory of such a satellitelike structure, based on the dynamic pseudopotential theory of phonons in free-electron-like metals, 4.5 agrees with the observed structure.² There was no need to readjust the three parameters of the lattice-dynamics model $⁶$ that were</sup> chosen to fit the published phonon data.¹

The predicted phonon dispersion² along $[111]$ is shown in Fig. 1. The splitting of the two shear modes, T_1 and T_2 (which would be degenerate in a fcc crystal) is, of course, caused by the tetragonal distortion. What is unexpected is the

large ratio, \sim 4, of the *L* mode to the *T* modes at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. This ratio is \sim 2 in many fcc cubic metals:⁵ Cu, Ag, Au, Ca, Sr, Yb, and Al. It is clear from Fig. 1 that x-ray scans along [111] near $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ cannot give rise to sharp TDS peaks; and none was found.² Only scans along paths through halfintegral (h,k,l) , nearly parallel to the hexagonal zone face, centered at (h,k,l) , display sharp TDS peaks. These are caused by a sharp minimum of the T_1 mode along such a path.⁷ [TDS is proportional to $\omega(q)^{-2}$; so it exhibits a sharp maximum where the phonon frequency $\omega(q)$ has a sharp minimum.] It is important, of course, to verify experimentally the predicted $\omega(q)$ along [111], given in Fig. 1.

Separate crystals of In were cut (using a South Bay acid saw and a chromic acid gentle etch) for measuring each phonon branch (T_1, T_2, L) in order to minimize neutron absorp-

FIG. 3. Inelastic scattering caused by the T_2 phonon at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ measured at $(\frac{1}{2}, \frac{1}{2}, \frac{5}{2})$ $\frac{1}{2}$), measured at $(\frac{1}{2}, \frac{1}{2}, \frac{5}{2})$.

FIG. 4. Inelastic scattering caused by the *L* phonon at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, measured at $(\frac{5}{2}, \frac{5}{2}, \frac{5}{2})$.

FIG. 5. Measured phonon dispersion of In along [qqq]. Technical details of the measurements are given in Table I. (1 THz $=4.136$ meV/h).

tion and to isolate each branch by taking advantage of the $(\hat{\epsilon} \cdot \mathbf{O})^2$ factor in the scattering intensity. ($\hat{\epsilon}$ is the phonon polarization vector, and Q is the neutron-scattering vector.) The T_1 branch was measured with the triple-axis spectrometer at the University of Missouri Research Reactor. The T_2

TABLE II. Phonon frequencies, $\hbar \omega$ (in meV), of the T_1 , T_2 , and *L* branches along $[qqq]$. (4.136 meV/*h* = 1 THz).

q	$\hbar \omega$, T_1	$\hbar\omega$, T_2	$\hbar \omega$, L
0.05	0.54		
0.1	1.249		
0.114			5.00
0.2	2.302	2.302	
0.203			7.50
0.3	2.855	3.276	10.786
0.4	2.999	3.865	13.399
0.5	3.049	4.192	14.072

and *L* branches were measured with the Oak Ridge National Laboratory HB-2 spectrometer. Sample geometry and spectrometer settings are given in Table I. Constant **Q** scans were employed except for the first two points of the *L* branch (which were constant ΔE).

The inelastic scattering peaks at $q = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, the center of the Brillouin zone's hexagonal face, are shown in Figs. 2, 3, and 4. The solid curves are optimized fits for a single gaussian on a sloping background. The dispersion data for all three branches, tabulated in Table II, are displayed in Fig. 5. The curves through the data are fits to

$$
\hbar \,\omega(q) = A\,\sin(\pi q) + B\,\sin(3\,\pi q).
$$

The *A*'s are 3.37, 3.95, and 13.55; and the *B*'s are 0.32, -0.16 , and -0.31 (for the T_1 , T_2 , and *L* modes, respectively, all in meV).

Comparison of Fig. 1 to Fig. 5 shows that the dynamic pseudopotential model^{2,6} successfully predicts the main features of the phonon dispersion along $[111]$. In particular the unusual large ratio (~ 4) of the longitudinal to the transverse frequencies at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ is confirmed.

Oak Ridge National Laboratory is managed by UT-Battele, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

- 4 Y. R. Wang and A. W. Overhauser, Phys. Rev. B 35, 497 (1987).
- 5 Y. R. Wang and A. W. Overhauser, Phys. Rev. B 35, 501 (1987).
- ⁶X. M. Chen, Yashu Xuan, and A. W. Overhauser, Phys. Rev. B 43, 1799 (1991).
- 7 Reference 2, Fig. 5.

¹H. G. Smith and W. Reichardt, in *Numerical Data and Functional Relationships in Science and Technology*, edited by K.-H. Hellwege and J. L. Olson, Landolt-Börnstein, New Series, Group III, Vol. 13, Pt. a (Springer, Berlin, 1981), p. 67.

²A. S. Bakulin, G. Lacueva, and A. W. Overhauser, Phys. Rev. B **59**, 12 444 (1999).

 3 Reference 2, Fig. 1.