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Phonon dispersion of indium along†111‡
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The phonon spectrum of indium along@111#, measured by inelastic neutron scattering, is reported. The two
shear modes at the zone-boundary point~1

2,
1
2,

1
2! are split slightly~on account of a 7.5% tetragonal distortion!.

They have very low frequencies,;0.7 and 1.0 THz, compared to the longitudinal mode,;3.4 THz. These
measurements verify the theoretical dispersion predicted by the dynamic pseudopotential theory of phonons for
free-electron-like metals.
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Measurement of the phonon spectrum of indium by
elastic neutron scattering is difficult because of the la
thermal-neutron absorption cross section~194 b!. Neverthe-
less, data along@100#, @001#, @110#, and @101# have been
presented.1 ~The crystal structure of In is face-centered
tragonal; i.e., were it not for a 7.5% tetragonal extens
along itsc axis, In would be fcc.! Finding the experimenta

FIG. 1. Predicted phonon dispersion in In along@qqq#, calcu-
lated in Ref. 2 and based on the dynamic pseudopotential m
~Ref. 4!, applied to In~Ref. 6!. (1 THz54.136 meV/h).
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dispersion along@111# is the purpose of this study. It is o
special interest on account of the recent discovery of ano
lous x-ray diffraction peaks at half-integral~hkl! points in
reciprocal space.2

The thermal expansion of In along itsc axis is extremely
anomalous3 ~i.e., it is negative above 280 K!. A search for a

el FIG. 2. Inelastic scattering caused by theT1 phonon at~1
2,

1
2,

1
2 !, measured at~2 3

2,
5
2,

1
2!.
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TABLE I. Crystal geometry and spectrometer characteristics. Monochrometers and analyzers we
tically focusing. Scan range:@0,q<0.5#. Collimation for the first two points of theT1 branch was~40-20-
20-40!.

Surface Scan Monochrometer Analyzer Collimation~min! Ef ~meV! T ~K!

T1 @21, 1, 0# (221q,21q,q) PG~002! PG~002! 40-40-40-40 14.56 150
T2 @0, 0, 1# (q,q,21q) Be~101! PG~002! 48-60-80-70 14.8 150
L @1, 1, 1# (21q,21q,21q) Be~101! PG~002! 48-60-40-240 30.5 75
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possible broken symmetry was inconclusive because the
tensities of the half-integral x-ray peaks were found to
proportional toT. Consequently they arise from therma
diffuse scattering~TDS! by phonons. The theory of such
satellitelike structure, based on the dynamic pseudopote
theory of phonons in free-electron-like metals,4,5 agrees with
the observed structure.2 There was no need to readjust th
three parameters of the lattice-dynamics model6 that were
chosen to fit the published phonon data.1

The predicted phonon dispersion2 along@111# is shown in
Fig. 1. The splitting of the two shear modes,T1 and T2
~which would be degenerate in a fcc crystal! is, of course,
caused by the tetragonal distortion. What is unexpected is

FIG. 3. Inelastic scattering caused by theT2 phonon at~1
2,

1
2,

1
2 !, measured at~ 1

2,
1
2,

5
2!.
05230
n-
e

ial

he

large ratio,;4, of theL mode to theT modes at~1
2,

1
2,

1
2!.

This ratio is;2 in many fcc cubic metals:5 Cu, Ag, Au, Ca,
Sr, Yb, and Al. It is clear from Fig. 1 that x-ray scans alo
@111# near~1

2,
1
2,

1
2! cannot give rise to sharp TDS peaks; a

none was found.2 Only scans along paths through ha
integral ~h,k,l!, nearly parallel to the hexagonal zone fac
centered at~h,k,l!, display sharp TDS peaks. These a
caused by a sharp minimum of theT1 mode along such a
path.7 @TDS is proportional tov(q)22; so it exhibits a sharp
maximum where the phonon frequencyv(q) has a sharp
minimum.# It is important, of course, to verify experimen
tally the predictedv(q) along @111#, given in Fig. 1.

Separate crystals of In were cut~using a South Bay acid
saw and a chromic acid gentle etch! for measuring each pho
non branch (T1 , T2 , L) in order to minimize neutron absorp

FIG. 4. Inelastic scattering caused by theL phonon at~ 1
2,

1
2,

1
2!,

measured at~5
2,

5
2,

5
2!.
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tion and to isolate each branch by taking advantage of
( ê•Q)2 factor in the scattering intensity. (ê is the phonon
polarization vector, andQ is the neutron-scattering vector!
The T1 branch was measured with the triple-axis spectro
eter at the University of Missouri Research Reactor. TheT2

FIG. 5. Measured phonon dispersion of In along@qqq#. Techni-
cal details of the measurements are given in Table I. (1 T
54.136 meV/h).
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andL branches were measured with the Oak Ridge Natio
Laboratory HB-2 spectrometer. Sample geometry and sp
trometer settings are given in Table I. ConstantQ scans were
employed except for the first two points of theL branch
~which were constantDE).

The inelastic scattering peaks atq5( 1
2 , 1

2 , 1
2 ), the center of

the Brillouin zone’s hexagonal face, are shown in Figs. 2
and 4. The solid curves are optimized fits for a single gau
ian on a sloping background. The dispersion data for all th
branches, tabulated in Table II, are displayed in Fig. 5. T
curves through the data are fits to

\v~q!5A sin~pq!1B sin~3pq!.

The A’s are 3.37, 3.95, and 13.55; and theB’s are 0.32,
20.16, and20.31 ~for the T1 , T2 , and L modes, respec-
tively, all in meV!.

Comparison of Fig. 1 to Fig. 5 shows that the dynam
pseudopotential model2,6 successfully predicts the main fea
tures of the phonon dispersion along@111#. In particular the
unusual large ratio~;4! of the longitudinal to the transvers
frequencies at~1

2,
1
2,

1
2! is confirmed.

Oak Ridge National Laboratory is managed by U
Battele, LLC, for the U.S. Department of Energy under Co
tract No. DE-AC05-00OR22725.

z

TABLE II. Phonon frequencies,\v ~in meV!, of the T1 , T2 ,
andL branches along@qqq#. (4.136 meV/h51 THz).

q \v, T1 \v, T2 \v, L

0.05 0.54
0.1 1.249
0.114 5.00
0.2 2.302 2.302
0.203 7.50
0.3 2.855 3.276 10.786
0.4 2.999 3.865 13.399
0.5 3.049 4.192 14.072
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