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Orthogonal tight-binding molecular-dynamics simulations of silicon clusters
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Orthogonal tight-binding molecular-dynamics methods are employed for describing small silicon clusters.
Results obtained from the calculations of two different sets of tight-binding parameters are compared with one
another and with those previously calculated using nonorthogonal tight-binding schenadsiaitid methods.
Comparing the resulting cohesive energies and bond lengths, it is concluded that the orthogonal tight-binding
matrix elements and repulsive potentials need to include the radial cutoff up to fourth-neighbor distance in
diamond structure in order to reproduak initio results.
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[. INTRODUCTION ployed to study the equilibrium structures of medium-sized
Si clusters up tdN= 18 atoms."18

It is hoped that in the future miniaturization of semicon-  Although ab initio methods provide accurate electronic
ductor microelectronics devices will be achieved usinginformation, the one-electron picture of bonding in these
cluster-assembled semiconductors which are expected toethods requires vast computational time in order to opti-
have different properties than those of bulk semiconductorgnize large clusters. The interatomic potential, on the other
Understanding the structure and properties of Si clusters is dfand, is short ranged, and therefore is very efficient for the
great interest, as it is an important material in the microelecmolecular-dynamics simulation studies. The Lennard-Jones
tronics industry. Since there is no systematic experimentdwo-body potential has been attractive for the study of noble
method to extract the equilibrium geometry of small Si clus-gas® and simple metal clustefS. However, this model is
ters, a molecular-dynamics simulation has been used to opmsuitable for understanding covalent systems with tetrahe-
timize geometries of small Si clusters. The frequencies of thélral coordination. Classical potential models were applied to
vibrational modes of these small clusters, measured recentite study of small Si clustefs:*? Further, this model is not
using the Raman scattering technique, were compared withccurate in predicting the equilibrium structure of clusters, as
first-principles calculations in order to identify the stable ge-it does not include electronic effects such asbonding,
ometries of clusters in an indirect manriérUnfortunately, which becomes increasingly important for small clusters.
Raman spectroscopy measurements are available for Si cluhe other reason for the failure of this model is that clusters
ters containing only up to seven atoms. lon mobility mea-are rather weakly bound in classical model compared to
surements, on the other hand, are available to provide infoguantum-mechanical calculations, due to the reduced number
mation about the shape of Si clusters containing manyf neighbors included in the model.
atoms® Semiempirical tight-binding models in the two-center

The molecular dynamics of small Si clusters require a fullapproximatio”® are popular for electronic structure calcula-
guantum-mechanical description due to the strong directiondlons which are not possible in classical models. Unlike the
character of the covalent bonds. The first-principles Hartree€P-LDA method, where a large number of plane waves are
Fock method with correlation corrections was reasonablyaken into consideration to obtain the desired convergence of
successful in describing small clustér§. Fournieretal®  the results, tight-binding methods in Si require a minimal
used a linear combination of atomic orbitals with local-spin-(s,p) basis set consisting of orsorbital and a set of three
density approximatiofLCAO-LSDA) method to calculate rotationally relatedb orbitals for each atom in order to de-
structures of small Si clusters up to eight atoms. Since thscribe bonding. Four bonding electrons are distributed
local-density approximatiofLDA) overbinds the atoms in a among these orbitals. Occupation of thandp orbitals by
cluster, Fournieret al. included a generalized gradient ap- an electron requires on-site energiesandE,. The two-
proximation (GGA) method of Perdew and Watfto esti-  center approximation of the tight-binding theory takes the
mate accurate cohesive energies and bond lengths in thmirwise coupling of the orbitals of nearby atoms to describe
LCAO scheme. Since it is a spin-polarized method, bothbonding. Orbitals of the neighboring atoms couple according
singlet and triplet states of the clusters are reproduced. to the interatomic distance and their rotational symmetry.

The Car-Parrinello method within the local-density ap- The interaction between a pair of atoms in the nonorthogonal
proximation (CP-LDA) method is the most ideal technique tight-binding scheme is described by four sets of Slater-
for studying semiconductor clustefsin this method the Koster matrix elementé Vg, , Vspos Vppe» andVp,., and
density-functional theory is combined with the molecular-the overlap integralSsg, , Sspy» Spps aNdS,,, due to sym-
dynamics method to minimize both the electronic and ionicmetry. In the orthogonal tight-binding scheme the orthogo-
degrees of freedom. The cohesive energies and equilibriumalized atomic orbitals result in unity for the overlap inte-
structures of small Si clusters were successfully understoograls, which simplifies the calculations. The repulsive
using this schem&1®Very recently, this method was em- potential of atoms as they are brought together is assumed to
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depend only upon the positions of the atoms, thus expressingined the matrix elements and pair repulsive potential as
it in a pairwise form. Since the electronic degrees of freedontubic splines with a 5.24-A fixed radial cutoff distance
are not explicitly included in the molecular-dynamics simu-which is the fourth-neighbor distance in diamond structure.
lation, large time steps can be safely used. Moreover, thi¥sing the force matching methdd the spline parameters
method works faster than thab initio methods, as it mini- have been fitted to simultaneously optimize agreement with
mizes only the atomic degrees of freedom. ab initio force and energy data on clusters, liquids, and

Tomanek and Schilter used density-functional and em- @morphous systems, as well as experimental elastic con-
pirical tight-binding schemes to calculate electronic structureStants, phonon frequencies, and @gisen parameter values..
of small Si cluster®® Laasonen and Niemin&hemployed The orthogonal tight-binding matrix elements and the pair
the Car-Parrinello method in the empirical orthogonal tight-"éPulsive potentials obtained by this method are claimed to
binding scheme for calculating cohesive energies and geon2€ the best among all previous works.

etries of small clusters uptdl=10. In both methods the ~ The orthogonal tight-binding model of Sawada and Ko-
interparticle repulsive potential is obtained from the differ-nhyama have been combined with the fractional bond model

ence of the interparticle dependence of the energy of the $if Luo et al™ in order to optimize geometries of Si clusters
dimer and the tight-binding energy. In order to obtain rea-UP ©©N=10. The cohesive energies and equilibrium geom-
sonable agreement with tha initio values of cohesive en- etries obtained in this method agree very well vath initio
ergies, a coordination-dependent bond correction energfESults up toN=7 clusters. The results for cluste%7)
term is taken in these calculations. The matrix elements aré© nNot compare well with thab initio results. We therefore
terminated between first- and second-neighbor distances. THg€! it necessary to test the validity of the other orthogonal
geometries of relatively large clusters in these methods dgtodels by Kwonet al. and Lenoskyet al. for optimization
not agree with those predicted by accuraab initio ~ Of cluster geometries upttl=19 before entirely rejecting
calculation the semiempirical orthogonal methods for small Si cluster
Nonorthogonal tight-binding molecular-dynamics tech-Simulations. The second motivation is to verify the conclu-
niques?’~*0on the other hand, have been found to optimizeSion of the nonorthogonal tight-binding schefrfé€ about
geometries of small clusters in good agreement withabe the incorrectness of the orthogonal tight-binding schemes in
initio technique€:® The correction to the energy due to the estimating the vibrational frequency of the dimer. We are
bond counting term is not necessary in the binding energgncouraged to follow these two orthogonal tight-binding
and force calculations. The advantage of this method over afiodels, as these models have already been successful in un-
orthogonal scheme is that this method does not require arfjerstanding small Si clusters up to=5. _ _
cutoff distance for the matrix elements and overlap integrals. A recent experimental determination of the static polariz-
The vibrational frequency analysis in small clusters hagbilities for a Sj; (N=9) cluster in beam deflection under an

shown that the t|ght-b|nd|ng scheme without nonorthogona'_electric f|e|d1 indicates pronounced oscillations with the
ity cannot reproduce thab initio results. cluster size. For large clusters (60I<120) the polarizabil-

In terms of Computationa| cost, the Semiempirica| or- ities reach values below the bulk limit. The Orthogonal tlght-

thogonal tight-binding method is found to be the most effi-binding calculations using the Harrison scaling scheme by
cient, as the inclusion of the nonorthogonality makes thRantalaet al*? resulted in large polarizabilities compared to
calculation of energies and forces slower. The only importanthe experimental data. The calculated polarizabilities for
task in the orthogonal method is to make Slater-Koster masmall clusters (2N<10) in the pseudopotential method of
trix elements transferable by a suitable method. In an earlyasiliev et al** are higher than the bulk limit, and tend to
approach, Harrisdi and Chadi® used the 1?2 dependence reach above the bulk limit for large clusters. Since our tight-
of tight-binding hopping matrix elements with a bond lengthPinding scheme is superior to that of Rantafgal, it is

d. Mercer and Chatf fitted tight-binding parameters tab wprth applying our method for estimating polarizabilities for
initio band structures based on a norm-conserving pseudop& clusters. .

tential method, and found that a simpled3/scaling is not The paper is organized as follows. The method for calcu-
correct for transferability. Since the inclusion of the secondating the equilibrium geometries and static polarizabilities
neighbor in the calculations gives incorrect results, Goodwinfor Si clusters will be discussed in Sec. Il. The calculated
Skinner, and Pettifo(GPS% and Sawad¥ presented inde- €lectronic and chemical properties will be discussed in Sec.
pendent schemes where the tight-binding matrix elementd!l, and we give future directions in Sec. IV.

and the pairwise repulsive potentials are smoothly terminated

by attenuation functions between the first and second neigh-

bors, so as to avoid discontinuity in the potential. Kohy&ina IIl. METHOD OF CALCULATIONS

showed that the method of Sawada is superior to that of GPS A. Tight-binding molecular dynamics

for describing the binding energies and equilibrium volumes
of various coordinated structures in Si. Kwenal3® over- .
came the shortcomings of the GPS model by fitting eact§Ven by

matrix element in the GPS model, and produced bulk and

defect properties of Si in good agreement with #ieinitio N 0? occ.

methods and experiment. The pair repulsive potential is ob- -

tained in the embedded atom modeLenoskyet al*® ob- = Z’ 2 +2§n: ([WalHIY )+ Erep @

The tight-binding energy governing atomic motions is
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whereW (1) is the electronic wavefunction farth level of

the eigenstate. The first term is the kinetic energy of the

atoms with mas#l. The second term is the electronic energy
obtained by summing the lowest eigenvalues of the tight
binding HamiltonianH. Two electrons are assigned to each _.
eigenstate to account for the spin. The third tep, rep-

resents the combined repulsive energy and the energy r
quired for correcting the double counting of the electron-
electron interaction of the second term. THg,(r) of a

collection of atoms as a linear combination of orthogonallzed«

basis functions ¢,(r), in the minimum basis set 1(
=S,Px,Py P2, is expanded as

n<r>=§ Clid,(r—Ry), 2

whereR; denotes the position of thi¢h atom. The eigenval-
ues are obtained from the ScHinger equation as

> [H,u(ri))—8,,6;E,]C=0 (3)

vl

wherer;j;=R;—R;. The tight-binding matrix elements are
obtained from the two-center hopping integral:

Hvu(rii):f ¢y (r=R)H®,(r—R;)d>. 4)

Following the Slater-Koster methdfithe matrix elements in
Eq. (3) are expressed as

Hss= sz(rij)
por(Tij)

Hxx:lizjvpp<r(rij)+(1_Iizj)vppw(rij)

Hoy= _Hxszlijvs

Huy=Hyx= 1 mi Voo (1ip) = 1ijmi Vopr(ri), - (5)
wherel;; andm;; are the directional cosines.
The transferable matrix element¥sg,(r), Vgp,(r),

Vipo(r), and Vyp.(r), as g|ven by the models of Kwon
et al*® and Lenoskyet al,*® are shown in Fig. 1. It is quite
clear that potentials in the model by Kwaet al. decay
monotonically, whereas those in the model of Lenosksl.
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FIG. 1. Matrix elementsVgg,(r), Vgp,(r), Vpp.(r), and
Vpp=(r) in the orthogonal tight-binding models of Refs. @&®lid
line) and 36(long-dashed line The short vertical lines in the zero
y axis correspond to the first four neighbor shells in the diamond
structure.

of Lenosky et al. changes sign between first and second
neighbors, and shows a fairly large and positive hump at
4 A. Similarly Vspe in the model of Lenosket al. changes
sign between second and third neighbors and has a large
hump at 2 A. AlthoughVp,(r) andV,.(r) in the model of
Lenoskyet al. preserve their sign as in the model of Kwon
et al, there are many structures present in these data. The
electronic energy in the model of Kwaat al. is found to be
larger than that in the model of Lenosky al.

The repulsive potentiak., in the method of Kwon
et al® is given by

=> (6)

f[; ‘b(rij)},
where in general the functioh(x) in the embedded-atom
approach is expressed as

f(X)=C1X+ C2X2+ C3X3+ C4X4. (7)

In the model of Lenoskgt al. the cubic splines are taken

are highly nonlinear in nature. As discussed earlier, the mawithout any functional form. Therefore, it corresponds to the

trix elements in the model of Kwomet al. are seen to go

caseC,=1, C,=C3=C,=0. The interparticle pair repul-

smoothly to zero between first and second neighborssive potential is shown in Fig. 2. We find that the pair po-

whereas those for the model of Lenosklyal. are extended

to fall smoothly between the third and fourth neighbors. Le-

nosky et al. pointed out that a long cutoff of 5.24 A is

tential appears to grow monotonically as the interparticle
separation decreases. The potential used by Ketoal. is
more strongly repulsive in the short interparticle separation

needed in order to place the clathrate structure higher in ercompared to that of Lenoskgt al. and it also decays quite
ergy than the diamond structure, whereas the small cutoff ifiast in the first-neighbor region. The potential of Lenosky

the potentials of Kwonet al. shows a clathrate structure
lower in energy than the diamond structure. The lower limit
of the extent of the potentials in the model of Lenosityal.

is fixed at 1.5 A as the potential is very strong below thisi

limit. In reality the potentials should saturate, and approach &won et al,

et al. goes smoothly to zero between third and fourth neigh-
bors, while that of Kworet al. falls to zero between first and
second neighbors. The repulsive eneEgyp, calculated us-
ing the embedded energy functionflx) in the model of

is found to be stronger than that of Lenosky

constant value at short distances. However, such adjustmers al. However,E,., in both models is found to be insensi-

lead to unphysically small values of the @risen param-
eters. Unlike the model of Kwoat al. Vg, (r) in the model

tive to to details of the cluster geometry.
The force acting on théth ion is expressed as
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3

positionsR;. For large clusters the initial geometries are

taken from theab initio works®*°
25

B. Calculation of static polarizability

The equilibrium geometries of small Si clusters are then
used to calculate their static polarizabilities and dipole mo-
ments. We have used the perturbation method to evaluate the
electronic energiek(F) in the presence of an electric field
of strengthF. The tensor components of the static polariz-
ability (ay) are calculated &34

() (V)

05 |

' ! P*E(F
gk = — TER), (12

1
-0.5 . - - - - - L JF k(9 F K’
15 2 25 3 35 4 45 5 55

r {Angstrom)

wherek,k’ ={x,y,z}. Thekth component of the dipole mo-

FIG. 2. Repulsive pair potential in the orthogonal tight binding mentp, is calculated from the total energy as
models of Refs. 38solid line) and 36(long-dashed ling The short

vertical lines in the zerg axis correspond to the first four neighbor IE(F)
shells in the diamond structure. Pk=—p (13
k
Erep In second-order perturbation thedfthe total energy at the
F=—2> (¥ W) - : ! ' pe oy
E { “| | ) ® field strengthF is given by
The first term is the Hellman-Feynman contribution to the all
total force evaluated from the derivatives of the matrix ele- E(F)=Eq+ ez (W |F-r|¥,)
ments of the tight-binding Hamiltoniad. The second term n
is the short-ranged repulsive force. 0CC. UNOCE 2
Following the classical description of Newton’s law the +2e22 2 (W[ Fr W) (14)
atomic positions are determined by noom En—Em
2p. wheree is the electronic charge arfg, is the ground-state
d°R;
— =F (9 electronic energy &=0. Using Egs(12), (13), and(14) the
dt dipole moment per atom in the directiéris derived as
whereM is the atomic mass. The squtioEﬁof H®), in the all
velocity Verlet molecular dynamics methodfor updating €
atomic coordinates, is given by N ; (Walrd ¥n). (15

1 Similarly the polarizability componenty,,, per atom is
_ R 2
R|(t+5t)—R|(t)+V|(t)5t+ 2M Fl(t)(&) ’ (10) found as
where the velocity; of ith atom att + 6t is calculated from 42 9% UNOCC i 1 I N Ir, |
F; att andt+ 6t as =" E E (Tl Em><Em| ol ”>

1 (16)
vi(t+ 6t)= v(t)+ [F(t)+F(t+8t)]5t (17 i . i .
Using the atomic wave functiof€qg. (2)] in Eq. (15), the
dipole moment per atom is derived as
For molecular-dynamics studies the simulated annealing

scheme is a generalized minimization procedure for finding a all

global minimum. There are various schemes to carry out E 2 z ch*C; Akl , (17)
simulated annealing studié%***°In our case we have used Vi v

the simple quenching and annealing method as prescribed by

Ordejm et al?® In this method the atomic velocities are set whereA¥; . may be defined as

to zero whenever the intrinsic temperature exceeds the given

temperature. This procedure like all other simulated anneal- K . 3

ing methods does not lead to the global minimization, but Abiui J O (r=R)r®@,(r=Ry)d-r. (18)
resulted in a metastable state. For this purpose we have cho-

sen different plausible configurations for the initial atomic Similarly the components of the polarizability are derived as
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2 OCC. unocc

4e
Ak =~ TN E E 2 E E E C?A*CIT]CI;]/*CEJ/
N n m vl ) §i/ {j'
XAY GAG) ;i (En—Ep). (19)

It is worth pointing out that Rantalet al*? in their calcula-
tions did not include position vectors in the atomic wave

functions. In reality we have no access to the atomic obitals§3 i
in the orthogonal tight-binding model which are needed to

compute Eqs(17) and (19). In the present work we have
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4|

argy (eV)

=

8

taken thes and p wave functions from a separate free atom

method. The exact method of calculation for the dipole mo-
ment and polarizability in the orthogonal tight-binding

method should be based on the diagonal ansatz where th
position operator is assumed to be diagonal in the tight bind-
ing representation, with elements reflecting the coordinates
of the atoms. In this approach the dipole moment is derived

10 12 14 16
Cluster Size (N)

20

as

all

pkzg ; % Co* CoRyc- (20
The polarizability per atom is found as
4e? < n % ~mMeA~M % ~N
ke =" % % % % Cu CuCoi™ Crir
X RyRy/ /(E—Ep). (21)

The average polarizability which is usually compared with

FIG. 3. Cohesive energies of Si clusters in the orthogonal tight
binding models of Ref. 3&solid line), the orthogonal tight binding
method of Ref. 3Glong-dashed ling the CP-LDA (Refs. 18 and
17) (dashed ling the nonorthogonal tight-binding method of Ref.
30 (dotted ling, and the gradient-corrected LCAO-LSDRef. 9
(dot-dashed linemethod. The cohesive energies for the cagelike
structure of the S cluster in the methods of Lenosley al., Kwon
et al, and the CP-LDA method are represented by the filled circle,
the filled triangle, and the inverted filled triangle, respectively.

order to assign zero value to the cohesive energy of the iso-
lated atom. The high magnitudé;—E,= —11.340450 eV

the experiment is calculated from the diagonal component§ompared to the other tight-binding schemes is due to the

as

<a>:%(axx+ ayyt az,). (22

IIl. RESULTS AND DISCUSSIONS
The TBMD code of Colomb® is suitably modified for

large cutoff distance taken for fitting matrix elements. The
time stepdt in this calculation is taken to be 1 fsec, and the
total time for molecular dynamics simulation is taken to be
15 psec.

The cohesive energies for Stlusters uptdN =19 calcu-
lated using different methods are reported in Fig. 3. The
cohesive energy in the CP-LDA metH8d” approaches that

carrying out calculations for small clusters. We have com-of the bulk semiconductor for medium-sized clusters. Ra-
pared results obtained in the models of orthogonal tightmakrishna and Bah¥l pointed out that the higher cohesive
binding schemes with the latest nonorthogonal scheme afnergy results from the overbinding of atoms due to the LDA

Menon and Subbaswarifyand gradient corrected LCAO-
LSDA results of Fournieet al® Hobday et al*° presented
structures of small Si clusters up =14 atoms using a

scheme, which can be rectified by a GGA method. The or-
thogonal tight binding scheme of Lenoslky al. predicted
low cohesive energies for all clusters. This is expected on the

genetic algorithm. However, geometries in this calculationphysical grounds that the surface to volume ratio in small

are not accurate compareddb initio results for large clus-

and medium sized clusters is rather large; as a consequence;

ters and the cohesive energies and bond lengths are not rifte cluster cohesive energies will necessarily be smaller than
ported for comparison. We have also not considered clusteithe respective bulk values. On the other hand, the cohesive

beyondN=19 since, starting from g&j, there is a known
discrepancy between the CP-LDA theBhyand mobility
measurement$ about the transition of the prolate structures
to compact cagelike structures.

The most important contribution of the model of Lenosky
et al. over other tight-binding schemes is to assign zero en
ergy to the isolated atom as in tlad initio methods. The

energies calculated in the orthogonal tight-bind model of
Kwon et al®® agree with those in the Hartree-Fock calcula-
tions for Si clusters up ttN=10. The nonorthogonal tight-
binding scheme of Menon and Subbaswafpund cohe-
sive energies similar to that of the Hartree-Fomsults by a
eonstant shift of 1.1 eV. This could be assigned to the zero-
point energy of the isolated atom which is 1 &/For the

energies of the isolated atom in the orthogonal tight bindingSi;q cluster we have calculated cohesive energies for both the

scheme of Kworet al® and the nonorthogonal scheme of

Menon and Subbaswarifyare —0.63 and—1 eV, respec-
tively. Lenoskyet al. attributed equal and opposite value of
5.670225 eV to the on-site matrix elemertis and E, in

prolate and cagelike structures given by ktoall’ The re-
sults are shown in Table I. We find that the orthogonal tight-
binding scheme of Lenoskgt al. predicted a cagelike struc-

ture for Sig, which agrees with the CP-LDA method. The
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TABLE I. Cohesive energy per atom of;$icluster in cagelike  both the dimer and trimer lie between the singlet and triplet
and prolate structures. The results are obtained using the orthogongiates. The bond lengths calculated in the model of Kwon
nal 2, and the Car-Parrinello local-density approximati¢@P- The gradient corrected LCAO-LSDA calculation pre-
LDA) (Ref. 17. dicted the four-atom cluster to be a rhombus in the singlet
state with four bond lengths at 2.32 A and the shortest inter-

th 11 Orth |2 CP-LDA . . .
Orthogona rhogona atomic bridge distance 2.40 A. Recent Raman spectroscopy
N (eVIN) (eVIN) (eVIN) .
measurements support this structure. However, our calcu-
19a 3.76 3.79 4.503 lation agrees with the triplet state of the LCAO-LSDA cal-
19b 3.74 3.98 4.481 culation which is also a rhombus with lower cohesive en-

ergy. A nonorthogonal scherfe also calculated the
geometry of this cluster in a triplet state. The model by Le-
model of Kwonet al,, on the other hand, found the prolate noskyet al. is superior to the model of Kwoat al. for pre-
structure to be more stable than the cagelike structure. dicting the cohesive energy and bond lengths for this cluster.
The bond lengths for Si clusters upkb=18 are reported The geometry suggests that the main bonding in this cluster
in Table Il. The experimental cohesive energy for the Siis primarily governed byr bonds.
dimer is 1.65 eV/atom’ Both orthogonal and nonorthogonal  As predicted by the gradient corrected LCAO-LSDA cal-
methods show similar cohesive energies and agree with theulations, the five-atom cluster is a singlet state with trigonal
experiment. On the other hand, the cohesive energy calciipyramid structure. Our calculations also show similar ge-
lated in the gradient corrected LCAO-LSDA method is veryometry. The nonorthogonal tight-binding scheme also pre-
high. This method predicts that the spin-triplet state has alicted results comparable to the LCAO-LSDA model. How-
higher cohesive energy than the spin-singlet state. In thever, the model of Lenoskst al. found cohesive energy and
present spin-unpolarized calculation, the spin-singlet state diond lengths in excellent agreement with LCAO-LSDA cal-
the dimer has a lower cohesive energy. It is worth mentioneulations better than those of Kwat al.
ing that the orthogonal tight-binding schemes of Tomia The six-atom cluster in theab initio LCAO-LSDA
and Schiter?® Laasonen and Nieminéfi,and Mercer and method is found to have both face-capped trigonal bipyramid
Chou?? found the cohesive energies to be 1.54, 1.5, and 1.and edge-capped trigonal bipyramid structures with identical
eV/atom, respectively, which are similar to our reported val-binding energies. These two structures are in the singlet state
ues. In spite of the dimer being in the singlet state and havingvith C,, symmetry. It is hard to distinguish these two struc-
lower cohesive energy in the model of Lenosityal, the  tures theoretically. Experimental Raman spectroscopy’data
bond length calculated in this method is exactly same as igsuggest the tetragonal bipyramid structure viith, symme-
the gradient corrected LCAO-LSDA method. The model oftry which is not a stable structure in the gradient corrected
Kwon et al. gave longer bond lengths due to lower cohesiveL CAO-LSDA method. We have reported a face-capped
energy as calculated in this method. The earlier Hartree-Fockigonal bipyramid structure which is in excellent agreement
calculations of Raghavachari and Logovin3kyr the singlet  with the LCAO-LSDA method. We have not compared our
state of the dimer resulted a cohesive energy of 1.58 eWesults with the nonorthogonal tight-binding scheme, as it
atom, a bond length to be 2.23 A, which are similar to ourhas reported bond lengths only for the edge-capped trigonal
values reported here. The experimentally determined bonBipyramid structuré?
length?? of the Si dimer is is 2.24 A. The minimum energy of the seven atom Si cluster is
The configurations of the Si clusters fdt=3-19 are found to be a pentagonal bipyramid withy, symmetry. The
shown in Fig. 4. The gradient corrected LCAO-LSDA calcu- cohesive energy calculated by the model of Lenaskal. is
lation showed that giis an equilateral triangle with sides of in good agreement with the gradient corrected LCAO-LSDA
length 2.27 A. Its ground state is a spin triplet wilh;,  method. The two axial atoms are highly compressed in the
symmetry. On the other hand, the orthogonal tight-bindinggradient-corrected LCAO-LSDA method compared to the
schemes predict the structure to be an isoceles triangle witBig cluster. The distances between two axial atoms in the
C,, symmetry. TheD3, symmetry is associated with the models of Lenoskyet al. and Kwonet al. are similar to non-
spin-triplet state, whereas ti®, symmetry is a Jahn-Teller orthogonal calculatio® and previous orthogonal
distortion of theD 5, symmetry. The singlet state of this clus- calculations>?® Raman spectroscopy measurements support
ter in the LCAO-LSDA method was been predicted to have ahe gradient-corrected LCAO-LSDA results.
larger apex angle than that found in our calculations. On the The Sj cluster is a distorted bicapped octahedron with
other hand, the nonorthogonal tight-binding sch&me C,, symmetry. We find both binding energy and bond
showed that the structure of thesSiluster is an isoceles lengths to be in good agreement with gradient-corrected
triangle with bond length and apex angle similar to our re-LCAO-LSDA, nonorthogonal, and CP-LDA methods.
sults. Our results also agree with the earlier singlet state cal- For the S cluster we find that the tricapped octahedron
culations of the three atom cluster in thb initio Hartree-  structure predicted by the previoas initio Hartree-Focl
Fock method. The experimental value of the cohesive nonorthogonaf® and orthogonal tight-bindirfg?® schemes
energy* for this cluster is 2.51 eV/atom, which matches with is not the lowest minimum structure. Both CP-LDA and full-
the results of Kworet al, and is slightly higher than that of potential linear-muffin-tin-orbital (FP-LMTO) methods®
Lenoskyet al. We therefore believe that our calculation for found it to be a bicapped pentagonal structure @ sym-
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TABLE II. Equilibrium geometries for silicon clusters fd¢=2-18. The atoms are numbered as in Fig.
4. The references to different models are the same as in Table I.

Orthogonal 1 Orthogonal 2 Nonorthogonal Ab initio

N Structure Bond (A) (A) (A) (A)
2 1-2 2.28 2.45 2.24 2.28
3 Co, 1-2 2.28 2.42 2.24 2.18
1-3 2.73 2.89 2.80 2.84
6 73.7° 73.3° 77.4° 81.3°
4 D,y 1-2 2.57 2.57 2.52 2.53
1-3 2.33 2.49 2.34 2.27
34 3.90 4.24 3.94 3.78
5 Dap, 1-2 3.20 3.52 3.26 3.05
1-3 2.36 2.49 2.34 2.30
3-4 2.94 2.74 2.78 2.98
6 Csy, 1-2 3.00 2.74 2.68
1-3 2.38 2.54 2.35
1-5 2.44 2.59 2.39
3-5 2.52 2.64 2.71
5-6 2.42 2.44 2.49
7 D5y, 1-2 2.88 2.78 2.80 251
3-4 2.38 2.56 2.48 2.49
1-3 2.51 2.58 2.47 2.46
3-5 3.86 4.13 4.03
8 Cop 1-2 2.67 2.64 2.48
1-4 3.22 3.40 2.80
1-5 2.38 2.53 2.40
1-7 2.30 2.43 2.27
2-3 3.03 2.90 2.88
2-5 2.47 2.63 2.77
2-6 3.89 3.91 4.00
4-6 2.67 2.64 2.60 2.52
5-6 3.03 2.90 4.00 3.14
2-4 2.38 2.54 241 2.23
4-8 2.30 2.43 2.52 2.53
9 Cay 1-4 2.46 2.55 2.43
2-3 2.88 2.72 2.53
2-8 2.36 2.50 2.36
6-7 3.18 3.06 2.85
1-6 2.38 2.54 2.38
6-8 2.34 2.57 2.37
4-5 3.70 4.04 3.95
10 Cs, 1-2 3.06 2.89 2.91 2.75
1-9 2.45 2.63 2.61 2.55
5-9 2.47 2.60 2.56 2.54
1-10 2.35 2.53 2.43 2.35
1-3 2.38 2.52 2.49 3.45
3-9 2.47 2.57 2.55 2.54
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TABLE Il. (Continued.

Orthogonal 1 Orthogonal 2 Nonorthogonal  Ab initio

N Structure Bond (A) (A) (A) (A)
11 Cs, 1-3 2.37 2.57
1-5 2.32 2.54
3-4 2.94 2.94
3-5 2.61 2.61
3-6 2.54 2.65
3-8 2.39 251
3-9 3.94 3.93
5-9 2.78 2.63
6-7 2.50 2.66
6-8 2.48 2.54
9-10 2.86 2.86
12 C,, 1-2 2.35 2.47
1-3 3.11 2.65
2-3 241 2.60
2-5 3.00 2.74
2-6 2.32 2.53
2-11 2.73 2.62
3-11 2.53 2.58
4-10 2.73 2.62
5-8 2.38 2.57
5-12 3.47 3.82
6-12 3.83 2.74
8-9 3.26 3.30
8-10 3.95 3.96
8-11 2.80 2.66
8-12 2.38 2.50
10-12 2.55 2.57
13 Cin 1-2 2.35 2.51
2-4 3.00 2.68
2-6 3.21 2.96
5-8 251 2.56
5-9 2.39 2.62
6-7 2.53 2.56
6-11 2.38 2.64
7-11 2.40 2.53
9-10 2.64 2.74
10-13 2.40 2.53
14 Cip 1-2 2.41 2.56
1-3 2.37 2.58
1-5 2.67 2.55
2-3 2.80 2.64
2-6 2.39 2.49
3-5 3.29 3.05
3-6 2.67 2.72
3-9 2.40 2.64
4-5 2.37 2.56
4-7 2.39 2.49
5-6 3.06 2.72
5-8 2.47 2.64
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TABLE Il. (Continued.

Orthogonal 1 Orthogonal 2 Nonorthogonal  Ab initio

N Structure Bond (A) (A) (A) (A)
6-7 3.10 2.56
6-8 2.95 2.68
7-9 2.48 2.53
7-10 3.79 3.77
7-11 2.57 2.71
7-12 2.38 2.48
8-11 3.83 3.91
8-13 2.39 251
9-10 2.46 2.53
10-11 2.50 2.68
12-14 244 2.54
15 Cs, 1-2 2.77 2.66
1-4 2.38 2.49
1-5 2.79 2.59
1-10 2.36 2.47
2-3 2.45 2.56
2-8 2.48 2.62
5-14 3.14 3.14
11-12 2.33 2.50
11-14 2.60 2.59
13-15 2.32 2.48
16 Con 1-2 2.44 2.59
1-3 2.44 2.59
1-5 2.50 2.59
1-9 2.60 2.90
2-3 2.40 2.55
3-9 2.45 251
7-11 2.52 3.25
8-9 2.61 2.56
8-10 2.97 3.54
8-12 2.38 2.46
8-15 3.27 3.17
9-10 2.61 2.45
9-14 2.33 2.46
10-16 3.14 2.90
11-13 2.36 2.52
15-16 3.10 2.59
17 Cs, 1-2 2.39 2.52
1-4 3.12 2.93
1-8 2.43 2.55
1-16 2.36 2.55
2-4 2.38 2.53
2-6 2.47 2.53
4-6 2.46 2.55
4-7 3.70 3.70
7-9 2.48 251
7-11 2.33 2.42
7-14 3.49 3.52
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TABLE Il. (Continued.

Orthogonal 1 Orthogonal 2 Nonorthogonal  Ab initio
N Structure Bond (A) (A) (A) (A)

10-13 2.37 2.48
10-17 3.67 3.93
13-15 2.87 2.79
15-17 2.40 2.51
18 Ca, 1-4 2.46 2.57
1-7 2.39 2.48
2-5 2.44 2.57
2-8 2.39 2.49
4-7 2.57 2.66
6-9 2.54 2.65
7-9 2.63 2.57
7-10 241 2.57
9-10 3.50 3.56
10-13 2.95 2.75
10-16 2.92 2.75
10-17 2.32 2.43
11-12 2.45 2.46
13-14 2.68 2.68
13-15 2.34 2.53

metry. While the model of Lenoskgt al. agreed with this  structure, whereas the model of Kwenhal. supported a pro-
structure, that for Kworet al. had a distorted shape. On the late structure. This clearly suggests that the model of Le-
other hand, the cohesive energies in these two models aresky et al. is a better method for cluster studies than the
similar. The cohesive energies calculated in CP-LDA andnodel of Kwonet al. Although the contradiction of theory
FP-LMTO methods are 4.197 and 4.70 eV, respectivelywith experiment a concerning the transition of the prolate
which are higher than calculated in our orthogonal modelsstructure from prolate to cagelike structure is not clear from
As mentioned previously, the cohesive energy in the densityhe present calculations, several possibilities can be drawn
functional theory without GGA correction always give lower from physical backgrounds. The entropic effect, which is the
bond lengths and higher cohesive energy. However, the borltigh temperature required to induce isomerization, does not
lengths calculated by us are in reasonable agreement with ttadlow the smaller cluster to become spherical in natfire.
FP-LMTO method. There could be another prolate structure which has a lower
For Siy the calculated minimum energy structure is foundcohesive energy than the present cagelike structure. The
to be a tetracapped trigonal prismatiC4(). The cohesive electron correlation has an important effect on the overall
energy calculated in the model of Lenoskyal. was very stability of silicon cluster isomer¥. In order to circumvent
small compared to other methods, while the model of Kwonproblems in density, functional methods, Mitesal >* took
et al. found cohesive energy in good agreement with thethe quantum Monte Carlo method to predict the true energy
nonorthogon&f and ab initio Hartree-Fock methods. The ordering. However, quantum Monte Carlo calculations show
bond lengths in the orthogonal tight-binding schemes are iithat the probability of the formation of a cagelike structure in
good agreement with those obtained in the nonorthogondhe experiment is very small. Mobility measurements suggest
tight-binding schemes and tlab initio results. that a structural transition from a prolate structure to a cage-
The calculated geometries for,Silusters N=11-18) in  like structure occurs atl=24.
the orthogonal tight-binding methods agree with those given The fragmentation energy, which is the energy required in
by Ho et al 18 obtained using CP-LDA theory. The main fea- removing one Si atom from a Si cluster wikhatoms, was
ture of these clusters is that they are built on a structuraineasured in fragmentation spectfa®’ These experiments
motif consisting of tricapped trigonal prismg&iubunits. The showed that clusters with six, seven, and ten atoms should be
mobilities calculated for these prolate structures agree vergnost stable. The fragmentation energy is defined as
well with the experiment® The equilibrium structure for the
Sijg cluster is predicted to show a transition from a prolate AE(N)=E(N—-1)—E(N). (23
structure to a cagelike structure in the CP-LDA calculaffon.
On the other hand, the mobility data for this cluster supporin Fig. 5 our results are compared with the previously calcu-
the prolate structur® The equilibrium geometry of the §i  lated ab initio results based on the LCAO-LSDA and CP-
cluster in the model of Lenoskst al. also favored a cagelike LDA schemes. Our results, based on the model of Lenosky
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FIG. 4. Lowest-energy struc-
tures of small silicon atom clus-
ters calculated using the orthogo-
nal tight binding models of Ref.
38. The structures of the clusters
for the model of Ref. 36 are simi-
lar, but have different bond
lengths given in Table Il. The at-
oms are numbered as in Table Il.
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et al, is in good agreement with the LCAO-LSDA calcula- vestigated the nature of the gap energy between the highest
tions. The model of Kworet al,*® the CP-LDA model®and  occupied molecular orbit§HOMO) and lowest unoccupied
the nonorthogonal tight-binding mod®predict high magni- molecular orbita(LUMO). The results are presented in Fig.
tudes. The results of all calculations show that the cluste6. We have compared results obtained from the models of
with four, six, and ten atoms are most stable. The orthogondlenosky et al. and Kwon et al. with the ab initio results
models of Lenoskyet al. and Kwonet al. predicted Sj;to  given by LCAO-LSDA and CP-LDA methods. For two-atom
be a stable cluster, whereas a CP-LDA calculation shows thafusters the orthogonal tight-binding scheme predicts no gap
the Si; cluster is more stable compared tq-SiOrthogonal  energy, while the LCAO-LSDA method predicts a high gap
models as well as the CP-LDA calculation show,30 be energy. Both empirical and density-functional-based tight-
stable against fragmentation. At present we do not underinding schemes of Tomak and Schlter also predicted a
stand these differences. zero gap energy for the dimer. The gap energies of the clus-
In order to find general rules concerning the stability andters obtained in the model of Lenosky al. are found to be
equilibrium structures of small silicon clusters, we have in-small to other methods. Recently Ner et al>® extracted
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FIG. 5. Fragmentation energy in the methods of calculations of "'G: 7- Mulliken population analysis of the and p electron
the orthogonal tight binding scheme of Ref. &®lid ling), the levels in silicon (.:Iuste.rs..The solid and dashed lines correspond to
orthogonal tight-binding scheme of Ref. 86ng dashed ling the t_he 0rthogor_1a| t|ght-b|nd|ng sc_hemes of Refs. 38 and 36, respec-
CP-LDA (Refs. 18 and 17(dashed linemethod, the nonorthogonal tively. The f|||_eq circles and triangles correspond to the cagelike
method of Ref. 30dotted ling and the gradient corrected LCAQ- Structure of Sig in the models of Refs. 38 and 36.
LSDA (Ref. 9 (dot-dashed linemethod for small silicon clusters.
The cagelike structure of thegicluster is not considered here. energies in the model of Lenoskst al. are closer to the

experiment than other methods of calculations.

. 60 . 3

gap energies from the photoelectron spectra, and found that Recently Bernsteiret al”™” showed that a minimasp®
the average value is around 1.5 eV and shows a slow risgepresentation is not sufficient in reproducing the conduction
with cluster size. Clearly this gap energy is greater than th&ands and band gap in crystalline Si. In order to reproduce
band gap in Si. On the other hand, a very recent experimer]i € cqndugtlon bansdss and band gap, itis r.equwed 0 include
on Si cluster®’ showed that the gap energies are smaller tha orbitals in thespd” representajon. In view of this, the

the band gap. In view of this experiment we find that the ga orthogonal tight-binding model of Lenoslat al. needs fur-
' Rher improvement to calculate conduction bands accurately

using asp’d® basis.

3 ‘ ‘ ' ‘ ‘ ‘ ‘ ' ‘ For obtaining the electronic configuration in different
clusters, we carried out the Mulliken population analysis
shown in Fig. 7. The results show that the configuration up to
. N=19 is nearlys?p?, although the model of Kwoat al. for
A N=18 predicted a slightly highgy population. The analysis

1 of Fournieret al® also showed that the electronic structure of
Si clusters up tdN=8 is very close tes?p? for the clusters.
Therefore, the clusters appear to have somewhat different
bondings compared to tetrahedral bonding vefit hybrid-
ization. From Fig. 4 we see that the bond angles are close to
60°, and are metallic in nature due to high coordination num-
bers, while in the semiconductor limit the bond angles are
concentrated near 110°. The small gap energy corresponds to
the metallic nature of the cluster, while the large band gap is
due to the semiconductor nature. Further, the gap energy in
1 8 5 7 e 1 13 15 17 19 metals normally decreases with increasing cluster size due to

Cluster size (N) the electronic level quantization in a cavity. From the calcu-
aIrated data of Figs. 6 and 7, it appears that clusters, with the
orbital (HOMO) and lowest unoccupied molecular orbitalUMO) _exceptlon Of dlmers_, are mixed metallic and semiconductor
in the methods of calculation of the orthogonal tight-binding " nature. It is plqu5|ble that surfa_ce atoms tend to reduce the
scheme of Ref. 38solid line), the orthogonal tight-binding scheme NUMber of dangling bonds by taking close-packed structures.
of Ref. 36 (long dashed ling the CP-LDA scheméRefs. 18 and ~From Fig. 4 we find that clusters witN=6-12 take octa-

17) (dashed ling and the gradient-corrected LCAO-LSDA method hedral structures, with sides decorated by caps in order to
(Ref. 9 (dot-dashed linefor small silicon clusters. The filled circle Stabilize the basic octahedral structure. The prolate structure

and triangle are the gap energies of the cagelike structure of the Sifor Siy clusters N=13-18) has relatively small gap ener-
cluster in the models of Refs. 38 and 36, respectively. gies. As expected the compact cagelike structure foy iBi

]
)3
-
N

HOMO-LUMO gap Energy (eV)

FIG. 6. Gap energy between the highest occupied molecul
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0.8

TABLE I1ll. Calculated dipole moments for Si clusters in the
orthogonal tight binding and pseudopotenti&ef. 15 methods.
The orthogonal tight binding method of Refs. @rthogonall and
— o 36 (Orthogonal2 are reported.
£ 0.
o
% Orthogonall Orthogonal2 Ab initio
8 N Il [ Il
% 04l (debye (debye (debye
& 2 0 0 0
= 3 0.42 0.41 0.33
5 o2 4 0 0 0
5 0 0 0
6 0.26 0.26 0.19
7 0 0 0
8 8 0 0 0
Energy (eV) 9 1.26 1.26 0.36
FIG. 8. Density of states for the gicluster in the cage structure 10 1.00 0.67 0.69
[Fig. 419a]. The dashed line, dotted line, and solid line correspondll 0.55 0.55
to thes electron, thep electron, and the total density of states. 12 0 0
13 0.24 0.24
the models of Lenoskgt al. and Kwonet al. has a lower 14 0 0
gap energy than its corresponding prolate structure. Kaxira&d 2.86 2.86
estimated that the critical size of the clusteNis- 33 for the 16 0 0
transition of metallic to low coordination covalent bondfttg. 17 1.48 1.48
The partial density of states farelectrons,p electrons, 18 2.35 2.35
and total electrons for the cagelike structure qf Slusteris  19a 1.60 1.60
shown in Fig. 8. We find that the lower-energy levels are19b 2.03 2.04

dominated by thes electrons, whereas the upper levels are
decided byp electrons. This is also observed in bulk semi-

conductors, where the first and second bandséke while  The dipole moments calculated in both the orthogonal tight
the sp? hybridization is governed by the third and fourth pinding methods by Lenoskst al.and Kwonet al. are iden-
bands>* The density of states for the ;icluster in the pro- tical except for Sj,. The orthogonal methods are expected to
late structure is shown in Fig. 9. Compared to the cagelikghow some difference from theb initio method in predict-
structure there are fewer features in this structure due to lesgg the dipole moments because of the lack of boundary
closely spaced energy levels because of the prolate structurgonditions on the atomic wave functions in a cluster environ-
As expected, the density of states in both these structures gient. Nevertheless we find that our dipole moments for Si
not compare with that of the bulk. clusters up td\= 10 are similar to those predicted by tak

The calculated dipole moments are shown in Table Illjnitio pseudopotential method, where the electron wave func-
tions are calculated accurately.

The static polarizabilities of Si clusters calculated in the
orthogonal methods of Lenoskst al. and Kwonet al. are
compared in Fig. 10 with those calculated in thie initio
pseudopotential method by Vasiliet al'® The polarizabil-
ities calculated in the diagonal ansfExgs.(21) and(22)] are
found to be smaller than those calculated in the pseudopo-
tential method>®3With the assumption that the HOMO and
LUMO provide the major contribution to the polarizability,
the polarizability is inversely related to the LUMO-HOMO
energy gap. Since the gap energies were higher in the model
of Kwon et al. than in the model of Lenoskgt al,, the cal-
culated polarizabilities in the model of Lenosky al. were
higher than those in the model of Kwaat al. Nevertheless
both orthogonal tight-binding methods predicted similar
trends in polarizabilities. As discussed earlier, the expereri-
mental gap energies are very small compared to the orthogo-
nal tight-binding model, as a result of which the experimen-

FIG. 9. Density of states for the Sicluster in the prolate struc- tal polarizabilities are higher. The polarizabilities evaluated
ture [Fig. 419b)]. The notations are the same as in Fig. 8. taking the atomic wave functions are found to be higher than

0.8

<
=2}

<
'S
T

Density of States (states/eV/atom)

Energy (eV)
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which give the values as 480 and 422 chmrespectively.

The experimental transverse optic-phonon frequency at
point in bulk Siis 517 cm?, which is the same as the dimer
frequency. While comparing frequencies from different the-
oretical models with the experiment for the bulk Si, we find
that the models of Lenoskgt al, Kwon et al, and Menon

and Subbaswamy estimated the frequences as 519, 716, and
586 cm !, respectively, for the bulk. The higher frequency
in the model of Kwonet al. arises due to the steep slope of
the potential at the equilibrium diamond bond length, which
is a measure of the bond stretching force constant. In the case
of a dimer the force constant in the model of Kwenal. is
higher than that of Lenoskgt al. This shows that the pre-
diction of Menon and Subbaswa#ly’about the inability of

the orthogonal tight-binding scheme, in estimating the vibra-

5 2 5 3 0 12 12 16 B8 20 tional frequency, is not correct.
Cluster Size (N)

=]
T

(=]
T

IS

Average Polarizability Per Atom {Ang. a)

n

IV. CONCLUSIONS
FIG. 10. Polarizabilities for Si clusters up kb= 19 in the mod-

els of Refs. 3gsolid line) and 36(dashed ling The polarizabilities In the present work we have compared two different or-
shown above and below are calculated using atomic wave functior§0gonal tight-binding schemes for optimization of structure
[Eq.(19)] and adiagonal ansatfEq. (21)], respectively. The dotted and properties of small Si clusters. The model with a short-
line corresponds to the pseudopotential method up4e10. The  range radial form of the matrix elements and repulsive po-
polarizabilities for Sjg in the cagelike structure in the models of tential, presented by Kwoet al. overestimated, the cohesive
Refs. 38 and 36 are denoted by the filled circle and the trianglegnergies and bond lengths. On the other hand, the method of
respectively. The polarizability of the crystalline Si (3.78)Ais  Lenoskyet al,, where the matrix elements and repulsive po-
shown by a horizontal line. tential were calculated taking a radial cutoff up to fourth-
neighbor distance in the diamond structure, correctly de-
those evaluated in the diagonal ansatz, as shown in Fig. 1§C"I°ed cohesive energies and bond lengths. This was also
Since our calculation includes the position vectors of thesUPPOrted by a nonorthogonal tight-binding scheme where a

atoms in the wave functions, the calculated polarizabiIitiescum]cf of 53'05 A was found to prlng about a good convergence
are smaller than those estimated by Ranedlal*2 In results?® While we establish that the orthogonal tight-

The experimental data of Sdea et al*! show that the binding method needs a large cutoff distance to estimate co-
polarizabilities in general should stay below the bulk limit "€SIVe ener:g|es a?d. br?ng 'fj'f‘gths ﬁccura(tjely Itis knowg that
and oscillate for cluster sizes. Our calculation shows that th[ahe nonorthogonal tight-binding scheme does not need any

polarizability increases with cluster size and stays somewhas[UCh §h0r't cutoff distanc®: It is further evident from the
above the bulk limit. Investigation that yet another drawback of the orthogonal

Finally we calculate the vibrational frequency of the SCNEMe in its present form is that it predicts a lower HOMO-
dimer to test the accuracy of our calculations against othelrUMO. gap for small Si clusters, whlc_h_ra|ses .dOUth about
calculations and experiment. This is further necessitateg:e su|tab|!|ty of thg method for describing gxgted states. In
since doubts were raised about the capacity of the orthogon i€ future it 1S requllreq that one furt.her opt|m|z¢ the param-
tight-binding method in predicting the vibrational frequen- eters of the t|ght-b|nd|ng model to include excited states in
cies of clusterg’ Our calculations, using the models of Le- Order to determine the gap energies accurately.
nosky et al. and Kwonet al, give the values of these fre-
quencies as 414 and 523ch respectively. The
experimental vibrational frequentyis 517 cm*. Our cal- One of us(B.K.P.), acknowledges the financial support of
culations agree well with the gradient-corrected LCAO-the Indo-French cluster project No. 1508-4 to carry out this
LSDA (Ref. 9 and nonorthogonal tight-binding methotfs, work.
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