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Orthogonal tight-binding molecular-dynamics simulations of silicon clusters
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Orthogonal tight-binding molecular-dynamics methods are employed for describing small silicon clusters.
Results obtained from the calculations of two different sets of tight-binding parameters are compared with one
another and with those previously calculated using nonorthogonal tight-binding schemes andab initio methods.
Comparing the resulting cohesive energies and bond lengths, it is concluded that the orthogonal tight-binding
matrix elements and repulsive potentials need to include the radial cutoff up to fourth-neighbor distance in
diamond structure in order to reproduceab initio results.
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I. INTRODUCTION

It is hoped that in the future miniaturization of semico
ductor microelectronics devices will be achieved us
cluster-assembled semiconductors which are expecte
have different properties than those of bulk semiconduct
Understanding the structure and properties of Si clusters
great interest, as it is an important material in the microel
tronics industry. Since there is no systematic experime
method to extract the equilibrium geometry of small Si clu
ters, a molecular-dynamics simulation has been used to
timize geometries of small Si clusters. The frequencies of
vibrational modes of these small clusters, measured rece
using the Raman scattering technique, were compared
first-principles calculations in order to identify the stable g
ometries of clusters in an indirect manner.1,2 Unfortunately,
Raman spectroscopy measurements are available for Si
ters containing only up to seven atoms. Ion mobility me
surements, on the other hand, are available to provide in
mation about the shape of Si clusters containing m
atoms.3

The molecular dynamics of small Si clusters require a
quantum-mechanical description due to the strong directio
character of the covalent bonds. The first-principles Hartr
Fock method with correlation corrections was reasona
successful in describing small clusters.5–8 Fournier et al.9

used a linear combination of atomic orbitals with local-sp
density approximation~LCAO-LSDA! method to calculate
structures of small Si clusters up to eight atoms. Since
local-density approximation~LDA ! overbinds the atoms in a
cluster, Fournieret al. included a generalized gradient a
proximation~GGA! method of Perdew and Wang10 to esti-
mate accurate cohesive energies and bond lengths in
LCAO scheme. Since it is a spin-polarized method, b
singlet and triplet states of the clusters are reproduced.

The Car-Parrinello method within the local-density a
proximation ~CP-LDA! method is the most ideal techniqu
for studying semiconductor clusters.11 In this method the
density-functional theory is combined with the molecula
dynamics method to minimize both the electronic and io
degrees of freedom. The cohesive energies and equilibr
structures of small Si clusters were successfully underst
using this scheme.12–16 Very recently, this method was em
0163-1829/2001/63~4!/045404~15!/$15.00 63 0454
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ployed to study the equilibrium structures of medium-siz
Si clusters up toN518 atoms.17,18

Although ab initio methods provide accurate electron
information, the one-electron picture of bonding in the
methods requires vast computational time in order to o
mize large clusters. The interatomic potential, on the ot
hand, is short ranged, and therefore is very efficient for
molecular-dynamics simulation studies. The Lennard-Jo
two-body potential has been attractive for the study of no
gas19 and simple metal clusters.20 However, this model is
unsuitable for understanding covalent systems with tetra
dral coordination. Classical potential models were applied
the study of small Si clusters.21,22 Further, this model is not
accurate in predicting the equilibrium structure of clusters
it does not include electronic effects such asp bonding,
which becomes increasingly important for small cluste
The other reason for the failure of this model is that clust
are rather weakly bound in classical model compared
quantum-mechanical calculations, due to the reduced num
of neighbors included in the model.

Semiempirical tight-binding models in the two-cent
approximation23 are popular for electronic structure calcul
tions which are not possible in classical models. Unlike
CP-LDA method, where a large number of plane waves
taken into consideration to obtain the desired convergenc
the results, tight-binding methods in Si require a minim
(s,p) basis set consisting of ones orbital and a set of three
rotationally relatedp orbitals for each atom in order to de
scribe bonding. Four bonding electrons are distribu
among these orbitals. Occupation of thes andp orbitals by
an electron requires on-site energiesEs and Ep . The two-
center approximation of the tight-binding theory takes t
pairwise coupling of the orbitals of nearby atoms to descr
bonding. Orbitals of the neighboring atoms couple accord
to the interatomic distance and their rotational symme
The interaction between a pair of atoms in the nonorthogo
tight-binding scheme is described by four sets of Slat
Koster matrix elements24 Vsss , Vsps , Vpps , andVppp , and
the overlap integralsSsss , Ssps , Spps andSppp due to sym-
metry. In the orthogonal tight-binding scheme the orthog
nalized atomic orbitals result in unity for the overlap int
grals, which simplifies the calculations. The repulsi
potential of atoms as they are brought together is assume
©2001 The American Physical Society04-1
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depend only upon the positions of the atoms, thus expres
it in a pairwise form. Since the electronic degrees of freed
are not explicitly included in the molecular-dynamics sim
lation, large time steps can be safely used. Moreover,
method works faster than theab initio methods, as it mini-
mizes only the atomic degrees of freedom.

Tománek and Schlu¨ter used density-functional and em
pirical tight-binding schemes to calculate electronic struct
of small Si clusters.25 Laasonen and Nieminen26 employed
the Car-Parrinello method in the empirical orthogonal tig
binding scheme for calculating cohesive energies and ge
etries of small clusters uptoN510. In both methods the
interparticle repulsive potential is obtained from the diffe
ence of the interparticle dependence of the energy of th
dimer and the tight-binding energy. In order to obtain re
sonable agreement with theab initio values of cohesive en
ergies, a coordination-dependent bond correction ene
term is taken in these calculations. The matrix elements
terminated between first- and second-neighbor distances.
geometries of relatively large clusters in these methods
not agree with those predicted by accurateab initio
calculations.8

Nonorthogonal tight-binding molecular-dynamics tec
niques,27–30 on the other hand, have been found to optim
geometries of small clusters in good agreement with theab
initio techniques.8,9 The correction to the energy due to th
bond counting term is not necessary in the binding ene
and force calculations. The advantage of this method ove
orthogonal scheme is that this method does not require
cutoff distance for the matrix elements and overlap integr
The vibrational frequency analysis in small clusters h
shown that the tight-binding scheme without nonorthogon
ity cannot reproduce theab initio results.

In terms of computational cost, the semiempirical o
thogonal tight-binding method is found to be the most e
cient, as the inclusion of the nonorthogonality makes
calculation of energies and forces slower. The only import
task in the orthogonal method is to make Slater-Koster m
trix elements transferable by a suitable method. In an e
approach, Harrison23 and Chadi31 used the 1/d2 dependence
of tight-binding hopping matrix elements with a bond leng
d. Mercer and Chou32 fitted tight-binding parameters toab
initio band structures based on a norm-conserving pseud
tential method, and found that a simple 1/d2 scaling is not
correct for transferability. Since the inclusion of the seco
neighbor in the calculations gives incorrect results, Goodw
Skinner, and Pettifor~GPS!33 and Sawada34 presented inde-
pendent schemes where the tight-binding matrix eleme
and the pairwise repulsive potentials are smoothly termina
by attenuation functions between the first and second ne
bors, so as to avoid discontinuity in the potential. Kohyam35

showed that the method of Sawada is superior to that of G
for describing the binding energies and equilibrium volum
of various coordinated structures in Si. Kwonet al.36 over-
came the shortcomings of the GPS model by fitting e
matrix element in the GPS model, and produced bulk a
defect properties of Si in good agreement with theab initio
methods and experiment. The pair repulsive potential is
tained in the embedded atom model.37 Lenoskyet al.38 ob-
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tained the matrix elements and pair repulsive potential
cubic splines with a 5.24-Å fixed radial cutoff distanc
which is the fourth-neighbor distance in diamond structu
Using the force matching method,39 the spline parameter
have been fitted to simultaneously optimize agreement w
ab initio force and energy data on clusters, liquids, a
amorphous systems, as well as experimental elastic c
stants, phonon frequencies, and Gru¨neisen parameter values
The orthogonal tight-binding matrix elements and the p
repulsive potentials obtained by this method are claimed
be the best among all previous works.

The orthogonal tight-binding model of Sawada and K
hyama have been combined with the fractional bond mo
of Luo et al.40 in order to optimize geometries of Si cluste
up to N510. The cohesive energies and equilibrium geo
etries obtained in this method agree very well withab initio
results up toN57 clusters. The results for clusters (N.7)
do not compare well with theab initio results. We therefore
feel it necessary to test the validity of the other orthogo
models by Kwonet al. and Lenoskyet al. for optimization
of cluster geometries uptoN519 before entirely rejecting
the semiempirical orthogonal methods for small Si clus
simulations. The second motivation is to verify the conc
sion of the nonorthogonal tight-binding schemes27,28 about
the incorrectness of the orthogonal tight-binding scheme
estimating the vibrational frequency of the dimer. We a
encouraged to follow these two orthogonal tight-bindi
models, as these models have already been successful i
derstanding small Si clusters up toN55.

A recent experimental determination of the static polar
abilities for a SiN (N>9) cluster in beam deflection under a
electric field41 indicates pronounced oscillations with th
cluster size. For large clusters (60,N,120) the polarizabil-
ities reach values below the bulk limit. The orthogonal tigh
binding calculations using the Harrison scaling scheme
Rantalaet al.42 resulted in large polarizabilities compared
the experimental data. The calculated polarizabilities
small clusters (2<N<10) in the pseudopotential method o
Vasiliev et al.15 are higher than the bulk limit, and tend t
reach above the bulk limit for large clusters. Since our tig
binding scheme is superior to that of Rantalaet al., it is
worth applying our method for estimating polarizabilities f
Si clusters.

The paper is organized as follows. The method for cal
lating the equilibrium geometries and static polarizabiliti
for Si clusters will be discussed in Sec. II. The calculat
electronic and chemical properties will be discussed in S
III, and we give future directions in Sec. IV.

II. METHOD OF CALCULATIONS

A. Tight-binding molecular dynamics

The tight-binding energy governing atomic motions
given by

E5(
i 51

N pi
2

2M
12(

n

occ.

^uCnuHuCn&1Erep , ~1!
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ORTHOGONAL TIGHT-BINDING MOLECULAR-DYNAMICS . . . PHYSICAL REVIEW B 63 045404
whereCn(r ) is the electronic wavefunction fornth level of
the eigenstate. The first term is the kinetic energy of
atoms with massM. The second term is the electronic ener
obtained by summing the lowest eigenvalues of the tig
binding HamiltonianH. Two electrons are assigned to ea
eigenstate to account for the spin. The third termErep rep-
resents the combined repulsive energy and the energy
quired for correcting the double counting of the electro
electron interaction of the second term. TheCn(r ) of a
collection of atoms as a linear combination of orthogonaliz
basis functions fn(r ), in the minimum basis set (n
5s,px ,py ,pz), is expanded as

Cn~r !5(
n i

Cn i
n fn~r2Ri !, ~2!

whereRi denotes the position of thei th atom. The eigenval-
ues are obtained from the Schro¨dinger equation as

(
nm,i j

@Hnm~r i j !2dmnd i j En#Cn i
n 50, ~3!

where r i j 5Ri2Rj . The tight-binding matrix elements ar
obtained from the two-center hopping integral:

Hnm~r i j !5E fn* ~r2Ri !Hfm~r2Rj !d
3r . ~4!

Following the Slater-Koster method,24 the matrix elements in
Eq. ~3! are expressed as

Hss5Vsss~r i j !

Hsx52Hxs5 l i j Vsps~r i j !

Hxx5 l i j
2 Vpps~r i j !1~12 l i j

2 !Vppp~r i j !

Hxy5Hyx5 l i j mi j Vpps~r i j !2 l i j mi j Vppp~r i j !, ~5!

wherel i j andmi j are the directional cosines.
The transferable matrix elementsVsss(r ), Vsps(r ),

Vpps(r ), and Vppp(r ), as given by the models of Kwon
et al.36 and Lenoskyet al.,38 are shown in Fig. 1. It is quite
clear that potentials in the model by Kwonet al. decay
monotonically, whereas those in the model of Lenoskyet al.
are highly nonlinear in nature. As discussed earlier, the
trix elements in the model of Kwonet al. are seen to go
smoothly to zero between first and second neighb
whereas those for the model of Lenoskyet al. are extended
to fall smoothly between the third and fourth neighbors. L
nosky et al. pointed out that a long cutoff of 5.24 Å i
needed in order to place the clathrate structure higher in
ergy than the diamond structure, whereas the small cuto
the potentials of Kwonet al. shows a clathrate structur
lower in energy than the diamond structure. The lower lim
of the extent of the potentials in the model of Lenoskyet al.
is fixed at 1.5 Å as the potential is very strong below th
limit. In reality the potentials should saturate, and approac
constant value at short distances. However, such adjustm
lead to unphysically small values of the Gru¨neisen param-
eters. Unlike the model of Kwonet al. Vsss(r ) in the model
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of Lenosky et al. changes sign between first and seco
neighbors, and shows a fairly large and positive hump
4 Å. Similarly Vsps in the model of Lenoskyet al. changes
sign between second and third neighbors and has a l
hump at 2 Å. AlthoughVpps(r ) andVppp(r ) in the model of
Lenoskyet al. preserve their sign as in the model of Kwo
et al., there are many structures present in these data.
electronic energy in the model of Kwonet al. is found to be
larger than that in the model of Lenoskyet al.

The repulsive potentialErep in the method of Kwon
et al.36 is given by

Erep5(
i

f F(
j

F~r i j !G , ~6!

where in general the functionf (x) in the embedded-atom
approach is expressed as

f ~x!5C1x1C2x21C3x31C4x4. ~7!

In the model of Lenoskyet al. the cubic splines are take
without any functional form. Therefore, it corresponds to t
caseC151, C25C35C450. The interparticle pair repul-
sive potential is shown in Fig. 2. We find that the pair p
tential appears to grow monotonically as the interparti
separation decreases. The potential used by Kwonet al. is
more strongly repulsive in the short interparticle separat
compared to that of Lenoskyet al. and it also decays quite
fast in the first-neighbor region. The potential of Lenos
et al. goes smoothly to zero between third and fourth neig
bors, while that of Kwonet al. falls to zero between first and
second neighbors. The repulsive energyErep , calculated us-
ing the embedded energy functionalf (x) in the model of
Kwon et al., is found to be stronger than that of Lenosk
et al. However,Erep in both models is found to be insens
tive to to details of the cluster geometry.

The force acting on thei th ion is expressed as

FIG. 1. Matrix elementsVsss(r ), Vsps(r ), Vpps(r ), and
Vppp(r ) in the orthogonal tight-binding models of Refs. 38~solid
line! and 36~long-dashed line!. The short vertical lines in the zero
y axis correspond to the first four neighbor shells in the diamo
structure.
4-3
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Fi522(
n

^Cnu
]H

]Ri
uCn&2

]Erep

]Ri
. ~8!

The first term is the Hellman-Feynman contribution to t
total force evaluated from the derivatives of the matrix e
ments of the tight-binding HamiltonianH. The second term
is the short-ranged repulsive force.

Following the classical description of Newton’s law th
atomic positions are determined by

M
d2Ri

dt2
5Fi , ~9!

whereM is the atomic mass. The solution of Eq.~9!, in the
velocity Verlet molecular dynamics method43 for updating
atomic coordinates, is given by

Ri~ t1dt !5Ri~ t !1vi~ t !dt1
1

2M
Fi~ t !~dt !2, ~10!

where the velocityvi of i th atom att1dt is calculated from
Fi at t and t1dt as

vi~ t1dt !5vi~ t !1
1

2M
@Fi~ t !1Fi~ t1dt !#dt. ~11!

For molecular-dynamics studies the simulated annea
scheme is a generalized minimization procedure for findin
global minimum. There are various schemes to carry
simulated annealing studies.26,44,45In our case we have use
the simple quenching and annealing method as prescribe
Ordejón et al.28 In this method the atomic velocities are s
to zero whenever the intrinsic temperature exceeds the g
temperature. This procedure like all other simulated ann
ing methods does not lead to the global minimization,
resulted in a metastable state. For this purpose we have
sen different plausible configurations for the initial atom

FIG. 2. Repulsive pair potential in the orthogonal tight bindi
models of Refs. 38~solid line! and 36~long-dashed line!. The short
vertical lines in the zeroy axis correspond to the first four neighbo
shells in the diamond structure.
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positions Ri . For large clusters the initial geometries a
taken from theab initio works.8,9

B. Calculation of static polarizability

The equilibrium geometries of small Si clusters are th
used to calculate their static polarizabilities and dipole m
ments. We have used the perturbation method to evaluate
electronic energiesE(F) in the presence of an electric fiel
of strengthF. The tensor components of the static polar
ability (akk8) are calculated as15,46

akk852
]2E~F!

]Fk]Fk8

, ~12!

wherek,k85$x,y,z%. The kth component of the dipole mo
mentpk is calculated from the total energy as

pk5
]E~F!

]Fk
. ~13!

In second-order perturbation theory,47 the total energy at the
field strengthF is given by

E~F!5E01e(
n

all

^CnuF•r uCn&

12e2(
n

occ.

(
m

unocc. u^CnuF•r uCm&u2

En2Em
, ~14!

wheree is the electronic charge andE0 is the ground-state
electronic energy atF50. Using Eqs.~12!, ~13!, and~14! the
dipole moment per atom in the directionk is derived as

pk5
e

N (
n

all

^Cnur kuCn&. ~15!

Similarly the polarizability componentakk8 per atom is
found as

akk852
4e2

N (
n

occ.

(
m

unocc.
^Cnur kuCm&^Cmur k8uCn&

En2Em
.

~16!

Using the atomic wave functions@Eq. ~2!# in Eq. ~15!, the
dipole moment per atom is derived as

pk5
e

N (
n

all

(
n i

(
m j

Cn i
n * Cm j

n Dn i ,m j
k , ~17!

whereDn i ,m j
k may be defined as

Dn i ,m j
k 5E Fn* ~r2Ri !r kFm~r2Rj !d

3r . ~18!

Similarly the components of the polarizability are derived
4-4
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akk852
4e2

N (
n

occ.

(
m

unocc.

(
n i

(
m j

(
j i 8

(
z j 8

Cn i
n * Cm j

m Cj i 8
m * Cz j 8

n

3Dn i ,m j
k Dj i 8,z j 8

k8 /~En2Em!. ~19!

It is worth pointing out that Rantalaet al.42 in their calcula-
tions did not include position vectors in the atomic wa
functions. In reality we have no access to the atomic obi
in the orthogonal tight-binding model which are needed
compute Eqs.~17! and ~19!. In the present work we hav
taken thes andp wave functions from a separate free ato
method. The exact method of calculation for the dipole m
ment and polarizability in the orthogonal tight-bindin
method should be based on the diagonal ansatz where
position operator is assumed to be diagonal in the tight b
ing representation, with elements reflecting the coordina
of the atoms. In this approach the dipole moment is deri
as

pk5
e

N (
n

all

(
nk

Cnk
n * Cnk

n Rk . ~20!

The polarizability per atom is found as

akk852
4e2

N (
n

occ.

(
m

unocc.

(
nk

(
mk8

Cnk
n * Cnk

m Cmk8
m * Cmk8

n

3RkRk8 /~En2Em!. ~21!

The average polarizability which is usually compared w
the experiment is calculated from the diagonal compone
as

^a&5 1
3 ~axx1ayy1azz!. ~22!

III. RESULTS AND DISCUSSIONS

The TBMD code of Colombo48 is suitably modified for
carrying out calculations for small clusters. We have co
pared results obtained in the models of orthogonal tig
binding schemes with the latest nonorthogonal scheme
Menon and Subbaswamy30 and gradient corrected LCAO
LSDA results of Fournieret al.9 Hobday et al.49 presented
structures of small Si clusters up toN514 atoms using a
genetic algorithm. However, geometries in this calculat
are not accurate compared toab initio results for large clus-
ters and the cohesive energies and bond lengths are no
ported for comparison. We have also not considered clus
beyondN519 since, starting from Si19, there is a known
discrepancy between the CP-LDA theory18 and mobility
measurements3,4 about the transition of the prolate structur
to compact cagelike structures.

The most important contribution of the model of Lenos
et al. over other tight-binding schemes is to assign zero
ergy to the isolated atom as in theab initio methods. The
energies of the isolated atom in the orthogonal tight bind
scheme of Kwonet al.36 and the nonorthogonal scheme
Menon and Subbaswamy30 are 20.63 and21 eV, respec-
tively. Lenoskyet al. attributed equal and opposite value
5.670225 eV to the on-site matrix elementsEs and Ep in
04540
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order to assign zero value to the cohesive energy of the
lated atom. The high magnitudeEs2Ep5211.340450 eV
compared to the other tight-binding schemes is due to
large cutoff distance taken for fitting matrix elements. T
time stepdt in this calculation is taken to be 1 fsec, and t
total time for molecular dynamics simulation is taken to
15 psec.

The cohesive energies for SiN clusters uptoN519 calcu-
lated using different methods are reported in Fig. 3. T
cohesive energy in the CP-LDA method18,17 approaches tha
of the bulk semiconductor for medium-sized clusters. R
makrishna and Bahel14 pointed out that the higher cohesiv
energy results from the overbinding of atoms due to the LD
scheme, which can be rectified by a GGA method. The
thogonal tight binding scheme of Lenoskyet al. predicted
low cohesive energies for all clusters. This is expected on
physical grounds that the surface to volume ratio in sm
and medium sized clusters is rather large; as a conseque
the cluster cohesive energies will necessarily be smaller t
the respective bulk values. On the other hand, the cohe
energies calculated in the orthogonal tight-bind model
Kwon et al.36 agree with those in the Hartree-Fock calcu
tions for Si clusters up toN510. The nonorthogonal tight
binding scheme of Menon and Subbaswamy30 found cohe-
sive energies similar to that of the Hartree-Fock7 results by a
constant shift of 1.1 eV. This could be assigned to the ze
point energy of the isolated atom which is 1 eV.38 For the
Si19 cluster we have calculated cohesive energies for both
prolate and cagelike structures given by Hoet al.17 The re-
sults are shown in Table I. We find that the orthogonal tig
binding scheme of Lenoskyet al. predicted a cagelike struc
ture for Si19, which agrees with the CP-LDA method. Th

FIG. 3. Cohesive energies of Si clusters in the orthogonal ti
binding models of Ref. 38~solid line!, the orthogonal tight binding
method of Ref. 36~long-dashed line!, the CP-LDA ~Refs. 18 and
17! ~dashed line!, the nonorthogonal tight-binding method of Re
30 ~dotted line!, and the gradient-corrected LCAO-LSDA~Ref. 9!
~dot-dashed line! method. The cohesive energies for the cagel
structure of the Si19 cluster in the methods of Lenoskyet al., Kwon
et al., and the CP-LDA method are represented by the filled circ
the filled triangle, and the inverted filled triangle, respectively.
4-5



te

S
al

t
lc
ry
s
th

e
on

1
al
in

s
o
iv
o

eV
u
on

u-
f

in
w
e
r
s-
e
th
e

re
ca

e
ith
f
or

let
on

e-
let

ter-
opy

u-
l-
n-

e-

ter.
ster

l-
nal
e-
re-

w-
d
l-

id
ical
tate
c-
ata

ted
ed
nt

ur
it

nal

is

A
the
he
the

l
port

ith
d

ted

on

ll-

o
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model of Kwonet al., on the other hand, found the prola
structure to be more stable than the cagelike structure.

The bond lengths for Si clusters up toN518 are reported
in Table II. The experimental cohesive energy for the
dimer is 1.65 eV/atom.50 Both orthogonal and nonorthogon
methods show similar cohesive energies and agree with
experiment. On the other hand, the cohesive energy ca
lated in the gradient corrected LCAO-LSDA method is ve
high. This method predicts that the spin-triplet state ha
higher cohesive energy than the spin-singlet state. In
present spin-unpolarized calculation, the spin-singlet stat
the dimer has a lower cohesive energy. It is worth menti
ing that the orthogonal tight-binding schemes of Toma´nek
and Schlu¨ter,25 Laasonen and Nieminen,26 and Mercer and
Chou32 found the cohesive energies to be 1.54, 1.5, and
eV/atom, respectively, which are similar to our reported v
ues. In spite of the dimer being in the singlet state and hav
lower cohesive energy in the model of Lenoskyet al., the
bond length calculated in this method is exactly same a
the gradient corrected LCAO-LSDA method. The model
Kwon et al. gave longer bond lengths due to lower cohes
energy as calculated in this method. The earlier Hartree-F
calculations of Raghavachari and Logovinsky5 for the singlet
state of the dimer resulted a cohesive energy of 1.58
atom, a bond length to be 2.23 Å, which are similar to o
values reported here. The experimentally determined b
length52 of the Si dimer is is 2.24 Å.

The configurations of the Si clusters forN53 –19 are
shown in Fig. 4. The gradient corrected LCAO-LSDA calc
lation showed that Si3 is an equilateral triangle with sides o
length 2.27 Å. Its ground state is a spin triplet withD3h
symmetry. On the other hand, the orthogonal tight-bind
schemes predict the structure to be an isoceles triangle
C2v symmetry. TheD3h symmetry is associated with th
spin-triplet state, whereas theC2v symmetry is a Jahn-Telle
distortion of theD3h symmetry. The singlet state of this clu
ter in the LCAO-LSDA method was been predicted to hav
larger apex angle than that found in our calculations. On
other hand, the nonorthogonal tight-binding schem28

showed that the structure of the Si3 cluster is an isoceles
triangle with bond length and apex angle similar to our
sults. Our results also agree with the earlier singlet state
culations of the three atom cluster in theab initio Hartree-
Fock method.5 The experimental value of the cohesiv
energy51 for this cluster is 2.51 eV/atom, which matches w
the results of Kwonet al., and is slightly higher than that o
Lenoskyet al. We therefore believe that our calculation f

TABLE I. Cohesive energy per atom of Si19 cluster in cagelike
and prolate structures. The results are obtained using the orthog
tight binding models of Refs. 38~Orthogonal 1! and 36~Orthogo-
nal 2!, and the Car-Parrinello local-density approximation~CP-
LDA ! ~Ref. 17!.

Orthogonal 1 Orthogonal 2 CP-LDA
N ~eV/N! ~eV/N! ~eV/N!

19a 3.76 3.79 4.503
19b 3.74 3.98 4.481
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both the dimer and trimer lie between the singlet and trip
states. The bond lengths calculated in the model of Kw
et al. are longer compared to other methods.

The gradient corrected LCAO-LSDA calculation pr
dicted the four-atom cluster to be a rhombus in the sing
state with four bond lengths at 2.32 Å and the shortest in
atomic bridge distance 2.40 Å. Recent Raman spectrosc
measurements2,1 support this structure. However, our calc
lation agrees with the triplet state of the LCAO-LSDA ca
culation which is also a rhombus with lower cohesive e
ergy. A nonorthogonal scheme28 also calculated the
geometry of this cluster in a triplet state. The model by L
noskyet al. is superior to the model of Kwonet al. for pre-
dicting the cohesive energy and bond lengths for this clus
The geometry suggests that the main bonding in this clu
is primarily governed byp bonds.

As predicted by the gradient corrected LCAO-LSDA ca
culations, the five-atom cluster is a singlet state with trigo
bipyramid structure. Our calculations also show similar g
ometry. The nonorthogonal tight-binding scheme also p
dicted results comparable to the LCAO-LSDA model. Ho
ever, the model of Lenoskyet al. found cohesive energy an
bond lengths in excellent agreement with LCAO-LSDA ca
culations better than those of Kwonet al.

The six-atom cluster in theab initio LCAO-LSDA
method is found to have both face-capped trigonal bipyram
and edge-capped trigonal bipyramid structures with ident
binding energies. These two structures are in the singlet s
with C2v symmetry. It is hard to distinguish these two stru
tures theoretically. Experimental Raman spectroscopy d2

suggest the tetragonal bipyramid structure withD4h symme-
try which is not a stable structure in the gradient correc
LCAO-LSDA method. We have reported a face-capp
trigonal bipyramid structure which is in excellent agreeme
with the LCAO-LSDA method. We have not compared o
results with the nonorthogonal tight-binding scheme, as
has reported bond lengths only for the edge-capped trigo
bipyramid structure.52

The minimum energy of the seven atom Si cluster
found to be a pentagonal bipyramid withD5h symmetry. The
cohesive energy calculated by the model of Lenoskyet al. is
in good agreement with the gradient corrected LCAO-LSD
method. The two axial atoms are highly compressed in
gradient-corrected LCAO-LSDA method compared to t
Si6 cluster. The distances between two axial atoms in
models of Lenoskyet al. and Kwonet al. are similar to non-
orthogonal calculations28 and previous orthogona
calculations.25,26 Raman spectroscopy measurements sup
the gradient-corrected LCAO-LSDA results.

The Si8 cluster is a distorted bicapped octahedron w
C2h symmetry. We find both binding energy and bon
lengths to be in good agreement with gradient-correc
LCAO-LSDA, nonorthogonal, and CP-LDA methods.

For the Si9 cluster we find that the tricapped octahedr
structure predicted by the previousab initio Hartree-Fock,8

nonorthogonal,28 and orthogonal tight-binding25,26 schemes
is not the lowest minimum structure. Both CP-LDA and fu
potential linear-muffin-tin-orbital ~FP-LMTO! methods53

found it to be a bicapped pentagonal structure withC2v sym-

nal
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TABLE II. Equilibrium geometries for silicon clusters forN52 –18. The atoms are numbered as in F
4. The references to different models are the same as in Table I.

Orthogonal 1 Orthogonal 2 Nonorthogonal Ab initio
N Structure Bond (Å) (Å) (Å) (Å)

2 1-2 2.28 2.45 2.24 2.28

3 C2v 1-2 2.28 2.42 2.24 2.18
1-3 2.73 2.89 2.80 2.84
u 73.7° 73.3° 77.4° 81.3°

4 D2h 1-2 2.57 2.57 2.52 2.53
1-3 2.33 2.49 2.34 2.27
3-4 3.90 4.24 3.94 3.78

5 D3h 1-2 3.20 3.52 3.26 3.05
1-3 2.36 2.49 2.34 2.30
3-4 2.94 2.74 2.78 2.98

6 C2v 1-2 3.00 2.74 2.68
1-3 2.38 2.54 2.35
1-5 2.44 2.59 2.39
3-5 2.52 2.64 2.71
5-6 2.42 2.44 2.49

7 D5h 1-2 2.88 2.78 2.80 2.51
3-4 2.38 2.56 2.48 2.49
1-3 2.51 2.58 2.47 2.46
3-5 3.86 4.13 4.03

8 C2h 1-2 2.67 2.64 2.48
1-4 3.22 3.40 2.80
1-5 2.38 2.53 2.40
1-7 2.30 2.43 2.27
2-3 3.03 2.90 2.88
2-5 2.47 2.63 2.77
2-6 3.89 3.91 4.00
4-6 2.67 2.64 2.60 2.52
5-6 3.03 2.90 4.00 3.14
2-4 2.38 2.54 2.41 2.23
4-8 2.30 2.43 2.52 2.53

9 C2v 1-4 2.46 2.55 2.43
2-3 2.88 2.72 2.53
2-8 2.36 2.50 2.36
6-7 3.18 3.06 2.85
1-6 2.38 2.54 2.38
6-8 2.34 2.57 2.37
4-5 3.70 4.04 3.95

10 C3v 1-2 3.06 2.89 2.91 2.75
1-9 2.45 2.63 2.61 2.55
5-9 2.47 2.60 2.56 2.54
1-10 2.35 2.53 2.43 2.35
1-3 2.38 2.52 2.49 3.45
3-9 2.47 2.57 2.55 2.54
045404-7
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TABLE II. ~Continued!.

Orthogonal 1 Orthogonal 2 Nonorthogonal Ab initio
N Structure Bond (Å) (Å) (Å) (Å)

11 C3v 1-3 2.37 2.57
1-5 2.32 2.54
3-4 2.94 2.94
3-5 2.61 2.61
3-6 2.54 2.65
3-8 2.39 2.51
3-9 3.94 3.93
5-9 2.78 2.63
6-7 2.50 2.66
6-8 2.48 2.54
9-10 2.86 2.86

12 C2v 1-2 2.35 2.47
1-3 3.11 2.65
2-3 2.41 2.60
2-5 3.00 2.74
2-6 2.32 2.53
2-11 2.73 2.62
3-11 2.53 2.58
4-10 2.73 2.62
5-8 2.38 2.57
5-12 3.47 3.82
6-12 3.83 2.74
8-9 3.26 3.30
8-10 3.95 3.96
8-11 2.80 2.66
8-12 2.38 2.50
10-12 2.55 2.57

13 C1h 1-2 2.35 2.51
2-4 3.00 2.68
2-6 3.21 2.96
5-8 2.51 2.56
5-9 2.39 2.62
6-7 2.53 2.56
6-11 2.38 2.64
7-11 2.40 2.53
9-10 2.64 2.74
10-13 2.40 2.53

14 C1h 1-2 2.41 2.56
1-3 2.37 2.58
1-5 2.67 2.55
2-3 2.80 2.64
2-6 2.39 2.49
3-5 3.29 3.05
3-6 2.67 2.72
3-9 2.40 2.64
4-5 2.37 2.56
4-7 2.39 2.49
5-6 3.06 2.72
5-8 2.47 2.64
045404-8
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TABLE II. ~Continued!.

Orthogonal 1 Orthogonal 2 Nonorthogonal Ab initio
N Structure Bond (Å) (Å) (Å) (Å)

6-7 3.10 2.56
6-8 2.95 2.68
7-9 2.48 2.53
7-10 3.79 3.77
7-11 2.57 2.71
7-12 2.38 2.48
8-11 3.83 3.91
8-13 2.39 2.51
9-10 2.46 2.53
10-11 2.50 2.68
12-14 2.44 2.54

15 C3v 1-2 2.77 2.66
1-4 2.38 2.49
1-5 2.79 2.59
1-10 2.36 2.47
2-3 2.45 2.56
2-8 2.48 2.62
5-14 3.14 3.14
11-12 2.33 2.50
11-14 2.60 2.59
13-15 2.32 2.48

16 C2h 1-2 2.44 2.59
1-3 2.44 2.59
1-5 2.50 2.59
1-9 2.60 2.90
2-3 2.40 2.55
3-9 2.45 2.51
7-11 2.52 3.25
8-9 2.61 2.56
8-10 2.97 3.54
8-12 2.38 2.46
8-15 3.27 3.17
9-10 2.61 2.45
9-14 2.33 2.46
10-16 3.14 2.90
11-13 2.36 2.52
15-16 3.10 2.59

17 C3v 1-2 2.39 2.52
1-4 3.12 2.93
1-8 2.43 2.55
1-16 2.36 2.55
2-4 2.38 2.53
2-6 2.47 2.53
4-6 2.46 2.55
4-7 3.70 3.70
7-9 2.48 2.51
7-11 2.33 2.42
7-14 3.49 3.52
045404-9
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TABLE II. ~Continued!.

Orthogonal 1 Orthogonal 2 Nonorthogonal Ab initio
N Structure Bond (Å) (Å) (Å) (Å)

10-13 2.37 2.48
10-17 3.67 3.93
13-15 2.87 2.79
15-17 2.40 2.51

18 C3v 1-4 2.46 2.57
1-7 2.39 2.48
2-5 2.44 2.57
2-8 2.39 2.49
4-7 2.57 2.66
6-9 2.54 2.65
7-9 2.63 2.57
7-10 2.41 2.57
9-10 3.50 3.56
10-13 2.95 2.75
10-16 2.92 2.75
10-17 2.32 2.43
11-12 2.45 2.46
13-14 2.68 2.68
13-15 2.34 2.53
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metry. While the model of Lenoskyet al. agreed with this
structure, that for Kwonet al. had a distorted shape. On th
other hand, the cohesive energies in these two models
similar. The cohesive energies calculated in CP-LDA a
FP-LMTO methods are 4.197 and 4.70 eV, respective
which are higher than calculated in our orthogonal mod
As mentioned previously, the cohesive energy in the den
functional theory without GGA correction always give low
bond lengths and higher cohesive energy. However, the b
lengths calculated by us are in reasonable agreement with
FP-LMTO method.

For Si10 the calculated minimum energy structure is fou
to be a tetracapped trigonal prismatic (C3v). The cohesive
energy calculated in the model of Lenoskyet al. was very
small compared to other methods, while the model of Kw
et al. found cohesive energy in good agreement with
nonorthogonal28 and ab initio Hartree-Fock8 methods. The
bond lengths in the orthogonal tight-binding schemes ar
good agreement with those obtained in the nonorthogo
tight-binding schemes and theab initio results.

The calculated geometries for SiN clusters (N511–18) in
the orthogonal tight-binding methods agree with those gi
by Ho et al.18 obtained using CP-LDA theory. The main fe
ture of these clusters is that they are built on a structu
motif consisting of tricapped trigonal prism Si9 subunits. The
mobilities calculated for these prolate structures agree v
well with the experiment.18 The equilibrium structure for the
Si19 cluster is predicted to show a transition from a prola
structure to a cagelike structure in the CP-LDA calculation18

On the other hand, the mobility data for this cluster supp
the prolate structure.18 The equilibrium geometry of the Si19
cluster in the model of Lenoskyet al.also favored a cagelike
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structure, whereas the model of Kwonet al.supported a pro-
late structure. This clearly suggests that the model of
nosky et al. is a better method for cluster studies than t
model of Kwonet al. Although the contradiction of theory
with experiment a concerning the transition of the prola
structure from prolate to cagelike structure is not clear fr
the present calculations, several possibilities can be dr
from physical backgrounds. The entropic effect, which is
high temperature required to induce isomerization, does
allow the smaller cluster to become spherical in nature18

There could be another prolate structure which has a lo
cohesive energy than the present cagelike structure.
electron correlation has an important effect on the ove
stability of silicon cluster isomers.54 In order to circumvent
problems in density, functional methods, Mitaset al.54 took
the quantum Monte Carlo method to predict the true ene
ordering. However, quantum Monte Carlo calculations sh
that the probability of the formation of a cagelike structure
the experiment is very small. Mobility measurements sugg
that a structural transition from a prolate structure to a ca
like structure occurs atN524.

The fragmentation energy, which is the energy required
removing one Si atom from a Si cluster withN atoms, was
measured in fragmentation spectra.55–57 These experiments
showed that clusters with six, seven, and ten atoms shoul
most stable. The fragmentation energy is defined as

DE~N!5E~N21!2E~N!. ~23!

In Fig. 5 our results are compared with the previously cal
lated ab initio results based on the LCAO-LSDA and CP
LDA schemes. Our results, based on the model of Leno
4-10
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FIG. 4. Lowest-energy struc
tures of small silicon atom clus-
ters calculated using the orthogo
nal tight binding models of Ref.
38. The structures of the cluster
for the model of Ref. 36 are simi-
lar, but have different bond
lengths given in Table II. The at-
oms are numbered as in Table II
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et al., is in good agreement with the LCAO-LSDA calcula
tions. The model of Kwonet al.,36 the CP-LDA model,18 and
the nonorthogonal tight-binding model30 predict high magni-
tudes. The results of all calculations show that the clus
with four, six, and ten atoms are most stable. The orthogo
models of Lenoskyet al. and Kwonet al. predicted Si13 to
be a stable cluster, whereas a CP-LDA calculation shows
the Si15 cluster is more stable compared to Si13. Orthogonal
models as well as the CP-LDA calculation show Si17 to be
stable against fragmentation. At present we do not und
stand these differences.

In order to find general rules concerning the stability a
equilibrium structures of small silicon clusters, we have
04540
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vestigated the nature of the gap energy between the hig
occupied molecular orbital~HOMO! and lowest unoccupied
molecular orbital~LUMO!. The results are presented in Fi
6. We have compared results obtained from the models
Lenosky et al. and Kwon et al. with the ab initio results
given by LCAO-LSDA and CP-LDA methods. For two-atom
clusters the orthogonal tight-binding scheme predicts no
energy, while the LCAO-LSDA method predicts a high g
energy. Both empirical and density-functional-based tig
binding schemes of Toma´nek and Schlu¨ter also predicted a
zero gap energy for the dimer. The gap energies of the c
ters obtained in the model of Lenoskyet al. are found to be
small to other methods. Recently Mu¨ller et al.58 extracted
4-11
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gap energies from the photoelectron spectra, and found
the average value is around 1.5 eV and shows a slow
with cluster size. Clearly this gap energy is greater than
band gap in Si. On the other hand, a very recent experim
on Si clusters59 showed that the gap energies are smaller t
the band gap. In view of this experiment we find that the g

FIG. 5. Fragmentation energy in the methods of calculations
the orthogonal tight binding scheme of Ref. 38~solid line!, the
orthogonal tight-binding scheme of Ref. 36~long dashed line!, the
CP-LDA ~Refs. 18 and 17! ~dashed line! method, the nonorthogona
method of Ref. 30~dotted line! and the gradient corrected LCAO
LSDA ~Ref. 9! ~dot-dashed line! method for small silicon clusters
The cagelike structure of the Si19 cluster is not considered here.

FIG. 6. Gap energy between the highest occupied molec
orbital ~HOMO! and lowest unoccupied molecular orbital~LUMO!
in the methods of calculation of the orthogonal tight-bindi
scheme of Ref. 38~solid line!, the orthogonal tight-binding schem
of Ref. 36 ~long dashed line!, the CP-LDA scheme~Refs. 18 and
17! ~dashed line!, and the gradient-corrected LCAO-LSDA metho
~Ref. 9! ~dot-dashed line! for small silicon clusters. The filled circle
and triangle are the gap energies of the cagelike structure of the19

cluster in the models of Refs. 38 and 36, respectively.
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energies in the model of Lenoskyet al. are closer to the
experiment than other methods of calculations.

Recently Bernsteinet al.60 showed that a minimalsp3

representation is not sufficient in reproducing the conduct
bands and band gap in crystalline Si. In order to reprod
the conduction bands and band gap, it is required to incl
d orbitals in thesp3d5 representaion. In view of this, th
orthogonal tight-binding model of Lenoskyet al. needs fur-
ther improvement to calculate conduction bands accura
using asp3d5 basis.

For obtaining the electronic configuration in differe
clusters, we carried out the Mulliken population analy
shown in Fig. 7. The results show that the configuration up
N519 is nearlys2p2, although the model of Kwonet al. for
N518 predicted a slightly higherp population. The analysis
of Fournieret al.9 also showed that the electronic structure
Si clusters up toN58 is very close tos2p2 for the clusters.
Therefore, the clusters appear to have somewhat diffe
bondings compared to tetrahedral bonding withsp3 hybrid-
ization. From Fig. 4 we see that the bond angles are clos
60°, and are metallic in nature due to high coordination nu
bers, while in the semiconductor limit the bond angles
concentrated near 110°. The small gap energy correspon
the metallic nature of the cluster, while the large band ga
due to the semiconductor nature. Further, the gap energ
metals normally decreases with increasing cluster size du
the electronic level quantization in a cavity. From the calc
lated data of Figs. 6 and 7, it appears that clusters, with
exception of dimers, are mixed metallic and semiconduc
in nature. It is plausible that surface atoms tend to reduce
number of dangling bonds by taking close-packed structu
From Fig. 4 we find that clusters withN56 –12 take octa-
hedral structures, with sides decorated by caps in orde
stabilize the basic octahedral structure. The prolate struc
for SiN clusters (N513–18) has relatively small gap ene
gies. As expected the compact cagelike structure for Si19 in

f

ar

i

FIG. 7. Mulliken population analysis of thes and p electron
levels in silicon clusters. The solid and dashed lines correspon
the orthogonal tight-binding schemes of Refs. 38 and 36, res
tively. The filled circles and triangles correspond to the cagel
structure of Si19 in the models of Refs. 38 and 36.
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the models of Lenoskyet al. and Kwonet al. has a lower
gap energy than its corresponding prolate structure. Kax
estimated that the critical size of the cluster isN533 for the
transition of metallic to low coordination covalent bonding61

The partial density of states fors electrons,p electrons,
and total electrons for the cagelike structure of Si19 cluster is
shown in Fig. 8. We find that the lower-energy levels a
dominated by thes electrons, whereas the upper levels a
decided byp electrons. This is also observed in bulk sem
conductors, where the first and second bands ares like while
the sp3 hybridization is governed by the third and four
bands.62 The density of states for the Si19 cluster in the pro-
late structure is shown in Fig. 9. Compared to the cage
structure there are fewer features in this structure due to
closely spaced energy levels because of the prolate struc
As expected, the density of states in both these structure
not compare with that of the bulk.

The calculated dipole moments are shown in Table

FIG. 8. Density of states for the Si19 cluster in the cage structur
@Fig. 4~19a!#. The dashed line, dotted line, and solid line correspo
to thes electron, thep electron, and the total density of states.

FIG. 9. Density of states for the Si19 cluster in the prolate struc
ture @Fig. 4~19b!#. The notations are the same as in Fig. 8.
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The dipole moments calculated in both the orthogonal ti
binding methods by Lenoskyet al.and Kwonet al.are iden-
tical except for Si10. The orthogonal methods are expected
show some difference from theab initio method in predict-
ing the dipole moments because of the lack of bound
conditions on the atomic wave functions in a cluster enviro
ment. Nevertheless we find that our dipole moments for
clusters up toN510 are similar to those predicted by theab
initio pseudopotential method, where the electron wave fu
tions are calculated accurately.

The static polarizabilities of Si clusters calculated in t
orthogonal methods of Lenoskyet al. and Kwon et al. are
compared in Fig. 10 with those calculated in theab initio
pseudopotential method by Vasilievet al.15 The polarizabil-
ities calculated in the diagonal ansatz@Eqs.~21! and~22!# are
found to be smaller than those calculated in the pseudo
tential method.15,63With the assumption that the HOMO an
LUMO provide the major contribution to the polarizability
the polarizability is inversely related to the LUMO-HOMO
energy gap. Since the gap energies were higher in the m
of Kwon et al. than in the model of Lenoskyet al., the cal-
culated polarizabilities in the model of Lenoskyet al. were
higher than those in the model of Kwonet al. Nevertheless
both orthogonal tight-binding methods predicted simi
trends in polarizabilities. As discussed earlier, the exper
mental gap energies are very small compared to the ortho
nal tight-binding model, as a result of which the experime
tal polarizabilities are higher. The polarizabilities evaluat
taking the atomic wave functions are found to be higher th

TABLE III. Calculated dipole moments for Si clusters in th
orthogonal tight binding and pseudopotential~Ref. 15! methods.
The orthogonal tight binding method of Refs. 38~Orthogonal1! and
36 ~Orthogonal2! are reported.

Orthogonal1 Orthogonal2 Ab initio
N upu upu upu

~debye! ~debye! ~debye!

2 0 0 0
3 0.42 0.41 0.33
4 0 0 0
5 0 0 0
6 0.26 0.26 0.19
7 0 0 0
8 0 0 0
9 1.26 1.26 0.36
10 1.00 0.67 0.69
11 0.55 0.55
12 0 0
13 0.24 0.24
14 0 0
15 2.86 2.86
16 0 0
17 1.48 1.48
18 2.35 2.35
19a 1.60 1.60
19b 2.03 2.04

d
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those evaluated in the diagonal ansatz, as shown in Fig
Since our calculation includes the position vectors of
atoms in the wave functions, the calculated polarizabilit
are smaller than those estimated by Rantalaet al.42

The experimental data of Scha¨fer et al.41 show that the
polarizabilities in general should stay below the bulk lim
and oscillate for cluster sizes. Our calculation shows that
polarizability increases with cluster size and stays somew
above the bulk limit.

Finally we calculate the vibrational frequency of th
dimer to test the accuracy of our calculations against o
calculations and experiment. This is further necessita
since doubts were raised about the capacity of the orthog
tight-binding method in predicting the vibrational freque
cies of clusters.27 Our calculations, using the models of Le
nosky et al. and Kwonet al., give the values of these fre
quencies as 414 and 523 cm21, respectively. The
experimental vibrational frequency50 is 517 cm21. Our cal-
culations agree well with the gradient-corrected LCA
LSDA ~Ref. 9! and nonorthogonal tight-binding methods30

FIG. 10. Polarizabilities for Si clusters up toN519 in the mod-
els of Refs. 38~solid line! and 36~dashed line!. The polarizabilities
shown above and below are calculated using atomic wave funct
@Eq. ~19!# and adiagonal ansatz@Eq. ~21!#, respectively. The dotted
line corresponds to the pseudopotential method up toN510. The
polarizabilities for Si19 in the cagelike structure in the models
Refs. 38 and 36 are denoted by the filled circle and the trian
respectively. The polarizability of the crystalline Si (3.71 Å3) is
shown by a horizontal line.
O
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which give the values as 480 and 422 cm21, respectively.
The experimental transverse optic-phonon frequency aG
point in bulk Si is 517 cm21, which is the same as the dime
frequency. While comparing frequencies from different th
oretical models with the experiment for the bulk Si, we fin
that the models of Lenoskyet al., Kwon et al., and Menon
and Subbaswamy estimated the frequences as 519, 716
586 cm21, respectively, for the bulk. The higher frequenc
in the model of Kwonet al. arises due to the steep slope
the potential at the equilibrium diamond bond length, whi
is a measure of the bond stretching force constant. In the
of a dimer the force constant in the model of Kwonet al. is
higher than that of Lenoskyet al. This shows that the pre
diction of Menon and Subbaswamy29,30about the inability of
the orthogonal tight-binding scheme, in estimating the vib
tional frequency, is not correct.

IV. CONCLUSIONS

In the present work we have compared two different
thogonal tight-binding schemes for optimization of structu
and properties of small Si clusters. The model with a sho
range radial form of the matrix elements and repulsive
tential, presented by Kwonet al.overestimated, the cohesiv
energies and bond lengths. On the other hand, the metho
Lenoskyet al., where the matrix elements and repulsive p
tential were calculated taking a radial cutoff up to fourt
neighbor distance in the diamond structure, correctly
scribed cohesive energies and bond lengths. This was
supported by a nonorthogonal tight-binding scheme whe
cutoff of 5.5 Å was found to bring about a good convergen
in results.30 While we establish that the orthogonal tigh
binding method needs a large cutoff distance to estimate
hesive energies and bond lengths accurately it is known
the nonorthogonal tight-binding scheme does not need
such short cutoff distance.29,30 It is further evident from the
investigation that yet another drawback of the orthogo
scheme in its present form is that it predicts a lower HOM
LUMO gap for small Si clusters, which raises doubts abo
the suitability of the method for describing excited states.
the future it is required that one further optimize the para
eters of the tight-binding model to include excited states
order to determine the gap energies accurately.
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