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Exciton-exciton interaction in semiconductor quantum wells
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Faculty of Science, Northern Territory University, Northern Territory 0909, Australia

~Received 19 October 2000; published 9 January 2001!

Analytical expressions of the effective exciton-exciton interaction in quantum wells are derived with a main
focus on the dependence of the interactions on the quantum-well width. Any modification in the strength of the
exciton-exciton interactions due to confinement is incorporated ina, a measure of dimensionality of the
confined excitonic system. The flexibility of the derived expressions is shown in a systematic study of both the
direct and exchange terms of the exciton-exciton interaction in CdTe/ZnxCd12xTe and GaAs/AlxGa12xAs
quantum wells. Results show the appreciable sensitivity of interexcitonic interaction toa due to changes in the
extension of excitonic radial distribution and strength at which local charges are neutralized, perpendicular to
the direction of the growth of well layers.
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I. INTRODUCTION

The role of exciton-exciton interaction in determining t
properties of low-dimensional systems and in introducin
variety of new physical effects has attracted much atten
in recent years,1–7 due in part to interest in applications th
include quantum-well lasers and optical devices.8 Some ex-
amples of novel physical effects include nonlinear light sc
tering in microcavities3 caused by the exciton-exciton inte
action, the increase in the exchange part of the excit
exciton interaction with increasing confinement in sem
conductor quantum wires,4 and the notable reduction i
strength of exciton-exciton interaction with the well width
quantum wells.7

Theories of excitons in low-dimensional heterostructur9

have generally utilized models of the exciton in which
assumption of the fixed exciton dimensionality is made.10–13

Such exact calculations of the excitonic problem in lo
dimensional systems involve solving the Schrodinger eq
tion either in K space or in real space using improved
merical techniques. For example, a set of coupled equat
of a multicomponent envelope function based on a qua
ture method11,12 has been used to accurately predict lo
dimensional excitonic energies under realistic experime
conditions. Recently, Iottiet al.13 have also calculated accu
rate exciton binding energies and oscillator strengths by
agonalizing the Hamiltonian on a large nonorthogonal ba
set.

It is interesting to note that experimental studies14 clearly
show the dimensional crossover of excitons as well wid
are gradually decreased. In this regard, an alternative me
based on the concept of fractional dimensionality can
used to study the effects of a changing exciton dimensio
and to simplify calculations of excitonic interactions in soli
state materials. The fractional-dimensional model of the
citon adopted in this paper is an approximate technique
simulates the exact results by focusing on the change in
citon dimensionality. This method is known to yield goo
estimates of the exciton interaction energy.15–17

The initial investigations that led to the concept
fractional-dimensional space in fact originated from t
0163-1829/2001/63~4!/045321~7!/$15.00 63 0453
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study of the axiomatic basis18 in noninteger dimension in
mathematics, but in recent years the developments have
more in physics. The use of a fractional-dimensional spac
simplifying the evaluation of energy levels of excitons
quantum-well structures was first shown by Heet al.15 and
Lefebvre et al.16,17 Alternative methods of solving for the
exciton energies in the absence of external fields were ei
sensitive to the assumed form of variational wave function19

or involved tedious and costly computations.20 In recent
years, the fractional-dimensional approach has been util
in studies of shallow-donor, impurity, and excitonic state21

in semiconducting quantum wells and in the analysis of
citonic Stark effects.22

In our work here, we present a unified approach
exciton-exciton interaction in quantum wells by treating t
interaction between excitons as existing in fraction
dimensional space. The exciton-exciton interaction opera
are derived in a fractional-dimensional space. As a result,
interaction operators are modified accordingly with chan
in the quantum-well width. Thus only a single paramet
known as the degree of dimensionality~denoted bya), is
needed to incorporate the effects due to changes in
widths of the well or barrier regions on the strength
exciton-exciton interaction asa increases from 2 in an exac
two-dimensional system~e.g., infinite potential with zero
well width! to 3 in an exact three-dimensional system~zero
confinement!. The origin of the reduction in strength o
exciton-exciton interaction with well width, which has re
mained unclear in earlier works,7 will be explained by the
theory used in this work.

This paper is organized as follows. In Sec. II, we provi
the theoretical basis used to obtain expressions for
exciton-exciton interactions in quasi-two-dimensional s
tems and we formulate the problem in fractional-dimensio
space in Sec. III. We obtain analytical expressions of
exciton-exciton interaction inaD space in Sec. IV and
present numerical results for CdTe/ZnxCd12xTe and
GaAs/AlxGa12xAs quantum wells, with comparison mad
with available experimental results in Sec. V. The conc
sions of this work are presented in Sec. VI.
©2001 The American Physical Society21-1
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A. THILAGAM PHYSICAL REVIEW B 63 045321
II. HAMILTONIAN REPRESENTING EXCITON-EXCITON
INTERACTION

The Hamiltonian that yields information about the natu
of exciton-exciton interaction can be obtained by operat
Usui transformation23 on an electron-hole Hamiltonian. Thi
method, first developed by Hanamura24 to incorporate the
interactions between excitons, is used to obtain an effec
form for the exciton-exciton interaction Hamiltonian:

Ĥ5(
kmn H emn~k!b̂mk

† b̂nk1 1
2 (

k8m8n8q

Vmm8nn8~k,k8,q!

3b̂nk1q
† b̂n8k82q

† b̂m8k8b̂mkJ . ~1!

Here b̂mk
† creates an exciton with wave numberk, statem,

andemn is the intraexcitonic interaction energy from themth
to nth state.Vmm8nn8(k,k8,q) denotes the interexcitonic in
teraction energy wherem and n (m8 and n8) denote the
initial ~final! state of the excitons before~after! the interac-
tion. q is the momentum transferred during the interact
between two excitons. In general, the evaluation of the v
ous terms that constitute the interexcitonic interaction ene
is complicated25,26 and involves intensive numerical tech
niques for the evaluation of the magnitude of interactions
a given exciton momenta and effective mass.

In order to simplify the evaluation of the interaction term
Vmm8nn8(k,k8,q), we consider that the excitons remain in t
1s state throughout their interactions, i.e.,m5m85n5n8
51s. We also limit the theory to the low-density limit of th
exciton density and thus assume the presence of only
interacting excitons. The 1s quasi-two-dimensional exciton
state with wave vectork is expressed as27

um51s,k&5 (
ke ,kh

F1s~ke ,kh ,k!dke2kh ,ka1,ke

† a0,kh
u0,n&,

~2!

whereA is the surface area of the unit cell anda1,ke

† (a0,kh
) is

the creation~annihilation! operator of an electron in the con
duction~valence! band, denoted by 1~0! with wave vectorke
(kh). The functionF1s(ke ,kh ,k) is given by

F1s~ke ,kh ,k!5
1

AE drC1s~re2rh!exp@ i ~gek2ke!•r #,

~3!

where

ge5
me*

~me* 1mh* !
512gh ~4!

andme* andmh* are the effective masses of the electron a
hole, respectively, andF1s(ke ,kh ,k) denotes the relative
motion of the electron-hole pair in an exciton.

Utilizing the well-known commutation relations for hol
and electron operators25 in Eqs.~1!–~3!, we obtain

V1s,1s,1s,1s~k,k8,q!5(
i 51

6

V1s,1s,1s,1s
i ~k,k8,q!, ~5!
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where the termsV1s,1s,1s,1s
i ( i 51,2,3) correspond to exciton

exciton scattering due to the Coulomb interaction~dynamical
scattering! between excitons. On the other hand, the ter
V1s,1s,1s,1s

i ( i 54,5,6) are due to exchange interactions~kine-
matic scattering! between excitons. These six terms are o
tained as

V1s,1s,1s,1s
1 ~k,k8,q!5

Cq

~V3!2 (
j j 8

F1s~ j 2ghk1geq!

3F1s~ j 82ghk82ghq!

3F1s~ j 2ghk!3F1s~ j 82ghk8!,

~6!

V1s,1s,1s,1s
2 ~k,k8,q!5

Cq

~V3!2 (
j j 8

F1s~ j 2ghk2ghq!

3F1s~ j 82ghk81ghq!

3F1s~ j 2ghk!3F1s~ j 82ghk8!,

~7!

V1s,1s,1s,1s
3 ~k,k8,q!52

2Cq

~V3!2 (
j j 8

F1s~ j 2ghk2ghq!

3F1s~ j 82ghk82geq!

3F1s~ j 2ghk!3F1s~ j 82ghk8!,

~8!

V1s,1s,1s,1s
4 ~k,k8,q!52

1

~V3!2 (
j j 8

Cj8F1s~ j 2 j 82ghk2ghq!

3F1s~ j 2k1gek82geq!

3F1s~ j 2 j 82k2q1gek8!

3F1s~ j 2ghk!, ~9!

V1s,1s,1s,1s
5 ~k,k8,q!52

1

~V3!2 (
j j 8

Cj8F1s~ j 2 j 82ghk

1geq!F1s~ j 2ghk81ghq!

3F1s~ j 2 j 81q2ghk8!

3F1s~ j 2ghk!, ~10!

V1s,1s,1s,1s
6 ~k,k8,q!5

2

~V3!2 (
j j 8

Cj8F1s~ j 2 j 82ghk2ghq!

3F1s~ j 2k1gek82geq!

3F1s~ j 2k2q1gek8!

3F1s~ j 2ghk!, ~11!

whereCq denotes the Coulombic interaction between el
trons and holes inq space andV3 denotes the three
dimensional crystal volume.
1-2
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EXCITON-EXCITON INTERACTION IN . . . PHYSICAL REVIEW B63 045321
III. FORMULATION IN FRACTIONAL-DIMENSIONAL
SPACE

The exciton-exciton interactions discussed in Sec. II c
be generalized to fractional-dimensional space by consi
ing that the exciton state vector@Eq. ~1!# is operational in an
a-dimensional space (2<a<3). Thus all position (r ) and
momentum vectors (k,q) are taken to exist inaD space and
Va , the volume in anaD space, is given by the Hausdor
measure,

Va~ ur u!5
pa/2

GS 11
a

2 D ur ua, ~12!

whereG@x# is Euler’s gamma function.
It is to be noted that the Coulombic field lines pa

through the semiconductor material that surrounds the w
and hence the Coulomb potential retains its thr
dimensional expression 1/r in fractional-dimensional space
Using the spatial integral relation inaD space,15

E
aD

dr5
2p (a21)/2

GS a21

2 D E0

`

r a21drE
0

p

du sina22 u, ~13!

the Coulomb potentialCq
a in an aD space is derived~see

Appendix A! as

Cq
a5G~a!

1

Va

e2

«0qa21
, ~14!

whereG(a) is given by

G~a!5F2a21p (a/2)2(1/2)GS 1

2
1

a22

2 D G . ~15!

Thus we have generalizedCq in Eq. ~14! by introducing a
noninteger dimensiona. Cq

a reduces to the well establishe
forms of 2pe2/V2«0q and 4pe2/V3«0q2, respectively, in
the exact two-dimensional~2D! and 3D limits.

For the expressions in Eqs.~6!–~11! to apply in anaD
space, we use the 1s state of an isolated exciton in anaD
space~see Appendix B!:

F1s~k!5~4p!(a/4)2(1/4)~a21!(a/2)1(1/2)

3AGFa21

2 G aB
a/2

S 11Fa21

2
kaBG2D (a11)/2,

~16!

whereaB is the three-dimensional Bohr radius of the excito
Once again, Eq.~16! yields the expected forms in the exa
three-dimensional and two-dimensional limits.28 The direct
use of Eq.~16! in Eqs. ~6!–~11! would, however, result in
computational difficulties due to the multiple integrals th
are involved. In order to simplify the evaluation, we app
04532
n
r-
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t

the relation 1/(11x)y'exp(2xy) for x< 1
4 to Eq. ~16! so

that the excitonic wave function is reduced to an exponen
form:

F1s~k!5F8~a!aB
a/2 expF S a21

2
kaBD 2 a11

2 G , ~17!

whereF8(a) can be easily determined using the normaliz
tion relation,

(
k

uF1s~k!u25Va . ~18!

It is important to note that the range of exciton wave vec
@k<(1/2aB)# for which Eq.~17! is valid generally lies close
to the band edge where excitons are initially created29,30 at
low carrier temperatures.

IV. EXCITON-EXCITON INTERACTION IN aD SPACE

In order to compare the direct and exchange energy te
of the exciton-exciton interaction inaD space, we define the
exciton-exciton interaction strength,Wi , as

Wi5S Va

~aB!aD V1s,1s,1s,1s
i

Ea
, ~19!

where the exciton binding energyEa is given by15,16

Ea5
4 Ry

~a21!2
~20!

and Ry is the effective exciton Rydberg.
It is to be noted that the quantityWi in Eq. ~19! can be

shown to be dimensionless using Eqs.~6!–~11!, ~14!, and
~16!. The magnitude ofWi is dependent on the ratio
(Va/(aB)a), which is determined by the degree of proximi
of the two interacting excitons. It is difficult to study th
effect of exciton density onWi , as we are considering onl
two interacting excitons. ThusWi increases with increase
closeness of the interacting excitons, as expected. It is
possible to obtain a wide range of values forWi depending
on how close the two interacting excitons are, as will
shown in subsequent calculations.

Substituting Eq.~17! in Eqs. ~6!–~8!, and transforming
the discrete sum over the wave vectors into a spatial inte
using

(
q

→ Va

~2p!aEaD
dq, ~21!

we obtain an explicit analytical expression for the sum
direct energy terms,W11W21W3:

W11W21W35
~a21!2(a21)

~qaB!(a21) FexpS 2
a11

4
~ghqaB!2D

2expS 2
a11

4
~geqaB!2D G2

. ~22!
1-3



es

en
in

ct
.
i

re
on

a
/

in

at
th
he
s
el

cal

f
all

s

ally

tion

in

r-

ve
t

A. THILAGAM PHYSICAL REVIEW B 63 045321
The derivation of the exchange energy terms is l
straightforward and requires use of the integral31

E
0

1

exp~bx2!5
1

2
Ap

b
erfi~Ab!, ~23!

where erf(z) is the error function. Using Eqs.~9!, ~10!, ~17!,
and ~23!, we derive the sumW41W5 as

W41W552F3p2(a22)~a21!4

a G (a21)/2A p

2~a11!

3expS 2
a11

2
@~ghqaB!21~geqaB!2# D

3F erfiSAa11

2
geqaBD

geqaB

1

erfiSAa11

2
ghqaBD

ghqaB

G ~24!

andW6 is obtained as

W652@2(3a23)p# (a21)/2A pa

2~a21!

3expF2
a11

2
@~ghqaB!21~geqaB!2#G

3

erfiSAa21

a
~ge2gh!qaBD

~ge2gh!qaB
. ~25!

As we are mainly interested in the effects of confinem
on the exciton-exciton interaction, the excitons involved
the interactions are assumed to possess equal wave ve
i.e.,k5k8 in Eqs.~6!–~11!, for the purpose of simplification
However, the calculations can be extended to excitons w
unequal wave vectors, but numerical methods will be
quired to evaluate the strength in exciton-exciton interacti

V. RESULTS AND DISCUSSION

A. CdTeÕZnxCd1ÀxTe quantum

In Figs. 1 and 2, we have plotted the direct (W11W2

1W3) @Eq. ~22!# and exchange terms (W41W51W6) @Eq.
~24! plus Eq. ~25!# of the exciton-exciton interaction as
function of (qaB) for a52, 2.3, 2.6, and 3 in CdTe
ZnxCd12xTe quantum wells using32 me50.1mo and mh
50.76mo , wheremo is the free-electron mass. (qaB) is a
measure of the momentum transferred between two collid
excitons. The total contributionWtot5W11W21W31W4

1W51W6 is plotted in Fig. 3. The figures clearly show th
the strength of exciton-exciton interaction is reduced as
dimensionalitya is decreased. The notable sensitivity of t
interexcitonic interactions toa can be attributed to change
in the extension of excitonic radial distribution as the w
04532
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width is altered. It is expected that the strength at which lo
charges are neutralized changes witha, which in turn influ-
ences the interaction between excitons.

It is important to note that while the individual terms o
Wi diverge, the sum of the contribution remains finite for
values ofqaB as shown in Figs. 1–3. The interaction term
give no contributions beyondqaB54. The sum of the ex-
change terms of the exciton-exciton interaction are gener
larger than the sum of the direct terms. From Eq.~22!, it can
be seen that the direct channel of exciton-exciton interac
vanishes forq50 as well as for the specific case ofme
5mh . However, the direct terms should not be neglected
materials wherege→1 or ge→0.

To evaluate a mean value forWtot(qaB) over the range
0<qaB<4, we use

FIG. 1. Direct interaction terms (W11W21W3) @Eq. ~22!# as a
function of (qaB) for a52, 2.3, 2.6, and 3 in CdTe/ZnxCd12xTe
quantum wells.q is the momentum transferred between two inte
acting excitons.

FIG. 2. Exchange interaction terms (W41W51W6) @Eq. ~24!
plus Eq.~25!# as a function of (qaB) for a52, 2.3, 2.6, and 3 in
CdTe/ZnxCd12xTe quantum wells. For the sake of clarity, we ha
multiplied the interaction terms corresponding to each differena
by the scale factor indicated in the figure.
1-4
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EXCITON-EXCITON INTERACTION IN . . . PHYSICAL REVIEW B63 045321
^Wtot&5aBE
0

4

Wtot~qaB!dq. ~26!

We evaluate Eq.~26! using Eqs.~22!–~25! so as to compare
our theoretical results with those of Mayeret al.,7 who mea-
sured the strength of exciton-exciton interaction of the lo
est exciton state in CdTe/ZnxCd12xTe quantum wells as a
function of the quantum-well width using degenerate-fo
wave mixing~DFWM! at low temperatures.

It is important to note that the definition ofWi in Eq. ~19!
that determineŝ Wtot& in Eq. ~26! is consistent with the
quantity used by Mayeret al.7 to measure the strength o
exciton-exciton interaction. For low density of exciton
Mayeret al.7 considers that the homogeneous linewidthG is
proportional togaB

2Ean, whereg is the quantity that mea
sures the strength of exciton-exciton interaction andn is the
exciton density.g ~defined for a strict two-dimensional sys
tem! is similar toWi in Eq. ~19! ~applicable to a generalize
dimension!. Other thanG and Wi having the same dimen
sions, our method of computing the matrix elements
exciton-exciton scattering,V1s,1s,1s,1s

i , in Eq. ~19! is similar
to the approach of Braunet al.4 as adopted by Mayeret al.7

Although g andWi are similar, they are not exactly equiva
lent and may differ by a small factor, which is expected n
to affect the significance of comparison of our results w
the experimental results of Mayeret al.7

The values ofa at the various well widths, needed t
computeWtot , were obtained using experimental values33 of
exciton binding energies at known values of the well wid
in CdTe/ZnxCd12xTe quantum wells and Eq.~20!. While we
have used empirical values ofa to obtain Fig. 4, other ef-
fective theoretical methods of determining this important
rameter have been described in earlier works.16,21,22

In Fig. 4, the experimental data show a notable reduc
of the strength of exciton-exciton interaction with we
width, which is in good qualitative agreement with our th
oretical results. This reduction of interaction strength w
well thickness can be attributed to the decrease in cross

FIG. 3. Total of direct and exchange termsWtot @Eq. ~22! plus
Eq. ~24! plus Eq.~25!# as a function of (qaB) for a52, 2.3, 2.6,
and 3 in CdTe/ZnxCd12xTe quantum wells.
04532
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tions of excitons via scattering by other excitons due to
reduced spatial extension of the excitonic wave function
thinner wells, as is seen in Fig. 3. It is interesting to note t
while the exciton-exciton interaction decreases with decre
ing well width in quantum wells, it increases with decreasi
wire width as shown in recent experimental results.4 It is to
be noted that unlike quantum wells, quantum wires ha
larger values of exciton binding energies. This is the resul
the enhanced Coulomb coupling between electrons and h
due to their localization in the nanostructure. It is likely th
the presence of this additional confining potential may p
an important role in interaction between excitons. Howev
the study of the effect of strong confinement effects
exciton-exciton interaction involves a theoretical approac35

that is based on a generalization of the well-known semic
ductor Bloch equations to the case of a multisubband w
structure. This approach requires the incorporation of a
three-dimensional multisubband description of the electr
hole Coulomb interaction. This is not a trivial procedure an
therefore, a theoretical relation betweenWtot and wire width
has not been explored in this work.

The quantitative agreement between the theoretical
experimental results in Fig. 4 is reasonable, in view of s
eral underlying assumptions used in order to obtain ana
cal expressions forWtot . For instance, we have neglected t
distortion of the Coulombic interaction due to differences
the dielectric constants between the well and barrier regio
The effects of exciton scattering by acoustic and opti
phonons as well as the influence of phase-space filling
fects and Coulomb screening effects34 on the process of in-
terexcitonic scattering have not been included in our wo
Also our calculated results would be influenced by the
sumption, in Sec. IV, that the interacting excitons are
sumed to possess equal wave vectors, i.e.,k5k8 so as to
obtain analytical solutions in Eqs.~22!, ~24!, and ~25!.
Though these factors are expected to introduce a small
gree of error in our calculated values of the strength

FIG. 4. Solid circles denote experimental values~Ref. 7! of the
exciton-exciton interaction as a function of well width. The so
line represents the numerical values of^Wtot& @Eq. ~26!# in
CdTe/ZnxCd12xTe quantum wells, evaluated using known valu
of exciton binding energies as function of the well width~Ref. 30!.
1-5
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A. THILAGAM PHYSICAL REVIEW B 63 045321
exciton-exciton interaction, the overall gross features as
lustrated in Fig. 4 generally remain intact.

It is to be noted that due to the shallow potential barri
of CdTe/ZnxCd12xTe quantum wells, the exciton dimensio
ality, for a fixed well width, is larger compared to CdTe
MnxCd12xTe quantum wells where excitons are better loc
ized due to higher potential barriers.36 This provides a suit-
able explanation for the smaller strength of exciton-exci
interaction in CdTe/MnxCd12xTe quantum wells as mea
sured in an earlier experimental work.36

B. GaAsÕAl xGa1ÀxAs quantum well

In Fig. 5, Wtot is plotted as a function of well width in
GaAs/AlxGa12xAs quantum wells atqaB51, and for alumi-
num concentration,x50.2, 0.3, and 0.4 in the barrier regio
usingme50.067mo andmh50.38mo . The values ofa at the
various well widths needed to computeWtot were obtained
using experimental values37 of exciton binding energies,Eb ,
in GaAs/AlxGa12xAs quantum wells and Eq.~20!. It is to be
noted that the value of (qaB)51 is chosen arbitrarily, and
the gross features in the figure remain the same for a w
range of values ofq.

While the interexcitonic interactionWtot increases gradu
ally with a, the quantum-well width does not experience
similar monotonic increase witha, due to the spreading o
excitonic wave functions into the barrier regions. Th
spreading effect becomes increasingly significant at nar
well widths as tunneling becomes prominent. In the ultim
limit of zero width, the exciton assumes a three-dimensio
character. The dimensionality has been shown to reach
lowest value (;2.222.3) at some intermediate we
width (;15240 Å) that depends on the well and barri
materials16 in GaAs/AlxGa12xAs quantum wells. Accord-
ingly, Wtot in Fig. 5 decreases with the well width to a min
mum at a critical well width, before increasing at furth
increase in the well size. The critical well width becom
smaller as the concentrationx is increased. This is becaus

FIG. 5. Wtot as a function of well width in GaAs/AlxGa12xAs
quantum wells at (qaB)51, and for aluminum concentration,x
50.2, 0.3, and 0.4 in the barrier region.
04532
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the potential depth increases asx is increased, which result
in a corresponding decrease in dimensionalitya of the con-
fined exciton.

VI. CONCLUSION

In conclusion, in this paper we have presented analyt
expressions of the effective exciton-exciton interaction
quantum wells. We have focused on the dependence of
interactions on the quantum-well width by using a parame
a, a measure of the dimensionality of the confined excito
system. The use ofa is convenient as it incorporates th
tunneling effect. Hence excitons assume a more thr
dimensional character either at very small or large w
widths, with a more distinct two-dimensional character a
critical well width, depending on the material composition

Results show the notable sensitivity of interexcitonic
teraction toa due to changes in the extension of exciton
radial distribution and strength at which local charges
neutralized, perpendicular to the direction of the growth
well layers. Numerical results of the exciton-exciton intera
tion in GaAs/AlxGa12xAs quantum wells show that a mini
mum in the strength of exciton-exciton scattering occurs a
critical size of the well width, depending on the quantu
well and barrier material composition.

In conclusion, we have shown that dimensionalitya of
excitons can effectively be used to determine the strengt
exciton-exciton interaction in semiconductor quantum we
Our work is expected to provide useful insights and stimul
further developments in experimental work involving exc
tons in low-dimensional systems.

APPENDIX A

The derivation of Eq.~14! is based on two integrals:31

E
0

p

eia cosx sin2b xdx5p1/2S 2

aD b

G@b1 1
2 #Jb~a!;

Reb>2 1
2 ~A1!

and

E
0

`

xcJb~ax!dx52ca2(c11)

GS 1

2
1

b

2
1

c

2D
GS 1

2
1

b

2
2

c

2D . ~A2!

APPENDIX B:

In order to derive Eq.~16!, we use the form ofU1s(r ) for
an isolated exciton in ana-dimensional space:

U1s~r !5F~a!expF2
2

a21

r

aB
G , ~B1!

whereF(a) is
1-6
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F~a!5F 2a11p (12a)/2

GS a21

2 D ~a21!a11

1

aB
aG 1/2

. ~B2!

Equation~16! is then evaluated using Eq.~B1! and the
y

.

.

t

o

l.

.

04532
relation38,39

E
aD

dre22pur uce22p i q•r5

GS a11

2 D
p (a11)/2

c

~c21q2!(a11)/2
.
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