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We study the electronic structure and shell-filling effects of both spherical and vertical quantum dots by
means of the density functional theof®FT) with optimized effective potenti#dOEP and self-interaction-
correction (SIC) recently developed. The OEP/SIC procedure allows the elimination of the spurious self-
interaction energy and the construction of accurate single-particle local potential with poogerange
Coulombic behavior. The OEP/SIC equations are discretized and solved accurately and efficiently by the
generalized pseudospectrdbPS method. The highest occupied orbital energyNsélectron quantum dots
provides a direct measure of the electron affinity or chemical potential. We apply the OEP/SIC method to the
study of the capacitive energy ®f-electron spherical dots fdd up to 70. The results show the shell and
subshell structure pattern and the electron filling pattern follows closely the Hund’s rule. We also consider the
effect of including the vertical dimension in the quantum dot study. We perform a detailed study of the
shell-filling effect and the angular and radial density distributions of vertical quantum dots. The calculated
capacitive energy spectrum is in good agreement with the recent experimental results, providing physical
insights regarding the origin of electron shells and the role of electron-electron interaction in quantum dots.
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[. INTRODUCTION few electron$. The Hartree-Fock calculation works for more
electrons, but it does not take into account the correlation
The recent advancement in semiconductor nanostructui@mnong electrons properly. The density-functional theory
technology has led to the fabrication of zero-dimensionalDFT) (Ref. 9 has been used in the past few years. Since the
structure callecquantum dotd? Essentially they are small Vertical quantum dots are very thin disks, the 2D circular
islands of laterally confined quasi-two-dimensional elec-dots (in xy plane only are often used to model such
trons. The study of the electronic structure of these confine@ystems®~** However, the 2D models have recently been
electrons is significant to both basic physics and applieéouf‘d to be madequate fpr the description of Coulomb inter-
technology. The confining potential of the order of a fewaction —under single-site Hubbard and Hartree-Fock

hundreds meV can now be arranged experimentally. Manygpproacheé. Although the small thickness in thedirection

body effects due to the electron-electron interactions show %f the guantum dots constrains the electronic states in the

broad ranae of electronic structures similar to those of rea|rst subband, there are still distributions of electron probabil-
atoms Thge number of electrons in a quantum Natan be ity along the vertical direction. Due to such strong confine-
controiled experimentally. allowing tﬂe study of various ment in thez direction, the Coulomb integral and the kinetic

. . energy are sensitively dependent on the electron density dis-
physical properties of the quantum dots. The dependence (t’|{i1bution. Thus, the inclusion of vertical dimension in calcu-

the chemical potentiak on N can be measured directly |a(i0n to model the experimental situation would be more
through single-electron spectroscapBy varying the size of reajistic and desirable. However, the investigations including
quantum dot and the number of electrons, far IRthe z dependence are rather rare. In a recent study by Lee
absorptiorf,® capacitance spectroscopyand conductance et al,# they investigated the parabolic and nonparabolic
measuremen%setc., can be used to determine the tunnenngconfinements in they plane for the three-dimensional quan-
conductance and capacitance resulting from the competitiofum dots. The Kohn-Sham equation was solved in Cartesian
of quantum confinements and Coulomb interactions. coordinates by a finite difference method and a large number
The experimental study of treddition energyspectralor  of grid points typically about 138 000 were used. They found
lately called thecapacitiveenergy spectra because the mea-that the introduction of small anisotropic confinement poten-
surement was made through the conductance fluctuatdns tial spoils the magic-number shell structure. Since the experi-
vertical quantum dots has been recently performed bynental capacitive energy spect@early show the existence
Tarucha et al” Their vertical dot is cylindrical disk of the magic number shell structures, we shall focus our
INg.0<Gay osAS With diameter around £0nm that is about ten  present study on the isotropic confinement case only.
times the thickness. The experimental addition energy of the Most of the recent theoretical studies of the shell-filling
dots up to 22 electrons showed interesting shell-filling struchehavior have been limited to the few-electron quantum dot
ture features with magic numbers 2,6,12. , etc. For elec- cases, with the number of electrofi) less than 23°-1214
tron confined in such a small length scale, the quantum efThe detailed exploration of the general shell-filling behavior
fects are certainly very important. There have been intensivéor many-electron quantum dots has yet to be performed.
studies of the many-electron states in quantum dots. Diredtloreover, all the DFT studies of quantum dots sd%a?*
diagonalization of the Hamiltonian is limited to cases of aused the local spin density approximatituSDA) (Refs. 15
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and 16 or generalized gradient approximati@®GA) (Refs.  Here we adopt an anisotropic parabolic potential with the
17-19 energy functionals. Due to the existence of the spu<cylindrical symmetry of the characteristic frequencies
rious self-interaction energy, the use of either LSDA or GGAandw,. The spherical dot is the special casewf= w,. For
explicit energy functionals leads to exchafge the semiconductor material JpGa,osAs used in the
correlatioric) potentials that do not have the correct long- experiment, the effective electron masse* =0.0648n, and
range behaviol® As such, although the total energies of the dielectric constant=12.96 are obtained by the Vegard's
ground states predicted by these DFT methods are rathéiw from those parameters of InAs and GaRsyherem, is
accurate, the ionization potentials obtained from the higheshe mass of a free electron. We use the length unit in effec-
occupied Kohn-Sham orbitals are typically 30-50% tootive Bohr radius,ei?/m*e?=10.58 nm and energy in unit
small. Some of such problems can be circumvented byf effective Hartreem* e*/ €242=10.50 meV.

means of the DFT witloptimized effective potenti&DEP) In DFT, the many-electron system is solved by the Kohn-
and self-interaction-correction(SIC) recently developet? Sham(KS) equation?

The OEP/SIC procedure allows the elimination of the self-

interaction energy and the construction of single-particle lo- Fstio(N)=[—3V2+veq o (1) 18 (1)
cal potential with proper short- and long-range behavior. The )
predicted ionization potentials obtained from the highest oc- =&isi (1), (i=12,...N,), ©)

cupied orbitals agree with the experimental data well within
a few percent across the periodic tab®=2—106)2* The
steady-state OEP/SIC procedure has also recently been
tended to the time domain and applied to the study of mul-
tiphotgozn and high-gédﬁr nonlinear optical processes of ()
atoms“ and molecules™* with very encouraging results. _ p 31

The motivations of this paper are twofold. First, we ex- veﬁ'”(r)_ve)“(rHJ Ir—r'| a7+ vyl @
tend the steady-state OEP/SIC procedure to the study of the
electronic structure and shell-filling behavior of many-where ve, is the external potential and,. is the
electron 3D spherical quantum dots fbr=2 to 70. The e€xchangé&)-correlatioric) potential. For the case of quan-
OEP/SIC equations are solved by means of the generalizédm dots considered, the external potential is
pseudospectrdlGPS method>?®recently developed, allow-
ing optimal nonuniform spatial grid discretization. It has Vel 1) =307 (P +Y?) + 3 057%, 5
been demonstrated in several recent studies of bound anﬁ1 oo .
resonance states that high-precision eigenvalues and eige he total electron density is determined by
functions can be achieved by this method with the use of N,
only a modest number of spatial grid poiRt$® Second, we p(= S |y(1)?
include the vertical degree of freedom and explore the shell- v =1
filling effects and the angular and radial density distributions N N
of vertical quantum dots in details. The predicted addition or _ i _ 2, El _ 2
capacitive energy spectrum is found to be in good agreement =& | (1) 24 [ (r)]
with the recent experimental results.

The paper is organized as follows. In Sec. Il, we outline =p(r)+p(r), (6)
dots In Sec. 1, we. present the rescits of the stidy of SpE (e total energE{N] for the N-eleciron ground state i
spherical dots. The study of the vertical dots is presented iqiven by
Sec. 1V, including a direct comparison of the calculated re- E[N]=E] ]
sults with the experimental data. This is followed by a con- PPy

clusion in Sec. V. 5
=Tdpl+Ip]+ Exc[pT 'pl]—’_f Vexd M) p(r)dr.
II. THEORETICAL METHOD (7)

wherevq ,(r) is the effective one-electron potential and
ds_the spin index.
In Eqg. (3), the effective potential is written as

The Hamiltonian for a quantum dot, in the effective oo T

atomic units. can be written as follows: s is the kinetic energy functional of noninteracting

electrons,
N N 1 N,
H=2 i+ 2 p=e @ T=3 3 (ol = 37700), ®)
where J[p] is the classical electron-electron repulsive energy,
Vi1 10 (pn)p(r) )
h(r)== 5+ 50l +y])+30lz. 2 Jel= 5] f—“_r,' drdr, ©
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andE,J p;,p ] is the exchange-correlation energy. The xc

oE ,
potential is obtained by v o) = vext(r)+f |p( ) '+ %

Uyl 1) = % (10 +Vsicolr), (16)

where
Since the experimental addition energy spectrum was mea-

sured from the conductance fluctuations, the addition energy p.o( )
AA(N) is equal to the capacitive enef§yand is defined as Vsico(r)= E 0 ——{vi,(r) +[VS|CU ,(,]} (17

AA(N)=u(N+1)—u(N), 11
pirr(r,) 3.0 5Exc[pi(r10]
5pio’(r) ,

whereu(N)=E(N)—E(N—1) is the chemical potential and Vig(r)=— (18
E(N) is the total energy of theN-electron system. The [r=r’|
chemical potential is the energy required to add one electron nd
to the system with{l—1) electrons.

In this paper, we shall extend the OEP formalism with =
explicit SIC (Ref. 20 to the study of the electron structure of sico={ bis|Vsico(N|dis),
quantum dots. The OEP/SIC procedris based on the ex-
tension of the semianalytic approach of Krieger-Li-lafrate Vie={Biolvie(N)] dio). (20)
(KLI') (Ref. 27 for the solution of the OEP equations and the
use of an explicit SIC form® As discussed in the introduc-  The OEP/KLI-SIC effective potential gives rise to correct
tion section, both the LSDA and GGA energy functionalspehavior in both short range and long raRf&loreover, the
commonly used in KS-DFT calculations contain spuriouselectronic energy of the highest occupied orbital provides an
self-interaction contributions. The OEP-SIC formalism al-excellent approximation to the ionization potential through-
lows the elimination of the spurious self-interaction energyout the Periodic Tablé' As will be shown later, in the OEP/
and the construction of more accurate effective potentiakI-SIC scheme, we can calculate the chemical potentials
with proper long-range Coulombic interaction. In the OEPdirectly from the highest occupied electron orbital energies.
formalism, one solves a set of one-electron equations, similaFor both KS and OEP/KLI-SIC calculations, the equations

(19

to the KS equations in Eq3), are to be solved self-consistently. In the following, we out-
line the explicit procedure for the solution of the KS equa-
Hoertio (1) =[ = 2V2+ VIR 1 () = &1 o thi (1), tion using the LSDA energy functional. Extension to other
energy functionals or OEP/KLI-SIC is straightforward.
(i=1,2,...N,). (12) In solving the KS equatiori3), we expand the electron

orbitals in spherical harmonics:
The optimized effective potentiaV9=7(r), is obtained by

the requirement that the spin-orbifak;,(r)} in Eq. (12) are o bioa(r)

those that minimize the total energy functiomly;; ,;,1: hig(r)= §|: . Yim(€2), (21
SE°FH W] where the magnetic quantum numbmris a good quantum
5V°—Ep(r): ' (13 number for each orbital. With the expansion, the total elec-

tron density is given by
where

- ) ) 2
R iy 1= Ty 5 1+ s 5 1+ End s 101, p(D)= 2 Milyio(1)

*f”ext(”p“)dg“ (14) =303 M 5 Q)Y im(Q),

r2

We shall adopt the following total energy functional with (22

explicit (SIC) form?® _ o _
wheren;, is the number of electrons in ther orbital. By

using the integral of the product of three spherical

Escl iy iy 1= EO gy .1,0,-1]—2 2 {I[pis] harmonics® the total electron density can be rewritten as
o I
+E ion0]}, 15
wd P10l (13 p=3 1y S pio(DYio( ), 23
where E® 4, 4,1 is given in Eq.(14). Following the 7 :
KLI procedure?” one arrives at with
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Bl k(1) Dig (1) d*> j(j+1)
B Y T |Ue(D= 4T, (32
" \/(2] +1)(2k+1)(21+1) with the boundary condition
4
. . 47 1 (R .
ko bogy kb Uiy j(R)= 5 —.f Pie(r)(r")i*2dr’. (33
X ol 2j+1Ri 1]
(0 0 0)(—m m o)’ 24 7RO
where The Poisson equation is solved to machine accuracy by
means of the generalized pseudosped®&®S method?>?
[T PR PN For the radial coordinate, we first map the rangg0,»] or
mg m, m, [O,R] into [1,—1] by using
is the Wigner 3 symbol*° 1+x
The LSDA exchange potential used her# is r=r)=Li 514 (34
13
VLSDA(r)_ _ Ep (r (25) wherea=2L/R andL is the mapping parameter. The collo-
e ’ cation points{x,} and the corresponding weights are deter-

mined through the Gauss-Lobatto-Legendre quadrafure.
With the above partial wave decompositions, the Kohn-
am equation reduces to the following coupled-channel

and the LSDA correlation potential has the VWN fotfve
expand the exchange-correlation potentials in terms ogh
spherical harmonics

form:
VigoA (1) =2 Vyg (1) Yjo( Q). (26) 1d I(1+1) ,
. _EP“L o2 Gig (1)1
The expansion coefficient functions are calculated through
+ Hw?=w?)r2al'™ i (1
XC](r) J'V!Z?EA Jo(Q)dQ (27) EI: 2( z L) | ¢| ,I( )
with the Gauss-Legendre quadrature, the azimuthal angle +> > BL]ka(f)d’ml(r)
{6;} are generated by the grids from 0 #owith {cosé} the Ik '
zeros of Legendre polynomi#d, . ;(cosé) and{w;} are the — e o (1)) (35)
corresponding weigh oo, R4
Li1 where
Vyej(r)= E ViSPA(r, 0 Pj(cosby) wm(2] +1).
(28) Al m:f Y (Q)cog0 Y (2)dQ, (36)
The electron-electron interaction is especially importantgng
in this problem. Instead of calculating directly the integral
v ) E Pio(r") ) 29 B —fYTrm(Q)Yko(Q)Ym(Q)dQ- (37)
Coulio ’

= |

In Eq. (35), Vi(r) is the sum of partial components of
radial functions in Egs.26) and (31). During the self-
consistent calculation of the E¢35), up to 80 radial grid

we perform the Coulomb integral through the solution of the

Poisson equation:
2 _ points, 40 azimuthal angular grids, and 15 spherical harmon-

VVeaulio(1) == 4mpio(1). B0 {cs are used to achieve the converged results for the case of
Since the Coulomb potential is also a functional of the eleclargest number of electron§y=70, considered. Since the
tron density, we can expand it in the following partial wave parity and magnetic quantum numb@rare good quantum
form: numbers, and=m, the maximal orbital angular momentum

used is actually at least 30. For smaldrthe required num-
Ui, ,( ) ber of mesh points is correspondingly smaller. We will now
Yjo(Q2). 31 present the results of the study of both the cases of spherical
dots and vertical dots below, using both the KS and the OEP/

Thenu, (r) satisfies KLI-SIC frameworks.

VCouI m(r) 2
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TABLE I. Comparison of the calculated total energies, orbital 95
energies, and chemical potentials of a two-electron system in ¢ ] BLYP
spherical quantum dot correspondingdo = w,=0.50. The ener- AN | BLYP-OEP

gies are in effective atomic units.

3
Etotal Eorbital M ii,
LSDA 1.9653 1.4229 1.2153 g ,
BLYP 2.0165 1.4464 1.26659 & ' ' ' ' ' ' '
LSDA/KLI-SIC 1.9937 1.2517 1.2437 EO ——LSDA
BLYP/KLI-SIC 2.0034 1.2527 1.2534 gy L LSDA-OEP
EXACT 2.0006 1.2506 3

Ill. SPHERICAL DOTS

In the spherical dotsy, = w, in Eq. (5). The KS equation 0 10 20 30 40 50 €0 7

is spherical symmetric and can be conveniently solved in Electron number N
terms of spherical harmonics as described in the previous g 1. The capacitive energifA A(N) = u(N+1)— w(N)] of

section. The spherical dots have been recently used in th@.electron quantum dots confined by a spherical harmonic potential
theoretical studies of electrodynamic respdhsed hyper- (w, = w,=0.5), exhibiting the shell-filling structure. The upper fig-

Raman scattering’ ure shows the BLYRsolid line) and the BLYP/OEP-SIGdashed
Table | shows the comparison of four different DFT cal- line) results. The lower figure shows the LSD@olid line) and
culations of the total energy, orbital energy, and additionLSDA/OEP-SIC(dashed lingresults. The solid line corresponds to
energy, respectively, corresponding to the case of twothe results where the chemical potentialN) are obtained by the
electron quantum dots, with the 3D spherical harmonic ostotal energy differencex(N)=E(N)—E(N—1). The dashed line
cillator as the confining potentiat(, = w,=0.50). The two-  shows the results where the chemical potentigl) are obtained

electron system can be separated into the center-of-maggectly from the highest occupied orbital energies.

(CM) and relative motiongRM). Introducing the relative
and center-of-mass coordinates and momemal_r2, R LSDA/KLI-SIC and BLYP/KLI-SIC calculations are close

=(ry+1,)/2, p=(p1—P,)/2, P=(p;+p,), the Hamiltonian  to the exact chemical potential. Physically this means that
in Egs. (1) and (2) can be separated into the following CM the highest occupied orbital energy of N-electron quantum

and RM Hamiltonians, dots can be used as a direct measure of the chemical poten-
tial «(N). This is because the long-range potential in the
P2 M 202y M, OEP/KLI-SIC procedure has the proper Coulombic behavior
Hem=5y T3 @L(XT+Y)+ w327 (38)  and the electronic structure of quantum dots is more accu-
rately described.
and Figure 1 shows theapacitive energyAA(N), as a func-

tion of the electron numbeN calculated by BLYP and
BLYP/KLI-SIC methods(upper figure, as well as by the
LSDA and LSDA/KLI-SIC methodglower figure, respec-
P _— o tively. It exhibits the detailed shell and subshell electronic
w_herel\(l =2m and,u_—m /2' The CM part is Just a three_- structure ofmany-electrorspherical quantum dots. We note
dimensional harmonic oscillator, and the relative MOotioN o+ although the numerical numbers of capacitive energies

c_ontains two interacting electrons unde_r a harmonic Potengifrer by a few percents, all the methods give rise to the same
tial. The radial part of the relative motion was solved nu—spe" and subshell structure patterns

merically exactly by means of the generalized pseudospectral 14 ngerstand the origin of the electrshell-filling struc-
method?>?® The four DFT calculations correspond to the USeyre. we need to explore first the energy level orderings of

?f LSDA T\nd_tue G(;BA_the BLYR‘/Refs. 17 anld 1}3Energ); individual electron orbital. In the absence of electron-
unctionals with and without OEP/KLI-SIC. Also shown for g o04r0n interaction, the total energy of a 3D spherical har-
comparison is the exact results for the total and addltlor}mmiC oscillator is

energies. Without the OEP/KLI-SIC, the LSDA total energy

2
N O N LR
HRM_2M+ 2wi(x +y°)+ 2a)zz + o (39

is smaller than the exact energy, while the BLYP total en- 3 3

ergy is larger than the exact value. Further, the highest oc- Enim=|2n+1+ E) w ={N+5lw, (40
cupied orbital energy obtained from both LSDA and BLYP

energy functionals differ substantially from the addition en-wheren,=0,1,2,3..., andN=2n,+I|. We use the desig-

ergy. With the implementation action of the OEP/KLI-SIC nation (n,,l) to denote the energy level with the radial quan-
procedure, the total energies from both LSDA and BLYPtum numbers, and the orbital anguldrin the above equa-
energy functional forms are significantly improved, with thetion. For each «,,I) level, there is (2+1) degeneracy
BLYP/KLI-SIC result closest to the exact value. More im- due to the magic sublevels, =m-1,—1+1,...].
portantly, the highest occupied orbital energies from bothiThe  energy orderings can be grouped as
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TABLE Il. The total energy of two-electron vertical dot calcu-
lated by numerical diagonalization of the exact two-electron Hamil-
tonian and by LSDA fow, =0.5. The energiesy, andw,, are in
effective atomic units. The error indicates the percentage deviatior’\

of the LSDA from the exact numerical diagonalization. 3
€
w, Diagonalization LSDA Error% 3 4_50_-
@
0.5 2.000 2.026 1.30 § ]
1.0 2.553 2.581 1.10 %
2.0 3.590 3.607 0.47 § ]
3.0 4.605 4.612 0.15 O 4254
4.0 5.614 5.614 0.01

o -
N
[~
N
[=)
[+23
=1
®
o

{(0,0},1(0,1},{(0,2,(1,0}.{(0,3),(1,1)},{(0,4,(1,2,(2,0}, . . .
where the energy levels in the same bracket are degenerat.. ®, (meV)
In the presence of many-body electron-electron interaction,

. : FIG. 2. The capacitive energy of two-electron system in a ver-
the degeneracy will be lifted. If the electron-electron effectsti al quantum dot vso, . It is seen that the capacitive energy satu-

are not enOUQh to change the_ shell orderings, the number Qdtes for larger value ob,. Herew, =3 meV and one effective
electrons in the closed shell will be 2,8,20,4Q,70. . These 0 mic unit corresponds to 10.505 meV.

are the magic numbers of spherical dots. From our calcula-

tions, we found that when the electron-electron effects areéne values ofw,. The capacitive energy saturates for larger
taken into account, the electron orbital in a shell wélger  value of w,. We note that the computational effort goes up
angular momentum liewer in energy. This is reminiscent rapidly with increasing value ab, as more angular momen-

of the Hund’s rule. For example, the degeneracy oftum is required to achieve convergence. The saturation of the
1(0,2),(1,0} is lifted into nondegenerate states (0,2) andcapacitive energy for sufficiently large value @f justifies
(1,0) while the orbital (0,2) with higher angular momentumthat the use ofw,=5(effective) a.u=52.5 meV in our
has the lower energy than (1,0). LSDA calculations below is physically meaningful.

Using this energy ordering, we are able to identify all the In order to simulate the experimental conditidnsge set
shell structures in Fig. 1. The most prominent shell structure,, =3.0 meV, andw,=52.5 meV in Eq(5). These param-
occurs at the followingnagic numbersN=2,8,20,40. . ., eters mean that the planar dimensioty (plang is much
etc. corresponding to the fully occupied shells oflarger than the verticalz) dimension-* Figure 3 depicts the
{(0,05},{(0,1)°},{(0,2)'°,(1,0¢},{(0,3)*(1,1)%}, .. . ,etc.  angular density distribution alongfor N=1, 6, 12, and 20
where the superscript denotes the number of electrons in thelectrons that include both closed and open shell cases,

filled orbital, taking into account the degeneracy due to magwhere §= /2 is in the disk planar direction. The angular

netic sublevels. The smaller peaks in Fig. 1 can also be idertensity p(6) is defined as
tified as those quantum dots wittalf-filled subshells. It is
instructive to find that the Hund’s rule is also applicable to
the spherical quantum dot systems.

f p(6)do=1. (41)

IV. VERTICAL DOTS

To mimic the large ratio of planar diameter to the height
of the vertical dots as used in the experimémte choose
w,>w, in Eg. (5). Since the ground-state wave function 47
spreading of a harmonic oscillator is inversely proportional
to the square root of its natural frequency, the larger value of _
w, ensures that the electron probability distribution in the £
vertical direction is confined within a small distari¢e. <2
A two-electron system in a vertical dot can also be sepa-
rated into relative and center-of-mass motions. The relative
Hamiltonian can then be discretized and diagonalized to higr
accuracy by means of the generalized pseudospectre
method?>?® Table Il shows the comparison of the LSDA
total energy and the exact numerical results for the case o 00 02 o4 08 o8 10
w, =0.5 andw, from 0.5 to 4.0. We see that fes,>3, our 8in (x)
calculation errorgLSDA column for the two-electron sys-
tem in a vertical dot are below 0.15%. In Fig. 2 we show the FIG. 3. Angular distribution of electron density in a vertical dot
capacitive energy of the two-electron vertical quantum dot vor N=1, 6, 12, and 20N starts at 1 from the innermost curve.
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1.0 4
| @& Theory
0.8 —— D=500 nm (exp)
1 . - D=440 nm (exp)
>
i @
0.6 - £
>
o
= 2
o
044 $
2 .
g A
] 3 A e
0.2 4 S 'Y Y o oo ° »-e
1 1 PN D . o j ‘.
: ] ., < /go\.\ /'\  J
0.0 e = 0..& 06/’ N—«—‘\’\’
0 4 8 12 T+———— I B LA A S B I R B B 1
; 0 6 12 18 24
T () Electron number N

FIG. 4. Radial distribution of electron density in a vertical dot ~ FIG. 5. The capacitive energy spectrum for vertical quantum
for N=1, 6, 12, and 20N starts at 1 from the innermost curve. dots withw, =3 meV andw,=52.5 meV. The lower two curves
Note that the peak position increases whthr is in unit of effective  are the experimental resultRef. 7), and the top curve is the current
Bohr radiusa*. theoretical prediction, which is independent of the valu®afsed.

The results show that the electrons are confined more sharply

along the planar region as the number of electrbh#-  energy. There are also subpeaks N#=4,8,14 ..., etc.
creases. This explains why several 2D planar disk modeThese subpeaks were not clear in Refs. 10 and 14, but were
calculationd®~*2showed roughly the shell structure correctly identified in both the experiment datand our present cal-
but the details might not be reliable for thalistributions are  culations. These subpeaks can be attributed to the Hund’s
neglected. As indicated in Ref. 13, the 2D model descriptiorrule for half-filled shells. However, when the electron num-
of Coulomb interaction is quite different from that of the real ber becomes larger, the electron-electron interactions weaken
system in the simple 2D model. Also we find that for sys-the shell structure arising from the binding planar parabolic
tems with just a few electrons, the angular distribution isconfined potential. Within the same subshell, the electron
actually rather broad, indicating the 2D approximation wouldfilling follows the Hund's rule that the states of the same spin
be inappropriate for such situations. will fill first. Since the electronic states must be antisymmet-

To have a more complete picture of many-electron denric, electrons of the same spin tend to repel each other spa-
sity distribution in quantum dots, we show in Fig. 4 the tially, the Coulomb energy between them will then be low-
corresponding radial electron density distributions. Here theered significantly. On the other hand, if two electrons have
radial density is defined as different spins, their spatial overlap can be larger and the

total energy will be higher. We can see in the plot that the

5 Hund’s rule are actually followed.
f p(r)redr=1. (42 We then performed a calculation with the same param-

etersw, andw, but the diameteb is now 440 nm as used in
It is instructive to note that the maximum of total electron the experiment. We found no noticeable difference in the
probability for a givenN-electron vertical dot occurs at cer- capacitive energy spectra for the casesDof 440 nm and
tain special radius like that in atomic systems. And the peal® =500 nm. This is expected since the extent of the radial
position occurs at larger distance as the electron nuriber electron density distribution is much less thBnin these
increases. We also perform the calculation with,  cases as shown Fig. 4. Thus, the case® ef440 nm and
=3 meV andw,=31.5 meV. Similar angular and radial D=500 nm are physically the same for the range of electron
distributions, and addition energy spectra were obtainediumberN we investigated. However, the experimental data
This is because the motion of electrons in thdirection is  for the two differentD cases showed notable difference. This
mainly confined in the first subband, so the planar laterapuggests that the commonly used parabolic lateral confined
confined potential determines the main properties of the eledeotential such as that in E(2) may need some refinement to
tron states. Thus the results are nearly independent of thiaclude the dependence of diameters of quantum dots.
value ofw,.

Figure 5 shows th&l-dependent capacitive energy spec-
tra. In order to compare with the experimental res(iirse
first calculate the vertical dots witkh, =3 meV, the diam- In this paper, we present a DFT with OEP and SIC for the
eter D=500 nm andw,=52.5 meV. The results show detailed study of the electronic structure of parabolically
clearly not only the magic-number shell structures atconfined quantum dots. The OEP/SIC procedure allows the
2,6,12,20. .., butalso the correct magnitude of capacitive elimination of the spurious self-interaction energy in the

V. CONCLUSION
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conventional DFT calculations using explicit LSDA or GGA and experimental data, namely, the experimental capacitive
energy functionals, providing the proper long-range effectiveenergy depends upon the value of the diambtés00 or 440
potential and more accurate description of both ground andm) used, while our calculations do not. This discrepancy
excited states. The electronic energy of the highest occupieiddicates that future refinement of the confining potential
Kohn-Sham orbita{with OEP/SIQ provides an accurate and must take into account the diamet&) dependence in order
direct measure of the electron affinity or chemical potentiato achieve better agreement with the experimental observa-
of the quantum dot systems. The OEP/SIC equations argon.
solved accurately and efficiently by means of the geaer- Finally, due to the generalized Kohn theorérassociated
alized pseudospectrahethod, allowingnonuniformspatial ~ with the parabolically confined potentials, the far-infrared
grid discretization and the use of only a modest number ofpectra can show only the motion of center-of-mass part for
grid points. electrons in the quantum dots. The electron-electron interac-
We first study the electronic structure d-electron tion in the relative motion part is hard to detect. There are
spherical quantum dots fdt up to 70 using both LSDA and several proposed methods that can be used to measure the
BLYP energy functionals with or without the use of OEP/ relative motion part such as the magnetization, heat capacity
SIC. The calculated capacitive energy spectra shows sheditc®® The accurate calculation of the capacitive spectrum
and subshell structures analogous to those in atomic systenesented in this paper can be used as another way to explore
The electron filling pattern is found to follow closely the the relative motion of many-electron system in the parabolic
Hund’s rule. quantum dots.
We also study the electronic structure and electron filling
pattern of vertical quantum dots by means of DFT. We found
that the commonly used 2D model is too crude to model the
realistic quantum dots. We explore the angular and radial This work was partially supported by NSF No. PHY-
electron density distributions ifN-electron quantum dots. 9801889. We are grateful to Kansas Center for Advanced
The density distribution of few-electron dots in the vertical Scientific Computing(KCASC) for the support of Origin
direction is found to be broader than that in the many-2000 supercomputer time. T.F.J. acknowledges the supports
electron dots. Our calculated capacitive energy spectrum rdrom KCASC and National Science Council, Taiwan. We are
produces the shell and subshell features seen in thgrateful to Xi Chu for the assistance of the final draft of this
experiments.There is still some discrepancy in the predictedpaper.
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