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Solid phase diagram of a classical electronic bilayer
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Using a Monte Carlo method in which the shape of the simulation cell can vary, we identify the sequence of
crystal phases occurring in a finite-temperature strongly coupled classical electronic bilayer as the layer sepa-
ration is increased. The limits of stability of the different phases are estimated and compared with ground-state
calculations. Contact is made with recent experiments on two-dimensional ion plasmas.
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[. INTRODUCTION peratures when the density of the compensating background
is not kept fixed

Strongly coupled electronic bilayers of charged particles In this paper we present Monte Carlo results for the en-
occurring, for instance, in two-dimensional semiconductorergy and crystal phases of the bilayer Wigner crystal as a
heterostructures, dusty plasmas, or laser-beam-cooldtinction of separation of the two layers. In contrast to the
trapped-ion plasmas benefited recently from extended ejattice dynamics calculations of Goldoni and Peeters, no
perimental and theoretical studies disclosing a wide variety Priori assumptions of the lattice structures are needed. By
of structural phases. Lattice dynamics calculations by allowing the shape of the simulation cell to vary, the system
Goldoni and Peetefshowed that the ground state of a clas-can adjust to a lattice structure which gives the lowest free
sical b“ayer Wigner Cryste(bne Component p|asma in a neu- energy (Wlthln the constraints of finite size and periOdiC
tralizing uniform backgroundadopts five different phases boundary conditions
depending on the separatidnbetween the two layers. In  Our model and details of the Monte CaxiIC) calcula-
order of increasing value df, these phases are: a monolayertions are presented in Sec. Il. The different crystal phases
hexagonal latticél) (h=0), a staggered rectangular lattice and their range 'of stability are |de.nt|f|ed'as a function qf
(I), a staggered square lattiti$f ), a staggered rhombic lat- Igyer separatlon in Sec. lll. Comparison with related work is
tice (IV), and a staggered hexagonal lattid®). These au- gIvenin Sec. IV.
thors also addressed the nonzero temperature phase diagram,
and determined the stability and melting of the five structures  Il. MODEL AND MONTE CARLO SIMULATIONS
within the harmonic approximatioh.n later work® esti-
mates of the melting temperatures of the different phasei/r

identified in Ref. 2 were refined using canonical Monte Carlo d(ll_oulomb ptotgnbtlal a(;.e teve;EI\yCorI:stnbuted tm }ytvo_laylaﬁs
simulations. It was shown, for instance, that the square pha 2 Separated by a distan arge neutrality Is guar-

corresponding to layer separations of 0.5—-1 mean distanc%meeq by embedding the ions in a u_nlfo_rm ba_ckground of
between charges melts at a temperature 35% higher than th%qposne charge. In each _Iay_er the basic S|mulz?\t_|on cell ha_\s a
of the hexagonal single layer system. However, in these caﬂzgzgle_rizapzrtii?:s p;zogg:t gﬂg&izrﬁocﬂgyéogitag? tlrer:a
culations it was assumed that the ranges of stability of thé : P

different phases are those determined for the ground state.planes' : . : e
The aim of the present work is to establish the relative, A thermodynamic state of the system is entirely specified

I : .. by the dimensionless parametérs e?/kTa, andh/a where
stability of the crystal phases of the bilayer system at finite is the ionic chargeT the temperaturek Boltzmann's con-

temperature. To this end we perform numerical simulation . . : X 5
in an ensemble similatbut not identical to the canonical _stant, anda_the ion-disk _radlus defined by-p_,a =1. The
n density in each layer ig;=N,/Q, where() is the area of

ensemble. In each layer the cell containing the charges, t t%e basic simulation cell, Choosirgas unit of length, as
rhombus, or the rectangle, with periodic boundary condi-" . ' NN
v b y Il be the case throughout the paper, the density in each

tions, has a constant area but its shape is variable. In such Ver takes the value &/
ensemble the system of charges can, by modifying the aspe . . .
y J y fying b The energy of the bilayer system can be written, using an

ratio of the edges of the cell or the angle between adjace .
wald summation method, to take account of the long range

edges, undergo a transition to the most stable crystallin f the Coulomb potentidland te the intral d
phase for a given layer separation. This method is similar t§' the Loulomb potentialand separate the intralayer an

that proposed by Parrinello and Rahrhand Yashonath and 'Mt€rlayer contributions, as

Rao to study polymorphic transitions in single crystals, but U=U. . +U. 1)
has been adapted to take account of the thermodynamic in- intra = =inter:

stability of the one component plasnt@CP at low tem-  where

In our MC simulationdN=2N;, point ions interacting by a
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In these equations;; =r;—r;, where the position of particle

i is represented by a three-dimensional vectdraving pro-
jection p; on the lattice plane.

The term—3C,, is the self-energy of one plane given by

erfa|t-n]) 1 2w
Co=€N{ -2 ——————= >, —erfaG/2
v l{ r;O |t-n Q (;o G eraGlaa)
2a 2\

In Eqg. (2) the prime in the sum oven=(n,,n,) (ny,n,
integers means that the termis=j must be omitted when
n=0. Expressions2) and (3) apply for an arbitrary oblique
simulation cell characterized by two basis vectoysandb,
of variable lengths., andL, and variable angle. The cell
basis matrixt is given by

Ly
Sl

and the volume of the simulation cell $=L,L, siny. The

L, COSy) ©

Lysiny

wave vectorsG which enter the reciprocal space contribu-

tions to the energy are of the form

G=2=('t) !n, (6)
where 't denotes the transpose pfwith components
2 .
zeﬁLxsm yNy, (7)
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2w
Gy:ﬁ( —Lycosyn,+Lyny),
and modulus

9

In our calculations the sums in reciprocal space extended
over all lattice vector$ subject to|n|?<n?,,=100 or 400.

For larger values offi,,, .« the Fourier components in EqQR)
and (3) were negligible for all box dimensions considered.

Care has to be taken to properly choose éhparameter
which governs the rate of convergence of the real- and
reciprocal-space contributions in Eq8) and (3). It is gen-
erally taken sufficiently large so that only the terms with
=0 need to be retained in Eg®) and(3), implying that the
real-space term vanishes at a distance corresponding to the
smallest distance from the cell center to the cell edges. The
requirement, therefore, especially in the case of a rhombic
simulation cell with smally, of a large value otx and con-
comitantly a large number d& vectors to guarantee the in-
dependence of) on «, motivated the use, in our computa-
tions, of a rectangular simulation cell.

In the MC procedure the box characteristics, L, , and
v, taken to be identical in the two layers, were not sampled
independently but by keeping the af®aconstant. This con-
straint was necessary to avoid the collapse of the system at
high density (or equivalently low temperaturevhere the
pressure of the OCP becomes negatiand precludes the
use of the isobaric ensemble to study the stability of the
crystalline phases.

Different crystalline structures were identified from snap-
shots of instantaneous configurations; intralaggrand in-
terlayerg,, pair distribution functiongPDF'’s) correspond-
ing to particles in the same layer and to particles belonging
to different layers but positions projected onto the same
plane, respectively; coordination numbers; and order param-
eters. Suitable order parameters for characterizing the square
and hexagonal structures are

G=G;+Gy.

1
*Ifm=<,\,—|2i |¢m<i)|>, (10)
where
18
=g > & (1D)
(m=4 and 6.

The sum in Eq.(11) is taken over theN; neighbors of
particlei within the first shell of the intralayer pair distribu-
tion function; 6 is the angle between the bond of particles
and k and an arbitrary reference axis, agd denotes an
ensemble average.

In view of finite-size effects encountered for a 512-
particle system foh>1 (see below most simulations were
performed with the larger number of iofé= 1800 ions at
the two values of the coupling paramelés 196 and 324 for
which the single-layer electron system is well inside the solid
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phase. Melting of the quasi-two-dimensional electron solidand remains nearly constant in the square phaadation
was estimated both experimentdllyand by computer from —214.60 ath=0.6 to —214.88 ath=1.05(cf. Fig. 2.
simulatiorY to occur in the range 120I',,<140. AMC run  The interlayer energy;./NKkT varies linearly up toh
involved typically of the order of 8000@1800 iong or  ~0.35, then increases more slowly in the square phase. Near
200000(512 iong cycles(after equilibration of the systesn h=1.05 the system starts to transform to a staggered rhom-
each cycle corresponding to displacement of khimns and  bic phase which in turn will evolve, via a first-order transi-
one change of the box dimensions keeping the volume fixedion, into a hexagonal phase laz1.24.

Once the hexagonal ordering is completed the intralayer
PDF g, (cf. Fig. 3 and energy Uina/NkT=—215.75 for
the 1800 particle systenremain unchanged for all larger

The simulations were started at small valuehothoos- separations. Peak positions gr; occur atr=1.88 (=r,),
ing initial conditions compatible with the fact that, for ~ 3.32 (~/3r), 3.76 (~2r,), and 4.96 (/7r,) (cf. Fig. 3);
=0, the monolayer oN=2N, ions must crystallize in a the first coordination number is 6, and the hexatic order pa-
hexagonal lattice. This can be achieved by fixing the ions irrameter is¥ = 0.80, whileW ,~0 in accord with a hexago-
the two layers at the sites of two rectangular lattices with amal crystal structure. Peak positions in the interlayer RRF
aspect ratioy3, such that the sites of one lattice sit at thelocated atr=1.08 (~+3/3r;), 2.20 (~2+/3/3r,), and 2.9
centers of the cells of the other lattice. Obviously a hexago(fv\/7_/3rl) (cf. Fig. 3, and a first coordination number of 3,
nal lattice is recovered in this way whén—0. This stag-
gered rectangular structure turns indeed out to be stable for
small values ofh. As h was increased the simulation box, il ™
initially (h=0) of nearly square shape, contracted in yhe ey T
direction with a slight dilation in the direction. The ratio of P
lattice spacings in theg and x directionsa,/a,, initially 2807 ’
equal to /3, retained this value up th=0.05, and then s :
progressively decreased/a;=1.70, 1.60, 1.54, 1.47, and . | ¢ i S
1.40 ath=0.1, 0.2, 0.25, 0.3, and 0.32, respectiyelyach- il o
ing a value of 1 ah~0.4. At this value the intralayer first ¢ 252 [
coordination number changed from 2 to 4, typical of a square 27| ¢ sl 2
lattice, while the interlayer first coordination number re-
mained unchanged from its value 4 in the rectangular phase | ¢ eser )
The transformation from a staggered rectangular to a stag ;
gered square lattice is completehat 0.5, and this structure i
remains stable up to~1.05(cf. Fig. 1). Confirmation of the 310 o5 ] 15 25 3 35 4
staggered square structure is obtained from the order paran.
eter ¥,=0.9 and peak positions of the nearest-neighbor

Ill. RESULTS

energy
®.

L L
0.8 1 12 14 1.6

TN

. . _ - FIG. 2. Energy per particle as a function of layer separation for
shells occurring ingy, atr=1.76 (=ry), 2.50 (~ \/Erl)’ I'=196 and 1800 ions. Filled circles: total enerty NKT, tri-

3.56 (~2r;), and 3.96 (-\5r;) and in g;, at 1.24 angles: intralayer energy;nio/NKT. The inset shows the intra-
(~\2/2ry), 2.80 (~10/2 1), and 3.76 (-32/2ry). layer energy in the transition region between the square and hex-

In the rectangular phase the intralayer enddgy, . /NKT  agonal phases. Error bars are of the order of 0.02 except near the
decreases from-204.05 ath=0.05 to —214.23 ath=0.5, phase transition where they can be larger.
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FIG. 3. Intralayer PDFy4(r) (solid line) and
interlayer PDFg4,(r) (dotted ling atI"=196 for
1.1<h=<4.0. Distances are in units of the ion-
disk radiusa.
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further testify to a staggered position of the two layers, i.e.,
the lattice points of one layer lie directly above the centers of
the triangles of the other, thus minimizing the interlayer re-
pulsion. The peaks ig, remain well defined up th=2.5,
then slacken, persisting nonetheless un4e6.

Concerning the phase region separating the staggered >
square and hexagonal phases when, for the 1800 ion system,
the layer separation was decreased fiom1.4, the system
retained its staggered hexagonal structure until, near
=1.24, it changed to a linear rhombic structure with lattice
vectors of equal lengths 1.8 and angle-72°. In accord
with such a structure peak positionsdg, should therefore
occur nearr=1.80 (=ry), (2—2cosf)r,=2.12, (2

+2 cosh)¥ar,=2.92, and 2,=3.6, which can readily be e T

verified from caséh=1.22 of Fig. 3. PP
On the other hand, whemwas increased frorh=1.05 in -

the square phase, we first observed coexistence between re- 7L L e ]

gions of both square and rhombic short-range ordetafig > | e e e e e .

Fig. 4), as manifested by a broad second peaiijresulting
from the overlap of the preferred second- and third-neighbor .. .
positions of the rhombic phase and the second-neighbor po- e e e e e
sition of the square arrangement. Only closéhte1.22 did 8 12 16 20 24
the system achieve a pure rhombic structure, with a lattice X

angle close to 72°. Upon further increase of the interlayer

separation the rhombic structure was found to be mechani- AR
cally stable beyond the value bf=1.24, at which the hex- | Tt
agonal phase became unstable in a reverse sequence of the
layer distance variation. Such hysteresis, as well as an abrupt > I e L.
jump of @ from 72° to 60° at the rhombic-hexagonal transi- 10F ° _' B
tion and a discontinuity in the intralayer- and interlayer en- .. o o
ergies(though to less extent in the total enerdgf. inset of B lace e 0t
Fig. 2), plead strongly in favor of a first-order transition in -5 -0 50 5
accord with the ground state calculations of Goldoni and
Peeterg.

Calculations with the smaller number of particles, 512,
gave qualitatively similar structures, but shifted the rhombic- kG, 4. Snapshot of a layer configuration of 900 ionsTat
hexagonal transition to the somewhat higher vaiael.27 =196 and layer separation=1.15, showing the coexistence of
and produced lower-energy values, compared to those for thegions with square and rhombic orderings. From top to bottom:
1800-ion system, foh>1.1, with a maximum difference of full layer, region with square ordering, and region with rhombic
~0.4 forh=3-4. In fact, for separations3h< 6, the sys- ordering. Distances are in units of the ion-disk radius

LT .
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tem showed a preference to adopt a structure in which thtéhe translational and orientational order parametebs,)

two hexagonal layers, though only weakly correlated, wereyanisH of the square phase ht=0.5 is ~35% higher than

on average, on top of each other rather than staggéhed the melting temperature of the single-layer crystal, while in

nearest neighbor peak igy, was atr=0, and subsequent the hexagonal phase ht=1.6 it is ~20% lower. We have

peaks coincided with those @y,). The occurrence of these optained rough estimates of the melting temperatures from

finite-size effects urged us to resort to a larger system sizethe values ofl" at which the simulated PDE,, changed

from crystal to liquid behavior. Based on this criterion the

IV. DISCUSSION square phase dt=0.8 melts approximately df =67, and

We have investigated the solid-solid structural phase trant-he staggered hexagonal phasé@atl.6 near”= 106. These

. A ) . . values for the inverse melting temperature are in excellent
sitions arising in a classical bilayer Wigner crystal as a func-

. . . 3
tion of layer separation using Monte Carlo simulations inagreement with thqse obtalneq by Schweigetial. (r
which the box shape can fluctuate, thereby allowing the sys= 66 @nd~110, noting that their temperature scale differs
tem to adopt its preferential crystal structure. Between thdrom ours by a fath_’r\/E)- _ _
hexagonal packings of the ionstat 0 (single-layer Wigner We find good evidence for a first-order rhombic to hex-
crysta) and h=6 (uncorrelated layejswe identify, for T agonal transition with a lattice angk jumping discontinu-
=196, four different phases which, in order of increasing ously from~72° to 60° neah=1.24, in good agreement
are the staggered rectangular phaseshi@0.4), the stag- With the ground-state predictiofia discontinuous drop from
gered square phase (&5=1.05), the staggered rhombic 69.48° to 60° ah=1.3(Ref. 2], and experimental results of
phase (1.05h=1.24), and the staggered hexagonal phaséitchell et al1%on laser-cooled trappetBe’ ions. It can be
(1.24=h=6). noted that a square to hexagonal transition was also observed
The use of a simulation cell of variable shape turned ouin bilayer hard-sphefé and colloidal* systems(particles
to be particularly efficient for the study of the stable phasesonfined between parallel plates a few particle diameters
for h<1. The possibility of the aspect ratio, /L, of the  apar}, and that its nature can depend sensitively on the in-
simulation box being able to adjust to the ratio of the latticeteraction potential. For example, in the case where the par-
spacings allowed us to give evidence for the continuous trarticle interaction comprises both a repulsive core-core poten-
sition from a staggered rectangular phase to a staggerdihl and a narrow attractive pafe.g., colloidg the hexagonal
square phase while avoiding the creation of defects. Théo square lattice transition is found to be first order, and there
method is equally efficient for the study of a staggered hexis no intermediate rhombic phase in contrast with the pure
agonal phase to a staggered rhombic phase, where one notewd-sphere casé.Integral equation studies based on the
an adjustment of the aspect ratio frarp/L,=0.86(hexago-  hypernetted-chain equation further show that the various
nal) to L,/L,=0.97—1.01 (rhombig. In the case of a tran- phase behaviors observed in the solid phase as a function of
sition from a square to a rhombic phase, wheyéL,~1.0  h extend to some degree to the liqdid.
for both phases, the variation of the simulation cell cannot The sequence of structural phases observed in the present
avoid the creation of defects entailing the coexistence of thenodel system bears close resemblance to the experimental
two phases. However, by allowing one to bypass a freefindings by Mitchellet al” for a disklike (lenticulay ion
energy calculation to estimate the stability of the solidplasma of°Be" ions in a Penning trap, laser beam cooled to
phases, the use of a simulation method based on a variabéetemperature of a few mK. In this experimental realization
cell shape is equally successful for studying the solid-solicof the OCP the confining electric and magnetic fields play
transitions in OCP-like systems as it is those in two- or threethe role of the neutralizing backgrouh@By using direct
dimensional systems with short-range interactibns. imaging techniques, Mitchekt all® showed that upon in-
The sequence of phases corresponds to that predicted Ioyeasing the areal density of the confined ions, the ions in the
Goldoni and Peetetgor the ground stateT(=0 orI'=x) of  central part of the ion cloud first crystallize into a one-layer
the bilayer system. More remarkably, the ranges over whiclihexagonal structuréhe so-called Wigner crystalthen spilit
the square and hexagonal phases are stable agree quantitéde a two-layer staggered square before transforming into a
tively with the ground-state calculations (0.464<1.102 two-layer staggered rhombic phase and finally a two-layer
for the square phase, ahd>1.297 for the staggered hexago- staggered hexagonal phase. At some critical density a third
nal phasé; note that our definition of layer separation differs layer forms, and the sequence of phase structures repeats.
from that of Refs. 2 and 3 by a factafr). Additional MC Comparison between experimental and MC results can be
simulations af” =324 further indicate a fair degree of insen- made by identifying, for a given phase, the lattice vector
sitivity of the domains of stability of the different phases onlengths measured experimentallg.() and obtained in the
I (at least away from the melting temperatyia agreement MC simulations @yc). This fixes the length scal@) used
with the finite temperature phase diagram calculated in thé& the simulations. For example, in the experiment the hex-
harmonic approximatiofcf. Fig. 8 of Ref. 2. In contrast, as agonal phase of the bilayer structure sets in at a density
shown by recent MC simulations by Schweigettal,® the  ¢padop~0.65 with a layer separatiohe,~1.3%ysp,
values ofl" at which the different phases melt are not so wellwhere the unit of length is taken to lag,op=10.7 um. At
estimated in the harmonic approximation. In these more achis density the lattice vector leng#y, related to the central
curate calculations the melting temperat{mssociated with area densityr,, lattice angled, and number of lattice planes
the temperature at whicd/NTI" shows a discontinuity and n by a.,= +/sinfoy/n is ~1.88%,5p Which, when identi-
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