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Solid phase diagram of a classical electronic bilayer
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Using a Monte Carlo method in which the shape of the simulation cell can vary, we identify the sequence of
crystal phases occurring in a finite-temperature strongly coupled classical electronic bilayer as the layer sepa-
ration is increased. The limits of stability of the different phases are estimated and compared with ground-state
calculations. Contact is made with recent experiments on two-dimensional ion plasmas.
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I. INTRODUCTION

Strongly coupled electronic bilayers of charged partic
occurring, for instance, in two-dimensional semiconduc
heterostructures, dusty plasmas, or laser-beam-co
trapped-ion plasmas benefited recently from extended
perimental and theoretical studies disclosing a wide var
of structural phases.1 Lattice dynamics calculations b
Goldoni and Peeters2 showed that the ground state of a cla
sical bilayer Wigner crystal~one component plasma in a ne
tralizing uniform background! adopts five different phase
depending on the separationh between the two layers. In
order of increasing value ofh, these phases are: a monolay
hexagonal lattice~I! (h50), a staggered rectangular lattic
~II !, a staggered square lattice~III !, a staggered rhombic lat
tice ~IV !, and a staggered hexagonal lattice~V!. These au-
thors also addressed the nonzero temperature phase dia
and determined the stability and melting of the five structu
within the harmonic approximation.2 In later work,3 esti-
mates of the melting temperatures of the different pha
identified in Ref. 2 were refined using canonical Monte Ca
simulations. It was shown, for instance, that the square ph
corresponding to layer separations of 0.5–1 mean dista
between charges melts at a temperature 35% higher than
of the hexagonal single layer system. However, in these
culations it was assumed that the ranges of stability of
different phases are those determined for the ground sta

The aim of the present work is to establish the relat
stability of the crystal phases of the bilayer system at fin
temperature. To this end we perform numerical simulatio
in an ensemble similar~but not identical! to the canonical
ensemble. In each layer the cell containing the charges,
rhombus, or the rectangle, with periodic boundary con
tions, has a constant area but its shape is variable. In suc
ensemble the system of charges can, by modifying the as
ratio of the edges of the cell or the angle between adjac
edges, undergo a transition to the most stable crysta
phase for a given layer separation. This method is simila
that proposed by Parrinello and Rahman4 and Yashonath and
Rao5 to study polymorphic transitions in single crystals, b
has been adapted to take account of the thermodynami
stability of the one component plasma~OCP! at low tem-
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peratures when the density of the compensating backgro
is not kept fixed.6

In this paper we present Monte Carlo results for the
ergy and crystal phases of the bilayer Wigner crystal a
function of separation of the two layers. In contrast to t
lattice dynamics calculations of Goldoni and Peeters,
a priori assumptions of the lattice structures are needed.
allowing the shape of the simulation cell to vary, the syst
can adjust to a lattice structure which gives the lowest f
energy ~within the constraints of finite size and period
boundary conditions!.

Our model and details of the Monte Carlo~MC! calcula-
tions are presented in Sec. II. The different crystal pha
and their range of stability are identified as a function
layer separation in Sec. III. Comparison with related work
given in Sec. IV.

II. MODEL AND MONTE CARLO SIMULATIONS

In our MC simulationsN52Nl point ions interacting by a
1/r Coulomb potential are evenly distributed in two layersL1
andL2 separated by a distanceh. Charge neutrality is guar
anteed by embedding the ions in a uniform background
opposite charge. In each layer the basic simulation cell h
variable shape, and periodic boundary conditions are
posed. The particles are not allowed to move out of
planes.

A thermodynamic state of the system is entirely specifi
by the dimensionless parametersG5e2/kTa, andh/a where
e is the ionic charge,T the temperature,k Boltzmann’s con-
stant, anda the ion-disk radius defined bypr la

251. The
ion density in each layer isr l5Nl /V, whereV is the area of
the basic simulation cell. Choosinga as unit of length, as
will be the case throughout the paper, the density in e
layer takes the value 1/p.

The energy of the bilayer system can be written, using
Ewald summation method, to take account of the long ra
of the Coulomb potential7 and separate the intralayer an
interlayer contributions, as

U5Uintra1Uinter , ~1!

where
©2001 The American Physical Society08-1



y

u-

ded

.

nd

the
The
bic

-
-

led

at

the

p-

ing
me
am-
uare

-
s

2-

lid

J.-J. WEIS, D. LEVESQUE, AND S. JORGE PHYSICAL REVIEW B63 045308
Uintra5
e2

2 H (
i PL1

Nl

(
j PL1

Nl

( 8
n

erfc~aur i j 1t•nu!
ur i j 1t•nu

1
1

V (
i PL1

Nl

(
j PL1
j Þ i

Nl

(
GÞ0

2p

G
erfc~G/2a!eiG•(rj 2ri )

2
1

V (
i PL1

Nl

(
j PL1
j Þ i

Nl 2Ap

a J 2
1

2
Cw

1similar contribution with i , j PL2 ~2!

and

Uinter5e2H (
i PL1

Nl

(
j PL2

Nl

(
n

erfc~aur i j 1t•nu!
ur i j 1t•nu

1
1

V (
i PL1

Nl

(
j PL2

Nl

(
GÞ0

p

G FeGh erfcS G

2a
1ahD

1e2Gh erfcS G

2a
2ahD GeiG•(rj 2ri )

1
1

V (
i PL1

Nl

(
j PL2

Nl F2ph erfc~ah!2
2Ap

a
e2a2h2G J .

~3!

In these equations,r i j 5r i2r j , where the position of particle
i is represented by a three-dimensional vectorr i having pro-
jection ri on the lattice plane.

The term2 1
2 Cw is the self-energy of one plane given b

Cw5e2Nl H 2 (
nÞ0

erfc~aut•nu!
ut•nu

2
1

V (
GÞ0

2p

G
erfc~G/2a!

1
2a

Ap
1

2Ap

Va J . ~4!

In Eq. ~2! the prime in the sum overn5(nx ,ny) (nx ,ny
integers! means that the termsi 5 j must be omitted when
n50. Expressions~2! and~3! apply for an arbitrary oblique
simulation cell characterized by two basis vectorsb1 andb2
of variable lengthsLx andLy and variable angleg. The cell
basis matrixt is given by

t5S Lx Ly cosg

0 Ly sing D , ~5!

and the volume of the simulation cell isV5LxLy sing. The
wave vectorsG which enter the reciprocal space contrib
tions to the energy are of the form

G52p~ tt!21n, ~6!

where tt denotes the transpose oft, with components

Gx5
2p

V
Lx singnx , ~7!
04530
Gy5
2p

V
~2Ly cosgnx1Lxny!, ~8!

and modulus

G5AGx
21Gy

2. ~9!

In our calculations the sums in reciprocal space exten
over all lattice vectorsG subject tounu2<nmax

2 5100 or 400.
For larger values ofnmax the Fourier components in Eqs.~2!
and ~3! were negligible for all box dimensions considered

Care has to be taken to properly choose thea parameter
which governs the rate of convergence of the real- a
reciprocal-space contributions in Eqs.~2! and ~3!. It is gen-
erally taken sufficiently large so that only the terms withn
50 need to be retained in Eqs.~2! and~3!, implying that the
real-space term vanishes at a distance corresponding to
smallest distance from the cell center to the cell edges.
requirement, therefore, especially in the case of a rhom
simulation cell with smallg, of a large value ofa and con-
comitantly a large number ofG vectors to guarantee the in
dependence ofU on a, motivated the use, in our computa
tions, of a rectangular simulation cell.

In the MC procedure the box characteristicsLx , Ly , and
g, taken to be identical in the two layers, were not samp
independently but by keeping the areaV constant. This con-
straint was necessary to avoid the collapse of the system
high density ~or equivalently low temperature! where the
pressure of the OCP becomes negative,6 and precludes the
use of the isobaric ensemble to study the stability of
crystalline phases.

Different crystalline structures were identified from sna
shots of instantaneous configurations; intralayerg11 and in-
terlayerg12 pair distribution functions~PDF’s! correspond-
ing to particles in the same layer and to particles belong
to different layers but positions projected onto the sa
plane, respectively; coordination numbers; and order par
eters. Suitable order parameters for characterizing the sq
and hexagonal structures are

Cm5K 1

Nl
(

i

Nl

ucm~ i !u L , ~10!

where

cm5
1

Ni
(

k

Ni

e2 imu ik ~11!

(m54 and 6!.
The sum in Eq.~11! is taken over theNi neighbors of

particle i within the first shell of the intralayer pair distribu
tion function;u ik is the angle between the bond of particlei
and k and an arbitrary reference axis, and^•& denotes an
ensemble average.

In view of finite-size effects encountered for a 51
particle system forh.1 ~see below! most simulations were
performed with the larger number of ionsN51800 ions at
the two values of the coupling parameterG5196 and 324 for
which the single-layer electron system is well inside the so
8-2
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FIG. 1. Intralayer PDFg11(r ) ~solid line! and
interlayer PDFg12(r ) ~dotted line! at G5196 for
0.1<h<1.0. Distances are in units of the ion
disk radiusa.
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phase. Melting of the quasi-two-dimensional electron so
was estimated both experimentally8 and by computer
simulation9 to occur in the range 120,Gm,140. A MC run
involved typically of the order of 80 000~1800 ions! or
200 000~512 ions! cycles~after equilibration of the system!,
each cycle corresponding to displacement of theN ions and
one change of the box dimensions keeping the volume fix

III. RESULTS

The simulations were started at small values ofh, choos-
ing initial conditions compatible with the fact that, forh
50, the monolayer ofN52Nl ions must crystallize in a
hexagonal lattice. This can be achieved by fixing the ions
the two layers at the sites of two rectangular lattices with
aspect ratioA3, such that the sites of one lattice sit at t
centers of the cells of the other lattice. Obviously a hexa
nal lattice is recovered in this way whenh→0. This stag-
gered rectangular structure turns indeed out to be stable
small values ofh. As h was increased the simulation bo
initially ( h50) of nearly square shape, contracted in they
direction with a slight dilation in thex direction. The ratio of
lattice spacings in they and x directions a2 /a1, initially
equal toA3, retained this value up toh50.05, and then
progressively decreased (a2 /a151.70, 1.60, 1.54, 1.47, an
1.40 ath50.1, 0.2, 0.25, 0.3, and 0.32, respectively! reach-
ing a value of 1 ath'0.4. At this value the intralayer firs
coordination number changed from 2 to 4, typical of a squ
lattice, while the interlayer first coordination number r
mained unchanged from its value 4 in the rectangular ph
The transformation from a staggered rectangular to a s
gered square lattice is complete ath50.5, and this structure
remains stable up toh'1.05~cf. Fig. 1!. Confirmation of the
staggered square structure is obtained from the order pa
eter C450.9 and peak positions of the nearest-neigh
shells occurring ing11 at r 51.76 (5r 1), 2.50 (;A2r 1),
3.56 (;2r 1), and 3.96 (;A5r 1) and in g12 at 1.24
(;A2/2r 1), 2.80 (;A10/2r 1), and 3.76 (;3A2/2r 1).

In the rectangular phase the intralayer energyUintra /NkT
decreases from2204.05 ath50.05 to2214.23 ath50.5,
04530
d
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and remains nearly constant in the square phase~variation
from 2214.60 ath50.6 to2214.88 ath51.05 ~cf. Fig. 2!.
The interlayer energyUinter /NkT varies linearly up toh
'0.35, then increases more slowly in the square phase. N
h51.05 the system starts to transform to a staggered rh
bic phase which in turn will evolve, via a first-order trans
tion, into a hexagonal phase ath*1.24.

Once the hexagonal ordering is completed the intrala
PDF g11 ~cf. Fig. 3! and energy (Uintra /NkT52215.75 for
the 1800 particle system! remain unchanged for all large
separations. Peak positions ing11 occur atr 51.88 (5r 1),
3.32 (;A3r 1), 3.76 (;2r 1), and 4.96 (;A7r 1) ~cf. Fig. 3!;
the first coordination number is 6, and the hexatic order
rameter isC650.80, whileC4'0 in accord with a hexago
nal crystal structure. Peak positions in the interlayer PDFg12

located atr 51.08 (;A3/3r 1), 2.20 (;2A3/3r 1), and 2.9
(;A7/3r 1) ~cf. Fig. 3!, and a first coordination number of 3

FIG. 2. Energy per particle as a function of layer separation
G5196 and 1800 ions. Filled circles: total energyU/NkT, tri-
angles: intralayer energyUintra /NkT. The inset shows the intra
layer energy in the transition region between the square and
agonal phases. Error bars are of the order of 0.02 except nea
phase transition where they can be larger.
8-3
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FIG. 3. Intralayer PDFg11(r ) ~solid line! and
interlayer PDFg12(r ) ~dotted line! at G5196 for
1.1<h<4.0. Distances are in units of the ion
disk radiusa.
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further testify to a staggered position of the two layers, i
the lattice points of one layer lie directly above the centers
the triangles of the other, thus minimizing the interlayer
pulsion. The peaks ing12 remain well defined up toh52.5,
then slacken, persisting nonetheless up toh'6.

Concerning the phase region separating the stagg
square and hexagonal phases when, for the 1800 ion sys
the layer separation was decreased fromh51.4, the system
retained its staggered hexagonal structure until, neah
51.24, it changed to a linear rhombic structure with latt
vectors of equal lengths 1.8 and angleu'72°. In accord
with such a structure peak positions ing11 should therefore
occur near r 51.80 (5r 1), (222 cosu)1/2r 152.12, (2
12 cosu)1/2r 152.92, and 2r 153.6, which can readily be
verified from caseh51.22 of Fig. 3.

On the other hand, whenh was increased fromh51.05 in
the square phase, we first observed coexistence betwee
gions of both square and rhombic short-range ordering~cf.
Fig. 4!, as manifested by a broad second peak ing11 resulting
from the overlap of the preferred second- and third-neigh
positions of the rhombic phase and the second-neighbor
sition of the square arrangement. Only close toh51.22 did
the system achieve a pure rhombic structure, with a lat
angle close to 72°. Upon further increase of the interla
separation the rhombic structure was found to be mech
cally stable beyond the value ofh51.24, at which the hex-
agonal phase became unstable in a reverse sequence
layer distance variation. Such hysteresis, as well as an ab
jump of u from 72° to 60° at the rhombic-hexagonal tran
tion and a discontinuity in the intralayer- and interlayer e
ergies~though to less extent in the total energy! ~cf. inset of
Fig. 2!, plead strongly in favor of a first-order transition
accord with the ground state calculations of Goldoni a
Peeters.2

Calculations with the smaller number of particles, 51
gave qualitatively similar structures, but shifted the rhomb
hexagonal transition to the somewhat higher valueh'1.27
and produced lower-energy values, compared to those fo
1800-ion system, forh.1.1, with a maximum difference o
'0.4 for h53 –4. In fact, for separations 3,h,6, the sys-
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FIG. 4. Snapshot of a layer configuration of 900 ions atG
5196 and layer separationh51.15, showing the coexistence o
regions with square and rhombic orderings. From top to botto
full layer, region with square ordering, and region with rhomb
ordering. Distances are in units of the ion-disk radiusa.
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tem showed a preference to adopt a structure in which
two hexagonal layers, though only weakly correlated, we
on average, on top of each other rather than staggered~the
nearest neighbor peak ing12 was atr 50, and subsequen
peaks coincided with those ing11). The occurrence of thes
finite-size effects urged us to resort to a larger system s

IV. DISCUSSION

We have investigated the solid-solid structural phase tr
sitions arising in a classical bilayer Wigner crystal as a fu
tion of layer separation using Monte Carlo simulations
which the box shape can fluctuate, thereby allowing the s
tem to adopt its preferential crystal structure. Between
hexagonal packings of the ions ath50 ~single-layer Wigner
crystal! and h*6 ~uncorrelated layers! we identify, for G
5196, four different phases which, in order of increasingh,
are the staggered rectangular phase (0&h&0.4), the stag-
gered square phase (0.5&h&1.05), the staggered rhomb
phase (1.05&h&1.24), and the staggered hexagonal ph
(1.24&h&6).

The use of a simulation cell of variable shape turned
to be particularly efficient for the study of the stable pha
for h<1. The possibility of the aspect ratioLy /Lx of the
simulation box being able to adjust to the ratio of the latt
spacings allowed us to give evidence for the continuous t
sition from a staggered rectangular phase to a stagg
square phase while avoiding the creation of defects.
method is equally efficient for the study of a staggered h
agonal phase to a staggered rhombic phase, where one
an adjustment of the aspect ratio fromLy /Lx50.86~hexago-
nal! to Ly /Lx50.9721.01 ~rhombic!. In the case of a tran
sition from a square to a rhombic phase, whereLy /Lx;1.0
for both phases, the variation of the simulation cell can
avoid the creation of defects entailing the coexistence of
two phases. However, by allowing one to bypass a fr
energy calculation to estimate the stability of the so
phases, the use of a simulation method based on a var
cell shape is equally successful for studying the solid-so
transitions in OCP-like systems as it is those in two- or thr
dimensional systems with short-range interactions.4

The sequence of phases corresponds to that predicte
Goldoni and Peeters2 for the ground state (T50 or G5`) of
the bilayer system. More remarkably, the ranges over wh
the square and hexagonal phases are stable agree qua
tively with the ground-state calculations (0.464,h,1.102
for the square phase, andh.1.297 for the staggered hexag
nal phase;2 note that our definition of layer separation diffe
from that of Refs. 2 and 3 by a factorAp). Additional MC
simulations atG5324 further indicate a fair degree of inse
sitivity of the domains of stability of the different phases
G ~at least away from the melting temperature!, in agreement
with the finite temperature phase diagram calculated in
harmonic approximation~cf. Fig. 8 of Ref. 2!. In contrast, as
shown by recent MC simulations by Schweigertet al.,3 the
values ofG at which the different phases melt are not so w
estimated in the harmonic approximation. In these more
curate calculations the melting temperature@associated with
the temperature at whichU/NTG shows a discontinuity and
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the translational and orientational order parameters (Cm)
vanish# of the square phase ath50.5 is '35% higher than
the melting temperature of the single-layer crystal, while
the hexagonal phase ath51.6 it is '20% lower. We have
obtained rough estimates of the melting temperatures f
the values ofG at which the simulated PDFg11 changed
from crystal to liquid behavior. Based on this criterion th
square phase ath50.8 melts approximately atG567, and
the staggered hexagonal phase ath51.6 nearG5106. These
values for the inverse melting temperature are in excel
agreement with those obtained by Schweigertet al.3 (G
;66 and;110, noting that their temperature scale diffe
from ours by a factorA2).

We find good evidence for a first-order rhombic to he
agonal transition with a lattice angleu jumping discontinu-
ously from '72° to 60° nearh51.24, in good agreemen
with the ground-state predictions@a discontinuous drop from
69.48° to 60° ath51.3 ~Ref. 2!#, and experimental results o
Mitchell et al.10 on laser-cooled trapped9Be1 ions. It can be
noted that a square to hexagonal transition was also obse
in bilayer hard-sphere13 and colloidal14 systems~particles
confined between parallel plates a few particle diame
apart!, and that its nature can depend sensitively on the
teraction potential. For example, in the case where the
ticle interaction comprises both a repulsive core-core pot
tial and a narrow attractive part~e.g., colloids! the hexagonal
to square lattice transition is found to be first order, and th
is no intermediate rhombic phase in contrast with the p
hard-sphere case.13 Integral equation studies based on t
hypernetted-chain equation further show that the vari
phase behaviors observed in the solid phase as a functio
h extend to some degree to the liquid.11

The sequence of structural phases observed in the pre
model system bears close resemblance to the experim
findings by Mitchell et al.10 for a disklike ~lenticular! ion
plasma of9Be1 ions in a Penning trap, laser beam cooled
a temperature of a few mK. In this experimental realizati
of the OCP the confining electric and magnetic fields p
the role of the neutralizing background.12 By using direct
imaging techniques, Mitchellet al.10 showed that upon in-
creasing the areal density of the confined ions, the ions in
central part of the ion cloud first crystallize into a one-lay
hexagonal structure~the so-called Wigner crystal!, then split
into a two-layer staggered square before transforming in
two-layer staggered rhombic phase and finally a two-la
staggered hexagonal phase. At some critical density a t
layer forms, and the sequence of phase structures repea

Comparison between experimental and MC results can
made by identifying, for a given phase, the lattice vec
lengths measured experimentally (aex) and obtained in the
MC simulations (aMC). This fixes the length scale~a! used
in the simulations. For example, in the experiment the h
agonal phase of the bilayer structure sets in at a den
s0aWS2D

2 '0.65 with a layer separationhex'1.35aWS2D ,
where the unit of length is taken to beaWS2D510.7 mm. At
this density the lattice vector lengthaex related to the centra
area densitys0, lattice angleu, and number of lattice plane
n by aex5Asinus0 /n is '1.885aWS2D which, when identi-
8-5
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fied with the MC valueaMC51.88a, as given from the
nearest-neighbor distance in the hexagonal phase, lead
a51.0027aWS2D and consequentlyhex /a51.346, in good
agreement with the Monte Carlo resulthMC /a'1.3. Similar
agreement is found in the square phase. In addition the s
for a allows one to determine an absolute temperature wh
for G5196 is T5e2/Gka57.95 mK (k is the Boltzmann
constant!, compatible with experiment (,10 mK).
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