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Coulomb effects on the transport properties of quantum dots in a strong magnetic field

V. Moldoveanu, A. Aldea, A. Manolescu, and M. Nit¸ă
National Institute of Materials Physics, P.O. Box MG7, Bucharest-Magurele, Romania
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We investigate the transport properties of quantum dots placed in a strong magnetic field using a quantum-
mechanical approach based on the two-dimensional tight-binding Hamiltonian with direct Coulomb interaction
and the Landauer-Bu¨ttiker formalism. The electronic transmittance and the Hall resistance show Coulomb
oscillations and also prove multiple addition processes. We identify this feature as the ‘‘bunching’’ of electrons
observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the
dot. The spatial distribution of the added electrons may distinguish between the edge and bulk states and it has
specific features for bunched electrons. The dependence of the charging energy on the number of electrons is
discussed for a strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in
terms of dot-lead coupling.
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I. INTRODUCTION

The basic phenomena in quantum dots~QD! are usually
described by the ‘‘orthodox theory’’1,2 which explains the
Coulomb blockade effects~charge quantization and the o
cillations of the electrical resistance! in terms of the capaci-
tive properties of the isolated~or very weakly coupled! dot.
Generally speaking, the corresponding capacitance sh
depend on the dimension and the dot shape, number of e
trons accommodated inside, and the electron-electron in
action~EEI!. Nevertheless, the orthodox theory considers
dot capacitance as being a constant, independent of the n
ber of electrons and the size quantization effects. This i
can be accepted for large metallic QDs when the charg
energy due to the Coulomb interaction is larger than the le
spacing of the one-electron energy spectrum. Howe
many specific properties of QDs remain beyond this mod
Such aspects occur especially for small semiconductor q
tum dots, when the level spacing is relatively large, the d
tribution of the energy levels depends visibly on the d
shape, and the number of electrons is smaller than in
metallic case. In small dots the interplay between the qu
tum aspects and the charging effects is important. Thi
why a more advanced description pretends to pay attentio
the one-particle energy spectrum and to consider a more
alistic Hamiltonian.

In spite of the general acceptance that the charging en
should depend on the number of electrons inside dotN, a fact
which is proved experimentally by the irregular Coulom
blockade oscillations,3 this effect has been simulated nume
cally only recently.4,5 The situation becomes even more co
plicated when the coupling to the leads is taken into acco
carefully, going beyond the lowest order of the perturbat
series in the tunneling matrix elements. This was done
mapping the scattering of electrons by the dot into a Kon
problem,7 a method which, however, could not avoid the u
of the constant capacitance model~CCM!. But, as it is
known,8,1 CCM fails dramatically in the presence of a hig
magnetic field. For this reason, one of the aims of our pa
is to find an alternative formalism able to consider the s
effects and to describe the case of strong magnetic fie
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replacing thus the constant capacitance model. The prop
approach is the quantum-mechanical Landauer-Bu¨ttiker ~LB!
formalism which has the advantage of simplicity, contains
the lead-dot tunneling processes~i.e., the full perturbation
series!, and is definitely valid in strong magnetic field
Originally, it was considered that this formalism works on
for noninteracting electrons. However, afterwards Meir a
Wingreen6 proved that at zero temperature and in the line
response regime, the LB formalism remains valid even if
interaction is present in the dot, as long as the leads are
of interaction@see the discussion after Eq.~10! in Ref. 6#. In
this paper, a one-particle approximation~namely, Hartree! is
used, so that the applicability of the LB formalism is beyo
any doubt. In a previous paper by Maccuciet al. it was
shown that the differences between Hartree and better tr
ments of the interaction@local density approximation~LDA !#
are not qualitatively significant for the transmittance proble
~see Fig. 9 in Ref. 4!.

In this framework we show that the lead-dot~LD! cou-
pling plays an even more pregnant role in the presence
strong magnetic field, in which case an interesting crosso
from Coulomb oscillations to the quantum Hall regime c
be noticed for the transverse resistance with increasing c
pling. In fact, this coupling between dot and leads~or using
other words: the degree of pinching and/or constriction at
contacts! decides the degree of quantization of the charge
QD and affects the electronic transmittance through the
and the Hall resistance. The influence of the coupling
tween ideal terminals and noninteracting systems on
transport properties was emphasized some time ago; in
case of noninteracting QD Bu¨ttiker predicted oscillations of
the Hall resistance induced by the pinching,9 while for a
smoothly tapered junction Kirczenow also obtained a re
nant feature ofRH .10

The strong magnetic field perpendicular on the tw
dimensional dot gives rise to edge states even if the do
small. Then, for large LD coupling, quantum Hall effect
~QHE-! type effects appear, although, usually, only the fi
plateau is visible in small dots~and not always very clean!.
Such aspects were evidentiated in Ref. 11 by the use
tight-binding ~TB! model in the absence of the electro
©2000 The American Physical Society01-1
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electron interaction. Due to the full polarization of the sp
degree of freedom a spinless Hamiltonian can be used.

Our approach for calculating the transport properties
quantum dots is the following: the QD is coupled weakly
four semi-infinite leads supporting many channels. The nu
ber of degrees of freedom of the terminals is infinite wh
the QD has only a finite number of degrees of freedom,
that the Fermi levelEF of the whole system is imposed b
terminals. At a given magnetic field, when a gate poten
Vg is applied and varied, the fixedEF scans the whole energ
spectrum. We calculate the electronic transmittance ma
the Hall resistance, and charging energy. The transmitta
peaks — which correspond to the charge-degeneracy po
— are distributed irregularly keeping track of the size qua
tization. We show that when the contacts are pinched,
quantum plateaus disappear and quantum oscillations oRH
are installed even in the absence of EEI. Next we show
characteristics of theRH oscillations in the presence of th
long-range direct electron-electron interaction in Hartree
proximation. These oscillations as a function ofVg or the
magnetic flux were already observed experimentally a lo
time ago,12 but they were never simulated numerically on t
basis of a theoretical model. Our calculations put into e
dence the electronicbunching in the addition process, a
effect which was found recently by single-electron capa
tance spectroscopy13 ~SECS! and which cannot be explaine
in the framework of CCM.

The description of the formalism is made in Sec. II, wh
in Sec. III we discuss briefly some aspects of resonant tra
port through a noninteracting QD subject to a strong m
netic field. Our main results are established and comme
in Sec. IV, the conclusions being isolated in Sec. V.

II. THE FORMALISM

We use a pure quantum-mechanical approach of the tr
port properties of open quantum dots, which is based on
Landauer-Bu¨ttiker formalism and the Hartree approximatio
for the electron-electron interaction. While the Hartree te
is meaningless in an infinite homogeneous system it beco
important for finite systems like QD’s. The method
complementary to the semiclassical master-equa
approach,2 goes beyond the constant-interaction model, a
is able to account for size, tunneling and interaction effe
in quantum dots in the presence of the magnetic field.

Our calculations are based on a lattice model. In spite
the fact that in recent years this model is extensively used
the study of various effects in quantum dots14,15 we would
like to say a few words of caution on this approach to sm
systems, in the presence of the EEI. When the lattice mo
is considered as the discretization of a continuous sys
with a rectangular grid of intersite distancea, the ~direct!
EEI readsU( j . i1/u i 2 j uc†ic† j cjci , wherei , j are the lattice
sites andU5e2/a; this means that the strength parameterU
depends on the grid which is meaningless. Also the hopp
integralt5\2/2ma2 and the radiusr s5e2/(atA4pn) (n be-
ing the filling factor! depend on the grid. One may say th
the discretization works better at low filling factor~meaning
small a or a large number of grid sites!. Another way to
04530
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avoid this paradox is to consider the lattice model as a tig
binding approximation, i.e., to assume that the overlap
tween the atomic orbitals~and usually, one considers onl
one type of orbital! located on different sites is small and th
effective mass is big. In general, this is not the case for
semiconductors used in the experimental devices. In part
lar, the strength of the electron-electron Coulomb interact
depends on the dielectric constant of the semiconductor
material, which we incorporate here in our coupling const
U.

The discrete model allows the tailoring of different shap
and introducing the magnetic field as a phase of the hopp
integral. The parameters controling the problem are~a! the
strength of the LD coupling,~b! the size and shape of the do
and the magnetic flux which, all of them, determine the el
tronic spectrum in the absence of the EEI, and~c! the
strength of the EEI (U).

We model the QD as a two-dimensional~2D! mesoscopic
plaquette weakly coupled to four external semi-infinite lea
In the TB approximation the Hamiltonian is written as

H5HD1(
a

Ha
L1(

a
Ha

LD . ~2.1!

In the above relationHD is used to describe the isolated QD
Ha

L characterizes the leada (a51, . . . ,4),while the leada
is coupled to the dot by

Ha
LD5tLD~c0a

† ca1ca
†c0a!, ~2.2!

where the operatorca
† creates an electron in the dot stateua&

and c0a annihilates it in the neighboring lead stateu0a&.
Here tLD is the hopping integral between dot and lead
Since the role of the leads is only to inject and drain t
electrons or to probe the potential drop, the EEI will be
cluded only in the Hamiltonian of the dot. In the ‘‘orthodo
theory’’ the Coulomb effects are mostly studied in th
constant-interaction model~see, for instance, Ref. 16! which
considers the HamiltonianHee5(e2/2C)(N2Ng)2 (C is the
capacitance,N is the operator of the total number of pa
ticles, andNg is the external parameter related to the g
potential!. Here, we use a long-range direct Coulomb int
action. Expressed in terms of creation and annihilation
erators on localized states indexed byi PQD, the Hamil-
tonian of the dot reads

HD5(
i , j

S t i j
D ci

†cj1
1

2
Ui j ci

†cj
†cjci D1(

i
Vgci

†ci ,

i , j PQD. ~2.3!

The external gateVg is simulated by a site energy inHD. In
the Hartree approximation and nearest-neighbors mode
becomes

HD5(
i

S Vg1U(
j . i

^nj&
u i 2 j u D ci

†ci1tD(
^ i , j &

ei2pf i j ci
†cj ,

~2.4!
1-2
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FIG. 1. The correspondence between t
transmittance spectrum of a noninteracting QD
a strong magnetic field (f50.15) and the Hofs-
tadter spectrum. Each transmittance peak ari
when EF equals an eigenvalue of the isolate
spectrum.
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where ^nj&5^cj
†cj& is the mean occupation number of th

site j and U is the parameter describing the strength of
EEI. We have chosentD51, i.e., the energy unit is the hop
ping integral in QD, and we have denoted by^•••& the
nearest-neighbors summation. The Peierls phasef i j is pro-
portional to the magnetic flux through the unit cellf5Ba2

measured in quantum flux unitsf0 . The explicit calculation
is made for a rectangular plaquette containing 538 sites and
the phases correspond to the Landau gauge chosen as in
17.

At this point a useful ‘‘trick’’ is to describe the open do
by an effective Hamiltonian which includes the influence
the leads. Eliminating formally the degrees of freedom of
leads, one obtains a non-Hermitean Hamiltonian depend
on the energy,

He f f
D ~z!5HD1HDL

1

z2HL
HLD5HD1HDLGL~z!HLD.

~2.5!

In the above equation, the Green functionGL(z) of the
semi-infinite lead can be calculated analytically,

Gi j
L ~z!5

1

tL~z22z1!
@z1

u i 2 j u2z1
i 1 j 12#, i , j P lead

~2.6!

wherez1 andz2 are the roots of the equation,

tLz22zz1tL50, uz1u,1,uz2u. ~2.7!

Let z1(z) be analytic in the upper half plane. By ap
proaching the real axis from above one obtainsz1(z)5z(E
04530
e

ef.

f
e
g

1i0)5e2ik, wherek is defined by 2tLcosk5E, tL being the
hopping energy of leads. After straightforward manipulatio
the effective Hamiltonian of the dot is obtained explicitly,

He f f
D 5HD1t2tL(

a
e2 ikca

†ca . ~2.8!

The ratiot5tLD /tL defines the degree of constrinction at t
contacts and represents an input parameter that can be v
continuously. It is important to observe that the influence
the leads is expressed as a non-Hermitean diagonal term
portional tot2, which produces a shift in the real part of th
eigenvalues ofHD and introduces also an imaginary part.
t!1, i.e., for a weakly coupled dot, these shifts beco
negligible and the spectrum ofHe f f approaches the spectrum
of the isolated dot. This behavior has important con
quences on the conductance matrixgab , seen as the trans
mittanceTab , which can be expressed in terms of the r
tarded Green functionG1(E)5(E2Heff1 i0)21 by the LB
formula

gab5
e2

h
Tab54

e2

h
t4tL

2 sin2 kuGab
1 ~EF!u2, aÞb.

~2.9!

Once the conductance matrixgab is known, the Hall resis-
tance can be calculated immediately,20

RH5~g21g432g12g34!/D, ~2.10!

whereD is a 333 subdeterminant of the 434 matrix gab .
The matrix elements of the Green’s function,Gi j

1(E), are
calculated numerically using the self-consistency conditio
1-3
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FIG. 2. The dependence of transmittances
constrinction (T12, full line; T13, dashed line;
T14, dotted line;f50.15). The pinching effect is
obvious: at large coupling the conditions for th
QHE are fulfilled, while by continuously decreas
ing LD coupling, Ti j evolves smoothly to the
same order of magnitude. The four-probe pl
quette is shown in the inset.
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^nj&5
1

pE2`

EF
Im Gj j

1~E!dE. ~2.11!

In the weak-coupling limitt!1, the transport problem
reduces to a tunneling problem. Indeed, from Eq.~2.9! it
follows that the poles of the Green function will induce
series of peaks in the transmittance, and Eq.~2.11! shows
that the mean number of electrons in the QD chan
abruptly by 1 at every peak, indicating a charge addit
process. So, the correspondence between the peaks obs
in the transmittance and the charge accumulation in the d
manifestly established.

Taking into account the strong conditioning of the tran
port properties~electronic transmittance and Hall resistanc!
by the energy spectrum of the dot, we have to perform
comparative analysis of spectral properties ofHD, with and
without EEI.

III. NONINTERACTING DOT IN STRONG MAGNETIC
FIELD

In this section we address the resonant transport throu
noninteracting QD, mainly because this simple framew
gives a clear picture of the constrinction effects. Moreov
some data about the noninteracting spectrum will be nee
in Sec. IV.

As it is known, when periodic boundary conditions a
imposed to anoninteracting2D electronic system subjecte
to a perpendicular magnetic field, the tight-binding approa
yields the Harper equation associated with the us
Hofstadter-butterfly spectrum. When the periodic bound
conditions are replaced by the Dirichlet conditions, a ‘‘qua
Hofstadter’’ spectrum is obtained,18 since the hard-wall po-
tential lifts the degeneracy and the gaps get filled with eig
values that correspond to the so-called edge states~which are
extended along the edges of the system and are respon
for the quantization of the Hall conductance!. Another type
of states is the ‘‘bulk states,’’ which are grouped in ener
bands and geometrically concentrated in the middle of
dot. The nature—bulk or edge—of a given stateCn(f) can
be checked also by its chirality,19 i.e., by the sign of the
current carried by that state, defined as the slope of the
ergy level
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dEn~f!

df
. ~3.1!

Since the eigenvaluesEn(f) are not monotonic functions o
the magnetic flux@as can be noticed in Fig. 1~a!#, it follows
that the nature of the corresponding eigenstate may ch
from bulk to edge or vice versa when the flux is varied.

For strongly pinched contacts, a continuous variation
the gate potential~or, equivalently, of the Fermi level! gives
rise to a resonance peak whenever the Fermi level is alig
to an eigenvalue of the isolated dot~the width of the peak is
determined only by the strength of the LD coupling in t
noninteracting case!. This can be seen in Fig. 1~b! which
depicts the transmittance spectrum of the noninterac
quantum dot as function ofEF mapped onto the correspon
ing piece of the quasi-Hofstadter spectrum.

The modifications in the transmittance induced by pin
ing is shown in Fig. 2 forT12, T13, andT14 in the case of
strong magnetic field. One remarks that for completely o
QD’s ~at t51.0) the transmittances take the values wh
describe the quantum Hall regime: allTa,b with aÞb vanish
exceptTa,a11 .20 On the other hand, for very weakly couple
QD’s (t!1), which corresponds to the resonant tunnel
regime, the dwell time of the electron inside the dot increa
and allTa,b become of the same order of magnitude.

While the transmission spectrum identifies the positi
of the levels it cannot specify whether the correspond
states are edge or bulk type. This can, however, be evid
ated by the Hall resistance for simple reasons: if the leads
strongly coupled to the dot, the Hall resistance exhibits qu
tum Hall plateaus in the range of the spectrum occupied
edge states. At strong constrinction, interference effects
cur when the electron travels along the edge states, resu
in oscillations of the resistance in the region of the form
plateau. This is shown in Fig. 3~a! where each minimum in
the Hall resistance corresponds to a resonance cond
~when the Fermi level equals an eigenenergy belonging t
edge state!. Note the sudden drop of the Hall resistance
tween the QH plateaus indicating a narrow bulk domain.

When the electron-electron interaction is consider
some features appear that can be traced from Fig. 3~b!, which
depicts RH versusVg for U50.5. The discussion of thi
1-4
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FIG. 3. ~a! Quantum oscillations of the Hal
resistance for pinched contacts (t50.5, f
50.15, U50.0). Note the sudden drop ofRH

between different Hall plateaus.~b! Interaction
effects on the Hall resistance (U50.5): the drop
of RH is slower and the oscillations in the rang
of edge states are widened but their amplitude
poorely affected by EEI.
e

ac
n

the
ct,
me
n-

om-
e

ful
figure is postponed to the next section where the influenc
the EEI on the edge and bulk states will be analyzed.

IV. THE INTERACTING CASE

When the electron-electron interaction is taken into
count, important differences appear in the positions a
04530
of

-
d

widths of the transmittance peaks and simultaneously in
Hall resistance. This is due to the Coulomb blockade effe
meaning that the addition of an extra electron needs so
energy which is not simply the difference between two co
secutive one-electron levels, but has also a contribution c
ing from the electron repulsion. We shall start with som
considerations on the addition spectrum which will be use
-

as
FIG. 4. ~a! The Hartree spectrum of an iso
lated dot in strong magnetic field (f50.15, U
50.5). ~b! The transmittance of a weakly
coupled QD (t50.1) as a function of the gate
potential. The charging energy can be obtained
the width at the bottom of the peaks.
1-5
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for understanding the features of the resonant trans
through QDs in the presence of the interaction. LetEn(N) be
the nth eigenvalue of the system containingN electrons.
En(N) has a monotonic dependence on the Fermi ene
WhenEF ~the diagonal line in Fig. 4! approachesEn(N) the
addition of theN11th electron becomes possible and t
whole spectrum raises with thecharging energy: Ech(N,N
11)5En(N11)2En(N). One notices from Fig. 4 that th
charging energy is not supplied steplike but linearly~with
slope51.0! along an intervaldEF5Ech ; the addition of the

FIG. 5. The spatial distribution of the added electron inside
interacting dot:~a! Dni(7,8)—the eighth electron is added strict
on the edge.~b! Dni(8,9)—the ninth electron is distributed almo
uniformly. ~c! Dni(9,912)—a multiple addition process in whic
the tenth and eleventh electrons are added together in the d
clear addition is made in the bulk, but some maxima are reac
also at the corners.
04530
rt

y.

extra electron occurs at thecharge degeneracy pointsituated
in the middle of this interval, whereEF5@En(N11)
2En(N)#/2. The transmittance shows the addition spectr
properties: the peaks point versus the degeneracy po
their widths—measured at the bottom—equals the charg
energy and are due to the so-called ‘‘co-tunneling’’ near
degeneracy points.21!.

Now we turn to discuss Fig. 3~b! and to make the com
parison with Fig. 3~a! ~the interacting vs the noninteractin
case!. The similarities of the two figures suggest that t
edge states are present also in the interacting case, giving
to oscillations ofRH on different quantum Hall plateaus
There are, however, qualitative differences: forUÞ0, both
the edge and bulk regions are much expanded, so tha
whole picture is pushed upwards on the energy scale~in the
numerical calculation this is equivalent to large negat
Vg). This means that the Coulomb interaction increases
level spacing and a striking consequence is the slower d
of RH in the region of the bulk states. However, in order
fully establish the nature of the states we have to observe
changing of the local electronic distributionni , when exactly
one more electron is added, i.e., to calculate

Dni~N,N11!5ni~N11!2ni~N!, i PQD, N5 integer
~4.1!

In order to make sure thatN is an integer, one has to calcu
late Eq.~4.1! for those values ofVg that ensure an intege
number of electrons in QD; they correspond to two conse
tive valleys in the transmittance spectrum Fig. 4. The inter
in Eq. ~4.1! follows from the fact that the map ofDni shows
how the (N11)th electron is added, namely on the edge
in the bulk. For instance, Fig. 5~a! gives clear proof that the

e

; a
d

n

ated

g
n
is
FIG. 6. ~a! The transmittance spectrum i
strong magnetic field (f50.15, U50.5). Note
the appeareance of the double peaks associ
with multiple addition processes.~b! Oscillations
of the Hall resistance induced by strong pinchin
(t50.1). Note that whenever a multiple additio
process is allowed the oscillation amplitude
nearly vanished.
1-6
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FIG. 7. The dependence of transmittance
the number of electrons atf50.15. Most of the
the maximas are reached at half-integer numb
of electrons, but this condition is not obeye
when the bunching appears.
th
en
te

en
r
ca

c
a

lo
on
he

le
te
e
h
w
e
bo

e
ve

o

s,
t
o

n
th

etic
ber
n

g a
the

all

ing
ns-
the

tree
pe-
ha-
ad
the
on-
co-
of
eighth electron is trapped by an edge state. On the o
hand, the bulk states are much damaged: this can be se
Fig. 5~b! where the added electron is more or less distribu
everywhere. Equation~4.1! contains thea priori assumption
that the electrons are added individually. However, rec
experimental results suggest that the electrons may ente
dot not only one by one but also in bunches, a fact that
be seen in the addition spectrum.13 This very ‘‘nonortho-
dox’’ feature has to be noticed also in the transmittan
properties of the dot. So, let us discuss the double pe
existing in the calculated transmittance in Fig. 6~a!. They
become possible when two degeneracy points are very c
and the cotunneling effect does not permit their resoluti
The origin of this effect consists of two close poles of t
resolvent (E2Heff)

21 fact that yields a multiple addition
process, which is nothing else but the ‘‘bunching.’’ Whi
the bunching is not allowed in the range of edge sta
~which are well separated!, it appears in the bulk region du
to the existence of quasidegenerate states. The way in w
the two grouped electrons are distributed in the dot is sho
by Dni(9,912) in Fig. 5~c!. We stress that, in this case, th
distribution has evident maxima at the corners. This corro
rates the results obtained recently by Canali.15 The bunching
has important consequences on the oscillation amplitud
RH , in the sense that the amplitude is suppressed whene
bunching appears@see Fig. 6~b!#.

When the transmittance is plotted against a number
electrons~Fig. 7!, interesting features can be noticed: som
maxima are reached at a half-integer number of electron
accordance with the constant capacitance model in which
additions becomes costless at the charge degeneracy p
04530
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satisfying the relationshipCVg /e5N11/2.22,23 This is
clearly violated, however, any time the multiple additio
process occurs~see the bunching of the sixth and seven
electrons in the same figure!.

Another interesting effect in the presence of the magn
field is the dependence of the charging energy on the num
of particles shown in Fig. 8. Without the field, it was show
in Ref. 4 that the charging energy depends irregularly onN.
This behavior changes in strong magnetic field showin
monotonic increase of the charging energy as long as
electrons are added on the edges~this occurs for 3<N<8,
which also correspond to the quantum oscillations of the H
resistance on the first plateau!.

V. CONCLUSIONS

We have studied the transport properties of interact
quantum dots pierced by a strong magnetic field. The tra
mittance and the Hall resistance were calculated in
Landauer-Bu¨ttiker formalism, in the tight-binding picture
~which contains explicitly the dot-lead coupling!, while the
electron-electron interaction was considered in the Har
approximation. This approach is able to describe the com
tition between the size, interaction, and tunneling mec
nisms in QD. After proving the essential role of the dot-le
coupling we have obtained the Coulomb oscillations of
transmittance and Hall resistance for various degrees of c
strinction. The charge degeneracy points were shown to
incide with the minima of Hall resistance and the peaks
of

the
FIG. 8. The charging energy vs the number
electrons atf50.15. Ech shows a monotonic in-
crease as long as the electrons are added on
edge, followed by an irregular behavior.
1-7
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the transmittance. It turns out that the edge states are s
against interaction, only the interlevel spacing is increas
On the contrary, the bulk states are much more dama
The labeling of states into edgelike or bulklike was done
an explicit mapping of the spatial distribution for each add
electron. We have also presented an elementary explan
for the bunching of electrons recently revealed by SECS
periments. In what concerns the dependence of the char
energy on the number of electrons, it is shown that, in str
magnetic field,Ech increases monotonically withN as long
as the Fermi level lies in the region of edge states.
L.

o

r,

ta

04530
ble
d.
d.
y
d
ion
x-
ng
g

ACKNOWLEDGMENTS

A.M. and A.A. benefited from the hospitality and suppo
of the International Center for Theoretical Physics, Tries
Italy, at the Research Workshop on Mesoscopic Syste
and through the Associateship Scheme~A.M.!. A.A. is very
grateful to Professor Johannes Zittartz for his hospitality
the Institute of Theoretical Physics, University of Cologn
where part of this work was performed under Grant N
SFB-341. Valuable discussions with Dr. P. Gartner are
knowledged.
.M.

s.
1L.P. Kouwenhouvenet al., in Mesoscopic Electron Transport,
edited by L.L. Sohn, L.P. Kouwenhouven, and G. Scho¨n, NATO
Advanced Study Institute, Series E, Vol. 345~Kluwer, Dor-
drecht, 1997!.

2C.W.J. Beenakker, Phys. Rev. B44, 1646~1991!.
3S. Tarucha, D.G. Austing, T. Honda, R.J. van de Hage, and

Kouwenhoven, Phys. Rev. Lett.77, 3613~1996!.
4M. Macucci, K. Hess, and G.J. Iafrate, Phys. Rev. B48, 17 354

~1993!.
5A. Aldea, A. Manolescu, and V. Moldoveanu, special issue

Ann. Phys.~Leipzig! 8, 17 ~1999!.
6Y. Meir and N.S. Wingreen, Phys. Rev. Lett.68, 2512~1992!; P.

Gartner~unpublished!.
7A. Furusaki and K.A. Matveev, Phys. Rev. B52, 16 676~1995!.
8P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastne

N.S. Wingreen, and S.J. Wind, Phys. Rev. B45, 11 419~1992!.
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