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Coulomb effects on the transport properties of quantum dots in a strong magnetic field
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We investigate the transport properties of quantum dots placed in a strong magnetic field using a quantum-
mechanical approach based on the two-dimensional tight-binding Hamiltonian with direct Coulomb interaction
and the Landauer-Btiker formalism. The electronic transmittance and the Hall resistance show Coulomb
oscillations and also prove multiple addition processes. We identify this feature as the “bunching” of electrons
observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the
dot. The spatial distribution of the added electrons may distinguish between the edge and bulk states and it has
specific features for bunched electrons. The dependence of the charging energy on the number of electrons is
discussed for a strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in
terms of dot-lead coupling.
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[. INTRODUCTION replacing thus the constant capacitance model. The proposed
approach is the quantum-mechanical Landauetigar (LB)

The basic phenomena in quantum d@@D) are usually  formalism which has the advantage of simplicity, contains all
described by the “orthodox theory? which explains the the lead-dot tunneling processé., the full perturbation
Coulomb blockade effectecharge quantization and the os- serieg, and is definitely valid in strong magnetic fields.
cillations of the electrical resistanci terms of the capaci- Originally, it was considered that this formalism works only
tive properties of the isolate@r very weakly coupleddot.  for noninteracting electrons. However, afterwards Meir and
Generally speaking, the corresponding capacitance shoulVingreenf proved that at zero temperature and in the linear-
depend on the dimension and the dot shape, number of eletesponse regime, the LB formalism remains valid even if an
trons accommodated inside, and the electron-electron intefateraction is present in the dot, as long as the leads are free
action(EEI). Nevertheless, the orthodox theory considers theof interaction[see the discussion after EG0) in Ref. €. In
dot capacitance as being a constant, independent of the nuitiis paper, a one-particle approximatigramely, Hartregis
ber of electrons and the size quantization effects. This ideased, so that the applicability of the LB formalism is beyond
can be accepted for large metallic QDs when the chargingny doubt. In a previous paper by Maccuet al. it was
energy due to the Coulomb interaction is larger than the levethown that the differences between Hartree and better treat-
spacing of the one-electron energy spectrum. Howevemnents of the interactiofocal density approximatioLDA)]
many specific properties of QDs remain beyond this modelare not qualitatively significant for the transmittance problem
Such aspects occur especially for small semiconductor quarisee Fig. 9 in Ref. #
tum dots, when the level spacing is relatively large, the dis- In this framework we show that the lead-d@iD) cou-
tribution of the energy levels depends visibly on the dotpling plays an even more pregnant role in the presence of a
shape, and the number of electrons is smaller than in thstrong magnetic field, in which case an interesting crossover
metallic case. In small dots the interplay between the quanfrom Coulomb oscillations to the quantum Hall regime can
tum aspects and the charging effects is important. This ibe noticed for the transverse resistance with increasing cou-
why a more advanced description pretends to pay attention tling. In fact, this coupling between dot and ledds using
the one-particle energy spectrum and to consider a more rether words: the degree of pinching and/or constriction at the
alistic Hamiltonian. contact$ decides the degree of quantization of the charge in

In spite of the general acceptance that the charging energ9D and affects the electronic transmittance through the dot
should depend on the number of electrons insideNjatfact ~ and the Hall resistance. The influence of the coupling be-
which is proved experimentally by the irregular Coulombtween ideal terminals and noninteracting systems on the
blockade oscillations this effect has been simulated numeri- transport properties was emphasized some time ago; in the
cally only recently*® The situation becomes even more com-case of noninteracting QD Biker predicted oscillations of
plicated when the coupling to the leads is taken into accourthe Hall resistance induced by the pinchihgyhile for a
carefully, going beyond the lowest order of the perturbationsmoothly tapered junction Kirczenow also obtained a reso-
series in the tunneling matrix elements. This was done byant feature oR,; .*°
mapping the scattering of electrons by the dot into a Kondo The strong magnetic field perpendicular on the two-
problem’ a method which, however, could not avoid the usedimensional dot gives rise to edge states even if the dot is
of the constant capacitance modg€CM). But, as it is small. Then, for large LD coupling, quantum Hall effect—
known®! CCM fails dramatically in the presence of a high (QHE-) type effects appear, although, usually, only the first
magnetic field. For this reason, one of the aims of our papeplateau is visible in small dot&@and not always very clean
is to find an alternative formalism able to consider the sizeSuch aspects were evidentiated in Ref. 11 by the use of a
effects and to describe the case of strong magnetic fieldsight-binding (TB) model in the absence of the electron-
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electron interaction. Due to the full polarization of the spinavoid this paradox is to consider the lattice model as a tight-
degree of freedom a spinless Hamiltonian can be used. binding approximation, i.e., to assume that the overlap be-
Our approach for calculating the transport properties otween the atomic orbitalsand usually, one considers only
guantum dots is the following: the QD is coupled weakly toone type of orbitgllocated on different sites is small and the
four semi-infinite leads supporting many channels. The numeffective mass is big. In general, this is not the case for the
ber of degrees of freedom of the terminals is infinite whilesemiconductors used in the experimental devices. In particu-
the QD has only a finite number of degrees of freedom, sdar, the strength of the electron-electron Coulomb interaction
that the Fermi leveEg of the whole system is imposed by depends on the dielectric constant of the semiconductor host
terminals. At a given magnetic field, when a gate potentiamaterial, which we incorporate here in our coupling constant
Vg is applied and varied, the fixdg: scans the whole energy U.
spectrum. We calculate the electronic transmittance matrix, The discrete model allows the tailoring of different shapes
the Hall resistance, and charging energy. The transmittancand introducing the magnetic field as a phase of the hopping
peaks — which correspond to the charge-degeneracy poinistegral. The parameters controling the problem @ethe
— are distributed irregularly keeping track of the size quan-strength of the LD couplingb) the size and shape of the dot
tization. We show that when the contacts are pinched, thand the magnetic flux which, all of them, determine the elec-
quantum plateaus disappear and quantum oscillatiof&,of tronic spectrum in the absence of the EEI, afl the
are installed even in the absence of EEI. Next we show thstrength of the EEIU).
characteristics of th®, oscillations in the presence of the ~ We model the QD as a two-dimensior{dD) mesoscopic
long-range direct electron-electron interaction in Hartree applaquette weakly coupled to four external semi-infinite leads.
proximation. These oscillations as a function\§f or the  In the TB approximation the Hamiltonian is written as
magnetic flux were already observed experimentally a long
time ago'? but they were never simulated numerically on the b L D
basis of a theoretical model. Our calculations put into evi- H=H +2ﬂ Ha+2« He 2.
dence the electronibunchingin the addition process, an

effect which was found recently by single-electron capaci4n the above relatioii® is used to describe the isolated QD,

tance spectroscopy(SECS and which cannot be explained H' characterizes the leadl (a=1, . . . ,4),while the lead
in the framework of CCM. is coupled to the dot by

The description of the formalism is made in Sec. Il, while
in Sec. Il we discuss briefly some aspects of resonant trans- HI&D:tLD(CgaCa+CZCOQ)’ 2.2

port through a noninteracting QD subject to a strong mag-
a

in Sec. IV, the conclusions being isolated in Sec. V. and c,, annihilates it in the neighboring lead stdw).
Here t'P is the hopping integral between dot and leads.
Il. THE FORMALISM Since the role of the leads is only to inject and drain the

electrons or to probe the potential drop, the EEI will be in-
We use a pure quantum-mechanical approach of the trangtuded only in the Hamiltonian of the dot. In the “orthodox
port properties of open quantum dots, which is based on thgheory” the Coulomb effects are mostly studied in the
Landauer-Bttiker formalism and the Hartree approximation constant-interaction modésee, for instance, Ref. 16vhich
for the electron-electron interaction. While the Hartree termconsiders the HamiltoniaH .= (e%/2C) (N — Ng)2 (Cis the
is meaningless in an infinite homogeneous system it becomegpacitanceN is the operator of the total number of par-
important for finite systems like QD’s. The method is ticles, andN, is the external parameter related to the gate
complementary to the semiclassical master-equatiogotemia), Here, we use a long-range direct Coulomb inter-
approactf, goes beyond the constant-interaction model, andiction. Expressed in terms of creation and annihilation op-

is able to account for size, tunneling and interaction effectgrators on localized states indexed byQD, the Hamil-
in quantum dots in the presence of the magnetic field. tonian of the dot reads

Our calculations are based on a lattice model. In spite of
the fact that in recent years this model is extensively used for 1
the study of various effects in quantum d8t® we would HP=2) (tﬁ cleij+ Euijcf“c;‘cjci + 2, Vyelc,
like to say a few words of caution on this approach to small b :
systems, in the presence of the EEI. When the lattice model
is considered as the discretization of a continuous system i,jeQD. (2.3

with a rectangular grid of intersite distanee the (direct o ) b
EEI readsUEj>i1/|i —j ICTiCTJCjci , wherei,j are the lattice The external gat¥ is simulated by a site energy k~. In

sites andJ =e?/a; this means that the strength parameer the Hartree approximation and nearest-neighbors model, it
depends on the grid which is meaningless. Also the hoppin§€cOmMes
integralt=7%2/2ma? and the radius.=e? (at\4mv) (v be- ny
ing the filling facto) depend on the grid. One may say that jo_ V.+U U ete 410> ei2ndij clc.
the discretization works better at low filling factoneaning E. g JE>. li—jl) @2” R

small a or a large number of grid sitesAnother way to (2.9
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Where(nj)=<cfcj> is the mean occupation number of the +i0)=e ', wherek is defined by 2, cosk=E, t, being the
sitej and U is the parameter describing the strength of thenopping energy of leads. After straightforward manipulations
EEI. We have chosetP=1, i.e., the energy unit is the hop- the effective Hamiltonian of the dot is obtained explicitly,

ping integral in QD, and we have denoted by--) the
nearest-neighbors summation. The Peierls pkises pro-
portional to the magnetic flux through the unit cel=Ba?

measured in quantum flux units,. The explicit calculation

(2.9

a”a "

H2=HP+ 72t > e *clc
[e3

is made for a rectangular plaquette containing&sites and The ratior=t, /t, defines the degree of constrinction at the
the phases correspond to the Landau gauge chosen as in Refntacts and represents an input parameter that can be varied

17.

continuously. It is important to observe that the influence of

At this point a useful “trick” is to describe the open dot the leads is expressed as a non-Hermitean diagonal term pro-
by an effective Hamiltonian which includes the influence ofportional to7?, which produces a shift in the real part of the
the leads. Eliminating formally the degrees of freedom of theeigenvalues oH® and introduces also an imaginary part. If
leads, one obtains a non-Hermitean Hamiltonian depending<<1, i.e., for a weakly coupled dot, these shifts become

on the energy,

1
HO(2)=HP+ HDL—Z_HL H-P=HP+HPLGL(Z)H"P.
(2.9

In the above equation, the Green functiGp(z) of the
semi-infinite lead can be calculated analytically,

G!—.(z)z;[g“*”—giﬂ*z] i,jelead
N (=)t o

(2.9

where; and{, are the roots of the equation,

t {2=2L+1,=0, |44 <1< (2.7

Let £4(z) be analytic in the upper half plane. By ap-

proaching the real axis from above one obtajp&z) = {(E

negligible and the spectrum &f,;; approaches the spectrum
of the isolated dot. This behavior has important conse-
quences on the conductance magix;, seen as the trans-
mittance T,z , which can be expressed in terms of the re-
tarded Green functio® ™ (E)=(E—H4+i0) ! by the LB
formula

e2 2

e .
Gup= g Tep=A 0 SIPKIGL,(ER

h a# B.

(2.9
Once the conductance matni,; is known, the Hall resis-
tance can be calculated immediatély,
Rn= (921943~ 912934)/D, (210

whereD is a 3x 3 subdeterminant of the>X4 matrixg, .
The matrix elements of the Green’s functic@g(E), are
calculated numerically using the self-consistency condition:
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In the weak-coupling limitr<1, the transport problem ) ) .
reduces to a tunneling problem. Indeed, from E29) it ~ Since the eigenvalues,(4) are not monotonic functions of
follows that the poles of the Green function will induce a the magnetic flufas can be noticed in Fig(d], it follows
series of peaks in the transmittance, and Eq11) shows that the nature of the corresponding eigenstate may change
that the mean number of electrons in the QD change§om bulk to edge or vice versa when the flux is varied.
abruptly by 1 at every peak, indicating a charge addition For strongly pinched contacts, a continuous variation of
process. So, the correspondence between the peaks obsertee gate potentialor, equivalently, of the Fermi levegives
in the transmittance and the charge accumulation in the dot iése to a resonance peak whenever the Fermi level is aligned
manifestly established. to an eigenvalue of the isolated dete width of the peak is
Taking into account the strong conditioning of the trans-determined only by the strength of the LD coupling in the
port propertiegelectronic transmittance and Hall resistance noninteracting cage This can be seen in Fig.(d) which
by the energy spectrum of the dot, we have to perform alepicts the transmittance spectrum of the noninteracting
comparative analysis of spectral propertieH8t, with and  quantum dot as function d&- mapped onto the correspond-

without EEI. ing piece of the quasi-Hofstadter spectrum.
The modifications in the transmittance induced by pinch-
1. NONINTERACTING DOT IN STRONG MAGNETIC ing is shown in Fig. 2 fofT;,, Ty3, andTy, in the case of
FIELD strong magnetic field. One remarks that for completely open

QD’s (at 7=1.0) the transmittances take the values which

In this section we address the resonant transport throughdescribe the quantum Hall regime: &l ; with a# g vanish
noninteracting QD, mainly because this simple frameworkexceptTa,a+1.20 On the other hand, for very weakly coupled
gives a clear picture of the constrinction effects. MoreoverQD’s (7<1), which corresponds to the resonant tunneling
some data about the noninteracting spectrum will be needegime, the dwell time of the electron inside the dot increases
in Sec. IV. and allT, ; become of the same order of magnitude.

As it is known, when periodic boundary conditions are  While the transmission spectrum identifies the positions
imposed to anoninteracting2D electronic system subjected of the levels it cannot specify whether the corresponding
to a perpendicular magnetic field, the tight-binding approactstates are edge or bulk type. This can, however, be evidenti-
yields the Harper equation associated with the usuahted by the Hall resistance for simple reasons: if the leads are
Hofstadter-butterfly spectrum. When the periodic boundarystrongly coupled to the dot, the Hall resistance exhibits quan-
conditions are replaced by the Dirichlet conditions, a “quasi-tum Hall plateaus in the range of the spectrum occupied by
Hofstadter” spectrum is obtainéd,since the hard-wall po- edge states. At strong constrinction, interference effects oc-
tential lifts the degeneracy and the gaps get filled with eigeneur when the electron travels along the edge states, resulting
values that correspond to the so-called edge stateish are  in oscillations of the resistance in the region of the former
extended along the edges of the system and are responsilgiateau. This is shown in Fig.(8 where each minimum in
for the quantization of the Hall conductancénother type the Hall resistance corresponds to a resonance condition
of states is the “bulk states,” which are grouped in energy(when the Fermi level equals an eigenenergy belonging to an
bands and geometrically concentrated in the middle of thedge state Note the sudden drop of the Hall resistance be-
dot. The nature—bulk or edge—of a given stdtg(4) can  tween the QH plateaus indicating a narrow bulk domain.

be checked also by its chirality,i.e., by the sign of the When the electron-electron interaction is considered,
current carried by that state, defined as the slope of the ersome features appear that can be traced from Ky, &hich
ergy level depictsRy; versusVy for U=0.5. The discussion of this
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FIG. 3. (a) Quantum oscillations of the Hall
resistance for pinched contacts7=0.5, ¢
=0.15, U=0.0). Note the sudden drop &ty
between different Hall plateaugb) Interaction
effects on the Hall resistanc& & 0.5): the drop
of Ry is slower and the oscillations in the range
of edge states are widened but their amplitude is
poorely affected by EEI.

figure is postponed to the next section where the influence okidths of the transmittance peaks and simultaneously in the

the EEI on the edge and bulk states will be analyzed.

IV. THE INTERACTING CASE

Hall resistance. This is due to the Coulomb blockade effect,

meaning that the addition of an extra electron needs some
energy which is not simply the difference between two con-
secutive one-electron levels, but has also a contribution com-

When the electron-electron interaction is taken into acing from the electron repulsion. We shall start with some

count, important differences appear in the positions an@onsiderations on the addition spectrum which will be useful
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FIG. 4. () The Hartree spectrum of an iso-
lated dot in strong magnetic fieldp=0.15, U
=0.5). (b) The transmittance of a weakly
coupled QD ¢=0.1) as a function of the gate
potential. The charging energy can be obtained as
the width at the bottom of the peaks.
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extra electron occurs at tloelharge degeneracy poisttuated

in the middle of this interval, whereEr=[E (N+1)
—EL(N)]/2. The transmittance shows the addition spectrum
properties: the peaks point versus the degeneracy points;
their widths—measured at the bottom—equals the charging
energy and are due to the so-called “co-tunneling” near the
degeneracy poinfs).

Now we turn to discuss Fig.(B) and to make the com-
parison with Fig. 8a) (the interacting vs the noninteracting
casg. The similarities of the two figures suggest that the
edge states are present also in the interacting case, giving rise
to oscillations of Ry on different quantum Hall plateaus.
There are, however, qualitative differences: &# 0, both
the edge and bulk regions are much expanded, so that the
whole picture is pushed upwards on the energy s@aléhe

FIG. 5. The spatial distribution of the added electron inside thenumerical calculation this is equivalent to large negative
interacting dot:(a) An;(7,8)—the eighth electron is added strictly V). This means that the Coulomb interaction increases the
on the edge(b) An;(8,9)—the ninth electron is distributed almost |evel spacing and a striking consequence is the slower drop
uniformly. (c) An;(9,9+2)—a multiple addition process in which of R, in the region of the bulk states. However, in order to
the tenth and eleventh electrons are added together in the dot;fg|ly establish the nature of the states we have to observe the
clear addition is made in the bulk, but some maxima are reacheehanging of the local electronic distribution, when exactly
also at the corners. one more electron is added, i.e., to calculate

(©

for understanding the features of the rgsonant tra”SportAni(N,NJr1):ni(N+1)—ni(N), ieQD, N=integer
through QDs in the presence of the interaction. EgtN) be (4.2)

the nth eigenvalue of the system containimy electrons.

E,(N) has a monotonic dependence on the Fermi energyn order to make sure thad is an integer, one has to calcu-
WhenEg (the diagonal line in Fig. gapproache&,(N) the  late Eq.(4.1) for those values oV, that ensure an integer
addition of theN+ 1th electron becomes possible and thenumber of electrons in QD; they correspond to two consecu-
whole spectrum raises with theharging energy E.,(N,N tive valleys in the transmittance spectrum Fig. 4. The interest
+1)=E,(N+1)—E,(N). One notices from Fig. 4 that the in Eq. (4.1) follows from the fact that the map &n; shows
charging energy is not supplied steplike but lineafhith how the (N+1)th electron is added, namely on the edge or
slope=1.0) along an intervabEg=E,,; the addition of the in the bulk. For instance, Fig.(® gives clear proof that the

0.5 T
(a)
0.4 | E
8 o3l .
£
2
'g 0.2 | E
01l i FIG. 6. (@) The transmittance spectrum in
strong magnetic field ¢=0.15, U=0.5). Note
the appeareance of the double peaks associated
18 : : ; : : . with multiple addition processegh) Oscillations
() of the Hall resistance induced by strong pinching
el A i (7=0.1). Note that whenever a multiple addition
process is allowed the oscillation amplitude is
nearly vanished.
g 4l |
S
° W W, |
-4 -3 -2 -1 Gate pBtential ! 2 3 4
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0.3
0.25 | 4
® o2r T FIG. 7. The dependence of transmittance on
= the number of electrons at=0.15. Most of the
g 018 1 the maximas are reached at half-integer numbers
= of electrons, but this condition is not obeyed
orr 1 when the bunching appears.
0.05 | ]
o4 ) 3 a 5 6 7 8 ° 10
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eighth electron is trapped by an edge state. On the othesatisfying the relationshipCVy/e=N+1/22*?% This is
hand, the bulk states are much damaged: this can be seendlearly violated, however, any time the multiple addition
Fig. 5b) where the added electron is more or less distributeghrocess occurgsee the bunching of the sixth and seventh
everywhere. Equatiof¥.1) contains thea priori assumption electrons in the same figyre

that the electrons are added |nd|V|duaIIy However, recent Another interesting effect in the presence of the magnetic
experimental results suggest that the electrons may enter thig| is the dependence of the charging energy on the number
dot not only one by one but also in bunches, a fact that cagf particles shown in Fig. 8. Without the field, it was shown
be seen in the addition spectrdfnThis very “nonortho- iy Ref. 4 that the charging energy depends irregularlyNon
dox” feature has to be noticed also in the transmittancerpis pehavior changes in strong magnetic field showing a

pr(_)pt_ertie_s (t); the IdOtI. th,tIet us _totliscuss_ thlf d;)6u_k|)_lhe pealﬁlonotonic increase of the charging energy as long as the
existing in the calculated transmitiance in iga €Y electrons are added on the edddss occurs for =N=<8,
become possible when two degeneracy points are very close

. . X -~ which also correspond to the quantum oscillations of the Hall

and the cotunneling effect does not permit their resolution. . )

The origin of this effect consists of two close poles of thereSIStance on the first platgau

resolvent E—H.g) ! fact that yields a multiple addition

process, which is nothing else but the “bunching.” While

the bunching is not allowed in the range of edge states V. CONCLUSIONS

(which are well separatedit appears in the bulk region due

to the existence of quasidegenerate states. The way in which We have studied the transport properties of interacting

the two grouped electrons are distributed in the dot is showuantum dots pierced by a strong magnetic field. The trans-

by An;(9,9+2) in Fig. 5c). We stress that, in this case, the mittance and the Hall resistance were calculated in the

distribution has evident maxima at the corners. This corrobotandauer-Bttiker formalism, in the tight-binding picture

rates the results obtained recently by Caffalihe bunching  (which contains explicitly the dot-lead couplingvhile the

has important consequences on the oscillation amplitude aflectron-electron interaction was considered in the Hartree

Ry, in the sense that the amplitude is suppressed whenevemr@proximation. This approach is able to describe the compe-

bunching appearssee Fig. @)]. tition between the size, interaction, and tunneling mecha-
When the transmittance is plotted against a number ofisms in QD. After proving the essential role of the dot-lead

electrons(Fig. 7), interesting features can be noticed: somecoupling we have obtained the Coulomb oscillations of the

maxima are reached at a half-integer number of electrons, itransmittance and Hall resistance for various degrees of con-

accordance with the constant capacitance model in which th&trinction. The charge degeneracy points were shown to co-

additions becomes costless at the charge degeneracy poiitside with the minima of Hall resistance and the peaks of

0.5

04| 4
g FIG. 8. The charging energy vs the number of
= electrons aip=0.15. E.}, shows a monotonic in-
§ crease as long as the electrons are added on the

edge, followed by an irregular behavior.
0.1 | 4
03 7 3 £ 0 5 4 6

No. of electrons

045301-7



V. MOLDOVEANU, A. ALDEA, A. MANOLESCU, AND M. NI'[A PHYSICAL REVIEW B 63 045301

the transmittance. It turns out that the edge states are stable ACKNOWLEDGMENTS

against interaction, only the interlevel spacing is increased.

On the contrary, the bulk states are much more damaged. A.M. and A.A. benefited from the hospitality and support
The labeling of states into edgelike or bulklike was done byof the International Center for Theoretical Physics, Trieste,
an explicit mapping of the spatial distribution for each addedtaly, at the Research Workshop on Mesoscopic Systems,
electron. We have also presented an elementary explanati@amd through the Associateship ScheteM.). A.A. is very

for the bunching of electrons recently revealed by SECS exgrateful to Professor Johannes Zittartz for his hospitality at
periments. In what concerns the dependence of the chargirthe Institute of Theoretical Physics, University of Cologne,
energy on the number of electrons, it is shown that, in strongvhere part of this work was performed under Grant No.
magnetic field E.j, increases monotonically witNl as long  SFB-341. Valuable discussions with Dr. P. Gartner are ac-

as the Fermi level lies in the region of edge states. knowledged.
1L.P. Kouwenhouveret al, in Mesoscopic Electron Transport (1989.
edited by L.L. Sohn, L.P. Kouwenhouven, and G. StHdATO 12¢ J.B. Ford, S. Washburn, R. Newbury, C.M. Knoedler, and J.M.
Advanced Study Institute, Series E, Vol. 34RBluwer, Dor- Hong, Phys. Rev. B3, 7339(1991).
drecht, 1997. 13N.B. Zhitenev, R.C. Ashori, L.N. Pfeiffer, and K.W. West, Phys.
2C.W.J. Beenakker, Phys. Rev.4, 1646(1991). Rev. Lett.79, 2308(1997.
8S. Tarucha, D.G. Austing, T. Honda, R.J. van de Hage, and L.P*R. Berkovits and B.I. Shklovskii, J. Phys.: Condens. Matt&y
Kouwenhoven, Phys. Rev. Left7, 3613(1996. 779(1999.
4M. Macucci, K. Hess, and G.J. lafrate, Phys. Rev4® 17 354  '5C.M. Canali and W. Stephan, Ann. Phykeipzig) 8, 759(1999.
(1993. 18| L. Aleiner and L.I. Glazman, Phys. Rev. Let7, 2057 (1996.
SA. Aldea, A. Manolescu, and V. Moldoveanu, special issue of'’P. Gartner and A. Aldea, Z. Phys. 8, 367 (1996.
Ann. Phys.(Leipzig) 8, 17 (1999. 18A. Aldea, P. Gartner, A. Manolescu, and M. §iPhys. Rev. B
6y. Meir and N.S. Wingreen, Phys. Rev. Le#8, 2512(1992; P. 55, R13 389(1997).
Gartner(unpublishegl 19 Akkermans, J.E. Avron, and Narevich, Eur. Phys. 1,B17
"A. Furusaki and K.A. Matveev, Phys. Rev.32, 16 676(1995. (1998.

8p.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, 2°M. Biittiker, Phys. Rev. B38, 9375(1988.
N.S. Wingreen, and S.J. Wind, Phys. Rev4B 11419(1992.  2'J. Konig, H. Schoeller, and G. Schp Phys. Rev. B58, 7882

9M. Buittiker, Phys. Rev. B38, 12 724(1988; in Nanostructured (1998.
Systemgedited by Mark Reed, Semiconductors and Semimetal$2D.V. Averin and Yu.V. Nazarov, Phys. Rev. Letb5 2446
Vol. 35 (Academic, Orlando, 1992p. 191. (1990.
10G, Kirczenow, Phys. Rev. B2, 5357(1990. 23L.1. Glazman and R.l. Shekter, J. Phys.: Condens. Matté811
1y, Sivan, Y. Imry, and C. Harzstein, Phys. Rev.3®, 1242 (1989.

045301-8



