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Ab initio calculation of Peierls stress in silicon
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The Peierls stress of a straight screw dislocation in Si has been studied by anab initio molecular dynamics
simulation. The generalized stacking fault energy in Si can no longer be the continuous function of displace-
ment of the slip plane with structural relaxation. Then the Peierls-Nabarro theory fails to describe properties of
the dislocation core, such as the Peierls stress. Direct simulation of the slip dynamics of dislocations has also
been performed and the Peierls stress is derived without any artificial modeling of a dislocation core with an
excellent agreement with experimental results. The effect of the Peierls potential on the slip dynamics of
dislocations is also discussed.
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I. INTRODUCTION

The plastic deformation of crystals is governed by t
dynamics of dislocations. A dislocation is a physical ent
of the continuum theory of elasticity. It moves in an intrins
periodic potential field of the lattice, called the Peierls pote
tial, driven by an external stress. Though realistic situati
are naturally more complicated, basic physical properties
dislocations should be studied in the simplest situation of
isolated straight dislocation at 0 K.

In order to realize this situation in experiments, deform
tion tests of materials have been done with keeping the
location density as low as possible at very low temperatu
Silicon is an ideal material to have a single crystal with lo
dislocation density. However, in order to investigate t
plasticity of Si, we could encounter several difficulties
follows. First, it is difficult to deform semiconductor crysta
at lower temperatures without brittle fracture. Recently,
formation tests of semiconductor crystals have been c
ducted under confining hydrostatic pressure to avoid br
fracture,1,2 and their yield stress shows strong temperat
dependence.3,4 With decreasing temperatures, the yield stre
of Si increases up to a value higher than 1 GPa at about
K.5 Then, one could not extrapolate the value of the yi
stress to 0 K in order to estimate the value of the Peie
stress. Furthermore, in this experimental procedure, the
fect of the high confining hydrostatic pressure on the dis
cation properties is still unknown. Second, the conventio
dislocation model of an elastic string does not work, beca
of the sharpness of the dislocation kink in a material of h
Peierls potential. The Peierls potential in Si is very high b
cause of its covalency and higher brittleness. Therefore,
important to study several properties of dislocations in
from the atomistic calculation.

Among atomistic calculations, theab initio molecular dy-
namics~AIMD ! simulation is the most desirable way to g
information of covalent systems because the change of e
tronic structure is essential to determine their mechan
properties. There have been many efforts to connect the
crete atomistic information with the linear continuum d
scription and then know the plastic properties. One of
useful approaches was proposed and developed by Vitek
co-workers.6,7 They introduced a new physical quantit
0163-1829/2001/63~4!/045206~9!/$15.00 63 0452
-
s

of
n

-
s-
s.

-
n-
e
e
s
00
d

f-
-
l
e

h
-
is
i

c-
al
is-

e
nd

called the generalized stacking fault~GSF! energy. Once one
gets the GSF energy, then one calculates various pla
properties by way of the Peierls-Nabarro~PN! theory. The
GSF energy of Si was first calculated by Kaxiras and Du
bery with AIMD.8

An alternative approach is the direct simulation of dis
cation slip, where a dislocation is forced to move by an a
plied external force. The atomic structure of dislocation co
of a screw dislocation in Si was given by Hornstra.9 Arias
and Joannopoulos showed the stability of that structure
AIMD. 10

In the present paper, we performed two kinds of AIM
simulation of slip dynamics of dislocations. The first is th
shearing process of a perfect Si crystal at the~111! slip
plane, followed by structural relaxation. This process p
vides a profile of the GSF energy as a function of the d
placement on the slip plane. The second is the deforma
process of a crystal with straight dislocations, accompan
by the structural relaxation. This process provides a slip
namics of straight dislocations in accordance with the
crease of the external stress field. The outline of the pre
paper is as follows. In Sec. II, we review the known s
system and dislocations in Si. In Sec. III, we will explain th
simulation methods for the dislocation properties. Section
is devoted to present our results and discussions. We
our conclusions in Sec. V.

II. SLIP SYSTEM OF DISLOCATIONS IN SILICON

The natural cleavage planes and slip directions in d
mond structure are$111% planes and̂110& directions. There
are two kinds of perfect dislocations in diamond structure
screw and a 60° dislocation, where the latter term ari
from the 60° angle between the direction of the dislocat
line and the Burgers vector. These dislocations are diss
ated into Shockley partial dislocations at high temperatu
A screw dislocation dissociates into two 30° partial disloc
tions, and as does a 60° dislocation into a 30° and a
partial dislocation.

According to the two kinds of different intervals betwee
$111% planes, there are two ways of moving dislocations in
$111% ^110& slip system. One way is that the slip motio
occurs between two planes of the interval equal to the b
©2001 The American Physical Society06-1
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MASAYASU MIYATA AND TAKEO FUJIWARA PHYSICAL REVIEW B 63 045206
length, and this is called ashuffleset. The other way is tha
slip motion occurs between two planes of the interval eq
to 1/3 of the bond length, which is called aglide set. There
has been a controversy about the most probable case
moving dislocations.11 One may predict that the shuffle set
selected, because, in the slip process, one bond per
should be rearranged for the shuffle set while three bonds
atom are rearranged for the glide set.

The partial dislocations are experimentally observed
move in the glide set with being bound by the stacking fa
On the shuffle set, partial dislocations do not move with
diffusive dragging of a row of vacancies. Therefore, one
pects that the resistance of motion in the shuffle set is hig
than that in the glide set. Thus the experimental results
supposed, at least at high temperatures, to support the
mechanism of the glide set, in contrast to the above intui
prediction.

On the other hand, a preliminary dynamical AIMD sim
lation, at low temperatures, of shear deformation of a Si cr
tal shows that the perfect crystal is broken at the shuffle s12

This result is consistent with the above intuitive predictio
and we presume that the shuffle set is selected as the
system in the detailed simulation study in the present pa

III. METHODS TO CALCULATE PEIERLS STRESS

A. Technical details of AIMD

The AIMD simulation of Si crystals was done by usin
the method of direct minimization of the energy functional
the local density approximation13 ~LDA !, including partially
occupied and unoccupied orbitals together with occup
Kohn-Sham~KS! single-electron orbitals.14 All atoms, ex-
cept those on clumped layers in the calculation of the G
energy, were allowed to move along any direction. We u
only theG point (kW50W ) in the Brillouin zone and an energ
cutoff, for the plane wave expansion,Ecut58 Ry in the cal-
culation of the GSF energy andEcut510 Ry in the deforma-
tion dynamics of dislocations. We used the soft nor
conserving pseudopotential by Troullier and Martins15 with
the Kleinman-Bylander separable form.16 The local ex-
change correlation functional of Ceperly and Alder para
etrized by Perdew and Zunger17 was used.

B. Indirect method: GSF energy and block shearing process

Consider the process in which an infinite crystal is c
into two semi-infinite parts, parallel to an atomic plane. T
upper half part of the crystal is shifted parallel to the c
atomic plane with respect to the lower half by a certain d
placement vectorfW . This process is calledblock shearing.
The energy increase per unit area on the slip plane assoc
with the displacement vector is defined as the GSF ene
g( fW). The differentiation of g( fW) with respect to fW ,
2]g( fW)/] fW , is the restoring force due to the misfit betwe
the two parts of the lattice.

To simulate block shearing process for the calculation
the GSF energy, we used a supercell consisting of twe
~111! atomic planes, totally 72 atoms, under the perio
04520
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boundary condition. The mirror symmetry was reserved d
ing the shearing process with respect to the central~111!
planes. We cut the half semi-infinite block of the crystal

the shuffle set along@ 1̄1̄2# direction with two clamped
planes farthest from the cut. Then the LDA energy functio
was minimized by atomic relaxation along arbitrary dire
tions, until the total force was reduced to be less than 0.
Ry/~a.u. atom!. The accuracy of the total energy is proved
be less than 0.05 Ry/~super cell!, and that of the GSF energ
is less than 5% throughout the simulation.

We can specify the displacement of two halves of the
crystal as follows. The vectorfW is the displacement vector o
the two atomic planes immediately adjacent to the cut. T
GSF energy of the unrelaxed cut crystal was defined
Vitek.6 The relative displacement can also be defined in
different way by using the displacement vectorfWC between
the centers of the two semi-infinite parts of the crysta18

Therefore,fW5 fWC in case of unrelaxed system, andfWÞ fWC in
case of relaxed system.

Following Ref. 18, we measured the GSF energyg( fW) as
a function of the displacement vectorfW . After structural re-
laxation, the dangling bonds disappear and the system h
rearranged bonds with large distortion. Therefore, theg( fW)
after relaxation is not actually the generalized ‘‘stacki
fault’’ energy, but just the energy with distortions, though w
would still call it the GSF energy.

C. Direct method: Simulation of dislocation motion

1. Configuration of dislocations for simulation

An isolated dislocation is accompanied by a long-ran
strain field and the resultant strain energy is diverged. The
fore one should introduce a dislocation dipole in the syst
and then the strain field may damp within a certain fin
range. However, under a periodic boundary condition, a d
location dipole in a rectangular unit cell makes grain boun
aries toward the direction normal to the dipole array,
shown in Fig. 1~a!.19 These grain boundaries cause a spu
ous shear strain and change the electronic state. The b
choice may be the quadrupole arrangement of dislocat
because the spurious strain is eliminated. Then another
ficulty appears if we use a rectangular unit cell, e.g.,
quadrupolar configuration makes the system size doubl
the array of rectangular unit cells. Because a large amoun
computational resource is required in AIMD, one should
to keep the system size minimal as much as possible. So
adopt an oblique superlattice that realizes a quadrupolar

FIG. 1. ~a! Dipolar lattice of dislocations and~b! quadrupolar
lattice. This figure is the same as Fig. 2 in Ref. 21.
6-2
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AB INITIO CALCULATION OF PEIERLS STRESS IN . . . PHYSICAL REVIEW B63 045206
figuration under periodic boundary conditions and who
unit cell contains one dislocation dipole, as shown in F
1~b!.19

In an actual simulation, our unit cell of oblique superc
consists of six~111! atomic planes and of two times and fiv
times the primitive cell towardsa and b directions, respec-
tively, totally 120 Si atoms in an oblique unit cell. The un
cell is shown in Fig. 4. Each direction of thea andb axis is

@ 1̄10# and @ 1̄1̄2#, respectively. A dipole of screw disloca
tions in shuffle set was introduced into the unit cell. The c
structure of a dislocation in glide set is not known and co
sidered to be unstable. The core structure of a shuffle sc
dislocation was given by Hornstra9 and proved to be stabl
by Arias and Joannopoulos10 by AIMD. The crystal was uni-
formly deformed towards@ 1̄10# direction. Then the LDA
energy functional was minimized by atomic relaxation, un
the total force was reduced to be less than 0.001 Ry/~a.u.
atom!. The accuracy of the total energy is proved to be l
than 0.9231023 Ry/(supercell). According to Ref. 10, th
spontaneous mutual annihilation of a dislocation dipole
curs when the dislocation contacts another. The supe
used in the present simulation is large enough to avoid
annihilation of dislocations because after the slip motion
one period of the lattice dislocations do not contact yet.

2. Superposition assumption of strain field and interaction
between dislocations

When the system is large enough, we suppose that
superposition principle does work in the following terms:~1!
the strain field by dislocations and that by crystal deform
tion and~2! the interaction between dislocations. The elas
term involves elastic interactions between dislocations.
cording to the above superposition assumption, the nonlin
term can be neglected in the nonelastic term. Then the n
elastic energy consists only of the Peierls potential and
energy of deformation of perfect crystal.

IV. RESULTS OF SIMULATIONS AND DISCUSSIONS

A. GSF energy by block shearing

The AIMD of the block shearing process was done
displacement vectorsf C[u fWCu50, 0.125b, 0.25b, 0.3125b,
0.375b, 0.4375b, 0.46875b, and 0.5b, whereb is the ampli-
tude of the Burgers vector. It should be mentioned here
the change of the amplitudes offW perpendicular to slip direc
tion after relaxation is much smaller than those offW parallel
to the slip direction, by a factor of several orders of mag
tude, at most by a factor of 1022. Then we compare the
profiles of the GSF energies with and without structural
laxation, only on the same plane parallel to the slip directi

1. GSF energy

Figure 2 shows the GSF energy profile of the displa
ment along the@ 1̄1̄2# direction obtained by the AIMD simu
lation. The shape of the GSF energyg( fW) gets split into two
parts after the relaxation, as shown in Fig. 2. The atom
configurations without structural relaxation after block she
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ing are associated with dangling bonds and are unstable.
ter structural relaxation, the dangling bonds or the stack
fault disappears and the system has a large distortion. Th
fore, the real structure of a dislocation core for covalent s
tems cannot be the continuous stacking fault, because
bonds are abruptly rearranged.

To see if the shape ofg( fW) with structural relaxation de-
pends on the system size, we doubled the size of the unit
along the@111# direction in Si with f C50.25b. We do not
observe any qualitative differences of results, in Fig. 2,
tween two unit cell sizes and, therefore the present unit
size is enough large.

The shear modulusm can be estimated from the shape
g( fW) with a smallf C asm50.48 eV/Å3, which agrees well
with the experimental valuem50.43 eV/Å3.20 The charac-
teristic values obtained from the shape ofg( fW) are the peak
of the GSF energygus, called theunstable stacking fault
energy,21 and the maximum of restoring forcetmax

[Max@2]g( fW)/] fW#. We get gus50.105 eV/Å2 and tmax
50.086 eV/Å3 and the dislocation width 2z50.88b. These
values are almost the same as those calculated in Ref. 2

2. Peierls stress from indirect method

The GSF energy without structural relaxation can be r
resented well by a continuous sinusoidal function for wh
the PN equation have an analytic solution. The Peierls st
from the PN theory is

sP50.032 eV/Å3, ~1!

which is relatively small value compared with those e
pected from experimentssP50.04320.215 eV/Å3.23

We performed a similar simulation of block shearing
GaAs. The results of GaAs are almost the same as thos
Si. The Peierls stress of GaAs is nearly the same as the v

FIG. 2. The GSF energy profile toward@ 1̄1̄2# direction on the
shuffle set of~111! planes, without~open circles!/ with ~crosses!
structural relaxation of atomic positions. The results for double s
along @111# direction are also shown for both cases of witho
~solid triangle! and with~solid square! structural relaxation. Each o
the open circle corresponds to each of the cross with the samef C .
6-3
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MASAYASU MIYATA AND TAKEO FUJIWARA PHYSICAL REVIEW B 63 045206
in Si estimated by the PN theory, while that is expected to
smaller by one order of magnitude than experimental val
in Si. The calculated values by the present indirect simu
tion are estimated as

sP50.026 eV/Å3, ~2!

using experimental value of shear modulus for GaAsm
50.31 eV/Å3.24 From our simulation,m is obtained asm
50.35 eV/Å3. The values ofgus andtmax in GaAs are ac-
tually almost equal to those values derived by scaling
values in Si by a factor of the covalency 0.88 in GaAs.25

The quantitative disagreement of plastic properties, s
assP, may be due to the insufficient treatment of dislocati
core structure. This seems to be crucial especially for nar
core systems like semiconductor crystals. One should, th
fore, try the direct slip simulation of dislocations.

B. Slip dynamics of dislocations caused by crystal deformation

1. Deformation process

Next we performed AIMD simulation of structural relax
ation after the shear deformation of crystal contain
straight dislocations. The crystal is uniformly deformed
ward the direction parallel to the Burgers vector in acc
dance with the change of primitive vectors that span
simulation unit cell. Though this process is different from t
block shearing, we still use the displacement vectorfWC of the
same definition to refer the degree of shear deformation.
did the dislocation slip through the processes of crystal
formation and structural relaxation forf C[u fWCu50, 0.1b,
0.2b, 0.3b, and 0.4b. In the following, we call these pro
cesses as P-1, P-2,. . . , andP-5, respectively. During pro
cess P-5, we observed the slip of screw dislocations. A
the process P-5, we unloaded the external stress and re
the structure again. This process is referred to as P-6.

Figure 3 shows the change of the total energy as a fu
tion of simulation steps. Ions move during each simulat
step to minimize the total energy after the uniform sh
deformation of the crystal. After structural relaxation, furth
deformation follows. As the deformation gets larger, so d

FIG. 3. Change of total energy as a function of simulation s
in the deformation process of a crystal with straight dislocation
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the energy increase after the deformation. The reduction
the total energy after structural relaxation is at most 0
Ry/cell, except that for the P-5 process. The reduction of
total energy at the beginning of the P-5 process is larger t
that of any other process. The dislocations slip in the reg
of 0.3b, f C,0.4b after the dislocations overcome the ba
rier of the Peierls potential.

2. Change of core structures

Figure 4~a! shows the atomic configuration of the obliqu
unit cell observed after process P-1. The resultant struc
preserves the fourfold coordination of each Si atom and
stable. The maximum deviation of the bond length from t
average is within 5.5%. Furthermore, we observed that
strain field around the dislocation core of the opposite s
holds the inversion symmetry. Figure 4~b! shows the atomic
configuration of the oblique unit cell observed after proce
P-5. The distance between the dislocations in the disloca
dipole has changed, and a dislocation moves by a transla
period of the crystal lattice.

We show in Table I, to ascertain the slip of dislocation
the bond lengths and the bond angles near the disloca
core after each process. Duringf C,0.3b, the bond length of
A-B decreases and those ofC-D andE-F increase with in-
creasing crystal deformationf C . The positions of atoms de
noted byA to F andX to Z can be seen in Fig. 4. Thus th
position of the dislocation core is located between the bo
of A-B andC-D and moves gradually toward the1b direc-
tion. Changes of bond angles for each process also show
movement of the dislocation core.

After the process P-5 off C50.4b, we observed the
abrupt increase of the bond length ofC-D and decrease o
that ofC-D8. TheC-D bond length becomes nearly equal
those ofA-B and C-D at f C50. Thus the bond switche
abruptly fromC-D to C-D8 in the range 0.3b, f C,0.4b.

Investigating bond lengths and angles ofA-B and E-F
bonds after the relaxation in process P-5, one can find
the strain around the dislocation core is biased toward
1b direction. In the same way, one can also find the dis
cation core biased toward the2b direction after the relax-
ation in process P-6. The dislocation core is radially symm
ric after the relaxation in process P-1. These processes
governed by the effects of the external stress and interac
between dislocations. The initial position ofr 5r 1
[16.6 Å is stable. Because there exists strong exte
stress after slip of dislocations, the strain field around cor
biased toward the direction of slip motion. After unloadin
the external stress, the strain is biased toward the direc
opposite to the previous process, because of the remai
force from the interaction among dislocations.

3. Energetics

Let us consider the energetics during the crystal deform
tion processes. The shear modulusm for Si is already ob-
tained in Sec. IV A asm50.48 eV/Å3. By using this value,
K5mb2/2p is evaluated to be 1.12 eV/Å. The elastic e
ergyEelas

quad(r ) is shown in Fig. 5, calculated from Eq.~A5! in
the Appendix. The dislocation-dislocation distancer in the

p

6-4
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FIG. 4. Atomic configuration in a unit cell observed after the processes P-1 and P-5 of crystal deformation and the structural re
~a! After the P-1 process, which is the initial stable configuration of a dislocation dipole.~b! After the P-5 process~the crystal deformation
of f C50.4b), which is the final configuration after the dislocation slip.
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dislocation dipole is initially set to ber 5r 1[16.6 Å. The
position ofr 5r 1 is stable, as is seen in Fig. 5. Therefore, t
strain field around the dipole is symmetrical in the relax
structure of process P-1, as already mentioned. An ideal
tance ofr after a slip may be estimated asr 5r 2[23.3 Å,
which is equal to the value of the initial stable distance p
one translational periodicity of the crystal lattice. In fa
actual shift of the positions of the dislocation core seems
be slightly smaller than that value, due to the fact that
r 5r 2 is not a stable position ofEelas

quad(r ).
The dislocations slip by only one translational period

the crystal lattice, and stop moving in the present simulat
An isolated dislocation would start to slip when the exter
stress exceeds the Peierls potential. Once the disloca
starts slipping, it would not stop. In the present simulation
dislocation moves in the Peierls potential, influenced by

TABLE I. Changes of bond lengths and angles near the di
cation core after structural relaxation of each process of cry
deformation. Displacementf C is shown in parentheses of each pr
cess. Values in the parentheses represent the bond lengths ofC-D8
and bond angles of/Y-C-D8.

Process Bond length (1022 Å) Bond angle~deg!

( f C) A-B C-D E-F /X-A-B /Y-C-D /Z-E-F

1 ~0! 242 242 236 92 127 117
2 (0.1b) 240 245 238 94 130 120
3 (0.2b) 239 248 240 96 135 123
4 (0.3b) 238 256 242 99 140 126
5 (0.4b) 235 382~239! 255 104 147~94! 139
6 ~0! 241 342~252! 240 96 147~87! 128
04520
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elastic interactions with other dislocations. From Fig. 5, o
can find that the total potential would increase after the s
of one translational period, and the successive slip does
occur spontaneously under the constant external str
When the external stress increases more, dislocations m
restart to slip, and in the end, the dislocation dipole wo
annihilate.

Assuming a value of the radius of a dislocation corer c
5b and usingK51.12 eV/Å, we can estimate the core e
ergy Ecore by Eq. ~A4! in the Appendix. The core energy o
process P-1 is

Ecore50.95 eV/Å ~3!

-
al

FIG. 5. Half of elastic energyEelas
quad(r )/2 as a function of the

dislocation-dislocation distancer.
6-5



,

f

co
o
a

1
t
ro
ss

n
o
er
th
di
or
la
v
tia
in
o

uc
y

tro

-
a
c
i

slo
e
s

s

n

l to
s of

is

ted

, so
he
o

tion

nes.
osed

MASAYASU MIYATA AND TAKEO FUJIWARA PHYSICAL REVIEW B 63 045206
and that of process P-6 is

Ecore51.31 eV/Å. ~4!

These values are not contradict to that from classical MD10

Ecore50.72 eV/Å, ~5!

where the Keating potential26 and parametersr c5b and K
50.69 eV/Å are used. If we use just the same value oK
50.69 eV/Å, we would estimate at each process as

Ecore50.29 eV/Å ~ the core energy of process P-1!,

Ecore50.495 eV/Å ~ the core energy of process P-6!.

Because the classical Keating potential reproduces the
structure of an isolated dislocation well, the consistency
Ecore between the AIMD and the classical MD means th
the superposition assumption is justified.

We discuss the difference ofEcore between processes P-
and P-6. The core energy of a dislocation is independen
the distance relative to other dislocations. And in each p
cess, the crystal is not deformed so that no external stre
loaded. Therefore, the difference ofEcore’s between pro-
cesses P-1 and P-6 originates from the different position
dislocation core relative to the crystal. When the dislocatio
are well separated, the stable position of dislocation c
should be determined by lattice periodicity. In fact, howev
the dislocation core in process P-6 is biased towards
2b direction because of the elastic interactions between
locations. In other words, the position of the dislocation c
has been displaced from the position determined by the
tice periodicity. This means that the dislocations ha
climbed a certain degree of the slope of the Peierls poten
In the case of process P-1, all dislocations are on the m
mum of the Peierls potential because of the configuration
dislocation dipoles. Then the difference ofEcore between
processes P-1 and P-6 originates from this difference. M
longer systems along the@ 1̄1̄2# direction may be necessar
to have the sameEcore’s of processes P-1 and P-6.

4. Electronic structure

Figure 6 shows the eigenenergies of the one-elec
states near the chemical potential as a function off C . The
band gap opens when 0< f C<0.3b. Then it vanishes or the
system is metallic atf C50.4b, i.e., in the atomic configura
tion after slip of dislocations. After unloading the extern
stress, band gap opens again or the system is semicondu
again. Based on these results, we can propose the follow
picture. Just after the slip motion, the bonds near the di
cation core are weakened and the nonbonding state app
when the external stress still remains. So the successive
would occur much easily than the first slip.

5. Peierls stress from direct method

Let us write an average force due to the external stres
a unit length of straight dislocationFW ex. ThenFW ex is calcu-
lated by the Peach-Koehler formula27 as follows:
04520
re
f
t

of
-
is

of
s
re
,
e
s-
e
t-

e
l.
i-
f

h

n

l
ting
ng
-
ars
lip

on

Fk
ex52e i jkj it j l bl , ~6!

where jW is a normalized vector parallel to the dislocatio
line, t is a tensor of external stress,bW is Burgers vector, and
e i jk is a permutation operator defined as

e1235e2315e31251,

e1325e3215e213521,

e i jk50 ~ i 5 j or j 5k or k5 i !. ~7!

These indices of 1, 2, and 3 reveal the directions paralle
the axes of the three-dimensional Cartesian coordinate
the supercell, respectively, and are defined as follows;

~1! dislocation linejW , Burgers vectorbW , i.e., @ 1̄10#,
~2! slip direction, i.e.,@ 1̄1̄2# ,
~3! normal vector of slip plane, i.e.,@111# .

Now the nonzero components of the screw dislocation
only b1 andj1, and then only two componentsF2

ex andF3
ex

are nonvanishing as

F2
ex5t31b, ~8!

F3
ex52t21b. ~9!

The average stress applied on the unit cell was calcula
during the simulation. The observed values oft21 and t31,
evaluated after process P-4 (f C50.3b), are

t21520.19 eV/Å3,

t3150.14 eV/Å3. ~10!

Generally, a screw dislocation does not have slip plane
the slip direction is undetermined. In our simulation, t
screw dislocation ofjW i@ 1̄10# in the shuffle set is assumed t

FIG. 6. Eigenenergies near the chemical potential as a func
of crystal deformation with the displacementf C . The highest oc-
cupied and the lowest unoccupied level are shown as bold li
After process P-6 the gap opens again as denoted by the cl
triangles.
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be straight, the slip planes can be~111! or (111̄). The actual
slip was observed to occur on the~111! plane on which the
larger stress was applied. Therefore, we can conclude
the external stress causing the dislocation slip is onlyt31 in
the present simulation.

Here we will consider how to obtain the Peierls stre
from the AIMD simulation. According to the results of ou
simulation, we should consider the variation of the Peie
potential along to the slip direction parallel to theb axis. Let
us assume a dislocation core is located at the positionx in the
b axis, and we write the Peierls potential at a positionx as
VP(x). Since we consider the dynamics of dislocation dip
in a unit cell, a dislocation with an opposite sign moves t
direction opposite each other, and the elastic interaction
ergy between dislocationsEint(x) changes. The force on
dislocationFpot is the sum of the forces due to potentia
Eint(x) andVP(x):

Fpot~x!5
d

dx
VP~x!1 f int~x!, ~11!

wheref int(x) is a force of the elastic interactionEint(x). The
force Fpot should be equated to the forceF2

ex due to the
external stresst31, and then one obtains the following equ
tion:

d

dx
VP~x!52 f int~x!1t31b. ~12!

The Peierls stresssP[max$(d/dx)VP(x)%/b can be evaluated
by using Eq.~12!.

f int(x) is obtained using the same form of the ener
calculation as shown in the Appendix. The distance betw
the dislocation dipole is within the range of 16.6 Å,r
,23.3 Å, so the range off int(x) can be estimated from Fig
7 as

0 eV/Å3, f int~x!/b,0.047 eV/Å3. ~13!

FIG. 7. Stress on a dislocation originated from an elastic in
action energy term among dislocationsf int(x)/b.
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From Eqs.~10! and~13!, one can evaluate the range of valu
of the Peierls stress without the information of correct eva
ation of the position of the dislocation core as

0.14 eV/Å3,sP,0.19 eV/Å3. ~14!

We can find that the coincidence between the present
mation and the experimental result sP50.043
20.215 eV/Å3 is excellent. According to the value ofsP, it
is consistent to assume that the screw dislocations in
shuffle set determine the plastic properties of Si at low te
peratures.

The PN equation using the GSF energy before struct
relaxation producessP50.032 eV/Å3, which is about one
order magnitude smaller than the result by the present di
slip dynamics. The plastic properties of the system w
small dislocation cores, like semiconductor crystals, are
ficult to estimate quantitatively based on the PN theory,
shown in the previous subsection. Now we have dem
strated that the direct method is efficient to estimate the p
tic properties quantitatively.

V. CONCLUSIONS

We have tried two different methods of the simulation f
plastic properties of semiconductor materials, i.e., the in
rect method based on the GSF energy and the direct me
based on the dislocation slip. The direct method gives ex
lent results of the plastic properties quantitatively.

Our results are summarized as follows:
~1! After structural relaxation, the abrupt bond switchin

near the dislocation core occurs and this fact implies
narrow core of dislocations, which enhances the app
stress to move dislocations at lower temperatures.

~2! The straight dislocation of shuffle screw is stable. B
the crystal deformation towards the@ 1̄10# direction, which is
parallel to the Burgers vector, dislocation dipoles slip on
~111! plane toward@ 1̄1̄2# direction. The slip motion stops
after moving by one translational period of the lattice due
the elastic interaction between dislocations in the pres
configuration of dislocation dipoles. The bonds get weak
around the core structure just after the slip.

~3! By calculating the external stress from first principl
the Peierls stress of the shuffle screw dislocation is evalu
without any artificial modeling of the dislocation core. Th
Peierls stress obtained for the shuffle plane is consistent
the possibility that slip occurs on this plane.
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APPENDIX

1. Energy of dislocations in direct method

The total energy of a system with a dislocation dipole c
be written as

Etot
disloc~r !5Etot

0 1 1
2 $Ecell

quad~r !1Eint
quad~r !%, ~A1!

whereEtot
0 is a total energy of deformed perfect crystal wi

no dislocations,Ecell
quad(r ) is the self-energy of a dislocatio

quadrupole, andEint
quad(r ) is an elastic interaction energ

with the dislocations in the image cells of the dislocati
quadrupole. Here, an image cell is a replica of the unit c
generated by a lattice translation.

We will write the projected primitive vectors onto th
plane normal to the dislocation line aspW ,qW , and define a
vectorLW mn ~lattice vector! as

LW mn[mpW 1nqW , ~A2!

where the indicesm,n run over all values of integers. Th
self-energy of a dislocation quadrupoleEcell

quad(r ) may be
written as

Ecell
quad~r !5K ln

u~2pW 1qW !/21rWuu~pW 1qW !/22rWu

u~pW 1qW !/2uu~2pW 1qW !/2u

1K ln
urWuupW 2rWu

b2
1Esel f

quad, ~A3!

whererW5(r ,0), K5mb2/2p, m is a shear modulus, andr c is
a radius of dislocation core. The termEcore(r c) is the dislo-
cation core energy, which is a constant arbitrarily determin
within the approximation of elastic continuum. We will writ
the constant term of energy asEsel f

quad by grouping those in
Eq. ~A3!. i.e.,

Esel f
quad5K lnS b

r c
D 2

14Ecore~r c!. ~A4!
g

ing

tt

a

04520
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The elastic interaction energyEint
quad(r ) is written as

Eint
quad~r !5

1

2
K (

m,nÞ0
H ln

uLW mn1rWuuLW mn2rWu

uLW mnu2

1 ln
uLW mn1~pW 1qW !/22rWuuLW mn1~2pW 1qW !/21rWu

uLW mn1~pW 1qW !/2uuLW mn1~2pW 1qW !/2u

1 ln
uLW mn1pW 2rWuuLW mn2pW 1rWu

uLW mnu2

1 ln
uLW mn1~pW 2qW !/22rWuuLW mn2~pW 1qW !/21rWu

uLW mn1~pW 2qW !/2uuLW mn2~pW 1qW !/2u J ,

~A5!

where the indicesm,n run over all values of integers. Fi
nally, the elastic energyEelas

quad(r ) can be written as

Eelas
quad~r ![Ecell

quad~r !1Eint
quad~r !2Esel f

quad. ~A6!

2. Interaction forces between dislocations

Suppose that a dislocation is placed on the origin of
two-dimensional Cartesian coordinate, and another dislo
tion of an opposite sign is placed atxW in a unit cell. Then the
force acting on the dislocation atxW from the dislocation at the
origin and other dislocations in the image cells is given a

f int~xW !5K (
m,nÞ0

LW mn

uLW mnu2
1K(

m,n
H LW mn1~pW 1qW !/2

uLW mn1~pW 1qW !/2u2

1
xW2LW mn

uxW2LW mnu2
1

~pW 2qW !/22LW mn

u~pW 2qW !/22LW mnu2

1
LW mn1xW1~qW 2pW !/2

uLW mn1xW1~qW 2pW !/2u2J , ~A7!

whereK5mb2/2p. Taking the coordinate parallel to the sli
direction, xW becomes x[uxW u. With the value of K
51.12 eV/Å, the calculated value off int(x) is shown in
Fig. 7.
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