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Ab initio calculation of Peierls stress in silicon
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The Peierls stress of a straight screw dislocation in Si has been studiedatyimitio molecular dynamics
simulation. The generalized stacking fault energy in Si can no longer be the continuous function of displace-
ment of the slip plane with structural relaxation. Then the Peierls-Nabarro theory fails to describe properties of
the dislocation core, such as the Peierls stress. Direct simulation of the slip dynamics of dislocations has also
been performed and the Peierls stress is derived without any artificial modeling of a dislocation core with an
excellent agreement with experimental results. The effect of the Peierls potential on the slip dynamics of
dislocations is also discussed.
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I. INTRODUCTION called the generalized stacking fa(BSPH energy. Once one
gets the GSF energy, then one calculates various plastic
The plastic deformation of crystals is governed by theproperties by way of the Peierls-Nabari®N) theory. The
dynamics of dislocations. A dislocation is a physical entity GSF energy of Si was first calculated by Kaxiras and Dues-
of the continuum theory of elasticity. It moves in an intrinsic bery with AIMD.®
periodic potential field of the lattice, called the Peierls poten- An alternative approach is the direct simulation of dislo-
tial, driven by an external stress. Though realistic situation§ation slip, where a dislocation is forced to move by an ap-
are naturally more complicated, basic physical properties oplied external force. The atomic structure of dislocation core
dislocations should be studied in the simplest situation of a®f & screw dislocation in Si was given by Hornstrarias
isolated straight dislocation at 0 K. and Joannopoulos showed the stability of that structure by
In order to realize this situation in experiments, deforma-AIMD. *°
tion tests of materials have been done with keeping the dis- In the present paper, we performed two kinds of AIMD
location density as low as possible at very low temperaturegsimulation of slip dynamics of dislocations. The first is the
Silicon is an ideal material to have a single crystal with lowShearing process of a perfect Si crystal at thé] slip
dislocation density. However, in order to investigate thePlane, followed by structural relaxation. This process pro-
plasticity of Si, we could encounter several difficulties asvides a profile of the GSF energy as a function of the dis-
follows. First, it is difficult to deform semiconductor crystals Placement on the slip plane. The second is the deformation
at lower temperatures without brittle fracture. Recently, de{Process of a crystal with straight dislocations, accompanied
formation tests of semiconductor crystals have been cory the structural relaxation. This process provides a slip dy-
ducted under confining hydrostatic pressure to avoid brittld¥amics of straight dislocations in accordance with the in-
fracture}? and their yield stress shows strong temperaturerease of the external stress field. The outline of the present
dependencé? With decreasing temperatures, the yield stresgaper is as follows. In Sec. Il, we review the known slip
of Si increases up to a value higher than 1 GPa at about 608/Stem and dislocations in Si. In Sec. 1, we will explain the
K.5 Then, one could not extrapolate the value of the yie|dsimulation methods for the dislocation properties. Section IV
stress & O K in order to estimate the value of the Peierlsis devoted to present our results and discussions. We give
stress. Furthermore, in this experimental procedure, the efur conclusions in Sec. V.
fect of the high confining hydrostatic pressure on the dislo-
cation properties is still unknown. Second, the conventional || s |p SYSTEM OF DISLOCATIONS IN SILICON
dislocation model of an elastic string does not work, because
of the sharpness of the dislocation kink in a material of high The natural cleavage planes and slip directions in dia-
Peierls potential. The Peierls potential in Si is very high be-mond structure ar¢111} planes and110) directions. There
cause of its covalency and higher brittleness. Therefore, it igre two kinds of perfect dislocations in diamond structure, a
important to study several properties of dislocations in Siscrew and a 60° dislocation, where the latter term arises
from the atomistic calculation. from the 60° angle between the direction of the dislocation
Among atomistic calculations, thab initio molecular dy- line and the Burgers vector. These dislocations are dissoci-
namics(AIMD ) simulation is the most desirable way to get ated into Shockley partial dislocations at high temperatures.
information of covalent systems because the change of eleé screw dislocation dissociates into two 30° partial disloca-
tronic structure is essential to determine their mechanicdions, and as does a 60° dislocation into a 30° and a 90°
properties. There have been many efforts to connect the digartial dislocation.
crete atomistic information with the linear continuum de- According to the two kinds of different intervals between
scription and then know the plastic properties. One of thg111} planes, there are two ways of moving dislocations in a
useful approaches was proposed and developed by Vitek aqd11 (110 slip system. One way is that the slip motion
co-workers®’ They introduced a new physical quantity, occurs between two planes of the interval equal to the bond
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length, and this is called shuffleset. The other way is that EL TI1.T TLTLTL

slip motion occurs between two planes of the interval equal -L T -
to 1/3 of the bond length, which is calledgtide set. There L TD— TILT L T/LTALT

has been a controversy about the most probable case for _i_ TLTL1LT TLTL1LTL
moving dislocations! One may predict that the shuffle set is P
selected, because, in the slip process, one bond per atom (@) (b)
should be rearranged for the shufﬂe set while three bonds per FIG. 1. (a) Dipolar lattice of dislocations antb) quadrupolar
atom are re,arrar,]ged f‘?f the glide SEt'_ lattice. This figure is the same as Fig. 2 in Ref. 21.
The partial dislocations are experimentally observed to
move in the glide set with being bound by the stacking fault. N )
On the shuffle set, partial dislocations do not move without?oundary condition. The mirror symmetry was reserved dur-
diffusive dragging of a row of vacancies. Therefore, one exing the shearing process with respect to the cer(trall)
pects that the resistance of motion in the shuffle set is highg?lanes. We cut the half semi-infinite block of the crystal on
than that in the glide set. Thus the experimental results arghe shuffle set along112] direction with two clamped
supposed, at least at high temperatures, to support the sliflanes farthest from the cut. Then the LDA energy functional
mechanism of the gllde set, in contrast to the above intUitiVQNaS minimized by atomic relaxation a|0ng arbitrary direc-
prediction. o _ ~tions, until the total force was reduced to be less than 0.005
On the other hand, a preliminary dynamical AIMD simu- Ry/(a.u. aton). The accuracy of the total energy is proved to
lation, at low temperatures, of shear deformation of a Si cryspe |ess than 0.05 Riguper cell, and that of the GSF energy
tal shows that the perfect crystal is broken at the shufflé’set. is |ess than 5% throughout the simulation.
This result is consistent with the above intuitive prediction, e can specify the displacement of two halves of the cut

b?ystal as follows. The vectdris the displacement vector of

the two atomic planes immediately adjacent to the cut. The
GSF energy of the unrelaxed cut crystal was defined by
IIl. METHODS TO CALCULATE PEIERLS STRESS Vitek.® The relative displacement can also be defined in a

different way by using the displacement vecf@r between

_ _ _ ~ the centers of the two semi-infinite parts of the cry$tal.
The AIMD simulation of Si crystals was done by using Therefore f= Fc in case of unrelaxed system, ahe Fc in

the method of direct minimization of the energy functional of .55e of relaxed system.

the local density approximatiéh(LDA), including partially . -
occupied and unoccupied orbitals together with occupied Follt?wmg Ref. 1.8’ we measured Ehe GSF eneygy) as
Kohn-Sham(KS) single-electron orbital&! All atoms, ex- @ function of the displacement vectbr After structural re-

cept those on clumped layers in the calculation of the GSfaxation, the dangling bonds disappear and the system holds
energy, were allowed to move along any direction. We usedearranged bonds with large distortion. Therefore, #(€)

only theT point (k=0) in the Brillouin zone and an energy after relaxation is not actually the generalized “stacking
cutoff, for the plane wave expansioB,,=8 Ry inthe cal- fault” energy, but just the energy with distortions, though we
culation of the GSF energy aritl, =10 Ry in the deforma- Would still call it the GSF energy.

tion dynamics of dislocations. We used the soft norm-
conserving pseudopotential by Troullier and Marthwith
the Kleinman-Bylander separable folth.The local ex-
change correlation functional of Ceperly and Alder param- 1. Configuration of dislocations for simulation
etrized by Perdew and Zundémwas used.

system in the detailed simulation study in the present pape

A. Technical details of AIMD

C. Direct method: Simulation of dislocation motion

An isolated dislocation is accompanied by a long-range
strain field and the resultant strain energy is diverged. There-
B. Indirect method: GSF energy and block shearing process  fore one should introduce a dislocation dipole in the system
Consider the process in which an infinite crystal is cutd"d then the strain field may damp within a certain finite
into two semi-infinite parts, parallel to an atomic plane. The@19€. However, under a periodic boundary condition, a dis-

upper half part of the crystal is shifted parallel to the CutIocatlon dipole in a rectangular unit cell makes grain bound-

atomic plane with respect to the lower half by a certain dis2/1€S toward the direction normal to the dipole array, as

> . . shown in Fig. 1a).° These grain boundaries cause a spuri-
placement vectof. This process is calleblock shearing 9. 19 g P

. X ) ._.oys shear strain and change the electronic state. The better
The energy increase per unit area on the slip plane associateflice may be the quadrupole arrangement of dislocations

W'tb the displacement vector is E'Ef'”eo' as the GSF ENer9%ecause the spurious strain is eliminated. Then another dif-
¥(f). The differentiation of y(f) with respect tof, ficulty appears if we use a rectangular unit cell, e.g., the
—advy(f)/of, is the restoring force due to the misfit betweenquadrupolar configuration makes the system size double in
the two parts of the lattice. the array of rectangular unit cells. Because a large amount of
To simulate block shearing process for the calculation oicomputational resource is required in AIMD, one should try
the GSF energy, we used a supercell consisting of twelvéo keep the system size minimal as much as possible. So we
(111 atomic planes, totally 72 atoms, under the periodicadopt an oblique superlattice that realizes a quadrupolar con-
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figuration under periodic boundary conditions and whose 0.12

unit cell contains one dislocation dipole, as shown in Fig. o%

1(b).*? 01+ exe ]
In an actual simulation, our unit cell of oblique supercell _

consists of siX111) atomic planes and of two times and five < 008 | ? ° i

times the primitive cell towardsa andb directions, respec- 3

tively, totally 120 Si atoms in an oblique unit cell. The unit %3 0,06 | o o |

cell is shown in Fig. 4. Each direction of tleeandb axis is 2

[110] and[112], respectively. A dipole of screw disloca- Booal 1 & o X

tions in shuffle set was introduced into the unit cell. The core o

structure of a dislocation in glide set is not known and con- wonl - | % Releed o

sidered to be unstable. The core structure of a shuffle screw : w |+ Unelaxedx2) %

dislocation was given by Hornstrand proved to be stable O [ Relaxed2) | °x

by Arias and Joannopoul&by AIMD. The crystal was uni- 0 . O‘ S o4 O‘ s o8 1

formly deformed towardg§110] direction. Then the LDA ' displécemenif(b) .

energy functional was minimized by atomic relaxation, until L

the total force was reduced to be less than 0.001(eRy/ FIG. 2. The GSF energy profile towafd12] direction on the

atom). The accuracy of the total energy is proved to be lesshuffle set of(111) planes, without(open circle§ with (crossep
than 0.9 10 3 Ry/(supercell). According to Ref. 10, the structural relaxation of atomic positions. The results for double size
spontaneous mutual annihilation of a dislocation dipole oc&long [111] direction are also shown for both cases of without
curs when the dislocation contacts another. The superceQFO“d trlangle) and with(solid squargstructural relaxa_tlon. Each of
used in the present simulation is large enough to avoid thid1® open circle corresponds to each of the cross with the $gme
annihilation of dislocations because after the slip motion by

one period of the lattice dislocations do not contact yet. g are associated with dangling bonds and are unstable. Af-
ter structural relaxation, the dangling bonds or the stacking

2. Superposition assumption of strain field and interaction fault disappears and the system has a large distortion. There-
between dislocations fore, the real structure of a dislocation core for covalent sys-

. tems cannot be the continuous stacking fault, because the
When the system is large enough, we suppose that thﬁ: 9

superposition principle does work in the following tern(i: onds are abruptly rearranged.

the strain field by dislocations and that by crystal deforma- 10 See€ if the shape of(f) with structural relaxation de-
tion and(2) the interaction between dislocations. The elasticpends on the system size, we doubled the size of the unit cell

term involves elastic interactions between dislocations. Ac&0ng the[111] direction in Si withfc=0.2%. We do not

cording to the above superposition assumption, the nonline&°Serve any qualitative differences of results, in Fig. 2, be-
term can be neglected in the nonelastic term. Then the nofiween two unit cell sizes and, therefore the present unit cell

elastic energy consists only of the Peierls potential and th&iZ€ iS enough large. _
energy of deformation of perfect crystal. The shear modulug can be estimated from the shape of

y(f) with a smallfc asu=0.48 eV/A?, which agrees well
with the experimental valug=0.43 eV/A%.?° The charac-

IV. RESULTS OF SIMULATIONS AND DISCUSSIONS N
teristic values obtained from the shapeff) are the peak

A. GSF energy by block shearing of the GSF energyy,s, called theunstable stacking fault
The AIMD of the block shearing process was done forenergy?’ and the maximum of restoring forcerpay
displacement vectork.=|fc|=0, 0.12%, 0.2%, 0.312H, =Max{—dy(f)/f]. We get y,s—=0.105 eV/A and 7,
0.37%, 0.437%, 0.4687®, and 0.5, whereb is the ampli- =0.086 eV/A& and the dislocation width 2=0.8&%. These

tude of the Burgers vector. It should be mentioned here thatalues are almost the same as those calculated in Ref. 22.
the change of the amplitudes Bberpendicular to slip direc-

tion after relaxation is much smaller than thosa?qjarallel
to the slip direction, by a factor of several orders of magni- The GSF energy without structural relaxation can be rep-
tude, at most by a factor of 16. Then we compare the resented well by a continuous sinusoidal function for which
profiles of the GSF energies with and without structural rethe PN equation have an analytic solution. The Peierls stress
laxation, only on the same plane parallel to the slip directionfrom the PN theory is

2. Peierls stress from indirect method

1. GSF energy 0p=0.032 eV/A, (1)

Figure 2 shows the GSF energy profile of the diSplace'vvhich is relatively small value compared with those ex-

ment along th¢112] direction obtainefi by the AIMD simu-  pected from experimenispy=0.043-0.215 eV/A3.23

lation. The shape of the GSF energff) gets split into two We performed a similar simulation of block shearing in
parts after the relaxation, as shown in Fig. 2. The atomicGaAs. The results of GaAs are almost the same as those of
configurations without structural relaxation after block shear-Si. The Peierls stress of GaAs is nearly the same as the value
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-948.2 the energy increase after the deformation. The reduction of
0483 the total energy after structural relaxation is at most 0.04
o Ry/cell, except that for the P-5 process. The reduction of the
-948.4} 8 total energy at the beginning of the P-5 process is larger than
2 ossl P-4 % 1 that of any other process. Th.e dislqcations slip in the region
g T 3 e% of 0.30<f<0.4b after the dislocations overcome the bar-
2 9486f ) : rier of the Peierls potential.
9487 R P2 M"’ 2. Change of core structures
o
-948-8’P ) 1 Figure 4a) shows the atomic configuration of the oblique
9489 ey | unit cell observed after process P-1. The resultant structure
- preserves the fourfold coordination of each Si atom and is
-9495 60 700 360 stable. The maximum deviation of the bond length from the

simulation step average is within 5.5%. Furthermore, we observed that the
strain field around the dislocation core of the opposite sign
FIG. 3. Change of total energy as a function of simulation stepholds the inversion symmetry. Figureo} shows the atomic
in the deformation process of a crystal with straight dislocations. configuration of the oblique unit cell observed after process
P-5. The distance between the dislocations in the dislocation
in Si estimated by the PN theory, while that is expected to balipole has changed, and a dislocation moves by a translation
smaller by one order of magnitude than experimental valueperiod of the crystal lattice.
in Si. The calculated values by the present indirect simula- We show in Table |, to ascertain the slip of dislocations,

tion are estimated as the bond lengths and the bond angles near the dislocation
5 core after each process. Durifg<<0.3b, the bond length of
0p=0.026 eV/A, (2)  A-B decreases and those GfD and E-F increase with in-

—0.31 eV/A3.2% From our simulationy is obtained age ~ noted byAto F andX to Z can be seen in Fig. 4. Thus the

—0.35 eV/A. The values ofy,s and 74 in GaAs are ac- Position of the dislocation core is located between the bonds

tually almost equal to those values derived by scaling théf A-B andC-D and moves gradually toward theb direc-

values in Si by a factor of the covalency 0.88 in G#As.  tion. Changes of bond angles for each process also show this
The quantitative disagreement of plastic properties, suciovement of the dislocation core.

asop, may be due to the insufficient treatment of dislocation After the process P-5 ofc=0.40, we observed the

core structure. This seems to be crucial especially for narro/@Prupt increase of the bond length GfD and decrease of

core systems like semiconductor crystals. One should, therdbat of C-D’. TheC-D bond length becomes nearly equal to
fore, try the direct slip simulation of dislocations. those of A-B and C-D at fc=0. Thus the bond switches

abruptly fromC-D to C-D' in the range 0.B<f-<0.4b.
Investigating bond lengths and angles 4B and E-F
bonds after the relaxation in process P-5, one can find that
1. Deformation process the strain around the dislocation core is biased toward the
Next we performed AIMD simulation of structural relax- * P direction. In the same way, one can also find the dislo-
ation after the shear deformation of crystal containingc@tion core biased toward theb direction after the relax-
straight dislocations. The crystal is uniformly deformed to-ation in process P-6. The dislocation core is radially symmet-
ward the direction parallel to the Burgers vector in accor-1iC after the relaxation in process P-1. These processes are
dance with the change of primitive vectors that span théJoverned by the effects of the external stress and interaction
simulation unit cell. Though this process is different from thePetween — dislocations. The initial position of =r,

block shearing, we still use the displacement ve€toof the Et16'6 'f&t\ IS I_stat?lg_. IBec?use ttrr:eret gms%.tsldstrong dextern_al
same definition to refer the degree of shear deformation. W ress ater slip ot disiocations, the strain field around core IS

did the dislocation slip through the processes of crystal de-Iased toward the direction .Of 'sI|p' motion. After unlogdlng
i _ - the external stress, the strain is biased toward the direction
formation and structural relaxation fdi.=|f-|=0, 0.1,

i opposite to the previous process, because of the remaining
0.2, 0.3, and 0.4. In the following, we call these pro- ¢4ce from the interaction among dislocations.
cesses as P-1, P-2,. ., andP-5, respectively. During pro-
cess P-5, we observed the slip of screw dislocations. After
the process P-5, we unloaded the external stress and relaxed
the structure again. This process is referred to as P-6. Let us consider the energetics during the crystal deforma-
Figure 3 shows the change of the total energy as a fundion processes. The shear modujusfor Si is already ob-
tion of simulation steps. lons move during each simulatiortained in Sec. IVA ag.=0.48 eV/A%. By using this value,
step to minimize the total energy after the uniform sheaK=ub?/27 is evaluated to be 1.12 eV/A. The elastic en-
deformation of the crystal. After structural relaxation, furtherergy E322%r) is shown in Fig. 5, calculated from E¢A5) in

deformation follows. As the deformation gets larger, so doeshe Appendix. The dislocation-dislocation distarrcen the

B. Slip dynamics of dislocations caused by crystal deformation

3. Energetics
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/

(a)Before Slip

FIG. 4. Atomic configuration in a unit cell observed after the processes P-1 and P-5 of crystal deformation and the structural relaxation.
(a) After the P-1 process, which is the initial stable configuration of a dislocation difigléfter the P-5 proceséhe crystal deformation
of f=0.4b), which is the final configuration after the dislocation slip.

dislocation dipole is initially set to be=r;=16.6 A. The elastic interactions with other dislocations. From Fig. 5, one

position ofr =r is stable, as is seen in Fig. 5. Therefore, thecan find that the total potential would increase after the slip

strain field around the dipole is symmetrical in the relaxedof one translational period, and the successive slip does not

structure of process P-1, as already mentioned. An ideal dissccur spontaneously under the constant external stress.

tance ofr after a slip may be estimated as-r,=23.3 A,  When the external stress increases more, dislocations might

which is equal to the value of the initial stable distance plugestart to slip, and in the end, the dislocation dipole would

one translational periodicity of the crystal lattice. In fact, annihilate.

actual shift of the positions of the dislocation core seems to Assuming a value of the radius of a dislocation coge

be slightly smaller than that value, due to the fact that the=b and usingK=1.12 eV/A, we can estimate the core en-

r=r, is not a stable position cng‘aid(r). ergy Ecore by EQ.(A4) in the Appendix. The core energy of
The dislocations slip by only one translational period ofprocess P-1 is

the crystal lattice, and stop moving in the present simulation.

An isolated dislocation would start to slip when the external

stress exceeds the Peierls potential. Once the dislocation Ecore=0.95 eV/A )

starts slipping, it would not stop. In the present simulation, a

dislocation moves in the Peierls potential, influenced by the 3.5 ‘ ‘ , - »

TABLE |. Changes of bond lengths and angles near the dislo-
cation core after structural relaxation of each process of crystal
deformation. Displacemerit. is shown in parentheses of each pro-
cess. Values in the parentheses represent the bond lengihi® 6f
and bond angles of Y-C-D’.

(1)/2 (eV/A)

Process Bond length (18 A) Bond angle(deg g g 2
(fo) AB CD E-F /XAB /Y-CD /ZE-F =
1.5
1(0) 242 242 236 92 127 117
2(0.b) 240 245 238 94 130 120
3(0.0) 239 248 240 96 135 123 10 5‘ 1‘0 1'5 2'0 2'5 3'0
4(0.3) 238 256 242 99 140 126 F(A)
5(0.4) 235 382239 255 104 14794 139
6 (0) 241 347252 240 96 14787 128 FIG. 5. Half of elastic energfd2%r)/2 as a function of the

dislocation-dislocation distanae
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and that of process P-6 is

0.25

Ecore=1.31 eV/A. (4)

. . 0.24
These values are not contradict to that from classical ¥ID,

Ecore=0.72 eV/A, (5)

o
)
w

where the Keating potentf&land parameters,=b and K
=0.69 eV/A are used. If we use just the same valu& of
=0.69 eV/A, we would estimate at each process as

Eigen energies (Hartree)
S
[\S)

(=
[
—_

Ecore=0.29 eV/A (the core energy of process P;1

Ecore=0.495 eV/A (the core energy of process P-6 0.2 ‘

2
Because the classical Keating potential reproduces the core f.x 10 (b)

structure of an isolated dislocation well, the consistency of
Ecore between the AIMD and the classical MD means thatof crystal deformation with the displacemeit. The highest oc-

the SUF()je_rpOSI'[IOr? a:jsffsfumptlonés Jusbtlfled. cupied and the lowest unoccupied level are shown as bold lines.
We discuss the ditference core etw.een. processes P-1 After process P-6 the gap opens again as denoted by the closed
and P-6. The core energy of a dislocation is independent cﬂiangles.

the distance relative to other dislocations. And in each pro-
cess, the crystal is not deformed so that no external stress is
loaded. Therefore, the difference &,.'s between pro-
cesses P-1 and P-6 originates from the different position ofyhere ¢ is a normalized vector parallel to the dislocation

dislocation core relative to the crysta'l.' When the d'5|9cat'°n§ine, 7 is a tensor of external stredsjs Burgers vector, and
are well separated, the stable position of dislocation core

; . S . IS a permutation operator defined as
should be determined by lattice periodicity. In fact, however,” ik P P
the dislocation core in process P-6 is biased towards the
—b direction because of the elastic interactions between dis-

FIG. 6. Eigenenergies near the chemical potential as a function

FR=—e€jk&imb, (6)

€123 €231~ €310~ 1,

locations. In other words, the position of the dislocation core €130= €301= €215= — 1,
has been displaced from the position determined by the lat-
tice periodicity. This means that the dislocations have €ix=0 (i=j or j=k or k=i). (7

climbed a certain degree of the sI_ope Of. the Peierls pmem.ia.ll'hese indices of 1, 2, and 3 reveal the directions parallel to
In the case of process P-1, all dislocations are on the minis P

: . : : he axes of the three-dimensional Cartesian coordinates of
mum of the Peierls potential because of the configuration o . : i
he supercell, respectively, and are defined as follows;

dislocation dipoles. Then the difference B, between
processes P-1 and P-6 orﬁinates from this difference. Much (1) dislocation line, Burgers vectob, i.e.,[TlO],
longer systems along tHé.12] direction may be necessary (2) slip direction, i.e.,[HZ] ,

to have the samg_,,.'s of processes P-1 and P-6. (3) normal vector of slip plane, i.e[111] .

Now the nonzero components of the screw dislocation is

_ , , only b; and&;, and then only two componenks;* and F§*
Figure 6 shows the eigenenergies of the one-electrog nonvanishing as

states near the chemical potential as a functioriof The

4. Electronic structure

band gap opens whens0f -<0.3b. Then it vanishes or the FS$*= 731D, )
system is metallic at=0.4b, i.e., in the atomic configura-
tion after slip of dislocations. After unloading the external FS*=—7p0b. (9)

stress, band gap opens again or the system is semiconductin% ) .
again. Based on these results, we can propose the foIIowing e average stress applied on the unit cell was calculated
picture. Just after the slip motion, the bonds near the disloduring the simulation. The observed values7gf and 73,
cation core are weakened and the nonbonding state appe&¢aluated after process P-f(=0.3b), are

when the external stress still remains. So the successive slip B A3

would occur much easily than the first slip. 71=—0.19 eVIA,

_ 3
5. Peierls stress from direct method 73=0.14 eV/ R, (10

Let us write an average force due to the external stress on Generally, a screw dislocation does not have slip plane, so
a unit length of straight dislocatioR®*. ThenF®*is calcu- the slip direction is undetermined. In our simulation, the

lated by the Peach-Koehler forméfaas follows: screw dislocation o|[110] in the shuffle set is assumed to
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0.1

From Eqgs.(10) and(13), one can evaluate the range of value
of the Peierls stress without the information of correct evalu-
ation of the position of the dislocation core as

0.14 eV/IR<0p<0.19 eV/A. (14)

We can find that the coincidence between the present esti-
i mation and the experimental resultop=0.043
—0.215 eV/R is excellent. According to the value of, it
is consistent to assume that the screw dislocations in the
shuffle set determine the plastic properties of Si at low tem-
peratures.
The PN equation using the GSF energy before structural
relaxation producesp=0.032 eV/A, which is about one
order magnitude smaller than the result by the present direct
15 20 25 30 : ) . : .
X (A) slip dynamics. The plastic properties of the system with
small dislocation cores, like semiconductor crystals, are dif-
FIG. 7. Stress on a dislocation originated from an elastic interficult to estimate quantitatively based on the PN theory, as
action energy term among dislocatiofg(x)/b. shown in the previous subsection. Now we have demon-
strated that the direct method is efficient to estimate the plas-
be straight, the slip planes can Hel1) or (111). The actual tic properties quantitatively.
slip was observed to occur on tlig¢ll) plane on which the

mt

£ (x)/b (eV/AY

=)
P
h
:

-0.1
0

5 10

larger stress was applied. Therefore, we can conclude that V. CONCLUSIONS
the external stress causing the dislocation slip is eglyin . . . .
the present simulation. We have tried two different methods of the simulation for

Here we will consider how to obtain the Peierls stresgPl@stic properties of semiconductor materials, i.g., the indi-
from the AIMD simulation. According to the results of our '€ct method based on the GSF energy and the direct method
simulation, we should consider the variation of the Peierl ased on the d'SIOC""t'O_n slip. Th? direct method gives excel-
potential along to the slip direction parallel to thexis. Let €Nt results of the plastic properties quantitatively.
us assume a dislocation core is located at the positinrthe Our results are summarized as follows: .

b axis, and we write the Peierls potential at a positioas (1) After_structL_JraI relaxation, the abrupt bond_swchhlng
Vp(X). Since we consider the dynamics of dislocation dipolenear the d'SIOCat'(.)n core occurs and this fact implies t_he
in a unit cell, a dislocation with an opposite sign moves to gharrow core of Q|sloca}tlons, which enhances the applied
direction opposite each other, and the elastic interaction erplress to move d|slopat|on§ at lower temperatu_res.
ergy between dislocatior, (x) changes. The force on a (2) The straight dislocation of shuffle screw is stable. By
dislocationFP°! is the sum of the forces due to potentials the crystal deformation towards th&10] direction, which is
E;n(X) andVp(X): parallel to the Burgers vector, dislocation dipoles slip on a
(111 plane toward 112] direction. The slip motion stops
d after moving by one translational period of the lattice due to
Fp°t(x)=d—vp(x)+fim(x), (11)  the elastic interaction between dislocations in the present
X configuration of dislocation dipoles. The bonds get weaken
i . i around the core structure just after the slip.
wherefimt(x) is a force of the elastic mteractu;ﬁ]m(x). The (3) By calculating the external stress from first principle,
force FP°" should be equated to the ford&* due to the e pejerls stress of the shuffle screw dislocation is evaluated
external stresss;, and then one obtains the following equa- without any artificial modeling of the dislocation core. The
tion: Peierls stress obtained for the shuffle plane is consistent with
the possibility that slip occurs on this plane.

d
ay VP =~ find )+ 751D, (12 ACKNOWLEDGMENTS
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2 m,n#0 |Lmn|2

APPENDIX int

1. Energy of dislocations in direct method
ILmn+(p+q)/2 (|[Cont (—p+ Q)2+

The total energy of a system with a dislocation dipole can

be written as Lt (P+@)/2||Ent (—p+0)/2)
L) =l HERMO +ERT). (AD A
[Ene?

whereEtot is a total energy of deformed perfect crystal with
no dlslocatlonsEggﬁd(dr) is the self-energy of a dislocation ||-mn+(P 0)/2—r||Lpn— (p+a)/2+r]
quadrupole, ancE{®(r) is an elastic interaction energy =
with the dislocatlonts in the image cells of the dislocation [Connt (P @)/2Conn— (P12
guadrupole. Here, an image cell is a replica of the unit cell (A5)
generated by a lattice translation.

We will write the projected primitive vectors onto the

plane normal to the dislocation line gsq, and define a

where the indicesn,n run over all values of integers. Fi-

nally, the elastic energgd'24r) can be written as

vectorL ,,, (lattice vectoy as Edadn=Edi9n) +EhYr) - ESR. (AB)
Lmn=mp-+naq, (A2) 2. Interaction forces between dislocations
where the indicesn,n run over all values of integers. The  Suppose that a dislocation is placed on the origin of the
self-energy of a dislocation quadrupol 3%r) may be two-dimensional Cartesian coordinate, and another disloca-
written as tion of an opposite sign is placed sain a unit cell. Then the
. I N force acting on the dislocation atfrom the dislocation at the
Eauad |(=p+a)/2+r|[(p+q)/2—r]| origin and other dislocations in the image cells is given as
el ) = B 2l —p a2
- Lmn Lmnt (P+0)/2
Wil (=K 2 K e
+K b—+Eggﬁd’ (A3) J mn mnt(P+Q

)Z_Emn (5_5)/2_ I:mn
+—=
X

whereF=(r,0),K=,ub2/27r,,uisashearmodulus,ains —C 2 |(5_a)/2_|: 2
mn mnl

a radius of dislocation core. The teff,,(r) is the dislo-

cation core energy, which is a constant arbitrarily determined [mn+ X+(q— 5)/2
within the approximation of elastic continuum. We will write ————=—=——, (A7)
the constant term of energy &U3° by grouping those in |LmntX+(a—p)/2]
Eq. (A3). i.e., whereK = ub?/27r. Taking the coordinate parallel to the slip
b2 direction, X becomes x=|x|. With the value of K
Eduad_ In(r_ FAE . elT0). (A4) =112 eV/A, the calculated value df,,(x) is shown in
c Fig. 7.
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