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Linear exciton-polariton propagation in semiconductors is analyzed using a microscopic theory. Numerical
results are compared with various approximation schemes based on additional boundary conditions, and with
phase-amplitude linear spectroscopy experiments in high-quality GaAs. A simultaneous description of the
measured amplitude and phase of the transmitted electric field is only possible with the full model.
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[. INTRODUCTION et al,'? using other arguments, suggested another ABC: the
polarization flux should vanish at the surfaces. Finally, yet
Since the introduction of the polariton conckpfor the  another method was presented recehtly.
interplay of a propagating light field with the polarization it  In contrast to using approximations for the polarization
induces in a semiconductor, this topic has received a greapace dependence from the outset, microscopic treatments
deal of experimental and theoretical interest. Even in the casgre free from the conceptual prolems of these ABC-like theo-
of the linear optical properties considered in the present pajes. However, the complexity of the polariton problem has
per, the problem of light propagation through samples withsq far Jimited microscopic treatments to specific geometries,
surfaces presents considerable theoretical and experimenigyl has necessitated the use of further simplifications: Direct

(rjrifﬁr?tUI:Le\?viitLThe pcl)la:irzert]tqionnintithf(ie T;Tplgisxﬁhang?isIrgio'calculations of the microscopic polarization coupled to the
emu © cleciromagnetic field, 'eading fo spatia’ dis+ o nagating field, were applied to half-spic¥ and slab

persion. For realistic conditions, the presence of surfacel i Usi . C
raises serious complications because the Coulomb-bourffOMEWies’ using a contact interaction instead of the Cou-

electron-hole state@xcitons that show up as resonances in lomb interac_tion betweer_1 electron-ho_le pairs. A similar di-
the optical response have a non-negligible spatial extensiofCt calculation was carried out for thick quantum wells us-
(typically, from 3 to 30 nm in the most common materjals NG an expansion of t.he polarization in terms of quantum-
Therefore, near the surfaces in regions much larger than th&ell envelope functions? Other approaches used an
crystal primitive cell, the semiconductor response functioréXpansion into a finite number of excitonic wave functions in
deviates strongly from that of an infinitely extended medium slab and half-space geometries to obtain the nonlocal semi-
In fact, these deviations have a profound impact on the obeonductor response functidfi,'®or analyzed the half-space
served optical properties. problem in wave-vector spaé®.

Recently, there has been a renewed debate on how an From an experimental point of view, a large variety of
approximate description of polariton propagation in a sampleéechniques was devoted to the study of polariton effects in
with surfaces can be obtained from the expression for th&aAs as well as other materials; see e.g., Refs. 7, and 21-27.
macroscopic polarization of an infinitely extended mediumBut since the longitudinal-transverse splitting is so small in
only.*~® Because of the microscopic structure of excitonsbulk GaAs, direct and unambiguous experimental evidence
such an approach cannot determine how the macroscopic p¢e.g., experiments on a high-quality sampdé genuine po-
larization falls off at the surfaces and, therefore, various ashariton propagation effects in this material was still unsatis-
sumptions have been proposed to describe the spatial beh&geactory, because features on the order of the longitudinal-
ior of the polarization field near these surfaces. Pekars  transverse splitting could not be spectrally resolved. Even
the first to propose an approximate treatment by imposing athough the “transmission configuration” used here is the
“additional boundary condition’{since then called the ABC most common one in practice, and transmission experiments
in the literaturg: the macroscopic polarization should vanish are trivial in principle, a considerable amount of care in pro-
on all surfaces. Pekar's ABC was subsequently augmenteckssing the samples and conducting the experiments is re-
by other phenomenological restrictions, e.g., exciton-fregquired to obtain reliable spectra.
dead layers at the surfaces and surface poteritibteir in- The purpose of this paper is a critical assessment of ap-
fluence was studied in Refs. 8 and 9, respectively. Severgroximate treatments of the polariton problem. We first com-
attempts were made to justify macroscopic approaches, leagare transmission spectra obtained with approximations to
ing to contradicting results: Zeyher and co-workers con-the full microscopic solution, and point out how the short-
cluded that the excitonic polarization should vanish at thecomings of the approximations are related to the space de-
surfaces according to Pekar's AB&!! whereas Ting pendence of the semiconductor polarization in the sample.
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We then present a detailed comparison between the applic&or rotational invariance around the direction of propagation

tion of our microscopic and of the approximate treatments toV depends only on the modulus of the wave vector in the

recent experimental resuf8 We also show how the appli- X-y plane denoted bk, . The essential nonlocality of the

cation of an approximation can lead to an “explanation” for electron-hole transition amplitud&(k, ;z.,z;) is expressed

experimental spectra in terms of wrong material parameterdy the dependence on electron and haleoordinates, it
The paper is organized as follows. In Sec. Il we formulateobeys the two-particle Schdinger equation

the theory of light propagation in semiconductor bulk mate-

L . . . %2 w2 9

nals in the Ilnear regime, _but wlth the_ presen?e of surface —W(K, ;Ze,2p) = | Egagt AE+iy+ 5 ki+ 5

without referring to approximations using ABC’s. In Sec. lll 4t My Mez 9z

the assumptions for various ABC schemes are discussed. A

- - . . - 2 2

comparison of the full solution with these approximations d Wik -

and with experimental results is given in Secs. IV and V, * thzg (Ky3Ze.2p)

respectively. The treatment of band-structure effects on the h

material polarization and details of the numerical method are 1 o ,

presented in the Appendixes. 22 o dki ki V(k, Kk, "\[ze=z4))

II. LINEAR LIGHT PROPAGATION IN SEMICONDUCTOR XW (kL Ze,2n) —deyE(Z,1) 8(Ze = 2p).
HETEROSTRUCTURES (4)
A. Material polarization In Eq. (4) we account for the different effective masses in the

V\{hgn a light field propaga.tes thro.ugh. :i bqu. semmonduc%(hg Elglr? de_ él;hgni':gzg;’ﬁédljg; t&iesng%éfyfsptfgma-
tor, it induces a macroscopic polarizatiéh which is ex-  tion of a momentum-independent dipole matrix element
pressed in terms of the electron-hole transition amplitde which corresponds to a delta-like space dependence of the
and the dipole matrix element by dipole matrix element in the real-space formulatioifz,
—2,)=dy8(ze—2z,). In this approximation, dipole transi-
.. oL tions involve only electrons and holes at the same space
P(r)=f d3pd* (p)W(re,ry), (1) point. The only phenomenological parameter introduced in
this equation is the damping constgntThe mass anisotropy
SO SO . and the energy shift have their origin in band-structure ef-
wherer=rq+r, andp=r.—ry are the sum and difference fects due to strain and valence-band mixing, which are dis-
of the electron and hole coordinates, respectively, and thgyssed in Appendix A within the framework of the Kohn-

integration runs ovep. In the linear regime, the electron- | yttinger theory. The Coulomb matrix element is
hole transition amplitude obeys a two-particle Sclinger

equatior®?® which in the effective-mass approximation Vik, k| ) e? de(ﬁ eIk —K][1ze= 2|
reads LKL Zem Zh) = LT e o
2egNpg) 0 |k, —K!|
5 52 ’ 5
if——Egapt 5— V2t s—V2+V(|r, wheren,y= \/eq is the background refractive index, is
at PP 2mg "¢ 2m,

the angle betweenk, and k!, and |k —k/|
.. = ki +k/?—2k k|cos¢,. Note that in Eq. (4 a
W(re,rn.t) z-dependent band-gap energy can be introduced which al-
lows the modeling of heterostructures.

—rhl)

d(e)-E(r.D). @ B. Electromagnetic field

Here V is the Coulomb interaction between electrons and The evolution of the electromagnetic field is determined
holes, andathe driving term is due to the external electromaghy Maxwell’s equations which, for circularly polarized trans-
netic fieldE. verse fields propagating in thez direction, E(r,t)

In this paper we consider a slab geometry which weII:E(Z t)5+ and I§(Ft)=B(z t)&+ are
describes most experimental conditions. The electromagnetic ' ’ ’
field is a plane wave propagating in thalirection, and the 5 0 , d
semiconductor sample is bounded by two surfaces perpen-  N°(2) rE(z)=—co— B(z,1)— E_OEP(Z,U, ©)
dicular to thez axis, but extends homogeneously in thy
plane. Under these conditions, it is useful to Fourier trans-

form the in-plane relative coordinatps =r,, —rp,, to intro-
duce the in-plane momentuﬁl according to

J _ J
EB(Z’t)__EE(Z,t) (7)

wheren(z) is the nonresonaribackground refractive index

profile along the propagation direction. Within a homoge-
> _ 2 ik, -p ~ > neous slabn(z)=nyy. The electromagnetic field is coupled

Wk, ize,2p) Jd pL& MW (Te, \Ze,Thy o Zn). (3) through the source term in E¢) to the macroscopic polar-
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ization P(r,t)=P(z,t)o, . The latter can be expressed in valid only for homogeneous systems. Clearly, this scheme
terms of the transition amplitude as cannot account for the distortion of the relative motion at the

boundaries. Furthermore, different choicesday,, i.e., dif-
o . ferent macroscopic boundary conditions for the COM prob-
P(Z’t)=277fo dk k de,W(k, ;z,2,t) ®  Jem, lead to qualitatively different macroscopic approxima-
tions because the spatial behavior of the macroscopic
with the help of Egs(1) and(3). In Eq. (8) we have again polarization near the surfaces critically influences the propa-

used a local dipole matrix element. gating solutions even in thick samples.
For comparison with our full calculation, we now outline
[ll. COMPARISON TO MACROSCOPIC APPROACHES briefly approximate treatments based on H4§) and (11).

. : . . . Taking into account only the interaction with the-g&xciton
In this section we d!scuss various approximate scheme sonance, one uses the two complex polariton wave vectors
that use(_j the propagating SOIU.“O”S fmmogene_oum_ema 01(w) from Eq. (B12), which describe the propagation of
to describe nonlocaispatially inhomogeneoissituations. 57 optical field in the infinite system, as an ansatz for the

For reference, n Appendix B we briefly recall the.d|elgctr|c propagating electromagnetic field inside a finite semiconduc-
theory of polariton propagation inomogeneoumedia with tor sample:

spatial dispersion.

For a finite-size sample with surfaces in the propagation _ _
direction, the system becomes spatially inhomogeneous, and Epa(Z,0)= > E;(w)e'qp(‘”)“r E,j(w)e*'qp(“’)z.
specific boundary conditions for the interband transition am- p=12

plitude apply. In the case of the slab geometry these are (12
oo . . Here, propagating E*) and counter-propagating waves
W(re,rn)=0 forre orry ata surface, 9 (E™) are considered for the slab geometry. Then Maxwell's

: - . . Roundary conditions are applied to connect the polariton
i.e., the transition amplitude vanishes whenever the electro 7 . \
waves inside the slabl2) to free solutions of Maxwell's

or the hole coordinate is on one of the surfag@soutside of equations outside the sample. The simplest possible qeom-
the samplg This boundary condition introduces an entangle- qua . pi€. P P 9
etry involves an incident wave from the left and the reflected

ment between the electron-hole relative motion and the MO - transmitted component. and E.. with wave vectors
tion of their center of masg€COM), which is not present for o/ anda. p_ N '/C v
an infinitely extended medium where the only requirement jstleft™ Nieft® Gright™ Nright®/ C,

:if:]?ttyllf vanishes if the electron-hole distance approaches in- Epe( ,2) = €964 E (o) e~ 190t 13
A direct computation of the transition amplitude from the By @,2) = E ()%, 14

two-particle Schrdinger equation, as discussed in Sec. I,

together with boundary conditiof®), is numerically very The continuity ofE and JE/dz on both boundaries deter-
demanding. Thus for more than four decades many apmines only four of the six unknowrs,(w), E(w), E; (o),
proaches have been proposed based on an approximate sepg{ ). The remaining two conditions are obtained by using
ration of the electron-hole relative and COM motion. Usually macroscopic boundary conditions for the excitonic COM
one introduces expansion wave functions for the excitonigvave functions[Eq. (11)]. This procedure defines an ABC
relative and COM wave functions, denoted pyand®,,  for the macroscopic polarization. For instance, the choice

respectively, as outlined in Appendix B for a homogeneousp_ =0 at the boundary leads to the ABC originally intro-
medium.However, in the inhomogeneous case, one canndjuced by Pek&r(also see Ref. 10
deduce boundary conditions for the COM and relative wave

functions fromEg. (9). An approximate boundary condition P(z,)|; at boundarj= 0 (15
is imposed by specifying the COM wave functions for the . . .
COMp di yt P tg] d tace: whereas the choic&, =1 results in the Ting-Frankel-
coordinater at the surface: Birman (TFB) ABC12
hZ
c = — — 2 < = " (9
HeonPq(r) 2M Vi®a(r)=hwgPq(r), (10 a—P(z,w) =0, (16)
z z at boundary
<Dq(F)|;atsu,facg Dyt (1) as can be seen with EB7). In both cases the macroscopic
The quantum numbey attached to the COM wave function polarization is given by
can stand for the continuous COM momentgmin semi- .
infinite slab geometries, or for the discrete quantum number P(z,w)= 2 )((q,w)|q:qp(w)[E;(w)e'qp(“’)Z
n, which labels quantized COM states in bounded geom- p=12
etries. A constan® s must now be specified for each sur- + E;(w)efiqp(w)zl (17)

face of the geometry under consideration. The electron-hole
relative motion, on the other hand, is approximated by eigenwhich can be used to determine the remaining two coeffi-
functions¢; of the Wannier equatiofB2), which is strictly  cients.
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In a recent papeta macroscopic treatment of the polar- 1.0 T - T
iton problem that is different from the Pekar and TFB analy- @ '“=1 full
sis was suggested. The macroscopic dielectric function of an =2 caleutation
infinitely extended medium is combined with an analysis of
surface effects to describe light propagation with spatial dis-
persion in finite samples. The underlying assumption is that
the deviations from the bulk properties are important only in
a thin layer near the surfaces. Then the influence of surfaces
is described simply by source layers with strengthin the
wave equation for the infinitely extended medium, written in
momentum space as

Henneberger
approach

w2 2
—¢(q,w)—q
Co

E(q,w>=2i s(q0). (18

Ting-Frankel-Birman |
ABC

The solutions of Eq(18) for sources located at the position

of the sample boundaries are taken as the electromagnetic
field inside of the finite sample. By matching the material
solution to the outside solution, the source terms can be de-
termined. The validity of this matching procedure has to be
checked carefully, because it connects solutions for infinitely Fjg. 1. calculated transmissioff for a sample lengthL
extended media at the surface though these solutions atejpa, using the full calculation@), the Henneberger approach
valid only away from the surface. Therefore, matching the(p), and the ABC of Ting, Frankel, and Birmdg). The detuning is
two solutions at a boundary is a good approximation only ifrelative to the bulk semiconductor band-gap enefgyin units of

the difference between the outside solutiby and material the three-dimensional exciton Rydberg enekgy. Solid lines cor-
solution E ., is small. Following the original analysfshoth  respond tar,=5 A, and dotted lines to.,=10 A.

fields are expanded up to second order in the distance from

the surface. For a wave propagatingzidirection through a whereas for the experiment-theory comparison in Sec. V a

L
-1.0 -0.5
Detuning (hw- Eg)/Ep

boundary az=0, one obtains more complicated band structure will be considered. We ap-
ply standard GaAs parameters: electron and hole masses
9? 9? z° . m.=0.067n, and m,=0.457m,, exciton Bohr radiusag
Eo(2) —Ema(2)= ?Eo _EEma E’LO(Z ) =125 A, exciton binding energg=4.2 meV, and back-
z=0 z=0 ground refractive index,g=3.71. The microscopic dipole
2 strength is taken to be,,=0.5 nm, corresponding to the LT

~[(q$—qé>EI+(q%—qé>E;]%, (19 spliting Ay r=|de,|?/(7ne0a5) =0.06 meV. The only
phenomenological parameter in our theory is the polarization
where the continuity of the fields and their first derivativesdephasing rates defined in Eq.4). In the following calcu-
have been used. Herg is the wave number of the external lations we use decay tim&=1/y=15.7 ps which corre-
field, andq, , are the complex polariton solutions for the sponds to a broadening=0.04 meV. To concentrate on the
1s-exciton resonance; cf. EqB12). At resonances of the effects due to the excitonic polarization we use the same
optical susceptibility the modulus of; , becomes large and background refractive index inside and outside of the
it is not clear what thickness of the transition layer should besample. Thus there is no semiconductor air interface that

used in Eq(19). Hence it is difficult to show that the last line could lead to Fabry-Ret resonances in the optical transmis-
in Eq. (19) is indeed small enough. sion. This model describes the experimental situation real-

ized by a semiconductor heterostructure with an applied an-
IV. NUMERICAL RESULTS: FULL SOLUTION tireflection c_;oating. In §uch a configuratiqn the optical fielq
VS MACROSCOPIC APPROXIMATIONS resonantly interacts with the active semiconductor material
but not with the buffer layers, which have a similar refractive
In this section we compare the approximate treatmentgdex but a larger band gap.
mentioned in Sec. Il with the full solution of the propaga- Approximate solutions based on ABC models and Hen-
tion problem for samples with surfaces. We focus onneberger’s approach are calculated only for the contribution
samples of intermediate thickness where the geometricalf the 1s-exciton resonance as usually done in the literature,
confinement of the semiconductor polarization as well as thalthough the extension to other bound exciton states is pos-
genuine polariton propagation effects over distances of thsible. The full solution always includes both exciton bound
order of a wavelength are present. The combination of thesand continuum states.
mechanisms leads to several interesting features in the opti- The three panels of Fig. 1 show transmission spectra for a
cal transmission spectra. sample thicknesk = 10ag calculated using the microscopic
To simplify the comparison of various theoretical resultstheory [Fig. 1(a)], using the Henneberger appro&difig.
in this section we use a two-band semiconductor model(b)], and the Ting-Frankel-BirmafrFB) ABC [Fig. 1(c)].
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In the spectrum of Fig. (&) the 1s-excitonic resonance ex- 1.0

hibits a clear splitting, labeled=1 and 2, as well as addi- @

tional peaks at higher energies=%3). To give a rough in-

terpretation of this multiple-peak structure, we consider the 0.5 7

quantization of the exciton COM motidi'® Neglecting the
coupling between the relative and COM exciton motion, the

0.0 pumszs -

eigenvalue equatiofl0) together with boundary condition (b)
(1) and®,~=0 for a finite sample length in the propa- -
gation direction leads to discrete energies for the COM mo- & o5k |
tion: -
12 ()2 0.0
— 2 .

En—m(t) n-. (20 _(C)

HereM = m.+ my, is the excitonic mass, and the eigenvalues 0.5 - .

are labeled by the discrete indexThough the approximate
condition(20) cannot consistently explain all the features we
find in Fig. 1(a), a fit for the COM resonances with quantum 0.0
numbersn=4, 5, and 6 using Eq(20) gives a lengthL
=Qap. This effective length is smaller than the actual
sample thickness as a result of the “dead layer” effebuie FIG. 2. Calculated transmissiohusing Pekar's ABC with ef-
to the finite extension of the exciton relative motion, thefective sample lengths 39 (a), 9a (b), and &g (c) for the same
macroscopic polarization remains small in regions near th@arameters as in Fig. 1. Solid lines correspond {g=5 A, and
surface and in the “dead layer” picture the exciton COM dotted lines ta,=10 A.
motion is confined in a reduced slab length. Note that the
odd numbered peaks have a much weaker oscillator strengtbf the main resonance as well as possible. This fitting leads
for instancen=>5 atfi o= —0.61Eg is almost indiscernible. to an effective lengthL=7ag, and gives a satisfactory
(Whether even or odd peaks dominate in the optical spectragreement for the main resonance lineshape, but then the
generally depends on the sample length and the exciton mdvgh-energy part of the spectrum is not correctly described
mentum; see Ref. 2BThe structure of the double peak with because the COM replicas are now shifted. In summary,
the largest oscillator strength, on the other hand, is domiwhen the effective sample length is regarded as a fitting pa-
nated by polariton effects: Using EQO) to fit the double rameter, Pekar's ABC allows qualitatively better agreement
peak leads td = 25ag which clearly illustrates that the con- with the full calculation than the Henneberger or TFB ap-
cept of excitons with masi¥l confined to an effective length proach. It is impossible, however, to obtain a good overall
is not applicable near the main resonance. agreement by fixing the effective sample length, since this
Henneberger’'s approad¢kig. 1(b)], does not account for has several opposing consequences: optimizing the line
the additional maxima above the main exciton resonanceshape of the main peak, which is dominated by interferences
Instead of a multiple peak structure a single asymmetric linef the propagating polariton, leads to less satisfactory results
is predicted. The ABC of Tingt al.[Fig. 1(c)], leads to only  for the COM quantization energies of the replicas. Note that
one very small replica and no satisfactory agreement with thé is also impossible to improve the agreement by artificially
full calculation concerning the line shape of the main reso-increasing the dipole coupling, as shown by the dotted lines
nance. Furthermore, it is not possible to fit the results ofn Fig. 2.

1 1
-1.0 -0.5
Detuning (hw- Eg)/Ep

Henneberger or Tingt al. to the full calculation by artifi- The full calculation of the propagation problem combined
cially increasing the dipole coupling. This is shown by thewith the solution of two-particle Schdinger equation for
dashed lines in Fig. 1, where,=1 nm has been used. the electron-hole motion in a finite sample geometry can also

Figure 2 shows the corresponding transmission spectrbe used to study the transition from bulk material to quantum
calculated with Pekar's ABC. The sample length is varied towells where eventually a series of subbands emerges. Figure
account for an exciton-free dead layer. Transmission spe@(a) shows results of the full calculation for the same param-
trum (a) is obtained without assuming a dead layer, i.e., useters as above and decreasing sample lengttis=dfQag,
ing Pekar's ABC in their original form witlh =10ag. This  3ag, and Zag. We obtain an increasing energetic shift of
gives a qualitatively different picture compared to the full the whole spectrum due to the confinement of the electron
calculation because neither the double-peak structure of thend hole motion. Furthermore the spacing of the exciton rep-
main resonance nor the energetic position of the higher redica at higher energies increases. Hor 3ag and 2ag the
licas are reproduced. For Fig(l2 the effective lengthL light-matter coupling results in a broadening of the exciton
=09ag extracted from the full calculation by applying Eq. line. Figure 3b) shows the corresponding spectra obtained
(20) has been used. Then the high-energy replicas are at theith Pekar’'s ABC. In this approximation the energy shifts
correct energetic position, but the agreement for the lineare caused only by the COM quantization of ideal three-
shape of the main peak remains unsatisfactory. Figlmei2 dimensional excitons formed from electron and hole bands
a fit aimed at reproducing the typical double-peak structurainaffected by a geometrical confinement. Thus for smaller
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FIG. 3. Calculated transmissioh for various sample lengths
using the full calculatior(a) and Pekar's ABQb): L=10ag (thin FIG. 4. Spatial distribution of the macroscopic polarization for
line), L=3ag (solid line), andL =2ap (dash-dotted line The di-  stationary, monochromatic excitation. l@ the excitation fre-
pole coupling isr,,=5 A. guency is tuned to the absorption paak 1, in (b) ton=2, and in

(c) to n=4, where the peaks are marked in Figa)l
samples Pekar's ABC gives approximately right trends for
the line shapes, but fail to reproduce the energy shifts due tid one only considers the COM motion, i.e., EG.0), with
carrier confinement. the approximative boundary conditidieq. (11)] and ® g,

The series of spectra shown in Fig. 3 also reveals the=0, the eigenfunction® ,(z) are sinusoidal standing waves
nature of the splitting of the exciton resonance for with n maxima. Since the approximative boundary condition
=10ag, and especially that of the=2 peak of Fig. 1a). neglects effects due to electron-hole relative motion near the
The position of this peak cannot be explained as a replicaurface, the deviations of the full solutiairig. 4), from
due to COM quantization if one treats the COM motion in- standing waves show the influence of the surface on the mac-
dependently of the exciton relative motion. Moreover, theroscopic polarization. Furthermore, we can now investigate
n=2 peak shifts away from the exciton resonance to highethe validity of the concept of a uniform polarization-free re-
energies when the length is decreased t03ag, iw—Eg gion near the surface: We take as the extension of this
=0.2%Fg. (The corresponding peak fdr=2ag, found at polarization-free dead layer the distance over whkfe)| is
hw—Eg=1.9g, is not shown in Fig. 3.Hence, forL strongly reduced close to the surface. Clearly, this dead-layer
=10ag, the n=2 resonance is due to ttmmbined influ- thickness depends on the excitation frequency. Forrthe
enceof the COM quantization and the energy dressing of the=1 and 2 peaks in Fig.(&), these regions at both surfaces
coupled exciton-photon states, which is described for there approximately~1.5ag thick, which determines an ef-
spatially homogeneous system in Appendix B in terms offective sample length .s=L — 2l =7ag, in agreement with
polariton states. Clearly, fdr=3ag andL=2ag the COM the results of the fitting procedure using approximati20)
quantization energies are already so large thanth@ rep-  to reproduce the transmission spectrum in Fig).2In Fig.
lica does not interfere with the remaining radiatively broad-4(c), which corresponds to the=4 peak, the “dead layer”
ened exciton resonance. is reduced td =0.5ag also in good agreement with length

So far we have shown that calculated transmission spectiia,s=L — 2l =9ag used to fit the corresponding peak posi-
are strongly influenced by approximations affecting $pa-  tion in Fig. 2b).
tial distribution of the macroscopic polarizatiomhich deter- Some approaches, in which a dead-layer thickness is com-
mines the source in Maxwell's equations. On the other handputed, predict that the quantity(iag), wherei denotes the
the full solution of the propagation problem, based on Eqprincipal exciton quantum number, nstantfor a given
(4), can be used to directly analyze this space dependence pfaterial. (For an overview, see Ref.)3Using these ap-
the macroscopic polarization, given by E&). For station-  proaches, one finds numerical values for the constant dead-
ary monochromatic driving fields, the macroscopic polarizadayer depths in the range 0.52%¢comparable to our results,
tion exhibits a very distinct spatial distribution depending onas well as in the range of 2-23However, using the full
the excitation frequency. Figure 4 shows the distribution off P(z)| distribution excited in the sample by stationary exci-
|P(2)| inside a sample of lengtlh=10ag for stationary tation is a direct proof that even COM replicas belonging to
monochromatic excitation at tH@) n=1, (b) n=2, and(c) the same &resonance exhibit different dead layéts.
n=4 peaks of Fig. (8). This spatial distribution further sup- For completeness, in Fig. 5 we show the spatial distribu-
ports the aforementioned relation between the transmissiotion of the macroscopic polarization for the same configura-
peaks and the quantization of the COM motion. For exampletion as in Fig. 4, but for excitation energies away from the
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FIG. 5. Spatial distribution of the macroscopic polarization for
stationary optical excitation belowhiw—Eg=—2.5Eg; dashed 3 1F \
line) and near fw—Eg=—1.2%y; dash-dotted linethe main \ \ J \
absorption peak, as well as above the4 peak fw—Eg= \
—0.6Eg; solid line), corresponding to Fig.(#). 0 h
1.509 1.512 1.515 1.518
resonances. In all cases we find a rapid growth of the polar- Energy (V)

ization directly from the surface into the sample without g5 7 Absorption spectra befote) and after(b) AR coating,

dead layer. Finally, Fig. 6 gives th@(z)| in the L=3ag together with the excitation pulse spectridotted ling. The fea-

sample, whose linear spectrum is shown as solid line in Figyes that emerge in the spectrum after AR coating are marked by
3. Only small regions of reduced polarization at the surfacegrows.

are found for the two resonancesfiab — Eg= —0.38&3 and
+0.22E5, whereas below the resonances(.9Eg) these

: literaturé: the light-hole—heavy-holéLH-HH) exciton de-
regions are completely absent. terature’™ the light-hole—heavy-holé ) exciton de

generacy is lifted due to the strain induced by the difference
in thermal expansion between the sapphire substrate and the
V. EXPERIMENTAL RESULTS sample. Additionally, the transition linewidths are very small
(below 0.25 meY, showing the high quality of the sample.
Even with this careful sample preparation we found that the
The measurements were performed on a very high qualitgapphire slab was responsible for the small FabmpPe
0.25um-thick GaAs layer, clad between aAlGa, /As cap  fringes, which appear close to the base-line of the spectrum
layer and a A ,Ga, As stop-etch layer. In order to allow in Fig. 7(a). Therefore, in a second preparation step, the sap-
transmission experiments, the GaAs substrate has begalire substrate was also AR coated. In order to obtain a
etched and the sample antireflectiohR) coated on both satisfactory suppression of the residual FabrgePé&inges
sides before being mounted on a sapphire window. Then excellent matching between the refractive indices of the
sample was immersed in superfluid He and the transmissioAR layer and sapphire is necessary, this condition is only
was obtained by exciting the system with a 100-fs Ti:sap4met by the hydrophobic NgFcoating material. Thus, a new
phire laser. The absorption spectrum,Tat2 K and very coating had to be reprocessed for each new set of measure-
low carrier densityn,,<10'* cm™2 is shown in Fig. fa), = ments. For comparison, Fig(l shows the absorption spec-
along with the laser profilédotted ling. This absorption trum obtained using this second coating in the same excita-
spectrum is similar to that reported recently in thetion conditions as in Fig.(&). Now the small but important
features marked by arrows are resolved unambiguously.

A. Sample

1.0 T T T T

2

B. Experimental setup

The amplitude-phase transmission measurements are per-
formed by Fourier-transform spectral interferometry in a
Mach-Zehnder interferomet®r(Fig. 8. The Ti:sapphire la-
ser used in the experiments delivers transform limited 100-fs
pulses. The phase of these pulses was carefully characterized
by second-harmonic generation FR&Gand the laser was
adjusted until that phase was essentially flat across the whole
spectrum, varying by less than 480 27 between the 2%

FIG. 6. Spatial distribution of the macroscopic polarization for aPoINts of the power spectrum. The output of the laser is split
sample length. = 3ag . The stationary optical driving field is tuned iNto two replicas using a first beam splitter. One beam is sent
below the main resonancé ¢ —Eg=— 0.9 ; dotted ling, andto  through the sample, and the other is used as a reference
the first (iw—Eg=—0.3&g; solid line), and the secondffw  beam. The beam transmitted through the sample and the ref-
—Eg=0.2%;; dash-dotted linepeak in the transmission spec- erence beam are colinearly recombined using a second beam
trum is shown by the solid line in Fig.(8. splitter and sent to a 75-cm spectromét200 gr/mm and a

Macroscopic Polarization IP(z)!

Distance (ag)
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FIG. 8. Experimental setup.

CCD camera. The overall system resolution is 0.06 meV.
The intensity of the measured interferogram spectrum is

151 1.512 1514

l(w)=lo(@) +Ix(w)+2Vlo(w)lx(w)cod ¢o(w) — dx(w) Energy (V)

+wAT], (2D FIG. 10. Results for a high-quality 0.26m GaAs sample(a)
where | o(®), Ix(®), ¢o(w), and ¢y(w) are the intensity Experimental absorption anth) experimental transmission spec-
and phase of the reference beam and the probe beam, respBtM- (¢) Theoretical transmission spectrum.

tively. The time delay between the probe beam and the ref- ) _ o
erence beamA 7, is adjusted using a delay line. The inter- @nd the transmitted power spectrlifig. 9(a), solid line],

ferometric measurements are performed differentially byare then subtracted from the interferogram. The re3{i)

measuring the amplitude and the phase of the pulses goiri§ Plotted in panelc) of Fig. 9. The amplitude and phase
through the optical system, first with, then without, the relative to the reference pulsef the transmitted pulse are

sample. This procedure allows one to eliminate any phasien extracted fron$(w) using Fourier analysi¥.
contribution due to the small difference between the optical
dispersions of the two arms in the experimental setup. A C. Experimental results

typical interferogram (w) is shown in Fig. %). The power . .

) . Figures 10a) and 1@b) and Fig. 11a) and 11b) show the
spectrum of the reference beam puilseg. 9(a), dotted ling retrieved absorption and phase spectra, respectively. In order
to allow an easy comparison with previous works, in Fig.

N a 10(a) we display the conventional absorption(w)L
= [ A @ . . )=
§ 3 \ =—logT(w) calculated from the intensity transmission
& f T(w)=|t(w)|?, and given in terms of the incident and trans-
?g r mitted electromagnetic fields by
£ F . . _ ,

149 150 LS1 152 1S3 ' ' '
g f 3
s L 2
v [ &
8 -
= [ " N X y 1k -
1.49 1.50 1.51 1.52 1.53 . | . |
T 1 ' 1

C b

N © N 7]
n r 2 OF -

- <

- =

C 1 2 1 " 1 " 1 M 1 ~

1.49 1.50 1.51 1.52 1.53 qF -
Energy (eV) . I . 1
o _ 1.51 1.512 1.514
FIG. 9. (a) Power spectra of the incide(dotted ling and trans- Energy (cV)

mitted (solid line) field. (b) Intensity pattern of the interferogram.
(c) Difference between the transmitted power spectrum and inter- FIG. 11. Experimentala) and theoreticalb) phase spectra cor-
ferogram. responding to Fig. 10.
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Etrand @)
Eind(w)
It is important to note that in the context of the analysis

presented in this paper, the use of a simple exponential ab
sorption law for the transmitted and incident intensities,

t(w)= (22

ltrand @) = lind(w)€™ a((u)L, (23
is no longer valid, and the quantity(w)L not physically
meaningful. Our analysis is based on the transmisgiaw),
shown in Fig. 1(b), where small features are more pro-
nounced than in the(w)L spectrum. ! ! . . . .
The high resolution obtained using our experimental pro- 1510 1511 1512 1513 L5140 1515
cedure shows that the excitonic lines are not Lorentzian: the Energy (¢V)
HH transition at 1.5132 eV is asymmetric with a shoulder on ) )
the high-energy side, and the LH transition at 1.5105 ev. FIG. 12. Comparison of the measured phase spectsotid
reveals a clear fine structure. It is split in two components!"€) With a computation via the Kramers-Kronig relation from
and followed by several reproducible secondary peaks O[F“easured absorption spectrydotted ling.
much smaller magnitude at higher energy. All the features
seen in the transmission spectrum have a counterpart in t

phase spectrurmg(w) [Fig. 11(a)].

Phase (rad)

1.516

easureckL =2.5 due to the finite experimental resolution.
is is shown in Fig. 1@&), where we atrtificially increased
the absorption data around the HH transiti@otted ling,

D. Discussion of the phase

The information contained in the phagéw) of the elec-

which then allows us to obtain a good agreement between
the experimental(solid line) and computed(dotted ling
phase in Fig. 1&).

tric field, which also characterizes the optical response of the In summary, amplitude and phase measurements are
system is usually neglected. In a linear absorption expericomplementary, and must be recorded at the same time in
ment and if there are no zeros in the real part of the transerder to obtain a better overall resolution and, more funda-

missiont(w), the phase is related to the absorption via thementally, to perform a complete comparison with theoretical
usual Kramers-KronigKK) relations. However, the KK re- models. As we will see below, requiring that the theory de-
lations have to be modified if there are zeros in the real pargcribes simultaneously the amplitude and phase of the trans-
of t(w). In this casegp(w) is given by mitted electric field imposes very severe constraints.

1 (= log|t(w") w— w; E. Comparison with the theor
¢><w>=—7>f LRI ara( ) o ompe o _
T J-= w—o' i — ;] For a detailed comparison of the discussed experiments,
(24)  we include in the theory transitions from both LH and HH-

where the first term on the right-hand side is the usual KK
integral (P denotes the principal valueThe second term,
known as Blaschke factor8,contains the complex zeros of
[t(w)| at ;. Such contributions beyond the KK relation are
expected to occur for stronger absorption or thicker samples
than in the case discussed presently.

Generally, a KK integral computation of the phase spec-
trum using the absorption data suffers from conceptual as
well as practical difficulties. First, it is not possible, in the
most general case, to infer the zeros of the real pat{®j
from the knowledge oft(w)| alone. Second, the transmis-
sion spectrum is always experimentally measured with a fi-
nite resolution and within a finite window of frequencies,
which results in a loss of resolution and divergence at the
boundaries in the computed phase spectrum. This last point
is illustrated in Fig. 12 which shows both the measured L . . . L . .

. . . . 1.5125 1.5130 1.5135 1.5140
¢(w) (solid line) and the phase computed via KK relations
from the absorption datédotted ling. For clarity, the latter
was slightly shifted toward the bottom of the figure. It ap-  FIG. 13. (a) MeasuredaL spectrum(solid line) and artificially
pears that the fine polariton features are washed out and thkreasedeL spectrum(dashed ling (b) Phase spectra calculated
the magnitude of the HH phase shift is too small. Thus thasia Kramers-Kronig relations from the corresponding spectr@jin
true absorption at the HH must be slightly larger than theand experimental phagsolid line).

(a)

0.8

14
=

Phase (rad)

Energy (eV)
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bands to the electron bands. As discussed briefly in Appen- 1.0 - .
dix A, the symmetry of the one-electron states at the zone
center leads to a different behavior of electron and hole
bands. The electrons can be described by a single isotropic
effective mass, but one has to include the mass anisotropy
for the hole bands, i.e., the hole masses for the in-plane and 0.0
z directions in Eq(4) are different. The hole bands are con-

ventionally labeled “light” and “heavy” according to their | TFB

z masses, but the hole subband curvature is reversed in the L 051 7
x-y plane giving a HH transverse mass smaller than that of
the LH. In addition, the thin GaAs sample on a sapphire
substrate experiences a strain due to the lattice mismatch of
the sample and substrate material. This strain field leads af- i Pekar's ABC |
fects the whole band structure, but its most significant result 05 | _
is a energy difference between HH and LH that is much

larger than the their small splitting to due exchange interac-

tion effects. We use the standard values for GHAS, O 0 s 0.0

M p,=0.08Mg, My, =0.23ng, My,=0.53Mg, and My, ) Detuhing (- EG')/EB '

=0.11m,, obtained from the Luttinger parameteys=6.9

and y,3=2.5. This leads to very similar exciton binding en- FIG. 14. Tr_ansmission sp_ectra obtained from the Henneberger
ergies for heavy- and light-hole bands, so that the strain2PProach@, Ting, Frankel, Birman's ABC(b) and Pekar's ABC
induced energy difference between the LH and HH excitonéc) using the same parameters as for the full calculation.

can be taken to be the splitting energgP=2.4 meV, ob- that of Henneberger, that have an indirect dependence on the
served in the experimental spectra. In addition, we use thphysical quantities entering the calculation.

dipole coupling strengtin.,=0.5 nm corresponding t4, 1 We would like to point out some very serious shortcom-
=0.17 meV and a phenomenological dephasing tifne iNgs of the macroscopic models for a comparison with ex-

=1/y=10 ps which corresponds to a broadening of 0.ogPerimental results. Indeed, very often one is confronted with
meV situations where the material or growth parameters are not

Figure 1Qc) shows the result of the full calculation in exactly known. This is es'pemally true whgn new m:?\terlals or
: . : : . eterostructures are fabricated for specific applications. Then
direct comparison with the above discussed experiment

o o ) ole masses, the sign of the strain energy, and excitonic reso-
spectrum. The characten;tp splitting of the LH EXCItON eSOy 06 oscillator strengths have to be deduced from a fit
nance and the. asymmetric line shape of the HH exciton IIn‘f)ased on a model calculation. To illustrate this point in Fig.
are well described. These two features are explained unam-
biguously by the interplay of polaritonic effects and quanti-
zation of the COM motion, as discussed in Sec. IV. Also, the 1.0 - T - T
calculated spectrum reproduces very well the high-energy
secondary peaks seen experimentally, and explains their ori-
gin as COM replicas. In Fig. 11 the measured and calculated
phase of the transmitted field are compared. We obtain an
excellent overall agreement between the experimental and 0.
theoretical results for transmission and phase spectra.

To complete the discussion of theoretical results, in Fig.
14 we show transmission spectra obtained with various mac-
roscopic approaches using the same parameters as for the full
calculation. The & contribution of the numerically calcu-
lated susceptibility, including band-structure effects, is used.
The Henneberger approach neither reproduces the character-
istic features of HH and LH excitonic line shapes nor the
COM replicas. The Ting-Frankel-Birman ABC exhibits the
characteristic double-peak structure of the LH exciton line,
but the HH line shape remains symmetrical and there are no
pronounced COM replicas as in the experimental spectrum.
Pekar’s original ABC qualitatively reproduces most of the
experimental signatures. Using a dead-layer thickness as fit- FiG. 15. (a) Transmission spectrum obtained with the Hen-
ting parameter adds the same ambiguity as inlthel0ag  neberger approach using artificial mass parameters and an enlarged
case discussed in Sec. IV. In the context of these approxihenomenological dephasing tinfe= 150 ps.(b) Corresponding
mate solutions, adjusting the material parameters can lead hase spectrunic) Minimal phase spectrum calculated from trans-
unphysical results, especially if one chooses models, such asission spectrum via Kramers-Kronig relations.

Henneberger 1
approach
05

0.0 t t t }

@ |

1-T

Phase (rad)

0
6
4
2_
o
5
0
5

0
0.
0

Minimal Phase (rad)

qol
-5 -1.0 0.5 0.0

Detuning (fiw- Eg)/Eg
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15(a) we show the calculated transmission spectrum obtainegolariton effects contribute equally. Among the macroscopic
from Henneberger's approach where, in contrast to Fig. 14models Pekar’s ABC always yields better agreement with the
the mass and dipole coupling of tteavyand light holes  full theory and with experiment than the Ting-Frankel-
have been exchanged, and the dephasing finfeas been Birman or Henneberger models. If Pekar's ABC is aug-
increased by a factor of 10 o= 1/y=150 ps. One sees that mented by a dead layer, the agreement with the full result
with this unphysical choice of parameters Henneberger'san be improved. However, the thickness of that layer is an
model can roughly reproduce both the double-peak structuradditional parameter that must be adjusted for each fre-
of the lower resonance and the asymmetry of the higher resa@juency if one wishes to account for the spectral features seen
nance. Note that the main difference between experimentdbr intermediate length samples. As the sample thickness in-
and calculated spectra appears as a narrow peak at the enereases, however, the dead layer effects become less pro-
getically lowest resonance. Therefore, due to the finite exnounced.

perimental resolution a qualitative agreement between ex-

periment and calculation can be obtained, and lead to ACKNOWLEDGMENTS

interpretation in terms of blatantly wrong parameters. It is .

important to note, however, that although a reasonable fit can We thank K. Henneberger, M. Kira, A. Knorr, and R.
be obtained for the transmission spectrum, the situation i§¢immermann for helpful discussions. The Marburg Group
completely different for the phase as seen in Fig(bL5 ackpowledges support from the Deutsqhe Forschungsge-
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taneous measurements of the phase and transmission. To fur-

ther develop this point we have calculated the KK transform APPENDIX A: MULTIBAND POLARIZATION

of logt(w)| [see Eq.(24)], which yields the “minimal : : . : .
I T In this appendix we derive the evolution equation of the
184
phase™ but not the additional contributions of the Blaschke interband transition amplitudes when optical transitions from

T?ctors. 'II'Ihe resugtllng pf:as:[ﬁ spectrum |stsrlmwn Itn FIeC)15 Both heavy- and light-hole bands are excited. A Kohn-
S overall resemblance o the experimental Spectrum 1S muc uttinger Hamiltonian is used to describe hole-band-mixing

better than that of the full phase. effects in the presence of an elastic strain.

VI. CONCLUSIONS 1. Momentum-space formulation

We have presented a detailed investigation of the trans- "€ €qguations of motion for the nonlocal electron-hole
mission and reflection of light through layered semiconducp()lar_'zat'_ons are derived from the nonrelativistic many-body
tor materials including amplitude-phase measurements on uffamiltonian
tra high quality sample and full microscopic theory. Our N . . .
method for calculating the transmission and reflection is in Htot=Hiin Hcourt Hint - (A1)
excellent agreement with the experimental results. Therhe operators are expressed in terms of electron and hole

t_heo.ry accounts for_spatial dispersion, center-of-mass quaninor wave functions at the zone centge=(0). Measuring
tization, carrier confinement and band-structure effects and Energies from the bottom of the hole band. for the kinetic

i_s based on a _direct so_lution of the coupled _e_volution €qUasart one has
tions of the microscopic electron-hole transition amplitude
and of the electromagnetic fields. It explains very well the R . . R
interplay of polariton effects and COM quantization for in- Hiin= 2 [Ec+ eo(k)Icl(K)cs(K) + 2 Hijocl(K)cj (k).
termediate sample lengtiseveral times the Bohr radius ks koji’ (A2)
and in particular for increasing carrier confinement that oc-
curs when the sample length becomes of the order or smalléteres refers to thez component of the electron spin, and is
than the Bohr radius. used to label the electron bands assumed to be degenerate
To clarify the situation that has resulted from numerouswith an effective massn;, :
phenomenological macroscopic models that have been pro-
posed over more than three decades, we have compared cal-
culations of the most popular ones with the full theory. Con-
sidering samples of intermediate thickness, we find that the
macroscopic models cannot reproduce important features dihe hole bands are described by &4 Kohn-Luttinger
the transmission spectra because both COM quantization aridamiltonian’{ discussed below. The hole states are labeled

h2
ee(K, k)= —— (K +K2). (A3)
2m

e
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by thez component of the total angular momentyfor all K
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dependent Hartree-Fock decoupling schépmé;*®

values, though they are eigenstates with well-defined angular

momentum projection numbers only at the zone cekter
=0. The Coulomb Hamiltonian in this basis reads

Aeo=os 2 V(@) X cl(k+a)cl (k' —a)
2V kk’,q#0 ss’
Xy (K)es(K)+ 2 ] l(k+g)c) (k' —q)

i’

xc,-,(lz')cj(i)—zgj cl(k+a)c/(k'—q)

><cj<|2'>cs<|2>}, (A4)
with the 3D normalization volumé& and the Coulomb po-
tential in momentum space
e 1
Amegngy oF

Vv(a) (A5)

The interaction Hamiltonian in dipole approximation is

Him= 2 >, dsj- E(k—K",H)cl(k)c/(—k")+H.c.,
Kk’ S]
(AB)

with the dipole matrix eIementésj for the transition from
hole bandj to electron band.

The nonlocal electron-hole transition amplitude is ex-

pressed in terms of electron and hole creation operators
Ws(kn Ke) =(c;(— Kn)Cs(ke)), (A7)
mined by the equations of motion fa5 andcs in a time-

P+Q+AE R

R* P-Q-AE
=l 0

0 s

Its matrix elements include the band-gap energy shift

due to elastic strain that can be determined from the sample’

material parameter$,and

2

P(ky k)= 71(kl +Kk2), (A13)

2

Q(k, ky)= yz(kL —2k2), (A14)

ih— ‘Pls(kh o) =2 Hjj (Kn)Wjrg(Kn Ke)
JV
+6(|2e)\yjs(|zhv 2 V(q)
Vizo
X W js(Kn—0,Ke+0) — djs E(Kn— k),
(A8)

where we have consistently suppressed the time dependence.
Since the propagation effects studied here are due to sur-

faces in the direction of propagation, i.e., in theirection, it

is assumed in EqAB8) that the exciting laser field is spatially

homogenous in transverse direction perpendicular Tthen

E(Eh— |Ze) = E(khz— ke, , and the homogeneous excitation in

the plane perpendicular to tlzeaxis leads to conservation of

the COM momentum

K, =kp, +ke =0 (A9)
in that plane. Consequently,
> meIZhL - mhlzei
k. = Py (A10)
can be set
K, =Kn, = —Ke, - (A11)

Also, IZl will be dropped and only the dependence on the

relative momentunk, will be kept in the transition ampli-

tude W (K, ;kp, ko).
and the time evolution of the transition amplitude is deter-

The 4x4 Kohn-Luttinger Hamiltonian in the axial

approximatiori® is given by

-S 0
0 R
P—Q- S (A12)
R* P+Q+AE
. K2
s R(K) = = 5Bk~ k= 2ikiky)?
%2 .
:2_%\/§7sz29 2y (A15)
#2 )
S(K, k,) = 2fye,kz<k ky)= z—%zﬁyakzklef'%.

(A16)
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Note that the diagonal matrix elements only depend on the 27 , .
modulus ofk, andk, =|k, |, whereas the off-diagonal ele- Mk, sk ke) = fo dep ™MW (ky ikn Ke).
ments also deEJend on the ang;:qztan‘l(ky/kx) of the (A19)
in-plane vectoik, . Defining

The in-plane integration variable is changed fram to

h? h? I

enn(k, ky)=P+ Q=2m k, 2+ om k2, k. "=k, —q, and the vector sum is replaced by an integral
HHL HHz i

(A17) according to

52 h? 1 1 o0 2 +oo

en(k, k)=P—Q= k. 2+ kZ, (A18 - —Jkdkfd fd.

Li(ky k) Q 2mi, T 2m, (A18) VQEL qzz H(ZW)S o oKL o . dz

we obtain the energy dispersion in terms of heavy- and light- (A20)

hole masses.
The hole-band coupling described by the dependence Then the expansion of EqA8), using Eq.(A19), be-
is analyzed using the expansion comes

) - -
it = WD (K, Knz Kez) = = dsj E(Knz—Keo) S +[ Ecapt €e(Ku k) TWIT (K, 1Kz Ke)

o ’ 1 e . +o
£ 3k kWD k)~ [ akik [,

j,,m,
X E Vm,m’(kL ,ki’,qz)\llj(;n’)(kl ;khz+ 4z vkez+ qz), (AZ]—)
m!
|
where the Coulomb matrix element is given by The hole bands are now effectively decoupled because the
restriction of the Hamiltonian to itei=m’=0 components
, e? (2 is diagonal in the hole subspace.
Vi (K, K .07) = sonﬁgfo dé, We assume in the following polarized excitati@fr ,t)
=E(z,t)o, . The dipole matrix elements
o e imb gim’ |
X 0 d¢L(EL—Ei)2+q§. dT,+3/2: \/gdi,+1/2: —deoy (A25)
(A22) d) —3p=3d; _1=de0- (A26)

Here the integrand depends on the angular variables througRen, yield that only th=—2—s=| and thej=—%—s

> o o o o , =1 transitions are driven. We have used here the definition
(k, =k )*=kI+k;“—2k kicosg, . (A23)  for the complex polarization vectors

By transforming to¢=¢— ¢’ it can be seen that the R 1 . .
Coulomb potential Eq. (A22)] is proportional tody, v . The o :E(exi iey) (A27)
m—m’ coefficients of H;;, are determined from Egs.
(A13)—(A16). Because of the phase factors only the diagona
terms, Eqs(A17) and(A18) are proportional ta,, .., . The
off-diagonal terms Eqs(A15) and (A16) couplem to m’
=m-2 andm’=m-—1, respectively. Because neither the
driving term nor the Coulomb potential couple differens,
only them=0 components of the transition amplitudes are
§igni£i90ant when the system is driven by a weak electric dHH=\/§dLHEdcv- (A28)
field> Therefore them#0 components can be neglected,
and we consider only them=0 component Therefore, we can combine the “free” contributions to Eq.
(A21) into interband energies for the electron-HH and
Wk, ;Knz ke =P O(k, kns.Key) (A24)  electron-LH transition energies

ljsing the real Cartesian basis vecté;sind éy. Therefore,
only two interband transition amplitudes remain which will
be designated by=HH and LH, respectively. In particular,
we haveV =V _,,; andVy=V_5;, . The correspond-
ing dipole matrix elements are defined by
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;e,v( K, Koy kn) =Eg=AE+€,(K, ,K,)+ eo(K, ,k,), that use a macrpscopic polariza.tion cal_culgted from the tran-
(A29) sition ampl_ltude. thg macroscopic polarization does not obey
a differential equation. For the slab geometry we impose
where v=HH and LH, and the “-" refers to theeHH (2, 2,)=0 for z, or z, on one of the surfaces. As empha-
transition energy. EquatiofA29) contains anisotropic HH  sjzed previously, more complex heterostructures can easily
and LH energies and energy shifi& due to strain, respec- pe handled by also includingza dependent band-gap energy

tively. o in Eq. (A29).

With the definition The macroscopic polarization which acts a source for the

electromagnetic field is computed from the microscopic po-
1 1 1 larization according to Eq(1) using Fourier transformation
= - (A30)
Myl m,, m: (A32)'

for v=_LH and HH, we obtain - T o -

g B(zt)= > dz/d (2 )* 0 (K, ,Ze,Zn1),

2 2 v=HH.LH | J-=
€e.(K, Koz, Kn) =Eg=AE+ K2+ ——Kk2, (A35)

ZMVJ_ + ZmVZ . . .
where z=(z,+2z.)/2, and the integration is over’' =z,

%2 —Z,. Assuming thatd,(z')=8(z"), and using the vector
+ 2_*kez (A31)  form of the dipole moment, the above equation results in a
Me summation of two transition amplitudes:

2. Real-space representation P(z,t)=2m 2 f dk, de:v\P(VO)(kl 2.2.1).

In thez direction the real-space dependence is obtained by =LHHH JO
the Fourier transform (A36)
. . For clarity, we have explicitly indicated that only tine=0
W (K, Zo.2)= d dz.eiknzZngike component of expansiqu4) en_ters into Eq(A36). If only _
KL e 20) f—oc th_oo % o one type of hole band is considered, there is no summation

over transition amplitudes, and we recover ER).
X\I,v(kL !khZIkeZ)! (A32)
together with the appropriate boundary conditions discussed®PPENDIX B: POLARITONS IN HOMOGENOUS MEDIA
below. The equation of motion for the “wave functions”
v, (k, ,Ze,z,) associated with the interband transition from
the LH and HH, respectively, reads

For a homogeneous, infinitely extended sample, the solu-
tion of the propagation problem can be simplified because it
is possible to separate relative and COM motion of the ex-
J cited electron-hole pairs. For a better comparison with the
ih—w,(k, 2z, ,ze):'gv(kl ,RhZ,ReZ)\I/V(kL Ze,Zh) general case where this separation cannot be made, we recall

at some results of the polariton propagation treatment in homo-
geneous media.

_ 1 f dk! K/ V(K. K. |zn—2zd) We start from the equation of motion for the interband-
(2m)? o - transition amplitudd Eq. (2)], and transform from electron
and hole coordinates to COM and relative variables:
XW (k| ,zy,20) —d,E(z,1)
a9 R, AP, -
X 82y~ 2e), (A33) |ﬁE+ mVﬁﬂVﬁV(p) W(r,p,t)

wherez=(z.+z,)/2. The Fourier-transformed Coulomb po- R L.
tential is =—d(p)-E(r,t). (BY)

The left-hand side of EqB1) contains Hamiltonians for the

Ve o (lzn—2) = e? 2Wd¢ eIk Kiliznzd exciton relative and COM motion which define the eigen-
kp ok "M€h T e Zsonﬁg o 7 Ik, —k|| value equations
(A34) ﬁ2
- ) - R

together with Eq(A23). Equation(A32) also transforms the Hreipi(p) = _{ﬂVﬁV(P)}@i(P)— €¢i(p), (B2)

k., andk., dependences of the kinetic energy in differential

operators according t&,,—ke,= —id/dz, and kp,— Kn,= . he . .

—idldz,, which gives Eq(A33) the form of a Schrdinger HeomPo(r) == 537 Vi®q(r) =fiwg®y(r).  (B3)

equation. A boundary condition must now be specified for

the differential equation for the electron-hole transition am-The Wannier equatiofEg. (B2)], which includes the attrac-
plitude ¥ that we have obtained. This is the essential differ-tive Coulomb interactionV/, describes bound and scattering
ence between the microscopic theory and the formulationstates with eigenvaluas and eigenfunctions;(p), whereas
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Eq. (B3) leads to plane wave solutioss; (r) 697 for the  Must be a solution of the electromagnetic field equatiGhs
COM motion with the energytw,= %2 2/(2M) The com- and (7). Defining the dimensionless dielectric function
plete set of eigenfunctions can be used to expand the solutigH{(d,®) =ngg+ x(d,)/zo, the Fourier-transformed wave
of the Schrdinger equation for the combined electron-hole equation forE become
motion[Eqg. (B1)],
C!)2
—&(9,0)— g
Co

- s . . Eq(w)=0. (B11)
‘I’(r,p,t)=2i fd3q‘1’a,i(t)qoi(p)<ba(r), (B4)
For a propagating solution the difference in the brackets

which leads to must vanish. If only a &-exciton resonance is considered
J (i=1), from Egs.(B11) and (B9) one obtains twaomplex
(iﬁﬁ— ei—ﬁwq)\I’d’i(t)= —diE4(1). (B5)  solutions
. : 1 1
Here we have introduced the components of the dipole ma- 0 fw)=> (g2t a2) = \/Z(qtzjg_ q2)%+ k. (B12)

trix element,di=fd3p<pi*(5)d(p), and of the optical field

Ej(w)=Jd°r®;(r)E(r,w), interacting with the correspond- Here we have defined;,=njw?/ci, ak=(2M/4?)(fw

ing excitonic states. The solution of E@5) can be found  —¢ +iy), andx*=(w?/c2)(2M/%?)eo|d|2. Again assum-
directly by a Fourier transform to the frequency domain:  ing d(p)=d,,8(p), and using the normalization of the exci-
tonic wave functions, the dipole matrix element takes the

d:
Vgi(w)=—7 ———Ej0).  (Bg form |dy1]?=1de,|? (7ad).
W= €& hwgtly The complex wave vectof€g. (B12)] form the two po-

This solution allows us to determine the macroscopic polarlariton dispersion branches. The real part of these wave-
ization defined by Eq(1). With Eq. (B4) we obtain vector frequency dispersions describes the propagation of
polaritons in the infinitely extended medium, and the imagi-

H=S [ dqar - nary part is associated with a damping of the polariton

= q a(r) waves. The propagating solutions from the infinitely ex-
tended medium were used in various forms in the construc-

4 (D VE(F) tion of macrospopic approximations for finite samples, some

. of which are discussed in Sec. IV.
-3 [ walaf?s; @40,
—hogtiy

APPENDIX C: DISCRETIZATION
(B7) AND NUMERICAL TECHNIQUES

where the definitions ofl; and Eq have been used. Clearly | thig appendix we outline the numerical treatment of the
Eq. (B7) has the formP(r)=fd°r'x(r,r')E(r'), which de-  coupled equation$4), (6), (7), and (8). We first transform
fines a macroscopic susceptibility: the dynamical quantities in order to eliminate the explicit
appearance of the gap energy in E4), since the numeri-

iq-(r—r' ; .
G cally large value necessitates very small time steps. There-

i =-3 ldf? | dar— (B9)
XL T ho—e—hwgtiy’ fore we define, e.g.,
As expected for the homogeneous case, the translation in- T (t)=e @ty (t), (C1)
variance of the COM coordinate allows the introduction of
the COM momentunt independent of the relative motion. E(z,t)=e “o'E(z1). (C2)

In momentum space, we directly obtainPg(w)

=X(a,w)Ea(w)- The corresponding susceptibility Here we have specialized, to be the gap frequencyi,wg

=Eggp- Since this transformation affects all dynamical vari-
|d-|2 ables, i.e., polarizations, electromagnetic fields, and currents,
(B9) we will omit the tilde in the following.

To focus on the discretization in the time domain we sup-

describes excitonic resonanceseags well as the energetic Press space and momentum variables and rewrite the
contribution# w, of the COM motion. Since the boundary Schralinger-type equatio) symbolically as
condition for the homogeneous case,

X0 =2 e Ty

d R
P i V(O =HWP(0)+Q(1), c3

involves only the relative variablp, the excitonic relative where Q(t) is a generalized external driving field, afd
and COM motion are decoupled. includes both the kinetic Hamiltonian and the Coulomb in-

A propagating electromagnetic wave in an infinitely ex-teraction. For the numerical integration of EG.3) we have
tended medium whose response is described by (B§) used the explicit differencing scheff{é*
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2At . of these cells is assigned to one processor. Since a space grid
WA+A=P(t—A)—i ——HW()+ Q). (C4  point needs only its four neighboring points, the calculation
of the right-hand side of EqC4) using Eq.(C6) for a time
This scheme has two advantages: First, it is explicit, i.e., thstep can be carried out directly for atiner points, i.e., for
“new” W(t+At) can be computed directly from values at points whose four neighbors belong to the same cell. The
earlier times without solving a system of linear equationspoints that require the values #"(«,8) from another cell
Second, it respects the time-reversal symmetry of the ‘Schrdor the computation of#"*%(a,8) are lined up along the
dinger equation, and therefore conserves the energy and tlsguare-shaped boundaries of each cell because discretization
norm of the complex wave functidfl. Also, if the chosen (C6) makes only use ofr and 8 values incremented by 1.
time step exceeds the stability limit for E@C4), exponential Therefore each processor must receive the values of the ad-
solutions become dominant, and lead to divergent resulticent boundary points from the four neighboring cells be-
which allows the empirical determination of the stability fore Eq.(C4) can be computed for the boundary points of
limit. itsown cell. This data exchange between all processors must
The amplitudeV in Eg. (C4) depends on two space vari- occur in each time step.
ables and one momentum variable. The space dependence of The grid structure outlined above can be implemented us-
the microscopic polarization is discretized using a two-ing the message passing interf&¢&* Technically, non-
dimensional equidistant gridz(,zz) with spacingAzycr- blocking send and receive commands handle the data ex-
For the momentum space varialke Gaussian quadrature change necessary for the boundary poinighile the
points k, , indexed byx are used. This leads to the dis- ¥"*(a,8) values are computed for all inner points. When

cretized quantity the data exchange is complete"*(a,8) is computed for
the boundary points of each cell.
Ve, B) =W (K, (Z4,25.1). (CH When treating the time evolution of the electromagnetic

The singularity of the Coulomb potential is removed field one faces the _pr_oblem that the_ space grid encompasses
. 5 . . the sample and a finite space outside the sample where the
numencally? and we typically use QB{Euadratur.e points electromagnetic field is produced and detected. Now the time
which are accumulated below, =4ag~. Choosing the  je\elopment must be computed for several picoseconds to
spacing ofAZyico=0.1ag, we reach the stability limit of the  qpitor the radiation from the slowly decaying polarization
schemeEq. (C4)] at At=2.0 fs. For our computations wWe i, the slab. Therefore, the initial pulse has long reached the
usedAt=1.5 and 1.0 fs, which lead to the same results.  gnq of the computational domain before the computation has
In the following, ¥"(«,8) always refers to the whole finished and the spectrum can be computed. Thus multiple
“vector” formed by the W7(«,B). Derivatives are approxi- reflections occur at the ends of the space grid if one dis-
mated on the space grid by using a second order schiemecretizes Maxwell's equation straightforwardly, and chooses a
i.e., the terms in Eq(4) containing derivatives become boundary condition for the computational domain because
any boundary condition will lead to at least partial reflection.

1 # 1 & This difficulty is avoided by discretizing the equations for
Moy 922 Mhy 972 W(ze,2y,1) the electomagnetic fieldEgs. (6) and (7)] on a one-
© h dimensional grid using Hartree's method. Since this method
1 U (a+18)—2¥"(a,B)+V"(a—1p) is described comprehensively in Ref. 42, we omit a detailed
~ 5 discussion and only quote the results here: The characteristic
ez (A2) curves for Maxwell’s equations are straight linds=cAt,

n  oun n _ and the partial differential equatior{§) and (7) reduce to
1 ¥ ptl)—2¥a,p)+¥(a,B 1)_ ordinary differential equations along these lines. These are
M. (Az)? used to derive the discretized versions of the transformed
Egs.(6) and(7):

(Co)
Consequently, for the computation &"*(«,8) At time 1 1
thy1=t;+At we only needV"(«,8), and the four neighbor- Entlo_—_ (B ,—B )+ = n(E!_,+E], )
ing values¥"(a+1,8), ¥"(a—1,8), ¥"(a,f+1), and booang, . 27 .

U"(a,8—1). Note also that the Coulomb matrix element in
Eq. (4) only couples¥"(«,B) values with the same spatial n
(a,B) indices, but a different momentumk) index. For 4n§ &
numerical purposes it is effective to regald'(«,8) as de- o
fined on a two-dimensional space grid whese 8) numbers

the grid points, each of which is now a vector with the dis-
crete momentum index.

Grouping the grid points into square cells in a checker-
board pattern leads to a two-dimensional mesh of cells such
that every grid point belongs to only one cell. The numerical +—
computation is very well suited for parallel computers if each 4npgé

(2377130 +37, ), (C7)

1 1
Berl:_z 77(Bjn—1+Bjn+1)+ _77(E1n—1_ Ejn+1)
2ng, 2

(J?—l_J?H)- (C8
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Here we have discretize&}‘EE(zj 1), BJT‘ECOB(zj 1), The space grid for the macroscopic fie[ds. (C7) and
and J'=co[J(z;,t) +(3/t)P(z; ,tn)/eo]. Also, we have (C8)], AZpacro is chosen such thatze=cAt holds afterAt
definedé=1—iwAt/2 and = £*/£. These additional fac- is determined according to the stability limit of ECC4).

tors are due to transformatid€2); the discretized versions Typically, we obtainAzg on the order of one Bohr radius.
of the original Egs.(6) and (7) are obtained by letting, This method is capable of handling semiconductor hetero-
=0. We also have introduced a currehz,t) in Eq. (6), structures of arbitrary composition via teelependent back-
which acts as an additional source term localized outside ofround refractive inder(z). Since we are only interested in
the sample. It is introduced in our numerical scheme as @olaritonic effects due to the excitonic polarization, we use
convenient device to generate the external electromagnettbe constant GaAs value for the refractive inde(z)=ny,

driving field. =3.71 in Egs(C7) and(C8).
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