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Polariton propagation in high quality semiconductors: Microscopic theory and experiment versus
additional boundary conditions
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Linear exciton-polariton propagation in semiconductors is analyzed using a microscopic theory. Numerical
results are compared with various approximation schemes based on additional boundary conditions, and with
phase-amplitude linear spectroscopy experiments in high-quality GaAs. A simultaneous description of the
measured amplitude and phase of the transmitted electric field is only possible with the full model.
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I. INTRODUCTION

Since the introduction of the polariton concept1,2 for the
interplay of a propagating light field with the polarization
induces in a semiconductor, this topic has received a g
deal of experimental and theoretical interest. Even in the c
of the linear optical properties considered in the present
per, the problem of light propagation through samples w
surfaces presents considerable theoretical and experim
difficulties if the polarization in the sample exchanges m
mentum with the electromagnetic field, leading to spatial d
persion. For realistic conditions, the presence of surfa
raises serious complications because the Coulomb-bo
electron-hole states~excitons! that show up as resonances
the optical response have a non-negligible spatial exten
~typically, from 3 to 30 nm in the most common material!.
Therefore, near the surfaces in regions much larger than
crystal primitive cell, the semiconductor response funct
deviates strongly from that of an infinitely extended mediu
In fact, these deviations have a profound impact on the
served optical properties.3

Recently, there has been a renewed debate on how
approximate description of polariton propagation in a sam
with surfaces can be obtained from the expression for
macroscopic polarization of an infinitely extended mediu
only.4–6 Because of the microscopic structure of excito
such an approach cannot determine how the macroscopic
larization falls off at the surfaces and, therefore, various
sumptions have been proposed to describe the spatial be
ior of the polarization field near these surfaces. Pekar2 was
the first to propose an approximate treatment by imposing
‘‘additional boundary condition’’~since then called the ABC
in the literature!: the macroscopic polarization should vani
on all surfaces. Pekar’s ABC was subsequently augme
by other phenomenological restrictions, e.g., exciton-f
dead layers at the surfaces and surface potentials.7 Their in-
fluence was studied in Refs. 8 and 9, respectively. Sev
attempts were made to justify macroscopic approaches, l
ing to contradicting results: Zeyher and co-workers co
cluded that the excitonic polarization should vanish at
surfaces according to Pekar’s ABC,10,11 whereas Ting
0163-1829/2001/63~4!/045202~17!/$15.00 63 0452
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et al.,12 using other arguments, suggested another ABC:
polarization flux should vanish at the surfaces. Finally,
another method was presented recently.4

In contrast to using approximations for the polarizati
space dependence from the outset, microscopic treatm
are free from the conceptual prolems of these ABC-like th
ries. However, the complexity of the polariton problem h
so far limited microscopic treatments to specific geometr
or has necessitated the use of further simplifications: Dir
calculations of the microscopic polarization coupled to t

propagating field, were applied to half-space13,14 and slab
geometries15 using a contact interaction instead of the Co
lomb interaction between electron-hole pairs. A similar
rect calculation was carried out for thick quantum wells u
ing an expansion of the polarization in terms of quantu
well envelope functions.16 Other approaches used a
expansion into a finite number of excitonic wave functions
slab and half-space geometries to obtain the nonlocal se
conductor response function,17–19 or analyzed the half-spac
problem in wave-vector space.20

From an experimental point of view, a large variety
techniques was devoted to the study of polariton effects
GaAs as well as other materials; see e.g., Refs. 7, and 21
But since the longitudinal-transverse splitting is so small
bulk GaAs, direct and unambiguous experimental evide
~e.g., experiments on a high-quality sample! of genuine po-
lariton propagation effects in this material was still unsat
factory, because features on the order of the longitudin
transverse splitting could not be spectrally resolved. Ev
though the ‘‘transmission configuration’’ used here is t
most common one in practice, and transmission experim
are trivial in principle, a considerable amount of care in p
cessing the samples and conducting the experiments is
quired to obtain reliable spectra.

The purpose of this paper is a critical assessment of
proximate treatments of the polariton problem. We first co
pare transmission spectra obtained with approximations
the full microscopic solution, and point out how the sho
comings of the approximations are related to the space
pendence of the semiconductor polarization in the sam
©2001 The American Physical Society02-1
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H. C. SCHNEIDERet al. PHYSICAL REVIEW B 63 045202
We then present a detailed comparison between the app
tion of our microscopic and of the approximate treatments
recent experimental results.28 We also show how the appli
cation of an approximation can lead to an ‘‘explanation’’ f
experimental spectra in terms of wrong material paramet

The paper is organized as follows. In Sec. II we formul
the theory of light propagation in semiconductor bulk ma
rials in the linear regime, but with the presence of surfa
without referring to approximations using ABC’s. In Sec.
the assumptions for various ABC schemes are discusse
comparison of the full solution with these approximatio
and with experimental results is given in Secs. IV and
respectively. The treatment of band-structure effects on
material polarization and details of the numerical method
presented in the Appendixes.

II. LINEAR LIGHT PROPAGATION IN SEMICONDUCTOR
HETEROSTRUCTURES

A. Material polarization

When a light field propagates through a bulk semicond
tor, it induces a macroscopic polarizationPW which is ex-
pressed in terms of the electron-hole transition amplitudeC

and the dipole matrix elementdW by

PW ~rW !5E d3rdW * ~rW !C~rWe ,rWh!, ~1!

whererW5rWe1rWh and rW 5rWe2rWh are the sum and differenc
of the electron and hole coordinates, respectively, and
integration runs overr. In the linear regime, the electron
hole transition amplitude obeys a two-particle Schro¨dinger
equation,3,29 which in the effective-mass approximatio
reads

F i\
]

]t
2EGap1

\2

2me
¹e

21
\2

2mh
¹h

21V~ urWe

2rWhu!GC~rWe ,rWh ,t !

52dW ~r!•EW ~rW,t !. ~2!

Here V is the Coulomb interaction between electrons a
holes, and the driving term is due to the external electrom
netic fieldEW .

In this paper we consider a slab geometry which w
describes most experimental conditions. The electromagn
field is a plane wave propagating in thez direction, and the
semiconductor sample is bounded by two surfaces per
dicular to thez axis, but extends homogeneously in thex-y
plane. Under these conditions, it is useful to Fourier tra
form the in-plane relative coordinatesrW'5rWe'2rWh' to intro-
duce the in-plane momentumkW' according to

C~kW' ;ze ,zh!5E d2r'eikW'•rW'C~rWe' ,ze ,rWh' ,zh!. ~3!
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For rotational invariance around the direction of propagat
C depends only on the modulus of the wave vector in
x-y plane denoted byk' . The essential nonlocality of the
electron-hole transition amplitudeC(k' ;ze ,zh) is expressed
by the dependence on electron and holez coordinates, it
obeys the two-particle Schro¨dinger equation

\
]

]t
C~k' ;ze ,zh!5FEGap1DE1 ig1

\2

2m'

k'
2 1

\2

2mez

]2

]ze
2

1
\2

2mhz

]2

]zh
2GC~k' ;ze ,zh!

2
1

~2p!2 E
0

`

dk'8 k'8 V~k' ,k'8,uze2zhu!

3C~k'8 ,ze ,zh!2dcvE~z,t !d~ze2zh!.

~4!

In Eq. ~4! we account for the different effective masses in t
x-y plane in thez direction, and for the energy shiftDE from
the band-gap energyEGap. We use the standard approxim
tion of a momentum-independent dipole matrix eleme
which corresponds to a delta-like space dependence of
dipole matrix element in the real-space formulation,d(ze
2zh)5dcvd(ze2zh). In this approximation, dipole transi
tions involve only electrons and holes at the same sp
point. The only phenomenological parameter introduced
this equation is the damping constantg. The mass anisotropy
and the energy shift have their origin in band-structure
fects due to strain and valence-band mixing, which are d
cussed in Appendix A within the framework of the Kohn
Luttinger theory. The Coulomb matrix element is

V~k' ,k'8;uze2zhu!5
e2

2«0nbg
2 E0

2p

df'

e2ukW'2kW'8 uuze2zhu

ukW'2kW'8 u
,

~5!

wherenbg5A«bg is the background refractive index,f' is
the angle between kW' and kW'8 , and ukW'2kW'8 u
5Ak'

2 1k'8
222k'k'8 cosf'. Note that in Eq. ~4! a

z-dependent band-gap energy can be introduced which
lows the modeling of heterostructures.

B. Electromagnetic field

The evolution of the electromagnetic field is determin
by Maxwell’s equations which, for circularly polarized tran
verse fields propagating in thez direction, EW (rW,t)
5E(z,t)sW 1 andBW (rW,t)5B(z,t)sW 1 , are

n2~z!
]

]t
E~z,t !52c0

2 ]

]z
B~z,t !2

1

«0

]

]t
P~z,t !, ~6!

]

]t
B~z,t !52

]

]z
E~z,t ! ~7!

wheren(z) is the nonresonant~background! refractive index
profile along the propagation direction. Within a homog
neous slab,n(z)5nbg. The electromagnetic field is couple
through the source term in Eq.~6! to the macroscopic polar
2-2
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ization PW (rW,t)5P(z,t)sW 1 . The latter can be expressed
terms of the transition amplitude as

P~z,t !52pE
0

`

dk'k'dcv* C~k' ;z,z,t ! ~8!

with the help of Eqs.~1! and ~3!. In Eq. ~8! we have again
used a local dipole matrix element.

III. COMPARISON TO MACROSCOPIC APPROACHES

In this section we discuss various approximate sche
that used the propagating solutions forhomogeneousmedia
to describe nonlocal~spatially inhomogeneous! situations.
For reference, in Appendix B we briefly recall the dielect
theory of polariton propagation inhomogeneousmedia with
spatial dispersion.

For a finite-size sample with surfaces in the propagat
direction, the system becomes spatially inhomogeneous,
specific boundary conditions for the interband transition a
plitude apply. In the case of the slab geometry these are

C~rWe ,rWh!50 for rWe or rWh at a surface, ~9!

i.e., the transition amplitude vanishes whenever the elec
or the hole coordinate is on one of the surfaces~or outside of
the sample!. This boundary condition introduces an entang
ment between the electron-hole relative motion and the
tion of their center of mass~COM!, which is not present for
an infinitely extended medium where the only requiremen
that C vanishes if the electron-hole distance approaches
finity.

A direct computation of the transition amplitude from th
two-particle Schro¨dinger equation, as discussed in Sec.
together with boundary condition~9!, is numerically very
demanding. Thus for more than four decades many
proaches have been proposed based on an approximate
ration of the electron-hole relative and COM motion. Usua
one introduces expansion wave functions for the excito
relative and COM wave functions, denoted byw i and Fq ,
respectively, as outlined in Appendix B for a homogeneo
medium.However, in the inhomogeneous case, one can
deduce boundary conditions for the COM and relative wa
functions fromEq. ~9!. An approximate boundary conditio
is imposed by specifying the COM wave functions for t
COM coordinaterW at the surface:

HcomFq~rW !52
\2

2M
¹ r

2Fq~rW !5\vqFq~rW !, ~10!

Fq~rW !urW at surface5Fsurf. ~11!

The quantum numberq attached to the COM wave functio
can stand for the continuous COM momentumq in semi-
infinite slab geometries, or for the discrete quantum num
n, which labels quantized COM states in bounded geo
etries. A constantFsurf must now be specified for each su
face of the geometry under consideration. The electron-h
relative motion, on the other hand, is approximated by eig
functionsw i of the Wannier equation~B2!, which is strictly
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valid only for homogeneous systems. Clearly, this sche
cannot account for the distortion of the relative motion at
boundaries. Furthermore, different choices forFsurf, i.e., dif-
ferent macroscopic boundary conditions for the COM pro
lem, lead to qualitatively different macroscopic approxim
tions because the spatial behavior of the macrosco
polarization near the surfaces critically influences the pro
gating solutions even in thick samples.

For comparison with our full calculation, we now outlin
briefly approximate treatments based on Eqs.~10! and ~11!.
Taking into account only the interaction with the 1s-exciton
resonance, one uses the two complex polariton wave vec
q1,2(v) from Eq. ~B12!, which describe the propagation o
an optical field in the infinite system, as an ansatz for
propagating electromagnetic field inside a finite semicond
tor sample:

Emat~z,v!5 (
p51,2

Ep
1~v!eiqp(v)z1Ep

2~v!e2 iqp(v)z.

~12!

Here, propagating (E1) and counter-propagating wave
(E2) are considered for the slab geometry. Then Maxwe
boundary conditions are applied to connect the polari
waves inside the slab~12! to free solutions of Maxwell’s
equations outside the sample. The simplest possible ge
etry involves an incident wave from the left and the reflec
and transmitted components,Er and Et , with wave vectors
qleft5nleftv/c andqright5nrightv/c,

Eleft~v,z!5eiq leftz1Er~v!e2 iq leftz, ~13!

Eright~v,z!5Et~v!eiqrightz. ~14!

The continuity ofE and ]E/]z on both boundaries deter
mines only four of the six unknownsEr(v), Et(v), E1

6(v),
E2

6(v). The remaining two conditions are obtained by usi
macroscopic boundary conditions for the excitonic CO
wave functions,@Eq. ~11!#. This procedure defines an ABC
for the macroscopic polarization. For instance, the cho
Fsurf50 at the boundary leads to the ABC originally intro
duced by Pekar2 ~also see Ref. 10!,

P~z,v!uz at boundary50, ~15!

whereas the choiceFsurf51 results in the Ting-Frankel
Birman ~TFB! ABC12

F ]

]z
P~z,v!G

z at boundary

50, ~16!

as can be seen with Eq.~B7!. In both cases the macroscop
polarization is given by

P~z,v!5 (
p51,2

x~q,v!uq5qp(v)@Ep
1~v!eiqp(v)z

1Ep
2~v!e2 iqp(v)z#, ~17!

which can be used to determine the remaining two coe
cients.
2-3
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H. C. SCHNEIDERet al. PHYSICAL REVIEW B 63 045202
In a recent paper,4 a macroscopic treatment of the pola
iton problem that is different from the Pekar and TFB ana
sis was suggested. The macroscopic dielectric function o
infinitely extended medium is combined with an analysis
surface effects to describe light propagation with spatial d
persion in finite samples. The underlying assumption is t
the deviations from the bulk properties are important only
a thin layer near the surfaces. Then the influence of surfa
is described simply by source layers with strengthsi in the
wave equation for the infinitely extended medium, written
momentum space as

Fv2

c0
2

«~q,v!2q2GE~q,v!5(
i

si~q,v!. ~18!

The solutions of Eq.~18! for sources located at the positio
of the sample boundaries are taken as the electromag
field inside of the finite sample. By matching the mater
solution to the outside solution, the source terms can be
termined. The validity of this matching procedure has to
checked carefully, because it connects solutions for infinit
extended media at the surface though these solutions
valid only away from the surface. Therefore, matching
two solutions at a boundary is a good approximation only
the difference between the outside solutionE0 and material
solutionEmat is small. Following the original analysis,4 both
fields are expanded up to second order in the distance f
the surface. For a wave propagating inz direction through a
boundary atz50, one obtains

E0~z!2Emat~z!5F ]2

]z2
E0U

z50

2
]2

]z2
EmatU

z50
Gz2

2
1O~z3!

'@~q1
22q0

2!E1
11~q2

22q0
2!E2

1#
z2

2
, ~19!

where the continuity of the fields and their first derivativ
have been used. Hereq0 is the wave number of the extern
field, and q1,2 are the complex polariton solutions for th
1s-exciton resonance; cf. Eq.~B12!. At resonances of the
optical susceptibility the modulus ofq1,2

2 becomes large and
it is not clear what thickness of the transition layer should
used in Eq.~19!. Hence it is difficult to show that the last lin
in Eq. ~19! is indeed small enough.

IV. NUMERICAL RESULTS: FULL SOLUTION
VS MACROSCOPIC APPROXIMATIONS

In this section we compare the approximate treatme
mentioned in Sec. III with the full solution of the propag
tion problem for samples with surfaces. We focus
samples of intermediate thickness where the geomet
confinement of the semiconductor polarization as well as
genuine polariton propagation effects over distances of
order of a wavelength are present. The combination of th
mechanisms leads to several interesting features in the
cal transmission spectra.

To simplify the comparison of various theoretical resu
in this section we use a two-band semiconductor mo
04520
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whereas for the experiment-theory comparison in Sec.
more complicated band structure will be considered. We
ply standard GaAs parameters: electron and hole ma
me50.067m0 and mh50.457m0, exciton Bohr radiusaB
5125 Å, exciton binding energyEB54.2 meV, and back-
ground refractive indexnbg53.71. The microscopic dipole
strength is taken to ber cv50.5 nm, corresponding to the LT
splitting DLT5udcvu2/(pnbg

2 «0aB
3)50.06 meV. The only

phenomenological parameter in our theory is the polariza
dephasing rateg defined in Eq.~4!. In the following calcu-
lations we use decay timeT51/g515.7 ps which corre-
sponds to a broadeningg50.04 meV. To concentrate on th
effects due to the excitonic polarization we use the sa
background refractive index inside and outside of t
sample. Thus there is no semiconductor air interface
could lead to Fabry-Pe´rot resonances in the optical transmi
sion. This model describes the experimental situation re
ized by a semiconductor heterostructure with an applied
tireflection coating. In such a configuration the optical fie
resonantly interacts with the active semiconductor mate
but not with the buffer layers, which have a similar refracti
index but a larger band gap.

Approximate solutions based on ABC models and He
neberger’s approach are calculated only for the contribu
of the 1s-exciton resonance as usually done in the literatu
although the extension to other bound exciton states is p
sible. The full solution always includes both exciton bou
and continuum states.

The three panels of Fig. 1 show transmission spectra f
sample thicknessL510aB calculated using the microscopi
theory @Fig. 1~a!#, using the Henneberger approach4 @Fig.
1~b!#, and the Ting-Frankel-Birman~TFB! ABC @Fig. 1~c!#.

FIG. 1. Calculated transmissionT for a sample lengthL
510aB , using the full calculation~a!, the Henneberger approac
~b!, and the ABC of Ting, Frankel, and Birman~c!. The detuning is
relative to the bulk semiconductor band-gap energyEG in units of
the three-dimensional exciton Rydberg energyEB . Solid lines cor-
respond tor cv55 Å, and dotted lines tor cv510 Å.
2-4
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POLARITON PROPAGATION IN HIGH QUALITY . . . PHYSICAL REVIEW B63 045202
In the spectrum of Fig. 1~a! the 1s-excitonic resonance ex
hibits a clear splitting, labeledn51 and 2, as well as addi
tional peaks at higher energies (n>3). To give a rough in-
terpretation of this multiple-peak structure, we consider
quantization of the exciton COM motion.23,19 Neglecting the
coupling between the relative and COM exciton motion,
eigenvalue equation~10! together with boundary condition
~11! andFsurf50 for a finite sample lengthL in the propa-
gation direction leads to discrete energies for the COM m
tion:

En5
\2

2M S p

L D 2

n2. ~20!

HereM5me1mh is the excitonic mass, and the eigenvalu
are labeled by the discrete indexn. Though the approximate
condition~20! cannot consistently explain all the features w
find in Fig. 1~a!, a fit for the COM resonances with quantu
numbersn54, 5, and 6 using Eq.~20! gives a lengthL
.9aB . This effective length is smaller than the actu
sample thickness as a result of the ‘‘dead layer’’ effect:7 Due
to the finite extension of the exciton relative motion, t
macroscopic polarization remains small in regions near
surface and in the ‘‘dead layer’’ picture the exciton CO
motion is confined in a reduced slab length. Note that
odd numbered peaks have a much weaker oscillator stren
for instance,n55 at \v520.61EB is almost indiscernible.
~Whether even or odd peaks dominate in the optical spe
generally depends on the sample length and the exciton
mentum; see Ref. 23.! The structure of the double peak wit
the largest oscillator strength, on the other hand, is do
nated by polariton effects: Using Eq.~20! to fit the double
peak leads toL.25aB which clearly illustrates that the con
cept of excitons with massM confined to an effective length
is not applicable near the main resonance.

Henneberger’s approach@Fig. 1~b!#, does not account fo
the additional maxima above the main exciton resonan
Instead of a multiple peak structure a single asymmetric
is predicted. The ABC of Tinget al. @Fig. 1~c!#, leads to only
one very small replica and no satisfactory agreement with
full calculation concerning the line shape of the main re
nance. Furthermore, it is not possible to fit the results
Henneberger or Tinget al. to the full calculation by artifi-
cially increasing the dipole coupling. This is shown by t
dashed lines in Fig. 1, wherer cv51 nm has been used.

Figure 2 shows the corresponding transmission spe
calculated with Pekar’s ABC. The sample length is varied
account for an exciton-free dead layer. Transmission sp
trum ~a! is obtained without assuming a dead layer, i.e.,
ing Pekar’s ABC in their original form withL510aB . This
gives a qualitatively different picture compared to the f
calculation because neither the double-peak structure of
main resonance nor the energetic position of the higher
licas are reproduced. For Fig. 2~b! the effective lengthL
59aB extracted from the full calculation by applying Eq
~20! has been used. Then the high-energy replicas are a
correct energetic position, but the agreement for the
shape of the main peak remains unsatisfactory. Figure 2~c! is
a fit aimed at reproducing the typical double-peak struct
04520
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of the main resonance as well as possible. This fitting le
to an effective lengthL57aB , and gives a satisfactory
agreement for the main resonance lineshape, but then
high-energy part of the spectrum is not correctly describ
because the COM replicas are now shifted. In summa
when the effective sample length is regarded as a fitting
rameter, Pekar’s ABC allows qualitatively better agreem
with the full calculation than the Henneberger or TFB a
proach. It is impossible, however, to obtain a good ove
agreement by fixing the effective sample length, since t
has several opposing consequences: optimizing the
shape of the main peak, which is dominated by interferen
of the propagating polariton, leads to less satisfactory res
for the COM quantization energies of the replicas. Note t
it is also impossible to improve the agreement by artificia
increasing the dipole coupling, as shown by the dotted li
in Fig. 2.

The full calculation of the propagation problem combin
with the solution of two-particle Schro¨dinger equation for
the electron-hole motion in a finite sample geometry can a
be used to study the transition from bulk material to quant
wells where eventually a series of subbands emerges. Fi
3~a! shows results of the full calculation for the same para
eters as above and decreasing sample lengths ofL510aB ,
3aB , and 2aB . We obtain an increasing energetic shift
the whole spectrum due to the confinement of the elect
and hole motion. Furthermore the spacing of the exciton r
lica at higher energies increases. ForL53aB and 2aB the
light-matter coupling results in a broadening of the excit
line. Figure 3~b! shows the corresponding spectra obtain
with Pekar’s ABC. In this approximation the energy shif
are caused only by the COM quantization of ideal thre
dimensional excitons formed from electron and hole ba
unaffected by a geometrical confinement. Thus for sma

FIG. 2. Calculated transmissionT using Pekar’s ABC with ef-
fective sample lengths 10aB ~a!, 9aB ~b!, and 7aB ~c! for the same
parameters as in Fig. 1. Solid lines correspond tor cv55 Å, and
dotted lines tor cv510 Å.
2-5
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H. C. SCHNEIDERet al. PHYSICAL REVIEW B 63 045202
samples Pekar’s ABC gives approximately right trends
the line shapes, but fail to reproduce the energy shifts du
carrier confinement.

The series of spectra shown in Fig. 3 also reveals
nature of the splitting of the exciton resonance forL
510aB , and especially that of then52 peak of Fig. 1~a!.
The position of this peak cannot be explained as a rep
due to COM quantization if one treats the COM motion
dependently of the exciton relative motion. Moreover, t
n52 peak shifts away from the exciton resonance to hig
energies when the length is decreased toL53aB , \v2EG
50.23EB . ~The corresponding peak forL52aB , found at
\v2EG51.9EB , is not shown in Fig. 3.! Hence, for L
510aB , the n52 resonance is due to thecombined influ-
enceof the COM quantization and the energy dressing of
coupled exciton-photon states, which is described for
spatially homogeneous system in Appendix B in terms
polariton states. Clearly, forL53aB andL52aB the COM
quantization energies are already so large that then52 rep-
lica does not interfere with the remaining radiatively broa
ened exciton resonance.

So far we have shown that calculated transmission spe
are strongly influenced by approximations affecting thespa-
tial distribution of the macroscopic polarizationwhich deter-
mines the source in Maxwell’s equations. On the other ha
the full solution of the propagation problem, based on E
~4!, can be used to directly analyze this space dependenc
the macroscopic polarization, given by Eq.~8!. For station-
ary monochromatic driving fields, the macroscopic polari
tion exhibits a very distinct spatial distribution depending
the excitation frequency. Figure 4 shows the distribution
uP(z)u inside a sample of lengthL510aB for stationary
monochromatic excitation at the~a! n51, ~b! n52, and~c!
n54 peaks of Fig. 1~a!. This spatial distribution further sup
ports the aforementioned relation between the transmis
peaks and the quantization of the COM motion. For exam

FIG. 3. Calculated transmissionT for various sample lengths
using the full calculation~a! and Pekar’s ABC~b!: L510aB ~thin
line!, L53aB ~solid line!, andL52aB ~dash-dotted line!. The di-
pole coupling isr cv55 Å.
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if one only considers the COM motion, i.e., Eq.~10!, with
the approximative boundary condition@Eq. ~11!# and Fsurf
50, the eigenfunctionsFn(z) are sinusoidal standing wave
with n maxima. Since the approximative boundary conditi
neglects effects due to electron-hole relative motion near
surface, the deviations of the full solution~Fig. 4!, from
standing waves show the influence of the surface on the m
roscopic polarization. Furthermore, we can now investig
the validity of the concept of a uniform polarization-free r
gion near the surface: We take as the extension of
polarization-free dead layer the distance over whichuP(z)u is
strongly reduced close to the surface. Clearly, this dead-la
thickness depends on the excitation frequency. For thn
51 and 2 peaks in Fig. 1~a!, these regions at both surface
are approximatelyl'1.5aB thick, which determines an ef
fective sample lengthLeff5L22l 57aB , in agreement with
the results of the fitting procedure using approximation~20!
to reproduce the transmission spectrum in Fig. 2~c!. In Fig.
4~c!, which corresponds to then54 peak, the ‘‘dead layer’’
is reduced tol 50.5aB also in good agreement with lengt
Leff5L22l 59aB used to fit the corresponding peak pos
tion in Fig. 2~b!.

Some approaches, in which a dead-layer thickness is c
puted, predict that the quantityl /( iaB), wherei denotes the
principal exciton quantum number, isconstantfor a given
material. ~For an overview, see Ref. 3.! Using these ap-
proaches, one finds numerical values for the constant d
layer depths in the range 0.5–2,30 comparable to our results
as well as in the range of 2–3.3 However, using the full
uP(z)u distribution excited in the sample by stationary ex
tation is a direct proof that even COM replicas belonging
the same 1s-resonance exhibit different dead layers.15

For completeness, in Fig. 5 we show the spatial distri
tion of the macroscopic polarization for the same configu
tion as in Fig. 4, but for excitation energies away from t

FIG. 4. Spatial distribution of the macroscopic polarization f
stationary, monochromatic excitation. In~a! the excitation fre-
quency is tuned to the absorption peakn51, in ~b! to n52, and in
~c! to n54, where the peaks are marked in Fig. 1~a!.
2-6
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resonances. In all cases we find a rapid growth of the po
ization directly from the surface into the sample witho
dead layer. Finally, Fig. 6 gives theuP(z)u in the L53aB
sample, whose linear spectrum is shown as solid line in
3. Only small regions of reduced polarization at the surfa
are found for the two resonances at\v2EG520.38EB and
10.22EB , whereas below the resonances (20.9EB) these
regions are completely absent.

V. EXPERIMENTAL RESULTS

A. Sample

The measurements were performed on a very high qua
0.25-mm-thick GaAs layer, clad between a Al0.3Ga0.7As cap
layer and a Al0.7Ga0.3As stop-etch layer. In order to allow
transmission experiments, the GaAs substrate has b
etched and the sample antireflection~AR! coated on both
sides before being mounted on a sapphire window. T
sample was immersed in superfluid He and the transmis
was obtained by exciting the system with a 100-fs Ti:s
phire laser. The absorption spectrum, atT52 K and very
low carrier density,neh<1011 cm23 is shown in Fig. 7~a!,
along with the laser profile~dotted line!. This absorption
spectrum is similar to that reported recently in t

FIG. 5. Spatial distribution of the macroscopic polarization
stationary optical excitation below (\v2EG522.5EB ; dashed
line! and near (\v2EG521.25EB ; dash-dotted line! the main
absorption peak, as well as above then54 peak (\v2EG5
20.6EB ; solid line!, corresponding to Fig. 1~a!.

FIG. 6. Spatial distribution of the macroscopic polarization fo
sample lengthL53aB . The stationary optical driving field is tune
below the main resonance (\v2EG520.9EB ; dotted line!, and to
the first (\v2EG520.38EB ; solid line!, and the second (\v
2EG50.22EB ; dash-dotted line! peak in the transmission spec
trum is shown by the solid line in Fig. 3~a!.
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literature31: the light-hole–heavy-hole~LH-HH! exciton de-
generacy is lifted due to the strain induced by the differen
in thermal expansion between the sapphire substrate and
sample. Additionally, the transition linewidths are very sm
~below 0.25 meV!, showing the high quality of the sample
Even with this careful sample preparation we found that
sapphire slab was responsible for the small Fabry-P´rot
fringes, which appear close to the base-line of the spect
in Fig. 7~a!. Therefore, in a second preparation step, the s
phire substrate was also AR coated. In order to obtai
satisfactory suppression of the residual Fabry-Pe´rot fringes
an excellent matching between the refractive indices of
AR layer and sapphire is necessary, this condition is o
met by the hydrophobic NaF2 coating material. Thus, a new
coating had to be reprocessed for each new set of meas
ments. For comparison, Fig. 7~b! shows the absorption spec
trum obtained using this second coating in the same exc
tion conditions as in Fig. 7~a!. Now the small but important
features marked by arrows are resolved unambiguously.

B. Experimental setup

The amplitude-phase transmission measurements are
formed by Fourier-transform spectral interferometry in
Mach-Zehnder interferometer32 ~Fig. 8!. The Ti:sapphire la-
ser used in the experiments delivers transform limited 100
pulses. The phase of these pulses was carefully characte
by second-harmonic generation FROG,33 and the laser was
adjusted until that phase was essentially flat across the w
spectrum, varying by less than 4.531022p between the 2%
points of the power spectrum. The output of the laser is s
into two replicas using a first beam splitter. One beam is s
through the sample, and the other is used as a refere
beam. The beam transmitted through the sample and the
erence beam are colinearly recombined using a second b
splitter and sent to a 75-cm spectrometer~1200 gr/mm! and a

FIG. 7. Absorption spectra before~a! and after~b! AR coating,
together with the excitation pulse spectrum~dotted line!. The fea-
tures that emerge in the spectrum after AR coating are marked
arrows.
2-7
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CCD camera. The overall system resolution is 0.06 m
The intensity of the measured interferogram spectrum is

I ~v!5I 0~v!1I X~v!12AI 0~v!I X~v!cos@f0~v!2fX~v!

1vDt#, ~21!

where I 0(v), I X(v), f0(v), and fX(v) are the intensity
and phase of the reference beam and the probe beam, re
tively. The time delay between the probe beam and the
erence beam,Dt, is adjusted using a delay line. The inte
ferometric measurements are performed differentially
measuring the amplitude and the phase of the pulses g
through the optical system, first with, then without, t
sample. This procedure allows one to eliminate any ph
contribution due to the small difference between the opt
dispersions of the two arms in the experimental setup
typical interferogramI (v) is shown in Fig. 9~b!. The power
spectrum of the reference beam pulse@Fig. 9~a!, dotted line#

FIG. 8. Experimental setup.

FIG. 9. ~a! Power spectra of the incident~dotted line! and trans-
mitted ~solid line! field. ~b! Intensity pattern of the interferogram
~c! Difference between the transmitted power spectrum and in
ferogram.
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and the transmitted power spectrum@Fig. 9~a!, solid line#,
are then subtracted from the interferogram. The resultS(v)
is plotted in panel~c! of Fig. 9. The amplitude and phas
~relative to the reference pulse! of the transmitted pulse ar
then extracted fromS(v) using Fourier analysis.32

C. Experimental results

Figures 10~a! and 10~b! and Fig. 11~a! and 11~b! show the
retrieved absorption and phase spectra, respectively. In o
to allow an easy comparison with previous works, in F
10~a! we display the conventional absorptiona(v)L
52 logT(v) calculated from the intensity transmissio
T(v)5ut(v)u2, and given in terms of the incident and tran
mitted electromagnetic fields by

r-

FIG. 10. Results for a high-quality 0.25-mm GaAs sample:~a!
Experimental absorption and~b! experimental transmission spec
trum. ~c! Theoretical transmission spectrum.

FIG. 11. Experimental~a! and theoretical~b! phase spectra cor
responding to Fig. 10.
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t~v!5
Etrans~v!

Einc~v!
. ~22!

It is important to note that in the context of the analy
presented in this paper, the use of a simple exponential
sorption law for the transmitted and incident intensities,

I trans~v!5I inc~v!e2a(v)L, ~23!

is no longer valid, and the quantitya(v)L not physically
meaningful. Our analysis is based on the transmissionT(v),
shown in Fig. 10~b!, where small features are more pr
nounced than in thea(v)L spectrum.

The high resolution obtained using our experimental p
cedure shows that the excitonic lines are not Lorentzian:
HH transition at 1.5132 eV is asymmetric with a shoulder
the high-energy side, and the LH transition at 1.5105
reveals a clear fine structure. It is split in two componen
and followed by several reproducible secondary peaks
much smaller magnitude at higher energy. All the featu
seen in the transmission spectrum have a counterpart in
phase spectrumf(v) @Fig. 11~a!#.

D. Discussion of the phase

The information contained in the phasef(v) of the elec-
tric field, which also characterizes the optical response of
system is usually neglected. In a linear absorption exp
ment and if there are no zeros in the real part of the tra
mission t(v), the phase is related to the absorption via
usual Kramers-Kronig~KK ! relations. However, the KK re
lations have to be modified if there are zeros in the real p
of t(v). In this case,f(v) is given by

f~v!5
1

p
PE

2`

`

dv8
logut~v8!u

v2v8
1(

i
argS v2v i

v2v i*
D ,

~24!

where the first term on the right-hand side is the usual
integral (P denotes the principal value!. The second term
known as Blaschke factors,34 contains the complex zeros o
ut(v)u at v i . Such contributions beyond the KK relation a
expected to occur for stronger absorption or thicker sam
than in the case discussed presently.

Generally, a KK integral computation of the phase sp
trum using the absorption data suffers from conceptua
well as practical difficulties. First, it is not possible, in th
most general case, to infer the zeros of the real part oft(v)
from the knowledge ofut(v)u alone. Second, the transmi
sion spectrum is always experimentally measured with a
nite resolution and within a finite window of frequencie
which results in a loss of resolution and divergence at
boundaries in the computed phase spectrum. This last p
is illustrated in Fig. 12 which shows both the measur
f(v) ~solid line! and the phase computed via KK relatio
from the absorption data~dotted line!. For clarity, the latter
was slightly shifted toward the bottom of the figure. It a
pears that the fine polariton features are washed out and
the magnitude of the HH phase shift is too small. Thus
true absorption at the HH must be slightly larger than
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measuredaL52.5 due to the finite experimental resolutio
This is shown in Fig. 13~a!, where we artificially increased
the absorption data around the HH transition~dotted line!,
which then allows us to obtain a good agreement betw
the experimental~solid line! and computed~dotted line!
phase in Fig. 13~b!.

In summary, amplitude and phase measurements
complementary, and must be recorded at the same tim
order to obtain a better overall resolution and, more fun
mentally, to perform a complete comparison with theoreti
models. As we will see below, requiring that the theory d
scribes simultaneously the amplitude and phase of the tr
mitted electric field imposes very severe constraints.

E. Comparison with the theory

For a detailed comparison of the discussed experime
we include in the theory transitions from both LH and HH

FIG. 12. Comparison of the measured phase spectrum~solid
line! with a computation via the Kramers-Kronig relation fro
measured absorption spectrum~dotted line!.

FIG. 13. ~a! MeasuredaL spectrum~solid line! and artificially
increasedaL spectrum~dashed line!. ~b! Phase spectra calculate
via Kramers-Kronig relations from the corresponding spectra in~a!
and experimental phase~solid line!.
2-9



e
on
ol
op
ro
a
n-

t o
ir
h
a

su
c
ac

n-
in

on

th

.0

n
nt
so
lin
a
ti

th
rg
o
te
a

a

ig
a
e
-
e
c
he
e

ne
n

um
he
s

ox
d
h

the

m-
ex-
ith
not
or

hen
eso-

fit
ig.

rger

n-
arged

s-
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bands to the electron bands. As discussed briefly in App
dix A, the symmetry of the one-electron states at the z
center leads to a different behavior of electron and h
bands. The electrons can be described by a single isotr
effective mass, but one has to include the mass anisot
for the hole bands, i.e., the hole masses for the in-plane
z directions in Eq.~4! are different. The hole bands are co
ventionally labeled ‘‘light’’ and ‘‘heavy’’ according to their
z masses, but the hole subband curvature is reversed in
x-y plane giving a HH transverse mass smaller than tha
the LH. In addition, the thin GaAs sample on a sapph
substrate experiences a strain due to the lattice mismatc
the sample and substrate material. This strain field leads
fects the whole band structure, but its most significant re
is a energy difference between HH and LH that is mu
larger than the their small splitting to due exchange inter
tion effects. We use the standard values for GaAs,35,36

mLHz50.08m0 , mLH'50.23m0 , mHHz50.53m0, and mHH'

50.11m0, obtained from the Luttinger parametersg156.9
andg2352.5. This leads to very similar exciton binding e
ergies for heavy- and light-hole bands, so that the stra
induced energy difference between the LH and HH excit
can be taken to be the splitting energy 2DE52.4 meV, ob-
served in the experimental spectra. In addition, we use
dipole coupling strengthr cv50.5 nm corresponding toDLT

50.17 meV and a phenomenological dephasing timeT
51/g510 ps which corresponds to a broadening of 0
meV.

Figure 10~c! shows the result of the full calculation i
direct comparison with the above discussed experime
spectrum. The characteristic splitting of the LH exciton re
nance and the asymmetric line shape of the HH exciton
are well described. These two features are explained un
biguously by the interplay of polaritonic effects and quan
zation of the COM motion, as discussed in Sec. IV. Also,
calculated spectrum reproduces very well the high-ene
secondary peaks seen experimentally, and explains their
gin as COM replicas. In Fig. 11 the measured and calcula
phase of the transmitted field are compared. We obtain
excellent overall agreement between the experimental
theoretical results for transmission and phase spectra.

To complete the discussion of theoretical results, in F
14 we show transmission spectra obtained with various m
roscopic approaches using the same parameters as for th
calculation. The 1s contribution of the numerically calcu
lated susceptibility, including band-structure effects, is us
The Henneberger approach neither reproduces the chara
istic features of HH and LH excitonic line shapes nor t
COM replicas. The Ting-Frankel-Birman ABC exhibits th
characteristic double-peak structure of the LH exciton li
but the HH line shape remains symmetrical and there are
pronounced COM replicas as in the experimental spectr
Pekar’s original ABC qualitatively reproduces most of t
experimental signatures. Using a dead-layer thickness a
ting parameter adds the same ambiguity as in theL510aB
case discussed in Sec. IV. In the context of these appr
mate solutions, adjusting the material parameters can lea
unphysical results, especially if one chooses models, suc
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that of Henneberger, that have an indirect dependence on
physical quantities entering the calculation.

We would like to point out some very serious shortco
ings of the macroscopic models for a comparison with
perimental results. Indeed, very often one is confronted w
situations where the material or growth parameters are
exactly known. This is especially true when new materials
heterostructures are fabricated for specific applications. T
hole masses, the sign of the strain energy, and excitonic r
nance oscillator strengths have to be deduced from a
based on a model calculation. To illustrate this point in F

FIG. 14. Transmission spectra obtained from the Hennebe
approach~a!, Ting, Frankel, Birman’s ABC,~b! and Pekar’s ABC
~c! using the same parameters as for the full calculation.

FIG. 15. ~a! Transmission spectrum obtained with the He
neberger approach using artificial mass parameters and an enl
phenomenological dephasing timeT5150 ps.~b! Corresponding
phase spectrum.~c! Minimal phase spectrum calculated from tran
mission spectrum via Kramers-Kronig relations.
2-10



ne
1

t
er
tu
es
n
e
ex
e

i
ca
n

c
a

su
e
nt
n
er

o
rm

ke

u

n
uc

u
ur
i
h
a
d
ua
de
he
n-

oc
al

u
pr

n
th
s
a

pic
the
l-
g-
sult
an

fre-
een
in-
pro-

.
up
sge-

e
he

ch,
i-
No.
ce-

he
om
n-
ng

le
dy

hole

tic

is
erate

led
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15~a! we show the calculated transmission spectrum obtai
from Henneberger’s approach where, in contrast to Fig.
the mass and dipole coupling of theheavyand light holes
have been exchanged, and the dephasing timeT has been
increased by a factor of 10 toT51/g5150 ps. One sees tha
with this unphysical choice of parameters Henneberg
model can roughly reproduce both the double-peak struc
of the lower resonance and the asymmetry of the higher r
nance. Note that the main difference between experime
and calculated spectra appears as a narrow peak at the
getically lowest resonance. Therefore, due to the finite
perimental resolution a qualitative agreement between
periment and calculation can be obtained, and lead
interpretation in terms of blatantly wrong parameters. It
important to note, however, that although a reasonable fit
be obtained for the transmission spectrum, the situatio
completely different for the phase as seen in Fig. 15~b!.
There we show the phase calculated with the parameters
responding to the best fit for the transmission. The domin
feature is that the phase increases by about 2p, and shows a
very weak dip at lower resonance and signature of the u
anomalous dispersion at higher resonance. Since the ov
phase behavior deviates drastically from the experime
phase spectrum over the whole frequency range, it is
possible to explain the experiment in terms of Henneberg
approach. This again demonstrates the importance of sim
taneous measurements of the phase and transmission. T
ther develop this point we have calculated the KK transfo
of logut(v)u @see Eq. ~24!#, which yields the ‘‘minimal
phase’’34 but not the additional contributions of the Blasch
factors. The resulting phase spectrum is shown in Fig. 15~c!.
Its overall resemblance to the experimental spectrum is m
better than that of the full phase.

VI. CONCLUSIONS

We have presented a detailed investigation of the tra
mission and reflection of light through layered semicond
tor materials including amplitude-phase measurements on
tra high quality sample and full microscopic theory. O
method for calculating the transmission and reflection is
excellent agreement with the experimental results. T
theory accounts for spatial dispersion, center-of-mass qu
tization, carrier confinement and band-structure effects an
is based on a direct solution of the coupled evolution eq
tions of the microscopic electron-hole transition amplitu
and of the electromagnetic fields. It explains very well t
interplay of polariton effects and COM quantization for i
termediate sample lengths~several times the Bohr radius!
and in particular for increasing carrier confinement that
curs when the sample length becomes of the order or sm
than the Bohr radius.

To clarify the situation that has resulted from numero
phenomenological macroscopic models that have been
posed over more than three decades, we have compared
culations of the most popular ones with the full theory. Co
sidering samples of intermediate thickness, we find that
macroscopic models cannot reproduce important feature
the transmission spectra because both COM quantization
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polariton effects contribute equally. Among the macrosco
models Pekar’s ABC always yields better agreement with
full theory and with experiment than the Ting-Franke
Birman or Henneberger models. If Pekar’s ABC is au
mented by a dead layer, the agreement with the full re
can be improved. However, the thickness of that layer is
additional parameter that must be adjusted for each
quency if one wishes to account for the spectral features s
for intermediate length samples. As the sample thickness
creases, however, the dead layer effects become less
nounced.
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APPENDIX A: MULTIBAND POLARIZATION

In this appendix we derive the evolution equation of t
interband transition amplitudes when optical transitions fr
both heavy- and light-hole bands are excited. A Koh
Luttinger Hamiltonian is used to describe hole-band-mixi
effects in the presence of an elastic strain.

1. Momentum-space formulation

The equations of motion for the nonlocal electron-ho
polarizations are derived from the nonrelativistic many-bo
Hamiltonian

Ĥ tot5Ĥkin1ĤCoul1Ĥ int . ~A1!

The operators are expressed in terms of electron and
spinor wave functions at the zone center (kW50). Measuring
energies from the bottom of the hole band, for the kine
part one has

Ĥkin5(
kW ,s

@EG1ee~k!#cs
†~kW !cs~kW !1 (

kW , j j 8
Hj j 8cj

†~kW !cj 8~kW !.

~A2!

Heres refers to thez component of the electron spin, and
used to label the electron bands assumed to be degen
with an effective massme* :

ee~k' ,kz!5
\2

2me*
~k'

2 1kz
2!. ~A3!

The hole bands are described by a 434 Kohn-Luttinger
HamiltonianH discussed below. The hole states are labe
2-11
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by thez component of the total angular momentumj for all kW
values, though they are eigenstates with well-defined ang
momentum projection numbers only at the zone centekW
50. The Coulomb Hamiltonian in this basis reads

ĤCoul5
1

2V (
kWkW8,qW Þ0

V~q!F(
ss8

cs
†~kW1qW !cs8

†
~kW82qW !

3cs8~kW8!cs~kW !1(
j j 8

cj
†~kW1qW !cj 8

†
~kW82qW !

3cj 8~kW8!cj~kW !22(
s j

cs
†~kW1qW !cj

†~kW82qW !

3cj~kW8!cs~kW !G , ~A4!

with the 3D normalization volumeV and the Coulomb po-
tential in momentum space

V~q!5
e2

4p«0nbg
2

1

q2
. ~A5!

The interaction Hamiltonian in dipole approximation is

Ĥ int5(
kWkW8

(
s j

dW s j•EW ~kW2kW8,t !cs
†~kW !cj

†~2kW8!1H.c.,

~A6!

with the dipole matrix elementsdW s j for the transition from
hole bandj to electron bands.

The nonlocal electron-hole transition amplitude is e
pressed in terms of electron and hole creation operators

C js~kWh ,kWe!5^cj~2kWh!cs~kWe!&, ~A7!

and the time evolution of the transition amplitude is det
mined by the equations of motion forcj and cs in a time-
le

04520
lar

-

-

dependent Hartree-Fock decoupling scheme,35,37,38

i\
]

]t
C js~kWh ,kWe!5(

j 8
Hj j 8~kWh!C j 8s~kWh ,kWe!

1e~kWe!C js~kWh ,kWe!2
1

V (
qW Þ0

V~q!

3C js~kWh2qW ,kWe1qW !2dW js•EW ~kWh2kWe!,

~A8!

where we have consistently suppressed the time depende
Since the propagation effects studied here are due to

faces in the direction of propagation, i.e., in thez direction, it
is assumed in Eq.~A8! that the exciting laser field is spatiall
homogenous in transverse direction perpendicular toz. Then
EW (kWh2kWe)5EW (khz2kez), and the homogeneous excitation
the plane perpendicular to thez axis leads to conservation o
the COM momentum

KW '[kWh'1kWe'50 ~A9!

in that plane. Consequently,

kW'[
mekWh'2mhkWe'

mh1me
~A10!

can be set

kW'5kWh'52kWe' . ~A11!

Also, KW ' will be dropped and only the dependence on t
relative momentumkW' will be kept in the transition ampli-
tudeC(kW' ;kh ,ke).

The 434 Kohn-Luttinger Hamiltonian in the axia
approximation35 is given by
H5S P1Q1DE R 2S 0

R* P2Q2DE 0 R

2S* 0 P2Q2DE S

0 S* R* P1Q1DE

D . ~A12!
Its matrix elements include the band-gap energy shiftDE
due to elastic strain that can be determined from the samp
material parameters,36 and

P~k' ,kz!5
\2

2m0
g1~k'

21kz
2!, ~A13!

Q~k' ,kz!5
\2

2m0
g2~k'

222kz
2!, ~A14!
’s R~kW'!52
\2

2m0
A3g2~kx

22ky
222ikxky!2

5
\2

2m0
A3g2k'

2e22if', ~A15!

S~kW',kz!5
\2

2m0
2A3g3kz~kx2 iky!5

\2

2m0
2A3g3kzk'e2 if'.

~A16!
2-12
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Note that the diagonal matrix elements only depend on
modulus ofkz and k'[ukW'u, whereas the off-diagonal ele
ments also depend on the anglef'[tan21(ky /kx) of the
in-plane vectorkW' . Defining

eHH~k' ,kz![P1Q5
\2

2mHH'

k'
21

\2

2mHHz
kz

2 ,

~A17!

eLH~k' ,kz![P2Q5
\2

2mLH'

k'
21

\2

2mLHz
kz

2 , ~A18!

we obtain the energy dispersion in terms of heavy- and lig
hole masses.

The hole-band coupling described by thef' dependence
is analyzed using the expansion
u

e

.
na

e

re
tri
d

04520
e

t-

C (m)~k' ;kh ,ke!5E
0

2p

df'e2 imf'C~kW' ;kh ,ke!.

~A19!

The in-plane integration variable is changed fromqW' to
kW'85kW'2qW' and the vector sum is replaced by an integ
according to

1

V (
kW'

(
qz

→ 1

~2p!3E0

`

k'dk'E
0

2p

df'E
2`

1`

dqz .

~A20!

Then the expansion of Eq.~A8!, using Eq.~A19!, be-
comes
i\
]

]t
C js

(m)~k' ;khz ,kez!52dW s j•EW ~khz2kez!dm,m81@EGap1ee~k' ,kz!#C js
(m)~k' ;khz ,kez!

1 (
j 8,m8

Hj j 8
(m2m8)

~k' ,kz!C j 8s
(m8)

~k' ;khz ,kez!2
1

~2p!3E0

`

dk'8 k'8 E
2`

1`

dqz

3(
m8

Vm,m8~k' ,k'8,qz!C js
(m8)~k' ;khz1qz ,kez1qz!, ~A21!
the

ion

ill
,

q.
nd
where the Coulomb matrix element is given by

Vm,m8~k' ,k'8 ,qz!5
e2

«0nbg
2 E0

2p

df'

3E
0

2p

df'8
e2 imf'eim8f'8

~kW'2kW'8 !21qz
2

.

~A22!

Here the integrand depends on the angular variables thro

~kW'2kW'8 !25k'
2 1k'8

222k'k'8 cosf' . ~A23!

By transforming tof̃5f2f8 it can be seen that th
Coulomb potential@Eq. ~A22!# is proportional todm,m8 . The
m2m8 coefficients of Hj j 8 are determined from Eqs
~A13!–~A16!. Because of the phase factors only the diago
terms, Eqs.~A17! and~A18! are proportional todm,m8 . The
off-diagonal terms Eqs.~A15! and ~A16! couple m to m8
5m22 and m85m21, respectively. Because neither th
driving term nor the Coulomb potential couple differentms,
only the m50 components of the transition amplitudes a
significant when the system is driven by a weak elec
field.39 Therefore themÞ0 components can be neglecte
and we consider only them50 component

C~k' ;khz ,kez![C (0)~k' ,khz ,kez!. ~A24!
gh

l

c
,

The hole bands are now effectively decoupled because
restriction of the Hamiltonian to itsm5m850 components
is diagonal in the hole subspace.

We assume in the following polarized excitationEW (rW,t)
5E(z,t)sW 1 . The dipole matrix elements

d↑,13/25A3d↓,11/252dcvsW 1 ~A25!

d↓,23/25A3d↑,21/25dcvsW 2 ~A26!

then yield that only thej 52 3
2 →s5↓ and the j 52 1

2 →s
5↑ transitions are driven. We have used here the definit
for the complex polarization vectors

sW 65
1

A2
~eW x6 ieW y! ~A27!

using the real Cartesian basis vectorseW x andeW y . Therefore,
only two interband transition amplitudes remain which w
be designated byn5HH and LH, respectively. In particular
we haveCLH[C21/2,↑ andCHH[C23/2,↓ . The correspond-
ing dipole matrix elements are defined by

dHH5A3dLH[dcv . ~A28!

Therefore, we can combine the ‘‘free’’ contributions to E
~A21! into interband energies for the electron-HH a
electron-LH transition energies
2-13
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ẽe,n~k' ,kez,khz![EG6DE1en~k' ,kz!1ee~k' ,kz!,
~A29!

where n5HH and LH, and the ‘‘1 ’’ refers to the e-HH
transition energy. Equation~A29! contains anisotropic HH
and LH energies and energy shiftsDE due to strain, respec
tively.

With the definition

1

mn'

5
1

mn'

1
1

me*
~A30!

for n5LH and HH, we obtain

ẽe,n~k' ,kez,khz![EG6DE1
\2

2mn'

k'
2 1

\2

2mnz
khz

2

1
\2

2me*
kez ~A31!

2. Real-space representation

In thez direction the real-space dependence is obtained
the Fourier transform

Cn~k' ,ze ,zh![E
2`

1`

dzhE
2`

1`

dzee
ikhzzheikezze

3Cn~k' ,khz ,kez!, ~A32!

together with the appropriate boundary conditions discus
below. The equation of motion for the ‘‘wave functions
Cn(k' ,ze ,zh) associated with the interband transition fro
the LH and HH, respectively, reads

i\
]

]t
Cn~k' ,zh ,ze!5 ẽn~k' ,k̂hz ,k̂ez!Cn~k' ,ze ,zh!

2
1

~2p!2E dk'8 k'8 V~k' ,k'8 ,uzh2zeu!

3Cn~k'8 ,zh ,ze!2dnE~z,t !

3d~zh2ze!, ~A33!

wherez5(ze1zh)/2. The Fourier-transformed Coulomb po
tential is

Vk' ,k'8~ uzh2zeu!5
e2

2«0nbg
2 E0

2p

df'

e2ukW'2kW'8 uuzh2zeu

ukW'2kW'8 u
,

~A34!

together with Eq.~A23!. Equation~A32! also transforms the
khz andkez dependences of the kinetic energy in different
operators according tokez→ k̂ez52 i ]/]ze and khz→ k̂hz5
2 i ]/]zh , which gives Eq.~A33! the form of a Schro¨dinger
equation. A boundary condition must now be specified
the differential equation for the electron-hole transition a
plitudeC that we have obtained. This is the essential diff
ence between the microscopic theory and the formulati
04520
y

d

l

r
-
-
s

that use a macroscopic polarization calculated from the tr
sition amplitude: the macroscopic polarization does not o
a differential equation. For the slab geometry we impo
C(ze ,zh)50 for ze or zh on one of the surfaces. As emph
sized previously, more complex heterostructures can ea
be handled by also including az- dependent band-gap energ
in Eq. ~A29!.

The macroscopic polarization which acts a source for
electromagnetic field is computed from the microscopic p
larization according to Eq.~1! using Fourier transformation
~A32!,

PW ~z,t !5 (
n5HH,LH

(
kW'

E
2`

1`

dz8dW n~z8!* Cn~kW' ,ze ,zh ,t !,

~A35!

where z5(zh1ze)/2, and the integration is overz85zh
2ze . Assuming thatdn(z8)}d(z8), and using the vector
form of the dipole moment, the above equation results i
summation of two transition amplitudes:

P~z,t !52p (
n5LH,HH

E
0

`

dk'k'dcv* Cn
(0)~k' ,z,z,t !.

~A36!

For clarity, we have explicitly indicated that only them50
component of expansion~B4! enters into Eq.~A36!. If only
one type of hole band is considered, there is no summa
over transition amplitudes, and we recover Eq.~8!.

APPENDIX B: POLARITONS IN HOMOGENOUS MEDIA

For a homogeneous, infinitely extended sample, the s
tion of the propagation problem can be simplified becaus
is possible to separate relative and COM motion of the
cited electron-hole pairs. For a better comparison with
general case where this separation cannot be made, we r
some results of the polariton propagation treatment in hom
geneous media.

We start from the equation of motion for the interban
transition amplitude@Eq. ~2!#, and transform from electron
and hole coordinates to COM and relative variables:

F i\
]

]t
1

\2

2M
¹ r

21
\2

2m
¹r

21V~r!GC~rW,rW ,t !

52dW ~r!•EW ~rW,t !. ~B1!

The left-hand side of Eq.~B1! contains Hamiltonians for the
exciton relative and COM motion which define the eige
value equations

H relw i~rW !52F \2

2m
¹r

21V~r!Gw i~rW !5e iw i~rW !, ~B2!

HcomFq~rW !52
\2

2M
¹ r

2Fq~rW !5\vqFq~rW !. ~B3!

The Wannier equation@Eq. ~B2!#, which includes the attrac
tive Coulomb interactionV, describes bound and scatterin
states with eigenvaluese i and eigenfunctionsw i(rW ), whereas
2-14
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Eq. ~B3! leads to plane wave solutionsFqW(rW)5eiqW •rW for the
COM motion with the energy\vq5\2q2/(2M ). The com-
plete set of eigenfunctions can be used to expand the solu
of the Schro¨dinger equation for the combined electron-ho
motion @Eq. ~B1!#,

C~rW,rW ,t !5(
i
E d3qCqW ,i~ t !w i~rW !FqW~rW !, ~B4!

which leads to

S i\
]

]t
2e i2\vqDCqW ,i~ t !52diEqW~ t !. ~B5!

Here we have introduced the components of the dipole
trix element,di5*d3rw i* (rW )d(r), and of the optical field

EqW(v)5*d3rFqW(rW)E(rW,v), interacting with the correspond
ing excitonic states. The solution of Eq.~B5! can be found
directly by a Fourier transform to the frequency domain:

CqW ,i~v!52
di

\v2e i2\vq1 ig
EqW~v!. ~B6!

This solution allows us to determine the macroscopic po
ization defined by Eq.~1!. With Eq. ~B4! we obtain

P~rW !5(
i
E d3qdi* CqW ,iFqW~rW !

52(
i
E d3qudi u2

E d3r 8FqW
* ~rW8!E~rW8!

\v2e i2\vq1 ig
FqW~rW !,

~B7!

where the definitions ofdi and EqW have been used. Clearl
Eq. ~B7! has the formP(rW)5*d3r 8x(rW,rW8)E(rW8), which de-
fines a macroscopic susceptibility:

x~rW,rW8!52(
i

udi u2E d3q
eiqW •(rW2rW8)

\v2e i2\vq1 ig
. ~B8!

As expected for the homogeneous case, the translation
variance of the COM coordinate allows the introduction
the COM momentumqW independent of the relative motion
In momentum space, we directly obtainPqW(v)
5x(qW ,v)EqW(v). The corresponding susceptibility

x~qW ,v!52(
i

udi u2

\v2e i2\vq1 ig
~B9!

describes excitonic resonances ate i as well as the energeti
contribution\vq of the COM motion. Since the boundar
condition for the homogeneous case,

C~rW,rW !→0 for r→`, ~B10!

involves only the relative variabler, the excitonic relative
and COM motion are decoupled.

A propagating electromagnetic wave in an infinitely e
tended medium whose response is described by Eq.~B9!
04520
on

a-

r-

in-
f

must be a solution of the electromagnetic field equations~6!
and ~7!. Defining the dimensionless dielectric functio
«(q,v)5nbg

2 1x(q,v)/«0, the Fourier-transformed wav
equation forE becomes35

Fv2

c0
2

«~q,v!2q2GEq~v!50. ~B11!

For a propagating solution the difference in the brack
must vanish. If only a 1s-exciton resonance is considere
( i 51), from Eqs.~B11! and ~B9! one obtains twocomplex
solutions

q1,2
2 ~v!5

1

2
~qbg

2 1qX
2 !6A1

4
~qbg

2 2qX
2 !21k4. ~B12!

Here we have definedqbg
2 5nbg

2 v2/c0
2 , qX

25(2M /\2)(\v

2e11 ig), andk45(v2/c0
2)(2M /\2)«0ud1u2. Again assum-

ing d(r)[dcvd(r), and using the normalization of the exc
tonic wave functions, the dipole matrix element takes
form ud1u25udcvu2/(paB

3).
The complex wave vectors@Eq. ~B12!# form the two po-

lariton dispersion branches. The real part of these wa
vector frequency dispersions describes the propagation
polaritons in the infinitely extended medium, and the ima
nary part is associated with a damping of the polarit
waves. The propagating solutions from the infinitely e
tended medium were used in various forms in the constr
tion of macroscopic approximations for finite samples, so
of which are discussed in Sec. IV.

APPENDIX C: DISCRETIZATION
AND NUMERICAL TECHNIQUES

In this appendix we outline the numerical treatment of t
coupled equations~4!, ~6!, ~7!, and ~8!. We first transform
the dynamical quantities in order to eliminate the expli
appearance of the gap energy in Eq.~4!, since the numeri-
cally large value necessitates very small time steps. Th
fore we define, e.g.,

C̃~ t !5e2 iv0tC~ t !, ~C1!

Ẽ~z,t !5e2 iv0tE~z,t !. ~C2!

Here we have specializedv0 to be the gap frequency,\v0
[EGap. Since this transformation affects all dynamical va
ables, i.e., polarizations, electromagnetic fields, and curre
we will omit the tilde in the following.

To focus on the discretization in the time domain we su
press space and momentum variables and rewrite
Schrödinger-type equation~4! symbolically as

i\
]

]t
C~ t !5ĤC~ t !1V~ t !, ~C3!

where V(t) is a generalized external driving field, andĤ
includes both the kinetic Hamiltonian and the Coulomb
teraction. For the numerical integration of Eq.~C3! we have
used the explicit differencing scheme40,41
2-15
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C~ t1Dt !'C~ t2Dt !2 i
2Dt

\
ĤC~ t !1V~ t !. ~C4!

This scheme has two advantages: First, it is explicit, i.e.,
‘‘new’’ C(t1Dt) can be computed directly from values
earlier times without solving a system of linear equatio
Second, it respects the time-reversal symmetry of the Sc¨-
dinger equation, and therefore conserves the energy and
norm of the complex wave function.40 Also, if the chosen
time step exceeds the stability limit for Eq.~C4!, exponential
solutions become dominant, and lead to divergent res
which allows the empirical determination of the stabili
limit.

The amplitudeC in Eq. ~C4! depends on two space var
ables and one momentum variable. The space dependen
the microscopic polarization is discretized using a tw
dimensional equidistant grid (za ,zb) with spacingDzmicro.
For the momentum space variablek' Gaussian quadratur
points k'k indexed byk are used. This leads to the di
cretized quantity

Ck
n~a,b!5C~k'k ,za ,zb ,t i !. ~C5!

The singularity of the Coulomb potential is remove
numerically,35 and we typically use 90k' quadrature points
which are accumulated belowk'54aB

21 . Choosing the
spacing ofDzmicro50.1aB , we reach the stability limit of the
scheme@Eq. ~C4!# at Dt.2.0 fs. For our computations w
usedDt51.5 and 1.0 fs, which lead to the same results.

In the following, Cn(a,b) always refers to the whole
‘‘vector’’ formed by theCk

n(a,b). Derivatives are approxi-
mated on the space grid by using a second order schem42

i.e., the terms in Eq.~4! containing derivatives become

F 1

mez

]2

]ze
2

1
1

mhz

]2

]zh
2GC~ze ,zh ,t !

'
1

mez

Cn~a11,b!22Cn~a,b!1Cn~a21,b!

~Dz!2

1
1

mhz

Cn~a,b11!22Cn~a,b!1Cn~a,b21!

~Dz!2
.

~C6!

Consequently, for the computation ofCn11(a,b) At time
tn115t i1Dt we only needCn(a,b), and the four neighbor-
ing values Cn(a11,b), Cn(a21,b), Cn(a,b11), and
Cn(a,b21). Note also that the Coulomb matrix element
Eq. ~4! only couplesCk

n(a,b) values with the same spatia
(a,b) indices, but a different momentum (k) index. For
numerical purposes it is effective to regardCn(a,b) as de-
fined on a two-dimensional space grid where (a,b) numbers
the grid points, each of which is now a vector with the d
crete momentum indexk.

Grouping the grid points into square cells in a check
board pattern leads to a two-dimensional mesh of cells s
that every grid point belongs to only one cell. The numeri
computation is very well suited for parallel computers if ea
04520
e

.
o
the

lts

of
-

,

-

-
ch
l

of these cells is assigned to one processor. Since a space
point needs only its four neighboring points, the calculati
of the right-hand side of Eq.~C4! using Eq.~C6! for a time
step can be carried out directly for allinner points, i.e., for
points whose four neighbors belong to the same cell. T
points that require the values ofCn(a,b) from another cell
for the computation ofCn11(a,b) are lined up along the
square-shaped boundaries of each cell because discretiz
~C6! makes only use ofa and b values incremented by 1
Therefore each processor must receive the values of the
jacent boundary points from the four neighboring cells b
fore Eq. ~C4! can be computed for the boundary points
itsown cell. This data exchange between all processors m
occur in each time step.

The grid structure outlined above can be implemented
ing the message passing interface.43,44 Technically, non-
blocking send and receive commands handle the data
change necessary for the boundary points,while the
Cn11(a,b) values are computed for all inner points. Whe
the data exchange is complete,Cn11(a,b) is computed for
the boundary points of each cell.

When treating the time evolution of the electromagne
field one faces the problem that the space grid encompa
the sample and a finite space outside the sample where
electromagnetic field is produced and detected. Now the t
development must be computed for several picosecond
monitor the radiation from the slowly decaying polarizatio
in the slab. Therefore, the initial pulse has long reached
end of the computational domain before the computation
finished and the spectrum can be computed. Thus mult
reflections occur at the ends of the space grid if one d
cretizes Maxwell’s equation straightforwardly, and choose
boundary condition for the computational domain beca
any boundary condition will lead to at least partial reflectio
This difficulty is avoided by discretizing the equations f
the electomagnetic field@Eqs. ~6! and ~7!# on a one-
dimensional grid using Hartree’s method. Since this meth
is described comprehensively in Ref. 42, we omit a deta
discussion and only quote the results here: The character
curves for Maxwell’s equations are straight lines,Dz5cDt,
and the partial differential equations~6! and ~7! reduce to
ordinary differential equations along these lines. These
used to derive the discretized versions of the transform
Eqs.~6! and ~7!:

Ej
n115

1

2nbg
2

h~Bj 21
n 2Bj 11

n !1
1

2
h~Ej 21

n 1Ej 11
n !

1
Dt

4nbg
2 j

~2Jj
n111Jj 21

n 1Jj 11
n !, ~C7!

Bj
n115

1

2nbg
2

h~Bj 21
n 1Bj 11

n !1
1

2
h~Ej 21

n 2Ej 11
n !

1
Dt

4nbg
2 j

~Jj 21
n 2Jj 11

n !. ~C8!
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Here we have discretizedEj
n[E(zj ,tn), Bj

n[c0B(zj ,tn),
and Jj

n[c0@J(zj ,tn)1(]/]t)P(zj ,tn)/«0#. Also, we have
definedj512 iv0Dt/2 andh[j* /j. These additional fac-
tors are due to transformation~C2!; the discretized version
of the original Eqs.~6! and ~7! are obtained by lettingv0
50. We also have introduced a currentJ(z,t) in Eq. ~6!,
which acts as an additional source term localized outsid
the sample. It is introduced in our numerical scheme a
convenient device to generate the external electromagn
driving field.
or
0

.
,

ic

un

r

ys

an

04520
of
a
tic

The space grid for the macroscopic fields@Eqs.~C7! and
~C8!#, Dzmacro, is chosen such thatDzE5cDt holds afterDt
is determined according to the stability limit of Eq.~C4!.
Typically, we obtainDzE on the order of one Bohr radius
This method is capable of handling semiconductor hete
structures of arbitrary composition via thez-dependent back-
ground refractive indexn(z). Since we are only interested i
polaritonic effects due to the excitonic polarization, we u
the constant GaAs value for the refractive indexn(z)[nbg
53.71 in Eqs.~C7! and ~C8!.
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