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Reconstructed three-dimensional electron momentum density in lithium:
A Compton scattering study
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The three-dimensional electron momentum densityr(p) in Li is reconstructed via a direct Fourier transform
method which is free from functional assumptions concerning the shape ofr(p). For this purpose, 12 high-
resolution Compton profiles are measured, and corresponding highly accurate computations carried out within
the band theory framework. Extensive comparisons between ther(p)’s reconstructed from the theoretical and
experimental profiles with each other and with the true~without reconstruction! underlying computedr(p) are
used to gain insight into the accuracy of our procedures, and to delineate the effects of various parameters
~filtering, resolution, etc.! on the reconstructedr(p). The propagation of errors is considered in detail, and a
general formula appropriate for the present direct Fourier method is derived. The experimentalr(p) ~in
comparison to the theoretical results! shows a substantially more smeared out break at the Fermi momentum
pf , and a shift of spectral weight from below to abovepf , clearly indicating the importance of electron
correlation effects beyond the local-density approximation for a proper description of the ground-state mo-
mentum density. The question of deducing Fermi-surface radii in terms of the position of the inflection point
in the slope ofr(p) in the presence of finite resolution is examined at length. The experimental Fermi surface
and its asphericity is in good overall accord with theoretical predictions, except that band theory predicts a
bulging of the Fermi surface along the@110# direction, which is greater than seen in the measurements;
however, our analysis suggests that the set of 12 directions used in the present experiments may not be optimal
~in number or orientations! for observing this rather localized Fermi-surface feature.
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I. INTRODUCTION

Properties of the ground state are of fundamental imp
tance for understanding the nature of electronic states and
associated excitation spectrum of materials. Accordingly
second and third generation synchrotron light sources h
come on line in recent years, there has been a resurgen
interest in high-resolution Compton scattering as a dir
probe of the electronic ground state.1–13 The measured
Compton profile~CP! J(pz) is proportional to the twice in-
tegrated electron momentum densityr(p):
0163-1829/2001/63~4!/045120~13!/$15.00 63 0451
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J~pz!5E E r~p!dpxdpy , ~1.1!

where thez axis lies along the direction of the x-ray scatte
ing vector. Within the independent-particle model,r(p) can
be expressed as14

r~p!5~2p!23(
k,n

occ. U E ck,n~r !exp~2 ip•r !drU2

, ~1.2!
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whereckn(r ) denotes the electron wave function for statek
and bandn, and the summation is over all occupied state

Equation~1.2! makes it obvious that in a metallic syste
the CP will contain fingerprints of the positions and sizes
Fermi-surface-related breaks in the underlying momen
density. However, the presence of the double integral in
~1.1! generally tends to obscure this information. One way
circumvent this problem is to measure CP’s along a serie
directions, and to use the set of two-dimensional~2D! pro-
jections in Eq.~1.1! so obtained, to ‘‘reconstruct’’ the 3D
functionr(p). Although such reconstruction procedures po
sess a long history, much of the existing work was limited
the older ~low-momentum resolution! Compton data using
g-ray sources. Paucity of experience in this regard with
high-resolution synchrotron-based Compton data provide
great impetus for undertaking a study such as the presen
as a means of getting a handle on the Fermi surface si
tures and electron correlation effects inr(p).

The first method used to reconstruct the momentum d
sity from CP’s or one-dimensional positron annihilation a
gular correlation spectra15 was formulated by Mijnarends16,17

who, in the vein of Cormack’s approach,18 expanded both
r(p) and the measured profiles into lattice harmonics a
derived a relation between the two expansions. Another w
to obtain r(p) is to utilize the properties of the so-calle
reciprocal form factor,

B~r !5E E E r~p!exp~2 ip•r !dp. ~1.3!

It follows from Eqs.~1.1! and ~1.3! that

B~0,0,z!5E
2`

`

J~pz!e
2 izpzdpz . ~1.4!

If z is chosen along the various scattering vectors, the Fou
transformed CP’s yieldB(r ) along radii in r space. From
there onward one can follow two different approaches
obtainB(r ) in all of r space: Either one expandsB(r ) into a
set of appropriately chosen basis functions,19 or one straight-
forwardly mapsB(r ) in r space by interpolation. The latte
method is called the direct Fourier transform method, a
makes no implicit functional assumptions concerning
shape ofr(p). OnceB(r ) is known,r(p) can then be ob-
tained by Fourier transformation:

r~p!5~2p!23E E E B~r !exp~ ip•r !dr . ~1.5!

Hansen19 applied Eq.~1.4! to obtain theB(r ) function, fol-
lowed by an expansion ofB(r ) into lattice harmonics. This
method is often called the Fourier-Bessel method. Han
also presented an error analysis. Both Mijnarends’ and Ha
en’s method were computer coded.

The direct Fourier method was first applied to reconstr
the 3D electron-positron momentum density from the
angular correlation of positron annihilation radiation me
sured by Suzukiet al. on Ti and Zr.20 Later, the method was
applied to reconstruct the 3D spin-dependent momen
density~i.e., the difference between the majority and mino
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ity spin densities! from magnetic CP’s of Fe by Tanakaet
al.21,22 In these studies, no corresponding error map w
given because a method to analyze the error propagation
not yet developed at the time.23 Recently, Cormack’s method
was developed further by Kontrym-Sznajdet al.,24 and ap-
plied by Dugdaleet al.25 to the reconstruction of the 2D
electron momentum density of Cr from several direction
CP’s. The essential ingredient of Cormack’s method is
expansion of both CP’s and momentum density into po
Fourier series. Finally, the maximum entropy method, wh
is already an established method in the field of char
density reconstruction, was adapted to momentum den
reconstruction by Dobrzynski and Holas.26

The momentum density and the Fermi surface of bcc
were repeatedly studied by Compton scattering, becaus
upon cooling below about 75 K undergoes a partial Mart
sitic transformation to a phase which was long believed to
hcp but is now considered to be a 9R-related samarium-type
of structure with numerous stacking faults.27 It is therefore
impossible to apply conventional techniques to measure
Fermi-surface calipers in bcc Li, although a high-magne
field study of the de Haas–van Alphen effect in a dispers
of micrometer-sized grains of Li yielded the overall rad
distortion.28

The first high-resolution, high-statistics measurements
the CP’s of Li were reported by Sakuraiet al.,4 who deduced
the Fermi surface calipers along the three high-symme
directions by analyzing the second derivatives of the m
sured profiles. Schu¨lke et al.5 employed the Fourier-Besse
method19 to reconstruct the momentum density from 11 me
sured directional profiles, and obtained the corresponding
ror map. This was the first serious attempt to reconstruct
momentum density in a metal from CP’s. Reference 5 a
reconstructed the occupation number density to map out
asphericity of the Fermi surface in the~110! plane, and dis-
cussed the quasiparticle renormalization parameterZk by fit-
ting the occupation number density near the Fermi wave v
tor on the@100# axis to a jellium model. The valueZk50.1
60.1 deduced in this manner is strikingly smaller than t
predictions of a variety of electron-gas calculations stret
ing over the last several decades, which yieldedZk values in
Li ranging from 0.65 to 0.82.29–34 It is difficult to explain
such a low value ofZk within the framework of the
plasmaron-type physics underlying the conventional pict
of the interacting electron gas.35–39 We note, however, tha
the analysis of Compton data from a series of LiMg dis
dered alloys by Stutzet al.11 hinted that the behavior of L
may be idiosyncratic rather than being representative of m
als more generally.

Bearing all this in mind, we have been motivated to u
dertake the present study for several reasons. First, to
velop the direct Fourier transform technique further and
analyze in particular the error propagation within this reco
struction procedure. Second, to apply this method to rec
struct the momentum density of a realistic system in orde
assess how reconstruction and digital filtering affects
overall resolution. Finally, our choice of Li for this study is
natural one, since Li with its simple electronic structure
cently took on the role of touchstone for trying out a
0-2
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proaches involving the Compton spectra. Of course ther
also an intrinsic interest in carrying out a reconstruction
the momentum density of Li independent of the earlier wo
of Ref. 5, and to compare experiment and theory as to
overall shape of the momentum density, the asphericity
the Fermi surface, and related issues. Concerning differe
between our work and that of Ref. 5, apart from the use o
different method of reconstruction, a few further points m
be noted. We determine the Fermi-surface calipers strai
forwardly via the position of the inflection point in the slop
of the momentum density, without invoking the seconda
assumptions of Ref. 5 related to the reconstructed occupa
function. The momentum resolution of our experiments
slightly better, and the effect of resolution on the determi
tion of the Fermi radii is delineated in detail. Despite the
differences, it is satisfying to see that there is good ove
accord between our results and those of Ref. 5, sugges
that these results are fairly robust.

An outline of this paper is as follows. The introducto
remarks are followed in Sec. II with a brief discussion of t
experimental procedures. Section III outlines the theoret
methodology. In Sec. IV, relevant details of the direct Fo
rier method for momentum-density reconstruction are
scribed. Section V presents an analysis of the error prop
tion. Section VI discusses the experimental and theoret
results concerning the momentum density and Fermi sur
of Li. A few concluding remarks are made in Sec. VII. Th
derivations in the appendixes which tackle some of the te
nical issues are straightforward but somewhat unfamil
and we hope that their inclusion will help the readability
the text.

II. EXPERIMENT

The CP’s along 12 crystalline directions indicated in F
1 were measured with the multiarm, high-resolution Com
ton spectrometer installed at the beamline NE1 of the H
Energy Accelerator Research Organization. The details
this spectrometer were described by Sakuraiet al.40 X rays
from a multipole wiggler were monochromatized by a qua

FIG. 1. Stereographic plot of the 12 directions along which
Compton profiles of Li are measured for reconstruction of the thr
dimensional momentum density.
04512
is
f
k
e
f
es
a
y
t-

y
on
s
-

e
ll
ng

al
-
-
a-
al
ce

h-
r,

.
-
h
of

-

doubly-bent monochromator41 to 59.38 keV, with an energy
resolution of about 70 eV. The spectrometer has three a
each possessing a Cauchois-type Si~422! bent-crystal ana-
lyzer with an image plate~IP! as a position sensitive detec
tor. These are mounted on the surface of a cone whose
lies along the path of the incident x rays, so that each a
defines a scattering angle of 160 °. The spectrometer
measures CP’s along three different scattering vectors at
time. The Compton-scattered x rays are angle dispersed
the analyzer, and detected via the number of color cen
generated in the IP. The image stored on the IP is read b
scanning He-Ne laser beam over a mesh containing 1
31280 pixels of size 0.130.1 mm2. The details of the read
out system of the IP were described by Amemiyaet al.42 The
width between two adjacent channels in the IP correspo
to 0.023, 0.025, and 0.031 a.u. atpz5210, 0, and 10 a.u. in
a CP, respectively.

Single crystals of Li grown by a modified Bridgman tec
nique were cut into five disk-like 4-mm-thick samples wi
surface normals along the@100#, @110#, @111#, @211#, and
@221# crystalline directions, respectively. The crystals we
etched and cleaned by pure ethanol. The sample
mounted on a small goniometer, and set in a vacuum ch
ber which was evacuated to less than 1027 torr. Typical ac-
cumulated counts in one channel at the Compton peak
2.43105. Multiple-scattering events were simulated using
Monte Carlo method computer coded by Sakai.43 The frac-
tion of multiple-scattering events was found to be abo
3.6% of the single Compton scattering events in all cas
The background noise was determined in the same wa
described in Ref. 4.

The @100#, @110#, and @111# CP’s are the same as thos
presented previously by Sakuraiet al.4 We note, however,
that we have subtracted the computed solid-state core
files to obtain the valence CP’s. The overall momentum re
lution is 0.12 a.u. atpz50. The standard deviations~error
bars! were evaluated as follows. The data stored in the
contain errors originating in the photon counting process
addition to errors introduced by the read-out system. Th
errors depend mainly on the stability of the laser and
uniformity of the photostimulable phosphor in the IP. Th
nonuniformity of the total IP response has been estimate
be about 0.5 % by Itoet al.;44 the total standard deviations
for N counts is given by

s5AN10.0053N. ~2.1!

As a typical example, the value ofs at the peak of the CP
along the@100# axis is about 0.7% ofN.

III. COMPTON PROFILE COMPUTATIONS

The calculations use the all electron charge self-consis
Korringa-Kohn-Restoken band-structure scheme; the cry
potential is based on the von Barth–Hedin local-density
proximation to the exchange-correlation functional, and p
sesses a muffin-tin form.45–48 The band-structure problem
was solved to a high degree of self-consistency~energy
bands, Fermi energy, and crystal potential converged
about 1 meV! for the bcc Li lattice (a56.6163 a.u.) before

e
-
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YOSHIKAZU TANAKA et al. PHYSICAL REVIEW B 63 045120
proceeding with the CP calculations.49 The Lam-Platzman
correction to the CP’s was obtained using the occupa
number density for the uniform electron gas.50 For the CP
computations, the momentum density was evaluated o
mesh with 872653177 p points extending to about 5.0 a.u
This mesh corresponds to 87265ab initio k points in the
irreducible 1/48th of the Brillouin zone, with eachk point
translated to obtain 177p points using reciprocal-lattice vec
tors. In order to compute the CP’s efficiently, a vectoriz
version of the linear tetrahedron method in which one zoo
in on the momentum region in the vicinity of the Ferm
surface breaks~with a concomitant increase in the effectiv
density ofp points! was used. The CP’s of Li presented he
involve no essential approximation beyond the basic loc
density approximations,~LDA !; various other approxima
tions, such as the muffin-tin form of the potential, are b
lieved not to be significant. The final CP’s were comput
over a momentum mesh of 0.001 a.u. and are accurate
few parts in 104.

IV. RECONSTRUCTION

Equation~1.4! shows that the Fourier transform of a C
gives the values ofB(r ) along the direction of the scatterin
vector~i.e., thez axis!; henceforth we refer to this quantity a
a directionalB(r ). The 12 measured CP’s then yield valu
of B along 12 such rays. Note that the value ofB(0) in each
case equals the total number of electrons per atom. U
these directionalB(r )’s, we map out the values ofB(r ) on a
cubic mesh ofr points by interpolation. An inverse Fourie
transform ofB(r ) then gives the full 3D momentum densi
r(p).

The specific details of the procedure outlined above,
evant for developing the error propagation analysis in Sec
below, are as follows. Since the mesh over which the C
are measured is not equidistant, we first interpolate the C
onto a uniformpz scale (Dpz50.02 a.u.) in order to carry
out the Fourier transform. The CP’s are folded with resp
to the origin,pz50, which reduces the error bars. The CP
over the range from 0 to 4 a.u. are written asJl(kDp), where
0<k<200 is an integer,Dp50.02 a.u., andl 51,2, . . . ,12
is a directional index. Then the directionalB’s may be ex-
pressed as

Bl~ j Dr !52Dp(
k50

n

8 Jl~kDp!cosS jk
2p

N D ,

j 50,1,2, . . . ,n, ~4.1!

and, conversely, theJ’s are expressed as

Jl~kDp!5
Dr

p (
j 50

n

8 Bl~ j Dr !cosS jk
2p

N D ,

k50,1,2, . . . ,n. ~4.2!

Here Dr 52p/(NDp)50.153 a.u., n51024, N52n, and
(8 denotes a sum which includes all terms as shown, ex
that the first and the last term are multiplied by 1/2. W
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extendJ(p) to 20.48 a.u., and setJ(kDp)50 for 201<k
<1024 to makeDr small enough to describe theB(r ) func-
tion properly. The factor of 2 in Eq.~4.1! comes from the
folding aroundp50 noted above. The maximum value ofr
is p/Dp5157 a.u.

To reduce high-frequency noise originating from the
reading process, all the directionalB(r )’s are multiplied by
an empirical filter function,

f ~r !5H 1 for 0<r ,2r h

1
2

@~r 22r h!/r h#2
for r>2r h .

~4.3!

We user h523.1 a.u. which, as discussed in Appendix A,
consistent with the experimental momentum resolution.
ter filtering, the values ofB(r ) for the regionr>2.0r h be-
come almost comparable to the value of the standard de
tion s@B(r )#.

Next, we create a simple cubic mesh forB(r ) with 257
32573257 r points given by r5(2 j xDr ,2j yDr ,2j zDr ),
where j x , j y , j z50,1, . . . ,256, and 2Dr is the distance be-
tween adjacent points. The value ofB(r ) at eachr point is
obtained by interpolation as follows. The 12B(r ) functions
are first represented via third-order polynomials with coe
cients determined by a spline fit, so that the value ofB(r )
can be obtained for an arbitrary value ofr. The value ofB(r )
is now interpolated as

B~ j x , j y , j z!5u1Bl~r !1u2Bm~r !1u3Bn~r !

for 1< l ,m,n<12. ~4.4!

Here r 52DrA( j x
2)1( j y

2)1( j z
2), and Bl , Bm , and Bn are

three directionalB(r )’s whose directions are closest to an
enclose the direction (j x , j y , j z). The weightsu1 , u2, andu3,
with u11u21u351, are proportional to the spherical are
of the triangles made up by these four directions, as outli
in Appendix B.

For r(p), we similarly create a simple cubic mesh wi
25732573257 p points given by p5(kxDp/2,kyDp/2,
kzDp/2), whereDp/250.01 a.u., andk x , ky , and kz are
integers ranging from 0 to 256. The momentum density ap
is then given by

r~kx ,ky ,kz!5S 2Dr

p D 3

( 8
j x50

n

( 8
j y50

n

( 8
j z50

n

B~ j x , j y , j z!

3cosF ~kxj x1kyj y1kzj z!
2p

N G . ~4.5!

We setB( j x , j y , j z)50 for j x>257 or j y>257 or j z>257.
Note that the momentum densityr has the proper dimensio
of number of electrons per a.u.3

V. PROPAGATION OF ERRORS

An analysis of error propagation requires the evaluat
of variances and covariances of various physical variab
appearing in the reconstruction process; see Barlowi51 for a
summary of relevant basic relationships. We proceed in
following steps. First, we calculate the variances2@J8(p)#
0-4
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of the observed~not-normalized! profile, J8(p), and deter-
mine how it is transferred to the variance,s2@B8(r )#, of the
corresponding not-normalizedB function,B8(r ), and the co-
variance between two points ofB8(r ). Next we consider the
variance and the covariance of the normalizedB(r ), fol-
lowed by the variance and covariance of the interpola
B(r ). Finally, we obtain the variance ofr(p).

The standard deviations for the experimental~not-
normalized! Compton profileJ8 is given by Eq.~2.1!. After
folding with respect topz50, the variances are

s2@J8~kDp!#5~ANk10.005Nk!
21~AN2k10.005N2k!

2,

0<k<200. ~5.1!

Taking into account the effect of interpolatingJ(pz) to an
equidistant mesh, the variance propagation in the proces
Fourier transformingJ8 can be expressed as

s2@B8~ j Dr !#5~Dp!2 ( 8
k150

n

( 8
k250

n

cosS jk1

2p

N D
3cosS jk2

2p

N D cov@J8~k1Dp!,J8~k2Dp!#,

~5.2!

where uk12k2u<1 because only adjacent points inJ(kDp)
are correlated in the process of interpolation to the equi
tant mesh; the factor 2 which appears in Eq.~4.1! was al-
ready included in Eq. ~5.1!. The covariance,
cov@J8(k1Dp),J8(k2Dp)#, is equal to the variance
s2@J8(k1Dp)# when k15k2, and is equal tobcs2@J8(p1)#
whenk15k261; here, in the interpolation process, it is a
sumed that J8(k1Dp)5aJ8(p0)1bJ8(p1), J8(k2Dp)
5cJ8(p1)1dJ8(p2), andp0<k1Dp<p1<k2Dp<p2.

The covariance ofB8( j 1Dr ) andB8( j 2Dr ) is given by

cov@B8~ j 1Dr !,B8~ j 2Dr !#

5~Dp!2 ( 8
k150

n

( 8
k250

n

cosS j 1k1

2p

N D cosS j 2k2

2p

N D
3cov@J8~k1Dp!,J8~k2Dp!#, ~5.3!

where j 1 and j 2 run from 0 ton, anduk12k2u<1.
Recalling thatB(0) gives the number of valence ele

trons, we normalizeB8( j Dr ) via

B~ j Dr !5
B~0!

B8~0!
B8~ j Dr !. ~5.4!

The errors inB8 are transferred toB through Eq.~5.4!. The
variance of the normalizedB( j Dr ) is ~omitting Dr for con-
venience!

s2@B~ j !#

B~0!2
5s2S B8~ j !

B8~0!
D 5

s2@B8~ j !#

B8~0!2
1

B8~ j !2

B8~0!4
s2@B8~0!#

2
2B8~ j !

B8~0!3
cov@B8~0!,B8~ j !#. ~5.5!
04512
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Note thats2@B(0)#50 because the value of the number
the valence electrons is a constant.

The covariance ofB( j 1Dr ) andB( j 2Dr ) is obtained from
Eq. ~5.4! as

1

B~0!2 cov@B~ j 1!,B~ j 2!#

5
1

B8~0!2
cov@B8~ j 1!,B8~ j 2!#

2
B8~ j 1!

B8~0!3
cov@B8~0!,B8~ j 2!#

2
B8~ j 2!

B8~0!3
cov@B8~ j 1!,B8~0!#

1
B8~ j 1!B8~ j 2!

B8~0!4
s2@B8~0!#. ~5.6!

The related correlation coefficient between two points is

g@B~ j 1!,B~ j 2!#5
cov@B~ j 1!,B~ j 2!#

s@B~ j 1!#s@B~ j 2!#
. ~5.7!

Figure 2 shows a plot ofg@B(0),B( j 1)# on the@100# axis,
and is illustrative of the shape of the correlation functio
Note that this correlation coefficient decreases rapidly, an
large only in a limited region.

We now consider the variance and the covariance of
interpolated B(r ). Because each directionalB(r ) is ex-
panded into a set of third-order polynomials by the spl
interpolation, the variance ofB(r ) at an arbitraryr is given
by the polynomials whose coefficients are squared. Si
B( j x , j y , j z) is given in Eq.~4.4!, the variance is expresse
using j5( j x , j y , j z) as

s2@B~ j !#5u1
2s2@Bl 1

~r !#1u2
2s2@Bl 2

~r !#1u3
2s2@Bl 3

~r !#.
~5.8!

Here the covariance between twoB(r ) functions is zero,
because the measurements along two different directions
independent.

FIG. 2. The correlation coefficientg@B(0),B( j 1)# of B(r ) on
the @100# axis.
0-5
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The covariance of two points inB(r ) is

cov@B~ j1!,B~ j2!#5(
i

3

(
j

3

cov@uiBl i
~r !,ujBl j

~r !#d l i ,l j
,

~5.9!

where theui ’s are the coefficients used in Eq.~4.4!, the l i ’s
are directional indices, and the presence ofd l i ,l j

insures that

there is no correlation betweenBl i
andBl j

when l i5” l j .

Finally, the variance ofr(p) becomes

s2@r~k!#5S 2Dr

p D 6

( 8
j150

n

( 8
j250

n

cov@B~ j1!,B~ j2!#

3cosF ~k• j1!
2p

N GcosF ~k• j2!
2p

N G , ~5.10!

where, as before,k5(kx ,ky ,kz) is the vector of integers
related to the components ofp, and j5( j x , j y , j z). In this
equation, cov@B( j1),B( j2)#5s2@B( j )# when j15 j2.

VI. RESULTS AND DISCUSSION

It is important first to assess how well the direct Four
transform method works under conditions used to reconst
the experimental momentum density. For this purpose,
apply the method to 12theoretical CP’s along directions
which are identical to those of the measured profiles~see
Sec. III above! and where the answer~i.e., the underlying 3D
momentum density! is known independently. The meshes f
B(r ) andr(p) are also chosen to be the same as those u
for reconstructing the experimental data. To keep mat
relatively simple, the experimental resolution and statisti
noise in the data are not included in the theoretical CP’s.
reconstruction was carried out with and without the use
the filter function of Eq.~4.3!. Figure 3 compares the origina
r(p) and the reconstructed one along three high-symm
lines. The truer(p) ~dotted line! possesses a break at th
Fermi momentumpf , and along the@110# direction, a step-
wise rise at 0.73 a.u. due to a high momentum compon
~HMC!. In the reconstructedr(p), even without the filter
~dashed line!, the step atpf is smeared; the smearing of th
HMC related step along the@110# direction is comparable
~keeping the step size in mind!. Our analysis indicates tha
the reconstruction process effectively introduces a smea
of the Fermi steps which can be viewed as a convolut
with a Gaussian of full width at half maximum~FWHM! of
0.03 a.u. The reconstruction also introduces unwan
ripples arising from the sharp variation atpf in the CP’s.

As expected, the inclusion of the low-pass filter in t
reconstruction process is seen by comparing solid
dashed curves in Fig. 3 to cause a reduction in the h
frequency oscillations at the expense of introducing gre
smoothing. Aroundpf , the effective broadening in the fil
tered case is equivalent to a convolution with a Gauss
with a FWHM of 0.07 a.u., although the filter hardly d
grades the step in the HMC along the@110# direction. The
size of the break atpf in the truer(p) is significantly smaller
along the@110# direction than along the@100# direction due
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to crystal potential effects, but this is not clear in the reco
structedr(p), especially when the filter is used. The HM
along the@110# direction in the reconstructedr(p)’s ~with or
without filter! is only somewhat (;60%) more pronounced
than a similar bump along the@100# or @111# direction and
the HMC amplitude is comparable to the size of the spurio
ripples aroundpf . The value of the reconstructed mome
tum density is systematically higher than theory at low m
menta. Finally, we note that the position of the inflecti
point in the slope of the reconstructedr(p) is systematically
found to be lower than the corresponding truepf values; we
shall return to discuss this point later in this section. T
preceding remarks should be kept in mind when deduc
physical parameters from the reconstructedr(p), even
though, in view of Fig. 3, the present direct Fourier meth
works reasonably well overall.

With this background, we compare ther(p) reconstructed
from the 12 measured CP’s with that reconstructed from
12 corresponding theoretical CP’s after the latter are con
luted with the experimental resolution function. Figures 4~a!
and 4~b! show the contour maps of the theoretical and e
perimentalr(p) in the ~110! plane, respectively. Here, th
effective total momentum resolution is 0.139 a.u., which
obtained by summing the squares of the instrumental res
tion ~0.12 a.u.! and the broadening due to reconstruction a
filtering ~0.07 a.u.!. By looking at the density of the contou

FIG. 3. Comparison of the theoreticalr(p) along @100#, @110#,
and @111# directions with and without reconstruction. Dotted line
momentum density computed directly~i.e., without reconstruction!.
Solid lines: r(p) reconstructed from 12 theoretical profiles usin
the same filter function as that used in reconstructing the exp
mental profiles. Dashed lines: theoreticalr(p) reconstructed with-
out the filter function.
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RECONSTRUCTED THREE-DIMENSIONAL ELECTRON . . . PHYSICAL REVIEW B63 045120
lines it is clear that the experimental break atpf is broader
than predicted theoretically. The HMC-related bump arou
0.8 a.u. along the@110# direction is quite distinct in the
theory. The signature of this HMC in the experimental da
however, is blurred and barely visible.

Figure 5 shows the error map for the experimentalr(p).
The largest error, 4.1%, is found atp50. Since r(0)
5*B(r )dr , the error inr(0) is given by the error in the tota
volume of theB(r ) distribution. It is therefore finite, in con
trast to the case17 where r(0) is found from r(0)
52(2pp)21(dJ/dp)up50. Although the present reconstruc
tion process involves the entire profile, the fundamental f
remains that the planar integration geometry is unfavora
for obtaining the density at isolated points such asp50.
Moving out fromp50 along the directions of high symme
try, there is first a rapid decrease of the error, followed b
plateau betweenp;0.10 and 0.30 a.u. in the@001# direction,

FIG. 4. Contour maps of the theoretical~a! and experimental~b!
r(p) on the ~110! plane reconstructed using the filter functio
Resolution broadening is included in the theory. The contour in
val is 0.035 electrons/a.u.3 The dashed lines mark the firs
Brillouin-zone boundary.
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and betweenp;0.15 and 0.35 a.u. along the@110# direction
where the error does not change much withp. ~This is also
seen in Fig. 6 where the lengths of the error bars do not s
to change much betweenp50.1 and 0.4 a.u.! From about 0.4
a.u. onward the error decreases slowly with increasingp and

r-

FIG. 5. Contour map of the experimental error bars correspo
ing to the reconstructedr(p) shown in Fig. 4~b!. The contour in-
terval is 0.002 electrons/a.u.3

FIG. 6. @100#, @110#, and @111# sections through the recon
structed theoretical~solid lines! and experimental~dots! momentum
densities shown in Fig. 4. Both sets of densities have been nor
ized such thatB(0) equals the number of valence electrons.
0-7
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YOSHIKAZU TANAKA et al. PHYSICAL REVIEW B 63 045120
it is striking that, for a givenp ~limiting ourselves to high-
symmetry directions!, the error bars are generally the large
along the@100# direction, and smallest along the@111# direc-
tion, with the@110# direction lying in between. This is due t
the terms in Eq.~5.10! with j15” j2, which are proportional to
the correlation between two points inB(r ), interfering con-
structively in some directions and destructively in othe
giving rise to an uneven accumulation of errors. We emp
size that the asphericity of the error map depends strongl
the crystallographic symmetry. Hansenet al.52 showed that
the error may be reduced somewhat~particularly in the@100#
direction! if the statistics is increased for high-symmetry pr
files in proportion to the statistical weight of the directio
However, even then the error distribution remains stron
anisotropic.

Figure 6 shows sections along the@100#, @110#, and@111#
axes through the reconstructed experimental and theore
r(p)’s of Fig. 4. The wiggles in ther(p)’s are computa-
tional artifacts associated with the Fourier transform t
cannot be filtered out by the filtering function. In each
these directions, the experimentalr(p) is seen to lie below
theory at low momenta. The situation reverses itself at h
momenta, with a crossover point aroundpf , where the the-
oretical slope is distinctly greater~in absolute value! than
experiment. Consistent with several recent studies,4–12 these
discrepancies between theory and experiment reflect the
fects of electron correlations~beyond the present LDA
theory! which shift spectral weight from below to above th
Fermi momentum and reduce the size of the breakZk at the
Fermi momentum.53,54 Reference 5 adduced a nearly ze
value ofZk in Li from an analysis of their CP data. Althoug
our conclusions in this regard are qualitatively similar
those of Ref. 5~i.e., the measuredZk is significantly smaller
in Li than LDA predictions!, we find it difficult to ascribe a
definite value toZk in view of uncertainties inherent in th
reconstructedr(p).

We now address the issue of obtaining Fermi surface r
from the structure inr(p), and delineate the associate
subtleties. The Fermi momentum may be defined straight
wardly as the position of the inflection point given by th
minimum in the slope~or equivalently the zero of the secon
derivative! of r(p). In order to gain insight into the accurac
of this procedure, we have carried out a number of simu
tions. A spherical distribution was simulated first by taki
12 identical profiles each given by the nonconvoluted@100#
profile with a Fermi cutoff at 0.5764 a.u. An examination
inflection points along various directions inr(p) recon-
structed with filtering yielded a spherical Fermi surface
radius 0.5779 a.u., in good agreement with the origi
value.55

The aspherical Fermi surface of Li is considered via t
simulations referred to as theory WR and theory NR. B
are based on the filtered reconstruction of the momen
density from the 12 theoretical CP’s. The only difference
that in theory WR the experimental resolution is folded
while in theory NR it is not. The theoretical cross section
the Fermi surface in the@110# plane obtained by searchin
for the inflection points along various directions is compa
with the corresponding experimental results in Fig. 7, an
04512
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good overall accord is seen. However this figure does
provide an accurate picture as hinted by the fact that in F
7 theory WR is systematically lower than theory NR. In th
connection, Appendix C shows that when the inflection po
is used to determine the radius, the effective resolution
sulting from the combination of optical resolution, filterin
and reconstruction causes the radius to beunderestimated.
The approximate, model-dependent expression@Eq. ~C7!#
derived in Appendix C may be used to make a suitable c
rection.

Figure 8 presents theoretical and experimental radii c
rected via Eq.~C7! using appropriate parameters. Accor
ingly, the corrected theory WR and theory NR radii of Fig.
are larger~in relation to the uncorrected values in Fig. 7! by
1% and 0.25%, respectively. A comparison of Figs. 7 an
shows that the correction indeed brings the results of theo
WR and NR closer to each other, although some resid
discrepancies remain, emphasizing the approximate natu
the analysis of Appendix C. The experimental radii we
similarly corrected by increasing the values in Fig. 7 by 1
to account for the effective total resolution of 0.139 a.u. F
ure 8 also shows the experimental~Compton! results of
Schülke et al.5 as well as those obtained by Oberliet al.56,57

from 2D angular correlation of positron-annihilation radi
tion measurements. It is satisfying to see that within the lim
tations of the experimental error bars there is a good leve
agreement between the three sets of independent experi
tal points in Fig. 8.

In Fig. 8 we also show~diamonds! the Fermi radii along
the three high-symmetry directions obtained directly v
band computations without the use of any reconstructi
The @111# and @100# radii are seen to be in reasonably go
agreement with the theoretical and experimental values,
the computed@110# radius is distinctly larger than all othe
reconstructed values. The fact that the reconstructed the

FIG. 7. Uncorrected~see text! Fermi radii in the@110# plane in
Li. Theory WR~chain line! and theory NR~dotted line! give results
obtained by locating the inflection point in the slope of ther(p)
reconstructed from 12 filtered theoretical profiles, except that the
WR includes experimental resolution while theory NR does n
The filled circles give~uncorrected! results based on the 12 prese
experimental profiles.
0-8



to
m
n
s
b

e
h
e
es
a

ith
e

in

e
-

f

th
e
re

i

a

h

t in
er
ntal
lts
ermi
o
g
er
ad-
om

f a
sti-

this
isot-
ted
g
Li
nts.

the

out
c-
ting

ence
lly.

ith
s
ract
nt
e

ien-

d-
94-

-

the

s
tio
d.
m
e

RECONSTRUCTED THREE-DIMENSIONAL ELECTRON . . . PHYSICAL REVIEW B63 045120
ical @110# radius is significantly smaller58 than its true value
~0.6112 a.u.! indicates that the reconstruction is unable
reproduce faithfully the rather local protrusion of the Fer
surface in the@110# direction. This suggests that the prese
set of 12 directional CP’s is not adequate for this purpo
and that to reproduce this feature more directions should
chosen around the@110# axis.

VII. SUMMARY AND CONCLUSION

We have reconstructed the 3D electron momentum d
sity r(p) in Li via a direct Fourier transform method whic
is free from functional assumptions concerning the shap
r(p). For this purpose, high-resolution Compton profil
~CP’s! have been measured along a set of 12 directions,
highly accurate computations ofr(p) as well as the CP’s
along the same set of directions have been carried out w
the band theory framework. Extensive comparisons betw
r(p) reconstructed from theoretical CP’s with the true~with-
out reconstruction! theoretically computedr(p) give insight
into the accuracy of our reconstruction procedure, and
how various parameters affect the reconstructedr(p). In this
way, we show that our method reproduces the structur
the underlyingr(p) reasonably faithfully, some discrepan
cies notwithstanding. The reconstruction process itsel
shown to yield an effective broadening inr(p) of 0.03 a.u
~FWHM!. The use of a low-pass filter reduces noise at
cost of inducing a further broadening of 0.063 a.u. Wh
combined with our resolution of 0.12 a.u. in the measu
CP’s, these results imply that the total effective resolution
our filtered reconstructed experimentalr(p) is 0.139 a.u.
The propagation of errors is considered in detail, and
appropriate formula for the present direct Fourier method
derived and applied to the case of our experiments. T

FIG. 8. Corrected~see text! Fermi radii in the@110# plane in Li.
Theory WR ~chain!, theory NR ~dots!, and present experiment
~filled circles! are the same as in Fig. 7, except that the correc
based on Eq.~C7! of Appendix C discussed in the text was applie
The open diamonds give the radii along the three principal sym
try directions via band theory computations which do not involv
reconstruction. Earlier results of Refs. 5~solid line! and 56~open
traingles! are shown for comparison.
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analysis indicates that errors in the reconstructedr(p) accu-
mulate unevenly along high-symmetry directions, and tha
order to obtain a more uniform distribution of errors a high
statistics along such directions is required. The experime
r(p) ~in comparison to the corresponding theoretical resu!
shows a substantially more smeared out break at the F
momentumpf , and a shift of spectral weight from below t
above pf , clearly indicating the importance of includin
electron correlation effects beyond the LDA for a prop
description of the momentum density. The question of
ducing the Fermi-surface radius along a given direction fr
the position of the inflection point in the slope ofr(p) is
examined at length, and it is found that in the presence o
finite resolution such a procedure systematically undere
mates the radius; an approximate formula to correct for
error is presented. The Fermi-surface calipers and the an
ropy of the Fermi surface deduced from the reconstruc
experimentalr(p) are in good accord with the correspondin
theoretical results as well as with the earlier results in
based on Compton and positron-annihilation measureme
Notably, however, the band theory predicts a bulging of
Fermi surface along the@110# direction, which is larger than
seen in the measurements. In this connection, we point
that ther(p) reconstructed from the present set of 12 dire
tions is not sensitive to the aforementioned bulge, sugges
that a set of directions clustered better around the@110# di-
rection is necessary for delineating the presence or abs
of this rather localized Fermi surface feature experimenta
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APPENDIX A

Here, we briefly describe how the value ofr h523.1 a.u.
is obtained in connection with the filter function of Eq.~4.3!.
We write the functionh(x) obtained by convoluting a func
tion f (x) with a Gaussiang(x)5e2(x/a)2

as

h~x!5E f ~x2t !e2(t/a)2
dt. ~A1!

The Fourier transform ofh(x) is

E h~x!e2 irxdx5pAae2(ar/2)2E f ~x!e2 irxdx5G~r !F~r !.

~A2!

HereG(r ) andF(r ) are the Fourier transforms ofg(x) and
f (x), respectively, and the second equation represents

n
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YOSHIKAZU TANAKA et al. PHYSICAL REVIEW B 63 045120
standard ‘‘Faltung’’ theorem of Fourier transform. An im
portant relationship can be obtained between a resolu
function and its Fourier transform. Letg(xh)51/2 and
G(r h)/G(0)51/2; then

xhr h52 ln 2. ~A3!

For the experimental CP’s, we assume that the resolu
function is expressed by a Gaussian (1/2)(p/xh)2

, with xh
50.06 a.u. From Eq.~A3!, this resolution function in the
reciprocal space corresponds to a Gaussian (1/2)(r /r h)2

with
the value ofr h523.1 a.u.

APPENDIX B

We briefly discuss the three-point interpolation formu
@Eq. ~4.4!# and comment on a few related subtleties. Fi
assume a linear functionf given at three points (x1 ,y1 ,z1),
(x2 ,y2 ,z2), and (x3 ,y3 ,z3), where thezi coordinate denotes
the function valuef i at point (xi ,yi) ~cf. Fig. 9!. A point
(x,y) is situated within the triangle defined by these thr
points;z denotes the interpolated valuef z being sought. The
plane through the three points in question may be defined

a~x2x1!1b~y2y1!1c~ f z2 f 1!50,

a~x2x2!1b~y2y2!1c~ f z2 f 2!50, ~B1!

a~x2x3!1b~y2y3!1c~ f z2 f 3!50.

This set of equations has a nonzero solutiona,b,c only if its
determinant is zero. Splitting up the determinant yields

Ux2x1 y2y1 f z

x2x2 y2y2 f z

x2x3 y2y3 f z
U2Ux2x1 y2y1 f 1

x2x2 y2y2 f 2

x2x3 y2y3 f 3
U50.

~B2!

Using the rule for addition of determinants several times, a
noting that the areaS of the triangle defined by the point
(x1 ,y1), (x2 ,y2), and (x3 ,y3) is given by59

FIG. 9. Linear interpolation between three points.
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S5
1

2Ux1 y1 1

x2 y2 1

x3 y3 1
U , ~B3!

the first determinant in Eq.~B2! can be reduced to 2f zS.
Similarly, the areaS1 of the subtriangle defined by the poin
(x,y), (x2 ,y2), and (x3 ,y3) can be written as

S15
1

2Ux y 1

x2 y2 1

x3 y3 1
U

5
1

2
~x2y32x3y22xy31x3y1xy22x2y!. ~B4!

By inspection it is clear that the expression within brack
on the right-hand side of Eq.~B4! is equal to the cofactor o
f 1 in the second determinant in Eq.~B2!. Thus it has been
shown that

f z5~ f 1S11 f 2S21 f 3S3!/S, ~B5!

i.e., the weights in the interpolation are found from the are
of the subtriangles opposite the respective points. In
case, the four points~i.e., the point where the interpolate
value is sought and the three other points! will usually not lie
in a plane, although deviations will in general be small; ho
ever, since any four points define the surface of a uniq
sphere, we can approximately map our problem to one
interpolating a linear function of solid angles on the surfa
of a sphere. It is resonable thus to use formula~B5! with the
planar areas of various triangles replaced by the corresp
ing spherical areas. Strictly, of course, one needs indep
dent function values at four noncoplanar points for a gene
three-dimensional linear interpolation problem.

Although the method described above has been use
obtain the coefficientsui in Eq. ~4.4!, we note that the crysta
symmetry will be more naturally accounted for by expandi
B(r ) into normalized lattice harmonics~in the present case
the Kubic harmonics of Von der Lage and Bethe60!

Bi~r !5(
l

bl~r !Kl~V i !, ~B6!

whereKl(V i) is the lattice harmonic of orderl, andV i de-
notes thei th direction. By solution of this set of equation
bl(r ) can be expressed as linear combinations of theBi as
follows:

bl~r !5(
k

cklBk~r !. ~B7!

The interpolated valueB( j x , j y , j z) for the direction
( j x , j y , j z) is then found from

B~ j x , j y , j z!5(
l

bl~r !Kl~ j x , j y , j z!5(
k

vkBk~r !,

~B8!
0-10
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RECONSTRUCTED THREE-DIMENSIONAL ELECTRON . . . PHYSICAL REVIEW B63 045120
where, using Eq.~B7!, vk5( lcklKl( j x , j y , j z). Although for-
mula ~B8! better accounts for crystal symmetry, it may
more susceptible to noise than the linearized method of
~B5!.

APPENDIX C

Here we derive an approximate expression for the diff
ence between the true value of the Fermi-surface radius
that given by the position of the maximum in the radial d
rivative, i.e., the inflection point inr(p) where the second
derivative rapidly changes sign. This analysis is used
make the corrections to radii invoked in connection w
Figs. 7 and 8. Consider a model consisting of a free-elec
Fermi sphere of radiuspf within which the momentum den
sity r(p) is unity:

r~p!5H 1 if p<pf

0 if p.pf .
~C1!

The CP for this momentum distribution is

J~pz!5H p~pf
22pz

2! if pz<pf

0 if pz.pf .
~C2!

Let us assume that the profile is measured with a Gaus
resolution given byR(p)5(1/lAp)exp(2p2/l2), i.e., the
FWHM of R(p) is 2l(ln 2)1/2. The measured CP,Jm , is
then given by

Jm~pz!5~p1/2/l!E
2pf

pf
~pf

22p2!exp@2~p2pz!
2/l2#dp

5p1/2Fpf
2E

az

bz
exp~2u2!du2E

az

bz
~lu1pz!

2

3exp~2u2!duG , ~C3!

whereaz5(2pf2pz)/l andbz5(pf2pz)/l. Since the mo-
mentum distribution is isotropic,

r~p!52~2pp!21dJm~p!/dp

5p21/2H E
a

b

exp~2u2!du2l/2p

3@exp~2b2!2exp~2a2!#J , ~C4!

with a5(2pf2p)/l and b5(pf2p)/l. The second and
third terms in Eq.~C4! are vanishingly small except in th
vicinity of 6pf . From Eq.~C4!, it follows that
l-

04512
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dr~p!/dp5p21/2$l/2p2@exp~2b2!2exp~2a2!#2~pf /p!

3@exp~2b2!1exp~2a2!#% ~C5!

and

d2r~p!/dp25p21/2H F2pf

l3 S 12
pf

p D1
1

lp S 2pf

p
21D2

l

p3G
3exp~2b2!1F2pf

l3 S 11
pf

p D1
1

lp S 2pf

p
11D

1
l

p3Gexp~2a2!J . ~C6!

Concentrating on the regionp;1pf , we setp5pf1d,
and note that exp(2a2);0, while d and l are both much
smaller than the Fermi radiuspf . The position of the inflec-
tion point of r(p) is found by requiring thatd2r(p)/dp2

50. Keeping only the lowest powers ofd/l andl/pf , one
finds

d;2l2/2pf . ~C7!

Thus the use of the inflection pointunderestimatesthe Fermi
radius. This systematic error increases quadratically with
FWHM of the resolution, which stresses the importance o
high resolution.

The quadratic addition of the extra resolution of 0.03-a
FWHM ~i.e., l50.018 a.u. andd520.0003 a.u.), caused
by the reconstruction process~without filtering! of unconvo-
luted curves, and the optical resolution of the experime
~0.12-a.u. FWHM! yields a total resolution of 0.124-a.u
FWHM ~i.e., l50.074 a.u.) andd520.0046 a.u., i.e., the
Fermi radius estimated from the position of the inflecti
point is 0.8% too small. If the reconstruction is performed
a set ofunconvolutedcurves but with filtering, the total reso
lution is 0.07-a.u. FWHM, which yieldsd520.0015a.u.,
i.e., 0.25%. Finally, the combined resolution from convo
tion, reconstruction, and filtering is 0.139-a.u. FWHM, sod
520.0058 a.u., resulting in a radius that isunderestimated
by 1%.

Incidentally, another method often used to estimate
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