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Reconstructed three-dimensional electron momentum density in lithium:
A Compton scattering study
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The three-dimensional electron momentum densf{y) in Li is reconstructed via a direct Fourier transform
method which is free from functional assumptions concerning the shapépdf For this purpose, 12 high-
resolution Compton profiles are measured, and corresponding highly accurate computations carried out within
the band theory framework. Extensive comparisons betweep(ihlés reconstructed from the theoretical and
experimental profiles with each other and with the tfwé&hout reconstructionunderlying computeg(p) are
used to gain insight into the accuracy of our procedures, and to delineate the effects of various parameters
(filtering, resolution, etg.on the reconstructed(p). The propagation of errors is considered in detail, and a
general formula appropriate for the present direct Fourier method is derived. The experip(gn)tain
comparison to the theoretical resulshows a substantially more smeared out break at the Fermi momentum
ps, and a shift of spectral weight from below to abopg, clearly indicating the importance of electron
correlation effects beyond the local-density approximation for a proper description of the ground-state mo-
mentum density. The question of deducing Fermi-surface radii in terms of the position of the inflection point
in the slope ofp(p) in the presence of finite resolution is examined at length. The experimental Fermi surface
and its asphericity is in good overall accord with theoretical predictions, except that band theory predicts a
bulging of the Fermi surface along tH&10] direction, which is greater than seen in the measurements;
however, our analysis suggests that the set of 12 directions used in the present experiments may not be optimal
(in number or orientationgor observing this rather localized Fermi-surface feature.
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I. INTRODUCTION

J(pz)=J f p(P)dp«dpy, (1.9
Properties of the ground state are of fundamental impor-

tance for understanding the nature of electronic states and the o o

associated excitation spectrum of materials. Accordingly, a¥/here thez axis lies along the direction of the x-ray scatter-

second and third generation synchrotron light sources hav/g9 vector. Within the independent-particle mode{p) can

come on line in recent years, there has been a resurgence §f €xPressed

interest in high-resolution Compton scattering as a direct

probe of the electronic ground stad@3 The measured oce. )
Compton profile(CP) J(p,) is propo_rtlor?al to the twice in- p(p):(27r)*32 f Y (Nexp—ip-ndr| , (1.2
tegrated electron momentum densitfp): kv
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where i, ,(r) denotes the electron wave function for stkte ity spin densities from magnetic CP’s of Fe by Tanalat
and bandv, and the summation is over all occupied states. al.?>?? In these studies, no corresponding error map was
Equation(1.2) makes it obvious that in a metallic system given because a method to analyze the error propagation was
the CP will contain fingerprints of the positions and sizes ofnot yet developed at the tinf& Recently, Cormack’s method
Fermi-surface-related breaks in the underlying momentunjvas developed further by Kontrym-Sznagtial.>* and ap-
density. However, the presence of the double integral in Ecplied by Dugdaleet al?® to the reconstruction of the 2D
(1.1 generally tends to obscure this information. One way tOglectron momentum density of Cr from several directional
circumvent this problem is to measure CP’s along a series afp's. The essential ingredient of Cormack’s method is the
directions, and to use the set of two-dimensiof2i) pro-  expansion of both CP’s and momentum density into polar
jections in Eq.(1.1) so obtained, to “reconstruct” the 3D Fourier series. Finally, the maximum entropy method, which
function p(p). Although such reconstruction procedures pos-is already an established method in the field of charge-
sess a long history, much of the existing work was limited togensity reconstruction, was adapted to momentum density
the older (low-momentum resolutionCompton data using reconstruction by Dobrzynski and Hol&s.
y-ray sources. Paucity of experience in this regard with the  The momentum density and the Fermi surface of bcc Li
high-resolution synchrotron-based Compton data provides @ere repeatedly studied by Compton scattering, because Li
great impetus for undertaking a study such as the present oRgon cooling below about 75 K undergoes a partial Marten-
as a means of getting a handle on the Fermi surface signajtic transformation to a phase which was long believed to be
tures and electron correlation effectsd(p). hcp but is now considered to be &9elated samarium-type
The first method used to reconstruct the momentum dergf structure with numerous stacking faulfslt is therefore
sity from CP’s or one-dimensional positron annihilation an-impossible to apply conventional techniques to measure the
gular correlation spectfawas formulated by Mijnarend$'’  Fermi-surface calipers in bce Li, although a high-magnetic-
who, in the vein of Cormack’s approathexpanded both field study of the de Haas—van Alphen effect in a dispersion
p(p) and the measured profiles into lattice harmonics angf micrometer-sized grains of Li yielded the overall radial
derived a relation between the two expansions. Another wayistortion28

to obtain p(p) is to utilize the properties of the so-called  The first high-resolution, high-statistics measurements of

reciprocal form factor, the CP’s of Li were reported by Sakueti al,* who deduced
the Fermi surface calipers along the three high-symmetry
i directions by analyzing the second derivatives of the mea-
B(r)= exp—ip-r)dp. 1.3 y 1yzIing

" j J Jp(p) A=ip-ridp 3 sured profiles. Schie et al® employed the Fourier-Bessel
method?® to reconstruct the momentum density from 11 mea-
It follows from Eqs.(1.1) and(1.3) that sured directional profiles, and obtained the corresponding er-
* _ ror map. This was the first serious attempt to reconstruct the
B(0,0,z)=f J(p,)e "“Pdp,. (1.4  momentum density in a metal from CP’s. Reference 5 also

reconstructed the occupation number density to map out the

If zis chosen along the various scattering vectors, the FourigtSPhericity of the Fermi surface in ti10 plane, and dis-
transformed CP's yield(r) along radii inr space. From cussed the quasiparticle renormalization paramgjesy fit-
there onward one can follow two different approaches tding the occupation number density near the Fermi wave vec-
obtainB(r) in all of r space: Either one expanBgr) intoa  tor on the[100] axis to a jellium model. The valug,=0.1

set of appropriately chosen basis functiohsr one straight- =0-1 deduced in this manner is strikingly smaller than the
forwardly mapsB(r) in r space by interpolation. The latter _pred|ct|ons of a variety of electron-ggs ca_lculatlons stretch—
method is called the direct Fourier transform method, and"d over the last several deC%O_Igf, which yieldgd/alues in
makes no implicit functional assumptions concerning the-i ranging from 0.65 to 0.82°~**It is difficult to explain

shape ofp(p). OnceB(r) is known, p(p) can then be ob- Such a low value ofZ, within the framework of the
tained by Fourier transformation: plasmaron-type physics underlying the conventional picture

of the interacting electron gds-3° We note, however, that
the analysis of Compton data from a series of LiMg disor-
P(D)Z(Zﬂ)f?’f f f B(r)explip-r)dr. (1.5  dered alloys by Stutet al*! hinted that the behavior of Li
may be idiosyncratic rather than being representative of met-
Hansen® applied Eq.(1.4) to obtain theB(r) function, fol-  als more generally.
lowed by an expansion d8(r) into lattice harmonics. This Bearing all this in mind, we have been motivated to un-
method is often called the Fourier-Bessel method. Hansedertake the present study for several reasons. First, to de-
also presented an error analysis. Both Mijnarends’ and Hans«elop the direct Fourier transform technique further and to
en’s method were computer coded. analyze in particular the error propagation within this recon-
The direct Fourier method was first applied to reconstrucstruction procedure. Second, to apply this method to recon-
the 3D electron-positron momentum density from the 2Dstruct the momentum density of a realistic system in order to
angular correlation of positron annihilation radiation mea-assess how reconstruction and digital filtering affects the
sured by Suzuket al.on Ti and Zr®° Later, the method was overall resolution. Finally, our choice of Li for this study is a
applied to reconstruct the 3D spin-dependent momentumatural one, since Li with its simple electronic structure re-
density(i.e., the difference between the majority and minor-cently took on the role of touchstone for trying out ap-
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[111] doubly-bent monochromattrto 59.38 keV, with an energy
resolution of about 70 eV. The spectrometer has three arms,
each possessing a Cauchois-type(4d2) bent-crystal ana-

40 lyzer with an image platélP) as a position sensitive detec-

tor. These are mounted on the surface of a cone whose axis

lies along the path of the incident x rays, so that each arm
defines a scattering angle of 160°. The spectrometer thus
measures CP’s along three different scattering vectors at one

20 time. The Compton-scattered x rays are angle dispersed by

the analyzer, and detected via the number of color centers
generated in the IP. The image stored on the IP is read by a
10 scanning He-Ne laser beam over a mesh containing 1280
X 1280 pixels of size 0.£0.1 mn?. The details of the read-
10 * [110] out system of the IP were described by Amengyal*? The
[100] 20 80 40 width between two adjacent channels in the IP corresponds
. o . to 0.023, 0.025, and 0.031 a.u.@t= —10, 0, and 10 a.u. in
FIG. 1. Stereographic plot of the 12 directions along which they CP, respectively.

C_omptc_)n profiles of Li are megsured for reconstruction of the three- Single crystals of Li grown by a modified Bridgman tech-

dimensional momentum density. nigue were cut into five disk-like 4-mm-thick samples with

. . surface normals along thgl00], [110], [111], [211], and

proaches involving the Compton spectra. Of course there ;[3221] crystalline directions, respectively. The crystals were

e g oL econstclon Setcned and cleaned by ure. ethanol. The Sample was
y P mounted on a small goniometer, and set in a vacuum cham-

of Ref. 5, and to compare experiment and theory as to th : - :
. -~ er which was evacuated to less than 1@orr. Typical ac-
overall shape of the momentum density, the asphericity o )
cumulated counts in one channel at the Compton peak are

the Fermi surface, and related issues. Concerning dil‘ferenc%s_,4>< 10F. Multiple-scattering events were simulated using a

between our work and that of Ref. 5, apart from the use of
different method of reconstruction, a few further points mayq\iﬂo?]ntgf Cﬂ?ﬂﬁipr:;e_tsrl(;?t:ﬁr:gpZ?énigdﬁgsb%ﬁﬁa@ebfera;)out

be noted. We determine the Fermi-surface calipers straight; 6% of the sinale Compton scattering events in all cases
forwardly via the position of the inflection point in the slope = o gie ¢ P ring € :
The background noise was determined in the same way as

of the momentum density, without invoking the Secondary%escribed in Ref. 4.

assumptions of Ref. 5 related to the reconstructed occupatio The [100], [110], and[111] CP's are the same as those

function. The momentum resolution of our experiments is ; 4
) . . “presented previously by Sakuref al.” We note, however,
slightly better, and the effect of resolution on the determina; )
that we have subtracted the computed solid-state core pro-

tion of the Fermi radii is delineated in detail. Despite theseiles 10 obtain the valence CP’s. The overall momenturm reso-
differences, it is satisfying to see that there is good overa’[[ga ‘

accord between our results and those of Ref. 5, suggesti tlr(;)nv:/sergtz\/gﬁuéteagz;ofbI-II-:VSSSt'?Ega(;(;tges\,{clgzaocjr(ﬁ:r?r:e P
that these results are fairly robust. '

A outine of ths paper i a5 folaws. The inrocuctory YA eTrS oTOAING 1 the proton cauntng process,
remarks are followed in Sec. Il with a brief discussion of the rrors depend mainly on the Ztabilit of the Igser a.nd the
experimental procedures. Section Il outlines the theoretical P y y

methodology. In Sec. IV, relevant details of the direct Fou_uniformity of the photostimulable phosphor in the IP. The

. : . nonuniformity of the total IP response has been estimated to
hod f - : S
rier method for momentum-density reconstruction are de e about 0.5 % by Itet al;* the total standard deviation

scribed. Section V presents an analysis of the error propa f SO
tion. Section VI discusses the experimental and theoretic pr N counts is given by

results concerning the momentum density and Fermi surface _

of Li. A few concluding remarks are made in Sec. VII. The o= N+0.005<N. @1
derivations in the appendixes which tackle some of the techAs a typical example, the value of at the peak of the CP
nical issues are straightforward but somewhat unfamiliaralong the[100] axis is about 0.7% oN.

and we hope that their inclusion will help the readability of

the text. lll. COMPTON PROFILE COMPUTATIONS

30

The calculations use the all electron charge self-consistent
Korringa-Kohn-Restoken band-structure scheme; the crystal

The CP’s along 12 crystalline directions indicated in Fig.potential is based on the von Barth—Hedin local-density ap-
1 were measured with the multiarm, high-resolution Comp-roximation to the exchange-correlation functional, and pos-
ton spectrometer installed at the beamline NE1 of the Higlsesses a muffin-tin ford?~*® The band-structure problem
Energy Accelerator Research Organization. The details ofvas solved to a high degree of self-consisterienpergy
this spectrometer were described by Sakattaal®® X rays  bands, Fermi energy, and crystal potential converged to
from a multipole wiggler were monochromatized by a quasi-about 1 meV for the bcc Li lattice 6=6.6163 a.u.) before

Il. EXPERIMENT
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proceeding with the CP calculatiof5The Lam-Platzman extendJ(p) to 20.48 a.u., and sel(kAp)=0 for 201<k
correction to the CP’s was obtained using the occupatior<1024 to makeAr small enough to describe ttgr) func-
number density for the uniform electron gsFor the CP  tion properly. The factor of 2 in Eq4.1) comes from the
computations, the momentum density was evaluated on folding aroundp=0 noted above. The maximum value rof
mesh with 8726% 177 p points extending to about 5.0 a.u. is w/Ap=157 a.u.
This mesh corresponds to 872@b initio k points in the To reduce high-frequency noise originating from the IP
irreducible 1/48th of the Brillouin zone, with ea¢hpoint  reading process, all the directiona(r)’s are multiplied by
translated to obtain 177 points using reciprocal-lattice vec- an empirical filter function,
tors. In order to compute the CP’s efficiently, a vectorized
version of the linear tetrahedron method in which one zooms 1 for O=r<2ry
in on the momentum region in the vicinity of the Fermi f(r)= LIr=2rir®  for r=2r (4.3
surface breakéwith a concomitant increase in the effective 2 o
density ofp point9 was used. The CP’s of Li presented hereWe user,,=23.1 a.u. which, as discussed in Appendix A, is
involve no essential approximation beyond the basic localeonsistent with the experimental momentum resolution. Af-
density approximations(LDA); various other approxima- ter filtering, the values oB(r) for the regionr=2.0r}, be-
tions, such as the muffin-tin form of the potential, are be-come almost comparable to the value of the standard devia-
lieved not to be significant. The final CP’s were computedtion o[ B(r)].
over a momentum mesh of 0.001 a.u. and are accurate to a Next, we create a simple cubic mesh #®¢r) with 257
few parts in 10. X 257x257r points given byr=(2jAr,2j,Ar,2j,Ar),
wherej,,jy,j,=0,1,... 256, and Ar is the distance be-
IV. RECONSTRUCTION tween adjacent points. The value Br) at eachr point is
) ) obtained by interpolation as follows. The Bfr) functions
~ Equation(1.4) shows that the Fourier transform of a CP 4re first represented via third-order polynomials with coeffi-
gives the values oB(r) along the direction of the scattering cients determined by a spline fit, so that the valueBor)

vector(i.e., thez axis); henceforth we refer to this quantity as -5 pe obtained for an arbitrary valuerofThe value oB(r)
a directionalB(r). The 12 measured CP’s then yield valuesis now interpolated as

of B along 12 such rays. Note that the valueBgD) in each

case equals the total number of electrons per atom. Using B(ix:Jy iz)=UiB(r)+usBp(r)+usBy(r)

these directionaB(r)’s, we map out the values &f(r) on a

cubic mesh ofr points by interpolation. An inverse Fourier for 1<I,mn<12. (4.9
t f fB(r) th ives the full 3D t it - - -

pr?;)s orm ofB(r) then gives the full 3D momentum density Here r =281 (1T (19 +(12), and B,, By, and B, are

The specific details of the procedure outlined above, relfhrée directionaB(r)’s whose directions are closest to and
evant for developing the error propagation analysis in Sec. \Bnclose the directionj(, jy,j,). The weightsu,, u,, andus,
below, are as follows. Since the mesh over which the cp'&ith Ui+ uz+uz=1, are proportional to the spherical areas
are measured is not equidistant, we first interpolate the cp'af the triangles made up by these four directions, as outlined
onto a uniformp, scale Ap,=0.02 a.u.) in order to carry N Appendix B. _ _ _
out the Fourier transform. The CP’s are folded with respect FOr P(P), we similarly create a simple cubic mesh with
to the origin,p,= 0, which reduces the error bars. The CP's 257X 257X257p points given by p=(kAp/2k,Ap/2,

over the range from 0 to 4 a.u. are writtenJakAp), where ~ K:AP/2), whereAp/2=0.01 a.u., andk,, k,, andk, are
0=<k=200 is an integerAp=0.02 a.u., and=1,2, ...,12 INt€gers ranging from 0 to 256. The momentum density at
is a directional index. Then the directiorals may be ex- IS then given by

d
pressed as AT

T . .

3N n n
) > 2 X By
ix=0 ]y:() iz=0

n p(kakyikz):(

. , 2T

Bi(jAr)=2Ap 2 J|(kAp)COS<Jk—),
&0 N L.

xaos{(kxjx+kyjy+kzjz)w . (4.5

j=0,1,2....n, 4.1

We setB(jy,jy,j,) =0 for j,=257 orj,=257 orj,=257.

Note that the momentum densjtyhas the proper dimension

of number of electrons per au.

and, conversely, thd's are expressed as

Ar O , ] 27
Ji(kap)=— >, BluAr)cos(JkW),
T j=0 V. PROPAGATION OF ERRORS
k=012 ...n. (4.2 An analysis of error propagation requires the evaluation
of variances and covariances of various physical variables
Here Ar=27/(NAp)=0.153 a.u.,,n=1024, N=2n, and appearing in the reconstruction process; see Barldfoi a
>’ denotes a sum which includes all terms as shown, excegummary of relevant basic relationships. We proceed in the
that the first and the last term are multiplied by 1/2. Wefollowing steps. First, we calculate the variangé J'(p)]
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of the observednot-normalized profile, J’'(p), and deter-
mine how it is transferred to the varianae?[ B’ (r)], of the
corresponding not-normalizeBifunction,B’(r), and the co-
variance between two points 8f (r). Next we consider the
variance and the covariance of the normaliZzgg), fol-

lowed by the variance and covariance of the interpolated

B(r). Finally, we obtain the variance @f(p).

The standard deviatiorr for the experimental(not-
normalized Compton profile’ is given by Eq.(2.1). After
folding with respect tg,=0, the variances are

o3 (KAP)]= (VN +0.008N, )2+ (VN_+0.00N_,)?,

0=k=200. (5.1)

Taking into account the effect of interpolatifp,) to an

PHYSICAL REVIEW &3 045120

1.0 T T T T T T

0.5

0.0

r(a.u.)

FIG. 2. The correlation coefficieng[B(0),B(j1)] of B(r) on
the [100] axis.

equidistant mesh, the variance propagation in the process of

Fourier transformingl’ can be expressed as
n n

2RI (i PN ' 2w

o’[B'(jAN]=(Ap)* X" X" cog jkiy
k]_:O k2:0

27
XCos(JKZW) coJ'(k;Ap),J' (k,Ap)],

(5.2
where|k; —k,|<1 because only adjacent points JokAp)

Note thato?[B(0)]=0 because the value of the number of
the valence electrons is a constant.

The covariance oB(j;Ar) andB(j,Ar) is obtained from
Eq.(5.4) as

1
B(0)? coM B(j1).B(j2)]

5 COMB'(j1),B(j2)]

are correlated in the process of interpolation to the equidis-

tant mesh; the factor 2 which appears in E4.1) was al-
ready included in Eg. (5.1). The -covariance,
coJ'(k;Ap),J' (k,Ap)], is equal to the variance
a?[J' (k;Ap)] whenk,=k,, and is equal tdco?[J’(p;)]
whenk;=k,=*1; here, in the interpolation process, it is as-
sumed that J'(k;Ap)=ad'(pg)+bJ (p1), J'(k,Ap)
=cJ'(py) +dJ'(p2), andposk;Ap<pi<k;Ap=p.

The covariance oB'(j;Ar) andB’(j,Ar) is given by

"(j2A1)]
Joo i
co

2
Ap) 2 2 COS(' ul Jzkzw
(5.3

coB’(j1Ar),B

Jiki—
k=0 kp=0 N

xcoJ’ (k;Ap),J' (k,Ap)],

wherej; andj, run from 0 ton, and|k; —k,|<1.
Recalling thatB(0) gives the number of valence elec-
trons, we normaliz8’ (jAr) via

B(0)
B'(0)
The errors inB’ are transferred t® through Eq.(5.4). The

variance of the normalizeB(jAr) is (omitting Ar for con-
venience

B(jAr)= ——B'(jAr). (5.4)

o’[B())] _ (B ()\ o%B'(N] B'()? , |
B(0)2 B0 B2 B0y 2O
2B'(j) ) .
- B'(0)3COV[B (0),B"())]. (5.9

B'(0)
B((;l cOB'(0).B'(j7)]
B((;i coV[B'(j2),B'(0)]
+%02[B’(0)]- (56

The related correlation coefficient between two points is

coM B(j1),B(j2)]
a(B(j1)]o[B(j2)]

Figure 2 shows a plot o#[B(0),B(j;)] on the[100] axis,

and is illustrative of the shape of the correlation function.
Note that this correlation coefficient decreases rapidly, and is
large only in a limited region.

We now consider the variance and the covariance of the
interpolated B(r). Because each directiond(r) is ex-
panded into a set of third-order polynomials by the spline
interpolation, the variance d@(r) at an arbitraryr is given
by the polynomials whose coefficients are squared. Since
B(jx.Jy.J2) is given in Eq.(4.4), the variance is expressed
usmgj:(jx’jyajz) as

o?[B(j)]=uio?[By (1)]+Uu30?[B,(r)]+ 30’ By (1)].

(5.9

Here the covariance between tv&(r) functions is zero,
because the measurements along two different directions are
independent.

Y[B(j1).B(j2)]= (5.7)
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The covariance of two points iB(r) is [ ' ' ' '
3 3
cov B(j1),Bj2)]= 2 2 covu;B (1), u;By (113, 1,
(5.9

where theu;’s are the coefficients used in E@.4), thel,’s
are directional indices, and the presencee‘)‘pﬁj insures that

there is no correlation betweeB]i and B|j whenl; #1;.
Finally, the variance op(p) becomes

2Ar
i

2T
xcog (k-j)

p @

p

6

a?[p(k)]= 2 jZO’ coVB(j1),B(j2)]
<

11=

2T
cos{(k-jz)w}, (5.10

where, as beforek=(k,ky,k,) is the vector of integers
related to the components @f andj=(jy,jy.j,). In this

equation, colB(j1),B(j2)1=0?[B(j)] whenj,=|,.

p

VI. RESULTS AND DISCUSSION

It is important first to assess how well the direct Fourier
transform method works under conditions used to reconstruct plau)

the experimental momentum density. For this purpose, We g 3. Comparison of the theoretica(p) along[100], [110],
apply the method to 12heoretical CP’s along directions  and[111] directions with and without reconstruction. Dotted lines:
which are identical to those of the measured profi®se  momentum density computed directiye., without reconstruction
Sec. Il abovg and where the answére., the underlying 3D solid lines: p(p) reconstructed from 12 theoretical profiles using
momentum densiyis known independently. The meshes for the same filter function as that used in reconstructing the experi-
B(r) andp(p) are also chosen to be the same as those usadental profiles. Dashed lines: theoretiggb) reconstructed with-
for reconstructing the experimental data. To keep mattersut the filter function.

relatively simple, the experimental resolution and statistical

noise in the data are not included in the theoretical CP’s. Théo crystal potential effects, but this is not clear in the recon-
reconstruction was carried out with and without the use oftructedp(p), especially when the filter is used. The HMC
the filter function of Eq(4.3). Figure 3 compares the original along the/110] direction in the reconstructgs{p)’s (with or
p(p) and the reconstructed one along three high-symmetrwithout filter) is only somewhat £ 60%) more pronounced
lines. The truep(p) (dotted ling possesses a break at the than a similar bump along tHel00] or [111] direction and
Fermi momentunp;, and along th¢110] direction, a step- the HMC amplitude is comparable to the size of the spurious
wise rise at 0.73 a.u. due to a high momentum componenipples aroundp;. The value of the reconstructed momen-
(HMC). In the reconstructeg(p), even without the filter tum density is systematically higher than theory at low mo-
(dashed ling the step aps is smeared; the smearing of the menta. Finally, we note that the position of the inflection
HMC related step along thgL10] direction is comparable point in the slope of the reconstructp@p) is systematically
(keeping the step size in mindOur analysis indicates that found to be lower than the corresponding tpuevalues; we
the reconstruction process effectively introduces a smearinghall return to discuss this point later in this section. The
of the Fermi steps which can be viewed as a convolutiorpreceding remarks should be kept in mind when deducing
with a Gaussian of full width at half maximugFWHM) of  physical parameters from the reconstructgtp), even
0.03 a.u. The reconstruction also introduces unwantethough, in view of Fig. 3, the present direct Fourier method
ripples arising from the sharp variation @t in the CP’s. works reasonably well overall.

As expected, the inclusion of the low-pass filter in the With this background, we compare thép) reconstructed
reconstruction process is seen by comparing solid anérom the 12 measured CP’s with that reconstructed from the
dashed curves in Fig. 3 to cause a reduction in the highi2 corresponding theoretical CP’s after the latter are convo-
frequency oscillations at the expense of introducing greateluted with the experimental resolution function. Figurés) 4
smoothing. Aroundp;, the effective broadening in the fil- and 4b) show the contour maps of the theoretical and ex-
tered case is equivalent to a convolution with a Gaussiaperimentalp(p) in the (110 plane, respectively. Here, the
with a FWHM of 0.07 a.u., although the filter hardly de- effective total momentum resolution is 0.139 a.u., which is
grades the step in the HMC along thEelQ] direction. The obtained by summing the squares of the instrumental resolu-
size of the break gt; in the truep(p) is significantly smaller  tion (0.12 a.u) and the broadening due to reconstruction and
along the[110] direction than along thgl00Q] direction due filtering (0.07 a.u).. By looking at the density of the contour
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10 1 1 1 1
0.8 L
06 L
3
s L
i~ L
=)
0.004 B
/ 0. 008 0.006 u
/
0.010 =
T
0.2 0.8
. [110] (a.u.)
(@) 0.0 0.2 0.4 0.6 0.8 1.0
[110] (a.u.) FIG. 5. Contour map of the experimental error bars correspond-

1.0 ) ) . . . ing to the reconstructed(p) shown in Fig. 4b). The contour in-
terval is 0.002 electrons/a’u.

08 | L and betweemp~0.15 and 0.35 a.u. along th&10] direction
where the error does not change much witiThis is also
seen in Fig. 6 where the lengths of the error bars do not seem

306 L to change much betwegr=0.1 and 0.4 a.)iFrom about 0.4
o a.u. onward the error decreases slowly with increapiagd
8 04 L '
1 [100] -
—— Theory ]
0.2 1 B _ < Experiment
& -
(=X
0.0 .
0.0 0.2 0.4 0.6 0.8 1.0
(b) ok
[110] (a.u.)

FIG. 4. Contour maps of the theoreti¢a) and experimentab)
p(p) on the (110 plane reconstructed using the filter function.
Resolution broadening is included in the theory. The contour inter-
val is 0.035 electrons/al.. The dashed lines mark the first
Brillouin-zone boundary.

p (P

lines it is clear that the experimental breakpatis broader
than predicted theoretically. The HMC-related bump around
0.8 a.u. along thg110] direction is quite distinct in the
theory. The signature of this HMC in the experimental data,
however, is blurred and barely visible.

Figure 5 shows the error map for the experimeptg).
The largest error, 4.1%, is found g=0. Since p(0)
= [B(r)dr, the error inp(0) is given by the error in the total
volume of theB(r) distribution. It is therefore finite, in con-
trast to the casé where p(0) is found from p(0) 0
=—(2mp) Y(dJ/d p)|p:o. Although the present reconstruc-
tion process involves the entire profile, the fundamental fact
remains that the planar integrati i plau)

gration geometry is unfavorable

for obtaining the density at isolated points suchpasO. FIG. 6. [100], [110], and [111] sections through the recon-
Moving out fromp=0 along the directions of high symme- structed theoreticakolid lineg and experimentaldots momentum
try, there is first a rapid decrease of the error, followed by ajensities shown in Fig. 4. Both sets of densities have been normal-
plateau betweep~0.10 and 0.30 a.u. in tH®01] direction,  ized such thaB(0) equals the number of valence electrons.

I..-no-.....uu...‘i

e,
s
e
o,
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it is striking that, for a giverp (limiting ourselves to high- [110] [111] [100]
symmetry directions the error bars are generally the largest AL AARALED LA AR AL AL
along theg/100] direction, and smallest along th&11] direc- T

. ) S oo L 0.60 |-
tion, with the[110] direction lying in between. This is due to

the terms in Eq(5.10 with j;#j,, which are proportional to %
the correlation between two points BY(r), interfering con- '
structively in some directions and destructively in others,
giving rise to an uneven accumulation of errors. We empha-
size that the asphericity of the error map depends strongly on W o
I~ ®

0.59 F~

ps(a.u.)

the crystallographic symmetry. Hansenhal®? showed that 058 N
the error may be reduced somewfyarticularly in thg 100]
direction if the statistics is increased for high-symmetry pro-
files in proportion to the statistical weight of the direction. .
Ho_wever,_ even then the error distribution remains strongly 0-5790 80 70 60 50 40 30 20 10 0
anisotropic.

Figure 6 shows sections along 0], [110], and[111] 6 [degrees]
axes through the reconstructed experimental and theoretical g, 7. Uncorrectedsee text Fermi radii in the[110] plane in
p(p)'s of Fig. 4. The wiggles in the(p)’'s are computa- | Theory WR (chain ling and theory NRdotted liné give results
tional artifacts associated with the Fourier transform thapptained by locating the inflection point in the slope of @)
cannot be filtered out by the filtering function. In each of reconstructed from 12 filtered theoretical profiles, except that theory
these directions, the experimenglp) is seen to lie below WR includes experimental resolution while theory NR does not.
theory at low momenta. The situation reverses itself at higiThe filled circles giveuncorrecteiresults based on the 12 present
momenta, with a crossover point aroupg, where the the- experimental profiles.
oretical slope is distinctly greatdin absolute valugthan
experiment. Consistent with several recent stutiiédthese  good overall accord is seen. However this figure does not
discrepancies between theory and experiment reflect the efrovide an accurate picture as hinted by the fact that in Fig.
fects of electron correlationgbeyond the present LDA 7 theory WR is systematically lower than theory NR. In this
theory which shift spectral weight from below to above the connection, Appendix C shows that when the inflection point
Fermi momentum and reduce the size of the brgakt the is used to determine the radius, the effective resolution re-
Fermi momentuni>>* Reference 5 adduced a nearly zerosulting from the combination of optical resolution, filtering,
value ofZ, in Li from an analysis of their CP data. Although and reconstruction causes the radius toubderestimated
our conclusions in this regard are qualitatively similar toThe approximate, model-dependent expresgigg. (C7)]
those of Ref. Hi.e., the measured, is significantly smaller derived in Appendix C may be used to make a suitable cor-
in Li than LDA prediction$, we find it difficult to ascribe a rection.
definite value taZ, in view of uncertainties inherent in the Figure 8 presents theoretical and experimental radii cor-
reconstructeg(p). rected via Eq.(C7) using appropriate parameters. Accord-

We now address the issue of obtaining Fermi surface radingly, the corrected theory WR and theory NR radii of Fig. 8
from the structure inp(p), and delineate the associated are larger(in relation to the uncorrected values in Fig.¥
subtleties. The Fermi momentum may be defined straightfori% and 0.25%, respectively. A comparison of Figs. 7 and 8
wardly as the position of the inflection point given by the shows that the correction indeed brings the results of theories
minimum in the slopéor equivalently the zero of the second WR and NR closer to each other, although some residual
derivative of p(p). In order to gain insight into the accuracy discrepancies remain, emphasizing the approximate nature of
of this procedure, we have carried out a number of simulathe analysis of Appendix C. The experimental radii were
tions. A spherical distribution was simulated first by taking similarly corrected by increasing the values in Fig. 7 by 1%
12 identical profiles each given by the nonconvolufgd0]  to account for the effective total resolution of 0.139 a.u. Fig-
profile with a Fermi cutoff at 0.5764 a.u. An examination of ure 8 also shows the experiment@ompton results of
inflection points along various directions ip(p) recon-  Schilke et al® as well as those obtained by Obeetial.>%°’
structed with filtering yielded a spherical Fermi surface offrom 2D angular correlation of positron-annihilation radia-
radius 0.5779 a.u., in good agreement with the origination measurements. It is satisfying to see that within the limi-
value®® tations of the experimental error bars there is a good level of

The aspherical Fermi surface of Li is considered via twoagreement between the three sets of independent experimen-
simulations referred to as theory WR and theory NR. Bothtal points in Fig. 8.
are based on the filtered reconstruction of the momentum In Fig. 8 we also showdiamond$ the Fermi radii along
density from the 12 theoretical CP’s. The only difference isthe three high-symmetry directions obtained directly via
that in theory WR the experimental resolution is folded inband computations without the use of any reconstruction.
while in theory NR it is not. The theoretical cross section of The[111] and[100] radii are seen to be in reasonably good
the Fermi surface in thgl10] plane obtained by searching agreement with the theoretical and experimental values, but
for the inflection points along various directions is comparedthe computed110] radius is distinctly larger than all other
with the corresponding experimental results in Fig. 7, and aeconstructed values. The fact that the reconstructed theoret-
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[110] [111] [100] analysis indicates that errors in the reconstrugtqu) accu-
mulate unevenly along high-symmetry directions, and that in
order to obtain a more uniform distribution of errors a higher
statistics along such directions is required. The experimental
p(p) (in comparison to the corresponding theoretical results

0.60 shows a substantially more smeared out break at the Fermi
£ momentump;, and a shift of spectral weight from below to
\‘;:_ 0.59 above ps, clearly indicating the importance of including

electron correlation effects beyond the LDA for a proper
description of the momentum density. The question of ad-
ducing the Fermi-surface radius along a given direction from
the position of the inflection point in the slope p{p) is
L examined at length, and it is found that in the presence of a
057 5 80 70 60 50 40 30 20 10 0 finite resolution such a procedure systematically underesti-
mates the radius; an approximate formula to correct for this
error is presented. The Fermi-surface calipers and the anisot-
FIG. 8. Correctedsee text Fermi radii in the{110] plane in Li. ~ fOpy of the Fermi surface deduced from the reconstructed
Theory WR (chain, theory NR (dots, and present experiments €xperimentap(p) are in good accord with the corresponding
(filled circles are the same as in Fig. 7, except that the correctiortheoretical results as well as with the earlier results in Li
based on Eq(C7) of Appendix C discussed in the text was applied. based on Compton and positron-annihilation measurements.
The open diamonds give the radii along the three principal symmeNotably, however, the band theory predicts a bulging of the
try directions via band theory computations which do not involve aFermi surface along thiel 10] direction, which is larger than
reconstruction. Earlier results of Refs.($olid line) and 56(open  seen in the measurements. In this connection, we point out
traingles are shown for comparison. that thep(p) reconstructed from the present set of 12 direc-
tions is not sensitive to the aforementioned bulge, suggesting
ical [110] radius is significantly smallé} than its true value that a set of directions clustered better around[fHE] di-
(0.6112 a.u. indicates that the reconstruction is unable torection is necessary for delineating the presence or absence
reproduce faithfully the rather local protrusion of the Fermiof this rather localized Fermi surface feature experimentally.
surface in thg110] direction. This suggests that the present

0.58

6 [degrees]

set of 12 directional CP’s is not adequate for this purpose, ACKNOWLEDGMENTS
and that to reproduce this feature more directions should be
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p(p) For this purpose, high-reso|uti0n Compton prof"esWGl’G performed with the approval of the Photon FaCtory Ad-

(CP’s) have been measured along a set of 12 directions, andgsary Committee Proposal Nos. 90-G228, 92-G257, and 94-

highly accurate computations @f(p) as well as the CP’s G352.

along the same set of directions have been carried out within

the band theory framework. Extensive comparisons between APPENDIX A

p(p) reconstructed from theoretical CP’s with the t{ueth-

out reconstructiontheoretically compute@(p) give insight

into the accuracy of our reconstruction procedure, and int ) . ) .

how various parameters affect the reconstrugigg. In this /€ Write the functiorh(x) obtained by convoluting a func-

way, we show that our method reproduces the structure ifion f(x) with a Gaussiag(x)=e~*/®" as

the underlyingp(p) reasonably faithfully, some discrepan-

cies notwit_hstanding. The reconstrL_Jctic_)n process itself is h(x)=f f(x—t)e‘(“a)zdt. (A1)

shown to yield an effective broadening jifp) of 0.03 a.u

(FWHM). The use of a low-pass filter reduces noise at th : :

cost of inducing a further broadening of 0.063 a.u. Wher(?rhe Fourier transform oi(x) is

combined with our resolution of 0.12 a.u. in the measured

CP’s, these results imply that the total effective resolution inf h(x)e ™dx= w@eﬂaﬂz)zf f(x)e "™ dx=G(r)F(r).

our filtered reconstructed experimenialp) is 0.139 a.u. (A2)

The propagation of errors is considered in detail, and an

appropriate formula for the present direct Fourier method iddereG(r) andF(r) are the Fourier transforms gf(x) and

derived and applied to the case of our experiments. Thi§(x), respectively, and the second equation represents the

VIl. SUMMARY AND CONCLUSION

Here, we briefly describe how the value pf=23.1 a.u.
65 obtained in connection with the filter function of E4¢.3).
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(X2s YZ) X1 Y1 1
Szl X2 y2 1 , (B3)
2 X3 Yz 1

(X145 Y1) the first determinant in Eq(B2) can be reduced to 2S.

Similarly, the are&, of the subtriangle defined by the points
(x,¥), (X2,Y2), and K3,y3) can be written as

(X3, Y3) x y 1
. . . . 1lx y, 1
FIG. 9. Linear interpolation between three points. Si=5|"?% 72
X3 ys 1
standard “Faltung” theorem of Fourier transform. An im-
portant relationship can be obtained between a resolution 1
function and its Fourier transform. Leg(x,)=1/2 and =5 (X2y3 = XaY2~ XY3+ Xay £ Xy, = Xzy). (B4

G(rp)/G(0)=1/2; then ) S ) o
By inspection it is clear that the expression within brackets
on the right-hand side of E4B4) is equal to the cofactor of

Xnlh=2In2. (A3) £ in the second determinant in E(B2). Thus it has been
_ ~ shown that
For the experimental CP’s, we assume that the resolution
function is expressed by a Gaussian (8#2)°, with x;, f,=(f1S1+ 25,4+ 1353)/S, (BS)

:0_'06 a.u. From Eq(A3), this resolution .funcuon |n. the i.e., the weights in the interpolation are found from the areas
reciprocal space corresponds to a Gaussian Wﬂﬁ with  of the subtriangles opposite the respective points. In our
the value ofr,=23.1 a.u. case, the four pointéi.e., the point where the interpolated
value is sought and the three other pointd! usually not lie
in a plane, although deviations will in general be small; how-
ever, since any four points define the surface of a unique
We briefly discuss the three-point interpolation formulasphere, we can approximately map our problem to one of
[Eq. (4.4] and comment on a few related subtleties. Firstinterpolating a linear function of solid angles on the surface
assume a linear functiohgiven at three pointsx(,y;,z;),  of a sphere. It is resonable thus to use forn{@8&) with the
(X2,¥2,22), and K3,Y3,23), where thez; coordinate denotes planar areas of various triangles replaced by the correspond-
the function valuef; at point (x;,y;) (cf. Fig. 9. A point  ing spherical areas. Strictly, of course, one needs indepen-
(x,y) is situated within the triangle defined by these threedent function values at four noncoplanar points for a general
points;z denotes the interpolated valfigbeing sought. The three-dimensional linear interpolation problem.
plane through the three points in question may be defined by Although the method described above has been used to
obtain the coefficients; in Eq. (4.4), we note that the crystal
symmetry will be more naturally accounted for by expanding
B(r) into normalized lattice harmonigsn the present case
the Kubic harmonics of Von der Lage and Béthe

APPENDIX B

a(x—xy)+b(y—yy)+c(f,—f1)=0,

a(x—xp) +b(y—yz)+c(f,—f5)=0, (B1)

Bi(r)=2, bi(NK(Q)), (B6)

a(X—Xa) +b(y—ys)+c(f,—f3)=0.
whereK;({;) is the lattice harmonic of orddr and(); de-
This set of equations has a nonzero soluigh,c only if its ~ notes theith direction. By solution of this set of equations,

determinant is zero. Splitting up the determinant yields b/(r) can be expressed as linear combinations ofBhas

follows:
X=Xy y=yi f; X=Xy y=yi f
X=X Yy=Y2 f| | x=x2 y=y» fo| _g b|(r)=2k CuB(r)- ®&7)
X=Xz y—ys f, X=Xz Yy—ys f3

The interpolated valueB(jy,jy,j,) for the direction
(B2) (Jx+Jy.+J2) is then found from

Using the rule for addition of determinants several times, and B(i. i i.)= Ki(io i i)= B
noting that the are& of the triangle defined by the points Uxdy d2) §|: DIOKI(Tdy 1) Ek: 0B,

(X1.¥1), (X2,Y2), and &3,y3) is given by® (BY)
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where, using EqB7), v =2cK(jx,jy,J2)- Although for-  dp(p)/dp= =Y N/2p?[exp —b?) —exp(—a?)]— (p;/p)
mula (B8) better accounts for crystal symmetry, it may be
more susceptible to noise than the linearized method of Eq. X[exp( —b?)+exp(—a?)]} (CH
(B5).
and
APPENDIX C

Here we derive an approximate expression for the differ- _, 5 1) | 2Ps oF 1 [2p; N
ence between the true value of the Fermi-surface radius andl P(P)/dp™=m FA) +m T_l _E
that given by the position of the maximum in the radial de-

rivative, i.e., the inflection point ip(p) where the second 2p; Dy 1 (2p;
derivative rapidly changes sign. This analysis is used to X exp( —b?)+ 3 1+— +)\—(—+1)
make the corrections to radii invoked in connection with A P Pl P
Figs. 7 and 8. Consider a model consisting of a free-electron N
Fermi sphere of radiugs within which the momentum den- +— exp(—az)] ) (C6)
sity p(p) is unity: 8
p(p)= ) (Cy Concentrating on the regiop~ + p¢, we setp=ps+ 6,
0 it p>ps. and note that exp{a®~0, while § and \ are both much
The CP for this momentum distribution is smaller than the Fermi radiys . The position of the inflec-
tion point of p(p) is found by requiring that?p(p)/dp?
m(pi—p3) if  p,<ps oo =0. Keeping only the lowest powers éf\ and\/p;, one
J(p2) 0 if pop. (€2 finds
Let us assume that the profile is measured with a Gaussian 5

resolution given byR(p)=(1/\ym)expp?\?), i.e., the

FWHM of R(p) is 2x(In2)*2. The measured CR],,,, is
then given by Thus the use of the inflection poinhderestimatethe Fermi

radius. This systematic error increases quadratically with the
Pt i i i
Jm(pz)=(7'rl/2/7\)f (p2— p?)exd — (p— p,) 2\ ?]dp Ei\évrljrl\gstg‘ls?iir:fasolutlon, which stresses the importance of a
P The quadratic addition of the extra resolution of 0.03-a.u.
_ g 2 [ 2 b 2 FWHM (i.e., A=0.018 a.u. and5=—0.0003 a.u.), caused
d foa exp(—u)du— ja (Au+p,) by the reconstruction procesésithout filtering of unconvo-
‘ ‘ luted curves, and the optical resolution of the experiment
(0.12-a.u. FWHM yields a total resolution of 0.124-a.u.
' €3 FWHM (i.e., A\=0.074 a.u.) and>=—0.0046 a.u., i.e., the
Fermi radius estimated from the position of the inflection
wherea,=(—ps—pz)/\ andb,=(ps—p,)/\. Since the mo-  point is 0.8% too small. If the reconstruction is performed on

X exp(—u?)du

mentum distribution is isotropic, a set ofunconvolutecturves but with filtering, the total reso-
_ 1 lution is 0.07-a.u. FWHM, which yields$y)=—0.0015a.u.,
p(p)=—(2mp) “dIn(p)/dp i.e., 0.25%. Finally, the combined resolution from convolu-
ol [P ) tion, reconstruction, and filtering is 0.139-a.u. FWHM, &0
= U exp(—u)du—N/2p =—0.0058 a.u., resulting in a radius thattisderestimated
a by 1%.
Incidentally, another method often used to estimate the
X [exp(— bz)—exp(—az)]}, (C4)  Fermiradius consists of finding the position of the maximum
in the second derivative of a profile, i.e., the zero of

with a=(—p;—p)/\ and b=(p;—p)/\. The second and d3J(p)/dp°. A similar analysis as given above shows that
third terms in Eq.(C4) are vanishingly small except in the that methodoverestimateshe Fermi radius by the amount

vicinity of =p;. From Eq.(C4), it follows that 5~N212p; .
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