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Limits of the exchange-correlation local fields in the magnetic response
of a spin-polarized electron gas
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We analyze the spin and charge susceptibilities of a spin-polarized electron gas subject to a weak space- and
time-dependent field coupled to the electronic spins, with the main attention given to the case of space
dimensionalityD=2. Exchange and correlations enter the dynamic susceptibilities through spin-dependent
local-field factorsG; (q,w). For an arbitrary degree of polarization, we determine the exact analytic expres-
sions of G (g, ) in two limiting cases(i) the limit of large wave numbeq at finite frequencyw, already
considered iD =3 by D. C. Marinescu and J. J. QuifRhys. Rev. B6, 1114(1997]; and(ii) the static limit
at small wave number. In the latter case, we obtain thermodynamic sum rules of general validity in both
dimensionalities. Our work gives insight into many-body vertex corrections and basic information for calcu-
lations of the effects of the electron-electron interactions on physical properties.
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[. INTRODUCTION exchange-correlation hole, from which the quasiparticle self-
energies and the effective electron-electron interactions can
An interacting electron ga€EG) on a uniform neutraliz- be calculated®=2*
ing background is used as the reference system in most real- The behavior of the local-field factors can be determined
istic calculations of electronic structure in condensed-matteexactly in some limits, as was first shown in a number of
physics' Understanding the many-body aspects of thisstudies referring to the EG in the paramagnetic state. Denot-
model has attracted continued interest for many decadesing by G*(q,») andG~(q,®) the local-field factors for the
The EG, unlike systems of classical particles, behaves like aharge and spin response in this state, the valu&'¢f,0)
gas at high density and like a solid at low densi#¢t inter-  and G (g,0) at long wavelengthsg(—0) determine the
mediate densities, the EG is in a fluid state withthermodynamic compressibility and magnetic susceptibility,
intermediate-to-strong electron-electron coupling and is acrespectively(see, e.g., Ref.)2 Kimball?? and Niklassof?
cessible to approximate theories and to quantal simulatiostudied the charge response of the 3D EG in the limit of
techniques. large wave number at finite frequency, showing t&at(q
A great deal of theoretical work has been devoted to the-«,w) is determined by the value of the pair distribution
EG in the paramagnetic fluid state. Quantal simulation andunction g(r) at the origin ¢(=0). These results were ex-
experiment have been bringing to light the importance oftended to the spin response of the 3D EG by Zhu and
spin polarization at strong coupling. Simulation stuéifes Overhauséf and to the 2D EG by Santoro and Giulighi.
have revealed a continuous transition from the paramagnetithe same limiting behavior was studied for a spin-polarized
to the ferromagnetic state taking place in the three3D EG by Marinescu and Quirff.
dimensional3D) fluid with increasing coupling strength, be-  As is well known, the relevance of exchange and correla-
fore a first-order transition into a ferromagnetic crystal oc-tion increases as the dimensionality of the EG is lowered. In
curs. Similar studies of thé€D) EG (Refs. 6—8 indicate a  Vview of the evidence cited earlier in this section, it is useful
first-order transition to a ferromagnetic fluid state beforeand timely to give the exact expressions of tfepin-
crystallization. On the experimental side, one may recall thadependentlocal-field factorsG; (q,) at large and small
metallic conductivity in disordered 2D electron systems iswave number for a 2D EG with arbitrary spin polarizatiin
suppressed through induction of spin polarization by an inThis is the main purpose of the present work. While avail-
plane magnetic fieff® and that spontaneous spin polariza- able evidencgindicates that in 2D the ground state corre-
tion (“weak ferromagnetism) has been observed in sponds tof=0 or {=1 only, it remains to be understood
electron-doped calcium hexaboritfe. why the states with & <1 should lie at higher energy in
Exchange between parallel-spin electrons and correlatiorifiis dimensionality. Furthermore, an equilibrium imbalance
from the Coulomb repulsion, which induce a local decreasdetween the two spin polarizations can be induced by a static
in the density of electrons of each spin orientation aroundnagnetic fieldB, diamagnetic currents being absent if this
each electron of given spin, are clearly crucial in such situfield lies in the plane of the 2D EG. As remarked earlier, this
ations. These effects are embodied in the so-called local-fielcs a configuration of active experimental interest. While in
corrections in the expressions of the charge and spin suscette following we shall work at arbitrary without specifying
tibilities of the EG*?>~**or equivalently in the vertex correc- the origin of such spin imbalance, our results are easily ex-
tions that account for the difference between the effectivdended to the casB+#0 by adding a Zeeman term in the
potential experienced by an electron and the mean-fieldnperturbed Hamiltonian.
value. Their evaluation determines the spin-dependent The contents of the paper are described briefly as follows.
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In Sec. Il, we introduce the magnetic perturbation Hamil-  A. Perturbation Hamiltonian and linear susceptibilities

tonian from two alternative viewpoints and give the basic  1he EG introduced above is subjected to an external per-
definitions of structural functions, response functions, anq,;ipation described by the Hamiltonian

local-field factors. We proceed in Sec. Ill and in Appendix A

to evaluate the large wave-number limit, while in Sec. IV we

determine the local-field factors in the thermodynamic limit. Ha(t) =2 J dr[W,(r,H) g (r) g, (r)

We obtain thermodynamic sum rules through an extension of 7

the virial theorem, which is proved in Appendix B. These +W, (1, w01 (4)

sum rules are valid independently of the EG dimensionality. ) L
Finally, Sec. V reports our main conclusions. This notation, which is taken from early work by Caccamo

etal,’” explicitly shows that the external perturbation
couples with fluctuations in the spin densitié<., in the
Il. LINEAR RESPONSE OF A SPIN-POLARIZED charge and magnetization densijitgough the first term on
ELECTRON FLUID the right-hand side of Eq4) and also induces spin flips
through the second term.

Of course, the perturbation Hamiltoniéd) can be rewrit-
ten in terms of a weak external electromagnetic fildon-
sisting of an electric potentiap(r,t) and a magnetic field
b(r,t). We only need to set

W, (r,t)=—ea(r,t) — yb,(r,t)sgno) ©)

We consider an EG in a fluid state with equilibrium spin
densitiesn, andn , corresponding to a mean particle den-
sity n=n;+n; and a spin polarizatiog=(n,;—n,)/n. The
unperturbed Hamiltonian of the system is

2
Ho=3 [ ar w0 o)

and

+%2, fer dr’wl(r)l//l,(r’) Wi (r,)=—vyb.(r,1),

(6)

X1 =1 (F) (D), & Wity ==yb-{nY
with b, =b,*ib, . In these equationg=gug/2, with g the

whereuv(r)=e?/r is the Coulomb interaction potential and Landefactor andug the Bohr magneton.

(1), lpZ(r) are the Schrdinger field operators obeying The linear response of the EG is described by a set of

canonical anticommutation relations. We have omitted dongitudinal susceptibilities for the fiel) and by trans-

constant term due to the neutralizing background, which setéerse susceptibilities for the spin-flip fielt6). Standard

to zero the mean potential felt by each electron. linear-response theory yields the changes in density of the

The instantaneous correlations between pairs of electrorf¥/0 spin populations due to the longitudinal term as

are described by the distribution functiogs,(r). We de-

fing them acgording to standard practiceifor multicomponengno(r,t)zz f dr’ fw dt' Ko ([r=r"[,t—t" )W, (r',t")

fluids by setting equal ta, g, (r) Qpr® 1dr the number o —c

of electrons with spirr’ contained in a shell of radiusand (7)

thicknessdr centered on an electron with spin (Q,=2

andQ;=41). Namely, the two-body density-density corre-

lation function is written agp,(r)p, (r'))=n,8,, 6P (r o

—r')+n,N, g, ([r—r']). This definition ensures the sym- 5”0;(r1t):J' df'f xdt'Ka;(Ir—r’I,t—t’)Wa;(r’,t’)-

and the density changes due to spin-flip processes as

metry propertyg, . (r)=9,,(r) and the asymptotic value ®)
ga’U’(r—>oo) =1.

The corresponding partial structure factors are obtainedVith the notation po(N=yl(y,(r) and p,o(r)
by Fourier transform according to the definiton =T (r)y(r) for the operators entering E¢4), the linear

susceptibilities are defined by

SUU/(Q):§UU’+(nUn(r’)l/2f dr[guu’(r)_l]exq_iq'r)- Ko’a"(lr_r,|!t_t,):_iﬁe(t_t,)<[pa'(rlt)vpo"(r,1t,)]>
9
2
and
In particular, inD=2 we have _
Ka;(lr_r,|!t_t,):_iﬁa(t_t,)<[p0';(r!t)lptr;(r,!t,)(::ll->('))
- 112
S0 (A)= 0o+ 27NN, fo drlgoer () =1IrJo(an), e 6(t) is the Heaviside step functio; - -) denotes an
(3)  average over the equilibrium ensemble, and all the operators
are in the Heisenberg representation.
where Jy(x) is the Bessel function of zero order. Clearly, More explicitly, the linear response of the EG consists of
with these definitions,, (q) =S, ,(q). four induced density changes. In Fourier transform these are
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the charge-density chang€q,w), the changem,(q,w) in
longitudinal magnetization, and the changes (q,w) in ng(q,w)=2 Xoo' (G, @) Wqr (0, 0)
magnetization due to spin flips. The induced density changes 7
are related to the external fields®fy

=2 Hyp(doWi(de). (14

0 O . ) .
P Xee Xem ¢ It is then easy to see that the local-field factors are given by
m, Xme Xmm O 0 bz 11
= . 1
m. 0 0 xm O |bs G =1+ XXy —) (15
m_ 0 0 0 xm \b 20(@) Wxppxp = xnxar Iy
and
In Eq. (11), we have for simplicity suppressed thg, @)
variables. The susceptibilities in this equation are linear com- G- .= 1 ( Xptxy 1 . (16)
binations of the Fourier transforms of those defined in Egs. L1 2u(q) xtixp —xrxpr o gy
9 and (10) [Xoo'(0,@) and x,,(q,®), sayl. These are Similarly, for the transverse response we have
Xee= € 20’0”/\/0'17 ’ Xem_e’yEgO"XO'O"Sgn(o- ) Xme
_eyEUU’XUU’Sgn(U) Xmm Y 2(r(r’X(J'a"sgn(a-o-,)1 and 1 1 1
+ _ _ N R
Xm== VX110 Xm= = VX1 - Cr1 @ xir M) 40

In these equations we have again suppresseddgthe) (vari-
. . ] N ables. The expressions f@f(q,w) follow by inverting all
The local-field factor$,, (9, ) are introduced by writing  spin arrows.
an effective one-electron Hamiltonia,(q,») in which an The single-particle response functions are given by
electron with spino experiences effective fields embodying
exchange and correlation with the surrounding EG. The ef-
fective fields are the sum of the external fields and of the Il . (q,w)= E —
fields arising from the induced changes,(q,0) and ho=(ek+q20 ~Ek-q2q) T10
N,-(d,w) in the spin densities. This idea underlies the (18)
density-functional approach to mhomogeneous electronign this expression,sy, are the single-particle energies
systems and, in the linear regime, the functi@®$(q, ) [ex.o=h2g°/2m— ysgn()B, in the presence of a static
contain the effect of the exchange-correlation hole in determagnet|c fieldB,] andn, , are the momentum distributions
mining the effective coupling of the electron with the for the two spin populations. In the EG literature, the distri-
EG1 1 bution n, . in Eq. (18) has been alternatively chosen as the
The expressions of the effective fields are as folldfvs:  ideal Fermi distributioff or as the true momentum distribu-
tion of the interacting EG® These alternative choices imply

B. Local-field factors

Nk—qg2,0~ Nk+qi2,07

WET(q @) =W.(q, @) + 1-G'(q, ’ different expressions for the local-field factdrs.
o (de) oG @) Fo (@] 7 (G0)Ind, @) We conclude this section by remarking that the explicit
—sgno)G ,(g,0)M(q,w)} (120  expression for the matrix of susceptibilities in Efj1), writ-

ten in terms of the single-particle susceptibilitids,,, and
with  n(q,w)=3,n,(q,0) and m(q,0)==,sgn() of the local-field factorsG; , can be found in the paper of
X n,(q,»),and Marinescu and Quinf’

- Il. THE LIMIT OF LARGE WAVE NUMBER
W (G, 0) =W, 5(0,0) = 0(a) Gy (G, 0)N,o(0,w).

(13 In this section, we use the method developed by
Niklassorf® and by Zhu and Overhaugéro calculate the

The fieldsW®" induce changes in the electron density and inasymptotic values of the local-field factors at large wave
the density of electrons with spin along the quantization dinumber in the case in which, , in Eq. (18) is the true

rection. while the fieldsne™ govern spin flips, hence the momentum distribution function. In this method, one evalu-
o oo = - o ates the equation of motion for the one-particle Wigner dis-
anisotropy inG (g, ), which gives origin to a longitudinal

. tribution function(see also Ref. 26and uses an exact rela-
(L) and atraniverse') Iocalifleld..We also note the symme- tionship between the two-particle Wigner distribution
try propertyG: (d, ;) =G (d,w; — {). : S (2) :
. . function at equilibrium[ ", .(q), sayl and the partial
The response of the EG to the effective fiel(s2) ruct factorS d ;{ g Eq(2). Thi lation i
and (13) is given by the single-particle susceptibilities structure factorsS,,(q) defined in Eq(2). This relation is
I1,,/(g,0). Considering first the longitudinal response, the
induced_ changes in the spin densities are written in the two 2 f(sz)r o (@ =(Ngn, NS, (@)= 8,41. (19
alternative forms
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One can then show that in any space dimension the functions TABLE I.
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Exact limiting values of the local-field factors

G (g,) for finite frequency and large wave number take G, - (q—,w) for a spin-polarized EG in dimensionalify=2 (first

the following expressions:
(1-9 (nyn 0)’2
G/ (q, T 52)22 2
xX{[1-¢sgnio)]fi(a,q")
_[1_gSgr(o-,)]fZ(qlql)}[So'o"(q,)_50'0"]!

[1+sgrio)]

(20)
1 g O'

GLi@0) = s _; > 2 .0 [1+sgr<a>]
X{[sgn(o)—¢1f1(9,9")—[sgno’)
_g]fZ(qiq’)}[Soo’(q,)_500”]1 (21)

and
(T ()')

Gr (q, w)HE E

_Sgr(O'O' )fZ(q!q )][S(r(r’(q,)_ 60’0”]'
(22

In Egs. (20—-(22, we have definedfi(q,9')=[(q
-9")%v(q")1/[a*v(a)] and f,(q,9")={[q-(a+a")]?v(Iq
+q')}g*v(a)].

In dimensionality D=2, we havev(q)=2me%q and
hencef,(q,q')—0 andf,(q,q')—1 in the limitq—ce. Fur-
thermore, from Eq(2) we have

———[fi(a.9")

> [Seer(A) = 8o 1= (NN ) YA g0 (0)—1]. (23)
q!

Hence,
(1_§) NyNgr
G%*(q,w)e—(l_gz)z 2 S-[1+sgn(o)]
X[1-¢sgr(o)][g, (0)—1], (24
_ (1_£) NyNgr
GLi@w) = 53 E S—[1+sgr(0)]
X[é’_sgr‘(a-,)][glnr'(o)_1]1 (25)
and
_ n,N,:
Gr (G w) == 2 == sgoa’) [, (0)~1].

(26)

column andD =3 (second column

2D 307

G} 1-39;,(0) o [2+30-(1+20)g;(0)]

1
3(1+9)

. 1
Gu 2911(0) s gl 1@+ 09,0)]

Gr,  P+3(1-99,,(0)  3[—1+3%+2(1-¢%)g;,(0)]

3 rom Marinescu and Quin(Ref. 26.

nition. These values can be rewritten in terms g{f0)
through the relatiory(0)=(1—¢%)g;,(0)/2.

Two further comments are needed on our resultsbor
=2 in Table I. First, in the casé=0 we recover the results
of Santoro and Giuliaft for the paramagnetic state, i.e.,
G*—1-9g(0) andG, =G;—g(0). Second, the value of
g;,(0) is mainly determined by two-body collisioiis* and
(with our definition$ may be expected to show little sensi-
tivity to the degree of spin polarization at any given value of
the coupling strength. Calculations @f, (0) as a function of
the coupling strength in the 2D EG are already available in
the literature®33

The asymptotic expressions for the local-field factors in
the case when, , in Eq. (18) is replaced by the ideal Fermi
distribution are derived in Appendix A. We proceed instead
in the next section to evaluate the quantit@s(q,0) in the
limit q—0.

IV. THE THERMODYNAMIC LIMIT

We have recalled in Sec. Il that the values @f (q
—0,0) for the EG in the paramagnetic state are related to its
thermodynamic compressibilitl{ and magnetic susceptibil-
ity x. In 2D these relations ate

G*(q—0,0=— ( ! 1) (27)
=" 2mn%e? Ko K
and
hzq ( Xo
G (g—0,0= 1——], 28
(q ) e N (28

whereK, andy refer to the ideal Fermi gas. In this context,
the local-field factors are defined with reference to the non-
interacting EG, i.e., by using the ideal Fermi distribution in
place of the true momentum distribution , in Eq. (18).

Let us first consider the longitudinal response matrix and
the corresponding local fields in the spin-polarized fluid.

To complete the calculation, we only need to use the valueShese take the forms given in Eq4.5) and(16) except for
9:1(0)=g,,(0)=0 from the Pauli principle and the symme- the replacement dfl .. (q,w) by the susceptibilities of the
try property g;,(0)=g,;(0). The results are collected in ideal Fermi gas. We may now refer to the work of Caccamo

Table | together with those obtained =3 by Marinescu

and Quinr?® Notice that their definition ofy, . (r) differs

etal,’” in which the structure of the susceptibilities

Xoo'(0,w) for the spin-polarized 3D EG was derived from

from that given in Sec. II: Table | consistently uses our defi-the equation of motion of .(q,w) by means of a functional
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differentiation technique. This approach is especially usefuSimilarly, Eq. (34) can be handled by means of a magnetic
at long wavelengths and low frequencies, where the funcvirial theorem, first reported for the paramagnetic EG by

tional derivatives reduce to local derivatives. In fact, Cac-Caccamoet al3* A general proof is given in Appendix B.

camoet al?’

bilities not only for the static(thermodynamit suscep-
tibilities, but also for the leadinghydrodynami¢ terms in a
low-frequency expansion.

obtained explicit expressions for the suscepti-

Using this method, therefore, it is easy to show that in

space dimensiol® the thermodynamic values of the longi-
tudinal local-field factors are given by

d

+ _———
G (a—00)- n:Dv(q) dn

(2t;+u;—2t'9) (29
and

d

(2t +u;—2t(9).
(30

The values ofo(q—>0,0) andG_ (q—0,0) are obtained
by inverting all spin arrows. In Eq$29) and (30), we have
introduced the equilibrium quantities

h2k?

to= 2 Mo (31)

and

Uf%f dro(N[{p,(R)p(R+r)—n,n]l. (32

These are the kinetic- and potential-energy densities for elec-

trons of spino. The quantityt!”) is given by Eq.(31) as
calculated on the ideal Fermi gas.

It is immediately evident from Eq$29) and(30) that the
local-field factors in the thermodynamic limit are propor-
tional to g% in 3D and toq in 2D. Furthermore, the appro-
priate generalizations of Eq&7) and (28) are

n,G;(g—0,0)+n;G/(g—0,0)
1

d
Z(2t+u—2t©
Du(q) an' )

on (33

and

NG (q—0,00+n G (q—0,0)

|

(34

> sgr(o)(2t,+u,—2t)

o

1 9
" Dnu(a) (?_s“[

For Eq. (33), the virial theorem in the usual formt2u
=DP, P being the pressure, yields

1

K|

(39

1
Ko

G 0,0 G’ 0,0 L

We have
2(t;—t))+(u;—uy)=Dnyb, (36)
and hence
- _ ny? (1 1
Y[HTGL’T(q—>O,O)+anL’l(q_>0,o)]_,v(q) =
3

having definedy *=n"14b,/3¢. Evidently, the sum rules
on compressibility and on longitudinal susceptibility are
valid for arbitrary spin polarization and EG dimensionality.

Turning to the spin-flip response, the method of Caccamo
et al?’ is easily applied to find the result

Gr (4001~ Frees oo

—21(0)

(38
with the further definitions
#2k?
ta'o':; nk,a'o' om’ (39)
u03=%f dro(r){ps(R)p(R+r1)), (40)

and

nk,o;=fdr<¢/fl<R+%r)e@(R—%r))exp(ik-r). (41

Again, the value ofG; (q—0,0) is obtained from E((38)
by inverting all spin arrows.

Another form of the virial theorem concerning the trans-
verse spin-flip susceptibility suggests itself from Eg8).
This theorem is also proved in Appendix B and reads

(42)
We accordingly find from Eq(38)
Gy (q—00 | L 1 ) (43)
1 @=00) == ——"S =5~ =
W@ X9 X

This relation, with its analog fo&+ |(q—0,0), is a thermo-
dynamic sum rule applying to the transverse susceptibility in
a spin-polarized EG.

V. CONCLUSIONS

The local-field factors incorporate the effects of exchange
and correlation in the linear-response functions of the EG.
Knowledge of them is essential for the evaluation of the
many-body contributions to a number of physical properties
for systems of electronic carriers in semiconductors and met-
als. They also give the basic information for density-
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functional calculations on weakly inhomogeneous electroniand

systems.
In a strong-coupling regime, the Coulomb interaction be- _ Zﬁzqu
tween electrons may induce a finite spin polarization in the AGq,(q,0)— Am2w(a) (q) (A3)

EG. Recent quantal simulatiotfshave reported different be-
haviors of the ground state as a function of coupling strengtlior the 2D EG, with the value of the plasma frequency given
and spin polarization in different space dimensions. At anypy w (q) 27ne’g/m. The quantitiesA, and A in these
rate, in a two-dimensional EG the application of an in- pIaneequat|ons are given by
magnetic field can be used to induce such spin polarization
and to explore the role of this system parameter over a wide 0
range of values in the absence of diamagnetic effects. AU:; (Mo n(k,(),)(q' k)? (A4)
With the above facts in mind, we have studied the exact
limiting behaviors of the local-field factors in a spin- and A=X,A,. These quantities are proportional to the
polarized EG. In the regime of large wave number, we havéhifts in kinetic energy associated with the difference be-
recovered the results of Marinescu and Qdfrin space di- tween the+two types of momentum distribution. Clearly, the
mensionD=3 and derived the corresponding resultsbin ~ shifts AG_ grow linearly withq in 2D.
=2. We have also examined an alternative definition of the EquationA2)—(A4) also give the leading terms (AfG(f
local-field factors for both dimensionalities in this regime.in D=3, provided that the plasma frequency is replaced by
Finally, we have extended to a spin-polarized EG the sumw2=4smne?/m. Thus the shift in local-field factors grows as
rules on the thermodynamic compressibility and on the |an£to leading order in 33° However, in this space dimen-
gitudinal magnetic susceptibility, and we derived a rule re-sion one also finds a constant contribution\6; , which is
garding the transverse magnetic susceptibility. determined by the shift in the mean-square “inetic energy.
The results are
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2 A’
APPENDIX A: ASYMPTOTIC EXPRESSIONS OF THE AGy (qw)— —2( Ag’—4 ) (A6)
LOCAL-FIELD FACTORS WITH REFERENCE TO THE nme
IDEAL FERMI GAS where we have defined

As noted in Sec. lll, an alternative definition of the local-
field factors[ G (°)(q,w), say is obtained form Eqs(15)—
(17) when the single-particle susceptibility is calculated from
Eq. (18) by using the ideal Fermi distributidnf((’)(), in place of  and
the true momentum distribution, ,. This behavior is rel-
evant to the evaluation of static local-field factors by quantal A':[E e k)zr_[z
simulation techniquessee, e.g., Ref.)7 We follow the ap- kold
proach of Hola® to obtain the expressions oAG;

2 2
A= ; nk,mk)z} —@ n&?%(dk)z} (A7)

2
) n&?&(&-k)z}. (A8)

— +(0)_ . .
=G, G, atllarge wave number and finite freqyency. APPENDIX B: MAGNETIC VIRIAL THEOREMS
The calculation hinges on the large-expansion of
I1,,/(g,), which reads We introduce the operator
2m 4 . _ 1 o oy, o
Ho’o”(qyﬁl))_)_W[ng+nor+?[<(q'k)2>g AO'_ ZIﬁSgdU)f d rw(r(r)r ar l//a(r) (Bl)
and evaluate its commutator with the Hamiltoniaf= H,
o2 +H,, whereH, is given by Eq.(1) andH, is the Zeeman
H(a-k) >”']]' (A1) Hamiltonian,

where we have defined((q-k)?),==n.,(q-k)2. A
straightforward calculation yields

HZ=—yf dDrbz<r>§ sg @)l (N e(r).  (B2)

n 2q2 The magnetic field is being taken as position-dependent in
AGf(q,w)ﬁAG['T(q,w) W (A2) order to correctly treat boundary terms, but will ultimately be
2n o(Q) allowed to attain a constant value.
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The commutator oA, with H, is easily calculated using

the canonical anticommutator relations, with the result

([A, Hol)=—3i% sgn(o)(2t,+u,) (B3)

for its ground-state expectation value. The definitions in Eq
(31) and (32) have been used. On the other hand, the co

mutator with the Zeeman term is

1
(A, M= 5ihy | QPITE Tbu0Tul (). (B9

PHYSICAL REVIEW B 63 045118

([A; H,])=—3ihD yn,b,. (B6)

Finally, by imposing that the expectation value Bf A,
should be constant in time, we find from E§B3) and(B6)
the result given in Eq(36) of the main text.

S+ A similar theorem holds for the transverse susceptibility.
Mive consider the operator

After an integration by parts and use of the divergence theo-

rem, the limit of a constant magnetic field can be taken and

Eq. (B4) becomes

[AU,H2]=—%iﬁybzfsmacer-dswf,(r)dfu(r). (B5)

This yields

A =—iﬁJdDr¢*(r)r-i¢(r) (B7)

* T ar 7t

and its commutator wittHy+H, , where
==y ero.ulowo. 68

The same steps as given above to obtain H33) and (B6)
lead to the first of Eqs(42) in the main text. A similar
calculation for the fieldo _(r,t) completes the derivation of
Eqgs.(42).
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