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Limits of the exchange-correlation local fields in the magnetic response
of a spin-polarized electron gas
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We analyze the spin and charge susceptibilities of a spin-polarized electron gas subject to a weak space- and
time-dependent field coupled to the electronic spins, with the main attention given to the case of space
dimensionalityD52. Exchange and correlations enter the dynamic susceptibilities through spin-dependent
local-field factorsGs

6(q,v). For an arbitrary degree of polarization, we determine the exact analytic expres-
sions ofGs

6(q,v) in two limiting cases:~i! the limit of large wave numberq at finite frequencyv, already
considered inD53 by D. C. Marinescu and J. J. Quinn@Phys. Rev. B56, 1114~1997!#; and~ii ! the static limit
at small wave number. In the latter case, we obtain thermodynamic sum rules of general validity in both
dimensionalities. Our work gives insight into many-body vertex corrections and basic information for calcu-
lations of the effects of the electron-electron interactions on physical properties.
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I. INTRODUCTION

An interacting electron gas~EG! on a uniform neutraliz-
ing background is used as the reference system in most
istic calculations of electronic structure in condensed-ma
physics.1 Understanding the many-body aspects of t
model has attracted continued interest for many decad2

The EG, unlike systems of classical particles, behaves lik
gas at high density and like a solid at low density.3 At inter-
mediate densities, the EG is in a fluid state w
intermediate-to-strong electron-electron coupling and is
cessible to approximate theories and to quantal simula
techniques.

A great deal of theoretical work has been devoted to
EG in the paramagnetic fluid state. Quantal simulation a
experiment have been bringing to light the importance
spin polarization at strong coupling. Simulation studies4,5

have revealed a continuous transition from the paramagn
to the ferromagnetic state taking place in the thr
dimensional~3D! fluid with increasing coupling strength, be
fore a first-order transition into a ferromagnetic crystal o
curs. Similar studies of the~2D! EG ~Refs. 6–8! indicate a
first-order transition to a ferromagnetic fluid state befo
crystallization. On the experimental side, one may recall t
metallic conductivity in disordered 2D electron systems
suppressed through induction of spin polarization by an
plane magnetic field9,10 and that spontaneous spin polariz
tion ~‘‘weak ferromagnetism’’! has been observed i
electron-doped calcium hexaboride.11

Exchange between parallel-spin electrons and correlat
from the Coulomb repulsion, which induce a local decre
in the density of electrons of each spin orientation arou
each electron of given spin, are clearly crucial in such s
ations. These effects are embodied in the so-called local-
corrections in the expressions of the charge and spin sus
tibilities of the EG,12–14or equivalently in the vertex correc
tions that account for the difference between the effec
potential experienced by an electron and the mean-fi
value. Their evaluation determines the spin-depend
0163-1829/2001/63~4!/045118~7!/$15.00 63 0451
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exchange-correlation hole, from which the quasiparticle s
energies and the effective electron-electron interactions
be calculated.15–21

The behavior of the local-field factors can be determin
exactly in some limits, as was first shown in a number
studies referring to the EG in the paramagnetic state. De
ing by G1(q,v) andG2(q,v) the local-field factors for the
charge and spin response in this state, the values ofG1(q,0)
and G2(q,0) at long wavelengths (q→0) determine the
thermodynamic compressibility and magnetic susceptibil
respectively~see, e.g., Ref. 2!. Kimball22 and Niklasson23

studied the charge response of the 3D EG in the limit
large wave number at finite frequency, showing thatG1(q
→`,v) is determined by the value of the pair distributio
function g(r ) at the origin (r 50). These results were ex
tended to the spin response of the 3D EG by Zhu a
Overhauser24 and to the 2D EG by Santoro and Giuliani.25

The same limiting behavior was studied for a spin-polariz
3D EG by Marinescu and Quinn.26

As is well known, the relevance of exchange and corre
tion increases as the dimensionality of the EG is lowered
view of the evidence cited earlier in this section, it is use
and timely to give the exact expressions of the~spin-
dependent! local-field factorsGs

6(q,v) at large and small
wave number for a 2D EG with arbitrary spin polarizationz.
This is the main purpose of the present work. While ava
able evidence8 indicates that in 2D the ground state corr
sponds toz50 or z51 only, it remains to be understoo
why the states with 0,z,1 should lie at higher energy in
this dimensionality. Furthermore, an equilibrium imbalan
between the two spin polarizations can be induced by a s
magnetic fieldB, diamagnetic currents being absent if th
field lies in the plane of the 2D EG. As remarked earlier, t
is a configuration of active experimental interest. While
the following we shall work at arbitraryz without specifying
the origin of such spin imbalance, our results are easily
tended to the caseBÞ0 by adding a Zeeman term in th
unperturbed Hamiltonian.

The contents of the paper are described briefly as follo
©2001 The American Physical Society18-1
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In Sec. II, we introduce the magnetic perturbation Ham
tonian from two alternative viewpoints and give the ba
definitions of structural functions, response functions, a
local-field factors. We proceed in Sec. III and in Appendix
to evaluate the large wave-number limit, while in Sec. IV w
determine the local-field factors in the thermodynamic lim
We obtain thermodynamic sum rules through an extensio
the virial theorem, which is proved in Appendix B. The
sum rules are valid independently of the EG dimensional
Finally, Sec. V reports our main conclusions.

II. LINEAR RESPONSE OF A SPIN-POLARIZED
ELECTRON FLUID

We consider an EG in a fluid state with equilibrium sp
densitiesn↑ and n↓ , corresponding to a mean particle de
sity n5n↑1n↓ and a spin polarizationz5(n↑2n↓)/n. The
unperturbed Hamiltonian of the system is

H05(
s

E dr cs
†~r !

p2

2m
cs~r !

1 1
2 (

s,s8
E drE dr 8cs

†~r !cs8
†

~r 8!

3v~ ur2r 8u!cs8~r 8!cs~r !, ~1!

wherev(r )5e2/r is the Coulomb interaction potential an
cs(r ), cs

†(r ) are the Schro¨dinger field operators obeyin
canonical anticommutation relations. We have omitted
constant term due to the neutralizing background, which
to zero the mean potential felt by each electron.

The instantaneous correlations between pairs of elect
are described by the distribution functionsgss8(r ). We de-
fine them according to standard practice for multicompon
fluids by setting equal tons8gss8(r ) VDr D21dr the number
of electrons with spins8 contained in a shell of radiusr and
thicknessdr centered on an electron with spins (V252p
andV354p). Namely, the two-body density-density corr
lation function is written aŝrs(r )rs8(r 8)&5nsdss8d

(D)(r
2r 8)1nsns8gss8(ur2r 8u). This definition ensures the sym
metry propertygss8(r )5gs8s(r ) and the asymptotic value
gss8(r→`)51.

The corresponding partial structure factors are obtai
by Fourier transform according to the definiton

Sss8~q!5dss81~nsns8!
1/2E dr @gss8~r !21#exp~2 iq•r !.

~2!

In particular, inD52 we have

Sss8~q!5dss812p~nsns8!
1/2E

0

`

dr@gss8~r !21#r J0~qr !,

~3!

where J0(x) is the Bessel function of zero order. Clearl
with these definitionsSss8(q)5Ss8s(q).
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A. Perturbation Hamiltonian and linear susceptibilities

The EG introduced above is subjected to an external p
turbation described by the Hamiltonian

H1~ t !5(
s

E dr @Ws~r ,t !cs
†~r !cs~r !

1Wss̄~r ,t !cs
†~r !cs̄~r !#. ~4!

This notation, which is taken from early work by Caccam
et al.,27 explicitly shows that the external perturbatio
couples with fluctuations in the spin densities~i.e., in the
charge and magnetization densities! through the first term on
the right-hand side of Eq.~4! and also induces spin flip
through the second term.

Of course, the perturbation Hamiltonian~4! can be rewrit-
ten in terms of a weak external electromagnetic field,26 con-
sisting of an electric potentialf(r ,t) and a magnetic field
b(r ,t). We only need to set

Ws~r ,t !52ef~r ,t !2gbz~r ,t !sgn~s! ~5!

and

W↑↓~r ,t !52gb1~r ,t !,
~6!

W↓↑~r ,t !52gb2~r ,t !

with b65bx6 iby . In these equationsg5gmB/2, with g the
Landéfactor andmB the Bohr magneton.

The linear response of the EG is described by a se
longitudinal susceptibilities for the field~5! and by trans-
verse susceptibilities for the spin-flip field~6!. Standard
linear-response theory yields the changes in density of
two spin populations due to the longitudinal term as

dns~r ,t !5(
s8

E dr 8E
2`

`

dt8Kss8~ ur2r 8u,t2t8!Ws8~r 8,t8!

~7!

and the density changes due to spin-flip processes as

dnss̄~r ,t !5E dr 8E
2`

`

dt8K̃ss̄~ ur2r 8u,t2t8!Wss̄~r 8,t8!.

~8!

With the notation rs(r )5cs
†(r )cs(r ) and rss̄(r )

5cs
†(r )cs̄(r ) for the operators entering Eq.~4!, the linear

susceptibilities are defined by

Kss8~ ur2r 8u,t2t8!52 i\u~ t2t8!^@rs~r ,t !,rs8~r 8,t8!#&
~9!

and

K̃ss̄~ ur2r 8u,t2t8!52 i\u~ t2t8!^@rss̄~r ,t !,rss̄~r 8,t8!#&.
~10!

Here u(t) is the Heaviside step function,^•••& denotes an
average over the equilibrium ensemble, and all the opera
are in the Heisenberg representation.

More explicitly, the linear response of the EG consists
four induced density changes. In Fourier transform these
8-2
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the charge-density changer(q,v), the changemz(q,v) in
longitudinal magnetization, and the changesm6(q,v) in
magnetization due to spin flips. The induced density chan
are related to the external fields by26

S r

mz

m1

m2

D 5S xee xem 0 0

xme xmm 0 0

0 0 xm
1 0

0 0 0 xm
2

D S f

bz

b1

b2

D . ~11!

In Eq. ~11!, we have for simplicity suppressed the (q,v)
variables. The susceptibilities in this equation are linear co
binations of the Fourier transforms of those defined in E
~9! and ~10! @xss8(q,v) and x̃ss̄(q,v), say#. These are
xee5e2(ss8xss8 , xem5eg(ss8xss8sgn(s8), xme
5eg(ss8xss8sgn(s), xmm52g2(ss8xss8sgn(ss8), and
xm

152g2x̃↑↓ , xm
252g2x̃↓↑ .

B. Local-field factors

The local-field factorsGs
6(q,v) are introduced by writing

an effective one-electron HamiltonianHs(q,v) in which an
electron with spins experiences effective fields embodyin
exchange and correlation with the surrounding EG. The
fective fields are the sum of the external fields and of
fields arising from the induced changesns(q,v) and
nss̄(q,v) in the spin densities. This idea underlies t
density-functional approach to inhomogeneous electro
systems and, in the linear regime, the functionsGs

6(q,v)
contain the effect of the exchange-correlation hole in de
mining the effective coupling of the electron with th
EG.12–14

The expressions of the effective fields are as follows:26

Ws
eff~q,v!5Ws~q,v!1v~q!$@12Gs

1~q,v!#n~q,v!

2sgn~s!GL,s
2 ~q,v!m~q,v!% ~12!

with n(q,v)[(sns(q,v) and m(q,v)[(ssgn(s)
3ns(q,v),and

Wss̄
eff

~q,v!5Wss̄~q,v!2v~q!GT,s̄
2

~q,v!nss̄~q,v!.
~13!

The fieldsWs
eff induce changes in the electron density and

the density of electrons with spin along the quantization
rection, while the fieldsWss̄

eff govern spin flips, hence th
anisotropy inGs

2(q,v), which gives origin to a longitudina
~L! and a transverse~T! local field. We also note the symme
try propertyG↑

6(q,v;z)5G↓
6(q,v;2z).

The response of the EG to the effective fields~12!
and ~13! is given by the single-particle susceptibilitie
Pss8(q,v). Considering first the longitudinal response, t
induced changes in the spin densities are written in the
alternative forms
04511
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s8

xss8~q,v!Ws8~q,v!

5(
s8

Pss8~q,v!Ws8
eff

~q,v!. ~14!

It is then easy to see that the local-field factors are given

G↑
1511

1

2v~q! S x↓↓2x↑↓
x↑↑x↓↓2x↑↓x↓↑

2
1

P↑↑
D ~15!

and

GL,↑
2 5

1

2v~q! S x↓↓1x↑↓
x↑↑x↓↓2x↑↓x↓↑

2
1

P↑↑
D . ~16!

Similarly, for the transverse response we have

GT,↑
2 5

1

v~q! S 1

x̃↓↑
2

1

P↓↑
D . ~17!

In these equations we have again suppressed the (q,v) vari-
ables. The expressions forG↓

6(q,v) follow by inverting all
spin arrows.

The single-particle response functions are given by

Pss8~q,v!5(
k

nk2q/2,s2nk1q/2,s8

\v2~«k1q/2,s82«k2q/2,s!1 i01
.

~18!

In this expression,«k,s are the single-particle energie
@«k,s5\2q2/2m2g sgn(s)Bz in the presence of a stati
magnetic fieldBz# andnk,s are the momentum distribution
for the two spin populations. In the EG literature, the dist
bution nk,s in Eq. ~18! has been alternatively chosen as t
ideal Fermi distribution28 or as the true momentum distribu
tion of the interacting EG.23 These alternative choices impl
different expressions for the local-field factors.29

We conclude this section by remarking that the expli
expression for the matrix of susceptibilities in Eq.~11!, writ-
ten in terms of the single-particle susceptibilitiesPss8 and
of the local-field factorsGs

6 , can be found in the paper o
Marinescu and Quinn.26

III. THE LIMIT OF LARGE WAVE NUMBER

In this section, we use the method developed
Niklasson23 and by Zhu and Overhauser24 to calculate the
asymptotic values of the local-field factors at large wa
number in the case in whichnk,s in Eq. ~18! is the true
momentum distribution function. In this method, one eva
ates the equation of motion for the one-particle Wigner d
tribution function~see also Ref. 26! and uses an exact rela
tionship between the two-particle Wigner distributio
function at equilibrium@ f k,s;k8,s8

(2) (q), say# and the partial
structure factorsSss8(q) defined in Eq.~2!. This relation is

(
k,k8

f k,s;k8,s8
(2)

~q!5~nsns8!
1/2@Sss8~q!2dss8#. ~19!
8-3
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One can then show that in any space dimension the funct
G↑

6(q,v) for finite frequency and large wave number ta
the following expressions:

G↑
1~q,v!→ ~12z!

~12z2!2 (
q8

(
s,s8

~nsns8!
1/2

n2
@11sgn~s!#

3$@12z sgn~s!# f 1~q,q8!

2@12z sgn~s8!# f 2~q,q8!%@Sss8~q8!2dss8#,

~20!

GL,↑
2 ~q,v!→ ~12z!

~12z2!2 (
q8

(
s,s8

~nsns8!
1/2

n2
@11sgn~s!#

3$@sgn~s!2z# f 1~q,q8!2@sgn~s8!

2z# f 2~q,q8!%@Sss8~q8!2dss8#, ~21!

and

GT,↑
2 ~q,v!→(

q8
(
s,s8

~nsns8!
1/2

n2
@ f 1~q,q8!

2sgn~ss8! f 2~q,q8!#@Sss8~q8!2dss8#.

~22!

In Eqs. ~20!–~22!, we have defined f 1(q,q8)5@(q
•q8)2v(q8)#/@q4v(q)# and f 2(q,q8)5$@q•(q1q8)#2v(uq
1q8u)%/@q4v(q)#.

In dimensionality D52, we havev(q)52pe2/q and
hencef 1(q,q8)→0 andf 2(q,q8)→1 in the limit q→`. Fur-
thermore, from Eq.~2! we have

(
q8

@Sss8~q8!2dss8#5~nsns8!
1/2@gss8~0!21#. ~23!

Hence,

G↑
1~q,v!→2

~12z!

~12z2!2 (
s,s8

nsns8

n2
@11sgn~s!#

3@12z sgn~s8!#@gss8~0!21#, ~24!

GL,↑
2 ~q,v!→ ~12z!

~12z2!2 (
s,s8

nsns8

n2
@11sgn~s!#

3@z2sgn~s8!#@gss8~0!21#, ~25!

and

GT,↑
2 ~q,v!→2 (

s,s8

nsns8

n2
sgn~ss8!@gss8~0!21#.

~26!

To complete the calculation, we only need to use the val
g↑↑(0)5g↓↓(0)50 from the Pauli principle and the symme
try property g↑↓(0)5g↓↑(0). The results are collected in
Table I together with those obtained inD53 by Marinescu
and Quinn.26 Notice that their definition ofgss8(r ) differs
from that given in Sec. II: Table I consistently uses our de
04511
ns
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nition. These values can be rewritten in terms ofg(0)
through the relationg(0)5(12z2)g↑↓(0)/2.

Two further comments are needed on our results forD
52 in Table I. First, in the casez50 we recover the results
of Santoro and Giuliani25 for the paramagnetic state, i.e
G1→12g(0) and GL

25GT
2→g(0). Second, the value o

g↑↓(0) is mainly determined by two-body collisions30,31 and
~with our definitions! may be expected to show little sens
tivity to the degree of spin polarization at any given value
the coupling strength. Calculations ofg↑↓(0) as a function of
the coupling strength in the 2D EG are already available
the literature.32,33

The asymptotic expressions for the local-field factors
the case whennk,s in Eq. ~18! is replaced by the ideal Ferm
distribution are derived in Appendix A. We proceed inste
in the next section to evaluate the quantitiesGs

6(q,0) in the
limit q→0.

IV. THE THERMODYNAMIC LIMIT

We have recalled in Sec. II that the values ofG6(q
→0,0) for the EG in the paramagnetic state are related to
thermodynamic compressibilityK and magnetic susceptibil
ity x. In 2D these relations are25

G1~q→0,0!5
q

2pn2e2 S 1

K0
2

1

K D ~27!

and

G2~q→0,0!5
\2q

2me2 S 12
x0

x D , ~28!

whereK0 andx0 refer to the ideal Fermi gas. In this contex
the local-field factors are defined with reference to the n
interacting EG, i.e., by using the ideal Fermi distribution
place of the true momentum distributionnk,s in Eq. ~18!.

Let us first consider the longitudinal response matrix a
the corresponding local fields in the spin-polarized flu
These take the forms given in Eqs.~15! and ~16! except for
the replacement ofPss8(q,v) by the susceptibilities of the
ideal Fermi gas. We may now refer to the work of Cacca
et al.,27 in which the structure of the susceptibilitie
xss8(q,v) for the spin-polarized 3D EG was derived fro
the equation of motion ofns(q,v) by means of a functiona

TABLE I. Exact limiting values of the local-field factors
Gs

6(q→`,v) for a spin-polarized EG in dimensionalityD52 ~first
column! andD53 ~second column!.

2D 3D2

G↑
1 12

1
2 g↑↓(0)

1

3~11z!
@213z2~112z!g↑↓~0!#

GL,↑
2 1

2 g↑↓(0)
1

3~11z!
@211~21z!g↑↓~0!#

GT,↑
2 z21

1
2 (12z2)g↑↓(0) 1

3 @2113z212(12z2)g↑↓(0)#

aFrom Marinescu and Quinn~Ref. 26!.
8-4
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differentiation technique. This approach is especially use
at long wavelengths and low frequencies, where the fu
tional derivatives reduce to local derivatives. In fact, Ca
camoet al.27 obtained explicit expressions for the suscep
bilities not only for the static~thermodynamic! suscep-
tibilities, but also for the leading~hydrodynamic! terms in a
low-frequency expansion.

Using this method, therefore, it is easy to show that
space dimensionD the thermodynamic values of the long
tudinal local-field factors are given by

G↑
1~q→0,0!→2

1

n↑Dv~q!

]

]n
~2t↑1u↑22t↑

(0)! ~29!

and

GL,↑
2 ~q→0,0!→2

1

n n↑Dv~q!

]

]z
~2t↑1u↑22t↑

(0)!.

~30!

The values ofG↓
1(q→0,0) andGL,↓

2 (q→0,0) are obtained
by inverting all spin arrows. In Eqs.~29! and ~30!, we have
introduced the equilibrium quantities

ts5(
k

nk,s

\2k2

2m
~31!

and

us5 1
2 E dr v~r !@^rs~R!r~R1r !&2nsn#. ~32!

These are the kinetic- and potential-energy densities for e
trons of spins. The quantityts

(0) is given by Eq.~31! as
calculated on the ideal Fermi gas.

It is immediately evident from Eqs.~29! and~30! that the
local-field factors in the thermodynamic limit are propo
tional to q2 in 3D and toq in 2D. Furthermore, the appro
priate generalizations of Eqs.~27! and ~28! are

n↑G↑
1~q→0,0!1n↓G↓

1~q→0,0!

→2
1

Dv~q!

]

]n
~2t1u22t (0)! ~33!

and

n↑GL,↑
2 ~q→0,0!1n↓GL,↓

2 ~q→0,0!

→2
1

D n v~q!

]

]z F(
s

sgn~s!~2ts1us22ts
(0)!G .

~34!

For Eq. ~33!, the virial theorem in the usual form 2t1u
5DP, P being the pressure, yields

n↑G↑
1~q→0,0!1n↓G↓

1~q→0,0!→ 1

n v~q! S 1

K0
2

1

K D .

~35!
04511
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Similarly, Eq. ~34! can be handled by means of a magne
virial theorem, first reported for the paramagnetic EG
Caccamoet al.34 A general proof is given in Appendix B
We have

2~ t↑2t↓!1~u↑2u↓!5Dngbz ~36!

and hence

g@n↑GL,↑
2 ~q→0,0!1n↓GL,↓

2 ~q→0,0!#→ ng2

v~q! S 1

x0
2

1

x D ,

~37!

having definedx215n21]bz /]z. Evidently, the sum rules
on compressibility and on longitudinal susceptibility a
valid for arbitrary spin polarization and EG dimensionality

Turning to the spin-flip response, the method of Cacca
et al.27 is easily applied to find the result

GT,↑
2 ~q→0,0!→2

2

Dnv~q!

]

]n↓↑
~2t↓↑1u↓↑22t↓↑

(0)!

~38!

with the further definitions

tss̄5(
k

nk,ss̄

\2k2

2m
, ~39!

uss̄5 1
2 E dr v~r !^rss̄~R!r~R1r !&, ~40!

and

nk,ss̄5E dr ^cs
†~R1 1

2 r !cs̄~R2 1
2 r !&exp~ ik•r !. ~41!

Again, the value ofGT,↓
2 (q→0,0) is obtained from Eq.~38!

by inverting all spin arrows.
Another form of the virial theorem concerning the tran

verse spin-flip susceptibility suggests itself from Eq.~38!.
This theorem is also proved in Appendix B and reads

2t↑↓1u↑↓5Dgn↑b1 ,
~42!

2t↓↑1u↓↑5Dgn↓b2 .

We accordingly find from Eq.~38!

GT,↑
2 ~q→0,0!→2

2n↓
nv~q! S 1

x̃↓↑
(0)

2
1

x̃↓↑
D . ~43!

This relation, with its analog forGT,↓
2 (q→0,0), is a thermo-

dynamic sum rule applying to the transverse susceptibility
a spin-polarized EG.

V. CONCLUSIONS

The local-field factors incorporate the effects of exchan
and correlation in the linear-response functions of the E
Knowledge of them is essential for the evaluation of t
many-body contributions to a number of physical propert
for systems of electronic carriers in semiconductors and m
als. They also give the basic information for densit
8-5
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functional calculations on weakly inhomogeneous electro
systems.

In a strong-coupling regime, the Coulomb interaction b
tween electrons may induce a finite spin polarization in
EG. Recent quantal simulations5,8 have reported different be
haviors of the ground state as a function of coupling stren
and spin polarization in different space dimensions. At a
rate, in a two-dimensional EG the application of an in-pla
magnetic field can be used to induce such spin polariza
and to explore the role of this system parameter over a w
range of values in the absence of diamagnetic effects.

With the above facts in mind, we have studied the ex
limiting behaviors of the local-field factors in a spin
polarized EG. In the regime of large wave number, we h
recovered the results of Marinescu and Quinn26 in space di-
mensionD53 and derived the corresponding results inD
52. We have also examined an alternative definition of
local-field factors for both dimensionalities in this regim
Finally, we have extended to a spin-polarized EG the s
rules on the thermodynamic compressibility and on the l
gitudinal magnetic susceptibility, and we derived a rule
garding the transverse magnetic susceptibility.
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APPENDIX A: ASYMPTOTIC EXPRESSIONS OF THE
LOCAL-FIELD FACTORS WITH REFERENCE TO THE

IDEAL FERMI GAS

As noted in Sec. III, an alternative definition of the loca
field factors@Gs

6(0)(q,v), say# is obtained form Eqs.~15!–
~17! when the single-particle susceptibility is calculated fro
Eq. ~18! by using the ideal Fermi distributionnk,s

(0) in place of
the true momentum distributionnk,s . This behavior is rel-
evant to the evaluation of static local-field factors by quan
simulation techniques~see, e.g., Ref. 7!. We follow the ap-
proach of Holas29 to obtain the expressions ofDGs

6

[Gs
6(0)2Gs

6 at large wave number and finite frequency.
The calculation hinges on the large-q expansion of

Pss8(q,v), which reads

Pss8~q,v!→2
2m

\2q2 H ns1ns81
4

q2
@^~ q̂•k!2&s

1^~ q̂•k!2&s8#J , ~A1!

where we have defined̂ (q̂•k)2&s5(knk,s(q̂•k)2. A
straightforward calculation yields

DG↑
1~q,v!→DGL,↑

2 ~q,v!→ n\2q2D↑
2n↑

2m2vp
2~q!

~A2!
04511
ic

-
e

th
y
e
n
e

t

e

e
.
m
-
-

r
t-

l

and

DGT,↑
2 ~q,v!→ 2\2q2D

nm2vp
2~q!

~A3!

for the 2D EG, with the value of the plasma frequency giv
by vp

2(q)52pne2q/m. The quantitiesDs and D in these
equations are given by

Ds5(
k

~nk,s2nk,s
(0) !~ q̂•k!2 ~A4!

and D5(sDs . These quantities are proportional to th
shifts in kinetic energy associated with the difference b
tween the two types of momentum distribution. Clearly, t
shifts DGs

6 grow linearly withq in 2D.
Equations~A2!–~A4! also give the leading terms ofDGs

6

in D53, provided that the plasma frequency is replaced
vp

254pne2/m. Thus the shift in local-field factors grows a
q2 to leading order in 3D.29 However, in this space dimen
sion one also finds a constant contribution toDGs

6 , which is
determined by the shift in the mean-square kinetic ener
The results are

DG↑
1~q,v!→DGL,↑

2 ~q,v!→ n\2

2n↑
2m2vp

2 S D↑q224
D↑8
n↑

D
~A5!

and

DGT,↑
2 ~q,v!→ 2\2

nm2vp
2 S D q224

D8

n D , ~A6!

where we have defined

D↑85F(
k

nk,↑~ q̂•k!2G2

2F(
k

nk,↑
(0)~ q̂•k!2G2

~A7!

and

D85F(
k,s

nk,s~ q̂•k!2G2

2F(
k,s

nk,s
(0) ~ q̂•k!2G2

. ~A8!

APPENDIX B: MAGNETIC VIRIAL THEOREMS

We introduce the operator

As52 1
2 i\ sgn~s!E dDr cs

†~r !r•
]

]r
cs~r ! ~B1!

and evaluate its commutator with the HamiltonianH5H0
1Hz , whereH0 is given by Eq.~1! andHz is the Zeeman
Hamiltonian,

Hz52gE dDr bz~r !(
s

sgn~s!cs
†~r !cs~r !. ~B2!

The magnetic field is being taken as position-dependen
order to correctly treat boundary terms, but will ultimately
allowed to attain a constant value.
8-6
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The commutator ofAs with H0 is easily calculated using
the canonical anticommutator relations, with the result

^@As ,H0#&52 1
2 i\ sgn~s!~2ts1us! ~B3!

for its ground-state expectation value. The definitions in E
~31! and ~32! have been used. On the other hand, the co
mutator with the Zeeman term is

@As ,Hz#5
1

2
i\gE dDr @r•“bz~r !#cs

†~r !cs~r !. ~B4!

After an integration by parts and use of the divergence th
rem, the limit of a constant magnetic field can be taken a
Eq. ~B4! becomes

@As ,Hz#52 1
2 i\g bzE

surface
r•dscs

†~r !cs~r !. ~B5!

This yields
u

tt

-
ler

04511
s.
-

o-
d

^@As ,Hz#&52 1
2 i\D g nsbz . ~B6!

Finally, by imposing that the expectation value of(sAs

should be constant in time, we find from Eqs.~B3! and~B6!
the result given in Eq.~36! of the main text.

A similar theorem holds for the transverse susceptibili
We consider the operator

A152 i\E dDr c↑
†~r !r•

]

]r
c↓~r ! ~B7!

and its commutator withH01H1 , where

H152gE dDr b1~r !c↓
†~r !c↑~r !. ~B8!

The same steps as given above to obtain Eqs.~B3! and~B6!
lead to the first of Eqs.~42! in the main text. A similar
calculation for the fieldb2(r ,t) completes the derivation o
Eqs.~42!.
oc.
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