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Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder
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We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor
Coulomb repulsionV using the density matrix renormalization-group technique. The ground state is homoge-
neous at smallV, a ‘‘checkerboard’’ charge-ordered insulator at largeV and not too small on site Coulomb
repulsionU, and is phase separated for moderate or largeV and smallU. The zero-temperature transition
between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous
and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to
intrachain hopping. In the second part of the paper we construct an effective Hamiltonian for the spin degrees
of freedom in the strong-coupling, charge-ordered regime that maps the system onto a frustrated spin chain.
The opening of a spin gap is thus connected with spontaneous dimerization.
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I. INTRODUCTION

Quasi-one-dimensional systems present a unique opp
nity to study the interplay between strong quantum fluct
tions on the one hand, and a tendency to charge or
ordering on the other. Examples include Peierls or sp
Peierls behavior, as well as charge ordering due to elect
electron interaction. One material in which such behavior
been found is the two-leg ladder material NaV2O5. NaV2O5
undergoes a phase transition atTc534 K that is character-
ized by the opening of a spin gap and a doubling of the u
cell. Although this transition was originally thought to b
spin Peierls, recent studies have found evidence for ch
order.1–3 Above the transition, the material seems to be b
described as a quarter-filled ladder.4,5 Such two-leg-ladder
structures have also been found in a number of other m
rials, including the vanadates MgV2O5 and CaV2O5, and the
cuprates SrCu2O3 and Sr14Cu24O41. For a more detailed de
scription of ladder materials and models as well as a disc
sion of the extensive theoretical work on ladder models,
direct the reader to a recent review6 and the references con
tained therein.

In NaV2O5, the character of the charge ordering and
nature of the transition are currently under debate. Wh
evidence is growing7–9 that the charge-ordered state has
zigzaglike charge arrangement, the question of whether
charge ordering is continuous or discontinuous has not
been settled experimentally. Theoretically, the magn
properties of the compound forT,Tc have been calculate
for different charge-ordering patterns10,11 and compared to
experiments. Again, zigzag charge ordering on ladders~pos-
sibly with intervening disordered ladders12! leads to magnon
dispersions in good agreement with neutron-scattering d
Additionally, the possibility of two separate transitions
nearby temperatures has been raised;13,14 in this scenario the
charge order would set in at one temperature while the s
gap would open at a second, lower criticalT. Very recently,
a scenario of singlet cluster formation instead of zigz
charge ordering has been suggested.15 However, this model
0163-1829/2001/63~4!/045105~11!/$15.00 63 0451
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seems not to be able to reproduce the experimentally fo
spin gap and magnon dispersion data.16 It is clear that more
experimental work is necessary to clarify the nature of
low-temperature phase of NaV2O5.

One of the simplest models of interacting electrons t
allows for charge ordering is the extended Hubbard mod
i.e., the Hubbard model supplemented by an additio
nearest-neighbor~NN! Coulomb repulsion,V. This model
has been studied in one dimension~1D! in the strong-
coupling limit,17 at quarter filling,18,19and at half filling,20–23

and in between,24,25 in the 2D system at half filling,26,27 and
within the dynamical mean-field theory~the limit of infinite
dimensions! at quarter28 and half filling.29 A variety of tech-
niques, such as mean-field approximations, perturba
theory, as well as numerical methods as quantum Mo
Carlo and the density matrix renormalization group~DMRG!
have been employed.

The result of investigations of the charge order transit
can be summarized as follows: At the mean-field level,
transition between a homogeneous state and a charge de
wave ~CDW! state at half filling in a hypercubic lattice oc
curs atVc5U/z0 , wherez0 denotes the number of neare
neighbors (z052d) andU is the on-site interaction. Numeri
cal studies21,22 indicate a slightly higher value ofVc , at least
in 1D. Interestingly, the transition at half filling in 1D ha
been found to be second order at smallU/t and first order at
largeU/t with the tricritical point located atUc /t;4 – 6.22,23

Here we use the term ‘‘first order’’ to denote discontinuo
behavior of the charge order parameter as a function of
croscopic parameters such asV or band filling, and ‘‘second
order’’ to denote continuous behavior. For fillings below ha
filling in 1D, the situation is more complicated because
number of phases compete at largeV.18,19,25For dimensions
larger than one, indications are that the charge order tra
tion is generally first order.26–29However, conclusive studie
that can reliably distinguish between first- and second-or
transitions are lacking. At smallU and largeV, the extended
Hubbard model undergoes phase separation~PS! rather than
a transition to a CDW state. For the 1D model between qu
©2001 The American Physical Society05-1
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ter and half filling, it has been established25 that PS occurs
for uUu/t,4 in the V5` limit, whereas forU/t.4, the
system undergoes a transition to aq5p CDW state for suf-
ficiently large V.24 Phase separation in higher dimensio
has also been discussed.30

For the 1D system in particular, there has been rec
interest in the possibility of dominant superconducting c
relations in the uniform ground state away from half-fillin
when V@U;t,19,25 i.e., in the proximity of the phase
separated region. We note here that the uniform phase in
off half filling is metallic and can, in general, be describ
within the Luttinger-liquid picture. Although dominant su
perconducting correlations have not been established in
ground state of the 1D extended Hubbard model to dat
number of non-Luttinger-liquid effects have bee
observed.25

Some of the present authors have previously studied31 the
charge order transition in the extended Hubbard model
the two-leg ladder at various band fillings forU/t54 and 8.
A transition to a checkerboard charge-ordered state
found for all fillings between quarter and half filling. Th
transition is second order near quarter filling and first or
near half filling for sufficiently largeU.

The focus of the present paper is on this model at qua
filling with a twofold purpose: First, we present a compr
hensive study of the phase diagram as a function ofU/t and
V/t for repulsiveU andV, and discuss the properties of th
ground-state phases, as well as the nature of the phase
sitions. Second, we derive an effective Hamiltonian for
spin degrees of freedom in the charge-ordered state at st
coupling, and compare the predictions of this effective lo
energy theory with our numerical results.

Phase diagram

Our main results, the phase diagrams deduced from
numerical calculations, are summarized in Fig. 1~isotropic
hopping! and 2~anisotropic hopping!. The phases are distin
guished by the presence or absence of a gap for spin an
charge excitations. To denote this, we employ the follow
labelling: HIsg denotes a homogeneous insulator~nonzero
charge gap! with a spin gap, HI a homogeneous insulat
without a spingap HMsg ~HM! a homogeneous metalli
phase having zero charge gap with~without! spin gap, and
CDWsg ~CDW! is a charge-ordered state with~without! spin
gap. The CDW states are always insulating in the pres
quarter-filled model. The phase diagrams can be roughly
vided into four regions:~i! Weak coupling: for smallU and
V we find homogeneous phases similar to the ones in
‘‘bare’’ Hubbard model~see discussion in Sec. II and resu
in Sec. III B!. ~ii ! Large U, small V: These homogeneou
strong-coupling phases have characteristics similar to
weak-coupling region.~iii ! Small U, largeV: phase separa
tion, this is discussed further in Sec. III D.~iv! Strong cou-
pling: large U and V lead to an insulating checkerboa
charge ordered with either gapless or gapped spin excitat
depending on the ratio ofV/U.

For isotropic hopping we have numerically determin
the phase boundaries as shown in Fig. 1. The precise loca
04510
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of the CDW-CDWsg boundary at which the spin gap close
at intermediate coupling could not be obtained by the me
ods used here; we have indicated this uncertainty by a q
tion mark in the phase diagram.

In the case of anisotropic hopping, we have not mapp
out the full phase diagram, but the numerical results~dis-
cussed in Sec. III! provide the schematic pictures shown
Fig. 2. Varying the ratio of the rung to leg hopping strength
t' /t i , has two effects:~a! For small t' /t i there appears a
metallic phase (HMsg) with spin gap and dominating
d-wave-like singlet pair correlations~as in the ‘‘bare’’ V
50 Hubbard ladder!. ~b! The existence of a spin gap de
pends strongly on the hopping ratio, i.e., there is a transi

FIG. 1. Ground-state phase diagram of the extended qua
filled Hubbard model on a two-leg ladder with isotropic hopping
a function of the on-site and nearest-neighbor repulsion,U/t and
V/t. The phase labeling is explained in the text; the dashed li
represent second-order phase transitions. The solid line marks
boundary of the phase-separation region~PS! where the thermody-
namic compressibility diverges.

FIG. 2. Proposed schematic phase diagrams for the exten
quarter-filled Hubbard model with~large! hopping anisotropy. The
phases are labeled as before. Fort',t i , the spin gap is nonzero in
accordance with the weak-coupling predictions whereas fort'.t i

the spin gap is always zero. In the former case, the spin gap ca
suppressed deep in the charge-ordered phase ifV/U is smaller than
a critical value.
5-2
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PHASE DIAGRAM OF THE QUARTER-FILLED . . . PHYSICAL REVIEW B63 045105
as function oft' /t i where a spin gap opens~in both the
homogeneous and CDW phases!. The critical hopping ratio
may depend on the interaction strength, but is near unit
the homogeneous phases for reasonable values of the
actions.

The rest of the paper is organized as follows: In Sec.
we introduce the extended Hubbard model and discuss s
results known for theV50 case, i.e., the ‘‘bare’’ Hubbard
model on a two-leg ladder. In Sec III, we present our num
cal results, discuss the properties of the phases show
Figs. 1 and 2, and examine the transition to the char
ordered state. At largeV, where charge order is well estab
lished, it is possible to derive an effective Hamiltonian f
the residual spin degrees of freedom; this is done in Sec.
A summary and a discussion of the relevance of our res
to experimental systems~especially NaV2O5) terminates the
paper.

II. EXTENDED HUBBARD MODEL

The single-band extended Hubbard model has the Ha
tonian

H52 (
^ i j &s

t i j ~cis
† cj s1H.c.!1U(

i
ni↑ni↓1(̂

i j &
Vi j ninj .

~1!

Here we consider a lattice consisting of two chains of len
L, i.e., a ladder, and restrict ourselves to the band fill
^n&5N/(2L)51/2 whereN is the number of electrons. Th
summation^ij & runs over all pairs of nearest-neighbor sit
on the ladder, taking open boundary conditions between
chains. The hopping matrix elements along the legs
rungs of the ladder are denotedt i and t' , respectively, and
the nearest-neighbor Coulomb interactions are similarly
notedVi andV' . Unless otherwise noted, we will uset i as
a unit of energy. In this work, we will treat primarily th
‘‘isotropic’’ case t i5t'5t andVi5V'5V.

The noninteracting Hamiltonian (U5V50) can be di-
agonalized by a Fourier transform~for periodic boundary
conditions in the chain direction!, leading to the single-
particle energies

eq522t i cosqx1t' cosqy , ~2!

whereq5(qx ,qy), qx is the momentum along the chains a
the momentaqy50 andp correspond to bonding and ant
bonding symmetry, respectively. Either one or both of
bands can be occupied in the noninteracting system, dep
ing on the total particle density and the ratio oft' andt i . At
quarter filling, the transition occurs at isotropic hopping: f
t',t i both bands are less than half filled, whereas fort'
.t i , the bonding band is half filled and the antibondi
band is unoccupied.

The effect of the Hubbard interactionU on this system
has been extensively studied. In the weak-coupling limitU
!t the phase diagram has been investigated using the
turbative renormalization group~RG!.32 A variety of phases
have been shown to exist as a function of band filling a
hopping anisotropy. In general, the two-band system
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have four possible modes~symmetric and antisymmetric
charge and spin modes!, each of which can be either massiv
or massless. The phases can therefore be classified usin
notationCnSmwheren andm designate the number of gap
less charge and spin modes, respectively (0<n, m<2!. At
quarter filling, the weak-coupling RG~Ref. 32! for the
‘‘bare’’ Hubbard model (V50) yields the following results:
for t'.t i , the system behaves as a half-filled Luttinger li
uid; umklapp scattering in the bonding channel is a relev
perturbation that leads to a charge gapped C0S1 phas
smallU. In contrast, deep in the two band region,t'!t i one
finds a metallic C1S0 phase in the weak-coupling limit. Ne
isotropic hopping, the bottom of the antibonding band ju
‘‘touches’’ the Fermi surface, and the curvature of the d
persion becomes important, leading to additional narrow
gions of C2S2 and C2S1 phases. Several of these w
coupling predictions have been verified by numerical DMR
calculations in the intermediate- and strong-coupling regim
for a wide range of filling.33 Systematic studies of the phas
of the extended Hubbard model on a two-leg ladder aw
from half filling have, to our knowledge, not yet been carri
out.

III. NUMERICAL RESULTS

In this section, we present the results of our numeri
investigations and discuss the characteristics of the ph
shown in Figs. 1 and 2.

A. Technique and observables

The numerical results have been calculated with
DMRG technique34 on lattices of up to 2380 sites, with
open boundary conditions at the ends of the chains, as
as between the two chains. Most data shown are obtaine
keeping 600 states per block resulting in the sum of
discarded density matrix eigenvalues being typically 1028 or
less. For small system sizes we have checked the con
gence by using up to 1000 states per block. Unless otherw
noted, we estimate the errors in the gap energies and co
lation functions obtained using the DMRG procedure to
less than a few percent.

Important ground-state properties are the static charge
spin-correlation functions: we have calculated the sta
charge structure factor

C~q!5
1

2L (
i

eiq•Ri C̄~Ri !, ~3!

where

C̄~Ri !5
1

Nav
(
$ j %

^dnj 1 idnj& ~4!

^...& denotes the ground-state expectation valuednj5nj
2^nj&, and we average over typicallyNav56 sites to re-
move oscillations due to the open boundaries. The spin st
ture factorS(q) is defined similarly in terms of the spin-spi
correlation function̂ Sj 1 i

z Sj
z&.
5-3
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The nature of the low-lying excitations can be determin
by calculating the energy gaps of the system. In particu
we will consider the charge and spin gaps, defined as

Dc5
1

2
@E0~L,N12!1E0~L,N22!22E0~L,N!#,

Ds5E0~L,N,Sz51!2E0~L,N,Sz50!, ~5!

whereE0(L,N) is the ground-state energy of the ladder s
tem with 2L sites andN electrons. Since we calculate th
gapsD(L) on finite systems, the gaps must be extrapola
to L→`; we do this by performing a polynomial fit in 1/L
through the data points from the larger system sizesL
>24). Although we include both 1/L and 1/L2 terms, the
coefficient of the quadratic term is quite small in most cas
The uncertainty of the extrapolated value depends stron
on finite-size effects that become large when the correla
length becomes large; the results for the gaps are most a
rate in the strong-coupling regionU,V@t, and for not too
small t' .

B. Homogeneous phases

First, we concentrate on the states without charge or
i.e., the region of smallV as shown in Fig. 1. The calculate
charge and spin-correlation functions~see, e.g., Fig. 1 of Ref
31! indicate antiferromagnetic correlations peaked at ord
ing vector~p, p!. The nature of the phases is best probed
calculating spin and charge gaps. The extrapolation to
thermodynamic limit is illustrated in Fig. 3, in which w

FIG. 3. Finite-size scaling for the charge and spin gaps atU/t i

58, V/t i52 and differentt' /t i . The solid lines are guides to th
eye; the dashed lines are quadratic fits through the data point
L524 through 80.
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show results for charge and spin gaps atU/t i58V/t i52 and
different values of the hopping ratiot' /t i . As noted above,
finite-size effects increase with decreasing interchain c
pling t' . However, we have verified~by keeping more
DMRG states per block and/or using a fit with a 1/L term
only! that, within the numerical accuracy available,Ds in
Fig. 3 vanishes fort' /t i51, but is nonzero fort' /t i50.7.

The extrapolated DMRG results for charge and spin g
in the homogeneous phase are displayed in Fig. 4. First
discuss theV50 case, i.e., the ‘‘bare’’ Hubbard ladder. Ac
cording to the weak-coupling RG,32 both spin and charge
gaps vanish in the case of isotropic hopping. Varying
hopping ratiot' /t i tunes the system through the one-band
two-band transition: Fort'.t i umklapp scattering opens
charge gap~C0S1 phase!; with decreasingt' /t i , one finds
narrow regions of C2S2 and C2S1, followed by a C1
phase. Our results forU/t58 agree with these predictions
we find a C0S1~HI! phase fort'.t i and a C1S0~HMsg)
phase fort',0.9t i . The data also indicate a narrow regio
where bothDc50 andDs50 ~HM!, possibly corresponding
to the C2S2 and C2S1 phases. Turning toV.0, the de-
scribed behavior continues to small nonzero values ofV, but
the transition points shift to smallert' /t i . A further increase
of V suppresses the metallic phase, and only the spin-
transition remains. Data forV/t i52 is shown in Fig. 4: the
behavior of the spin gap is similar to theV50 case, i.e., it is
finite for small t' and vanishes fort' /t i larger than some
critical value. However, the charge gap is found to be n
zero for all hopping ratios examined here~see also Figs. 6
and 7 below!.

These data can be understood from the RG analysi
Ref. 32: the additional nearest-neighbor repulsion does
introduce a new relevant operator, but only changes the s

for

FIG. 4. Charge and spin gaps atU/t i58, V/t i50,2 as a function
of the hopping ratiot' /t i . Since the finite-size effects becom
substantial for smallt' , we have indicated the estimated erro
from the extrapolation to the thermodynamic limit by error ba
For data points without error bars, the uncertainties are of the o
of the symbol size or less.
5-4
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PHASE DIAGRAM OF THE QUARTER-FILLED . . . PHYSICAL REVIEW B63 045105
ing dimension of the perturbation introduced byU. This im-
plies that smallV does not modify the phases found atV
50. However, our data indicate that relatively small valu
of V are enough to drive the system to an insulating s
even fort',t i .

C. CDW phases and charge-ordering transition

As the nearest-neighbor repulsionV is increased, we ex
pect a transition to a checkerboard charge-ordered state
this has been examined in our earlier paper,31 here we sum-
marize the main findings: At largeV, an insulating CDW
state with ordering wave-vectorQ5(p,p) occurs for all fill-
ings between quarter and half filling. At quarter filling, th
transition is second order, i.e., the order parameterh
5 limL→` C(Q)/^n&2 vanishes continuously upon approac
ing a criticalVc(U) from above. Interestingly, the transitio
has been found to change from second order to first orde
higher band filling as a function ofU/t;31 such tricritical
behavior has also been observed in the 1D case at
filling.20,22 In the quarter-filled CDW state, the spin correl
tions indicate zigzag antiferromagnetic ordering of the sp
1/2 on the occupied sites; at larger filling the spin corre
tions become incommensurate and are gradually suppre

We now turn to our results and a more detailed discuss
of the quarter-filled system. In Fig. 5, the finite-size scali
for h, as well as the extrapolated values forAh that corre-
sponds to the relative difference of the sublattice occupan
in the broken-symmetry charge-ordered state, are shown
a typical second-order transition.~Data for first-order transi-
tions at larger filling are shown in Ref. 31, Figs. 2 and!
The inclusion of the quadratic fit term turns out to be imp
tant near the transition.35 The Vc(U) values obtained from
the numerics are displayed as phase boundary in Fig. 1. N
thatVc decreases with increasingU in the quarter-filled case

FIG. 5. Finite-size scaling for the staggered charge correla
function atU/t54 and isotropic hopping. The curves correspond
V/t53.0, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 4.0, 6.0, and 8.0, fr
bottom to top. The dashed lines are quadratic fits through the
points for L>24. The inset shows the extrapolated values forAh
indicating a second-order transition atVc /t53.4560.1.
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treated here, similar to the behavior found in 1D.19 Our re-
sults for largeU suggest thatVc is nonzero in theU→`
limit as in 1D; an extrapolation based on data up toU/t
564 yieldsVc(U5`)'2t. It is interesting to contrast this
with half filling, for which weak- and strong-coupling
approximations,29,36 as well as numerical studies,22,31 yield
Vc'U/z0 for a hypercubic lattice withz0 being the number
of nearest neighbors, i.e., in the half-filled caseVc increases
with U.

The behavior of the low-energy electronic excitations
the vicinity of Vc provides further information on the cha
acter of the charge order transition. Since the energy g
show different behavior for different values of the hoppi
ratio t' /t i , as seen in Fig. 4, we focus on two representat
values of the hopping anisotropy.

The energy gaps as function ofV/t i together with the
order parameter atU/t i58 are shown in Figs. 6 and 7 fo
t' /t i50.7 and 1.4. The main observation is that no g
opens or closes at the transition to the charge-ordered s
Small t' /t i leads to fully gapped C0S0 phases on both si
of the transition (HIsg-CDWsg transition! whereas at large
t' /t i both the homogeneous and the charge ordered p
have zero spin gap and nonzero charge gap~HI-CDW tran-
sition!. For the former case~Fig. 6!, the spin gap decrease
appreciably as the charge-ordered state is entered. This
cates a change in the spin dynamics from a ‘‘wea
coupling’’ regime dominated by band effects to a ‘‘stron
coupling’’ regime determined by the physics of a frustrat
spin chain. This behavior will be discussed in detail in S
IV.

In any case, it appears that low-lying fermionic excit
tions do not play a role in the critical dynamics at the cha
order transition. This implies that this zero-temperature tr
sition must be in the universality class of th
(111)-dimensional Ising model. Note, however, that inte

n

ta

FIG. 6. Order parameterAh ~upper panel! and charge~solid!
and spin~dashed! gaps~lower panel! as function ofV/t i for U/t i

58 andt' /t i50.7. Although the spin gap decreases when enter
the charge-ordered state, it is nonzero for allV.
5-5



o
ug

In
le
o

ve
e
an
y
e
o

i-

ol
ila
l
e
p

io
te

e
s i

m
he

tion

d
t on
n-
ble
tate.
se-
ation

rmi-

e-
i.e.,

in

-

in
ap-

to
-

e
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ladder couplings will increase the effective dimensionality
this transition in experimental ladder systems at low eno
energies or temperatures.

D. Phase separation

For smallU and largeV, phase separation is expected:
the V→` limit, existing double occupancies are immobi
and cannot be broken up, whereas single fermions can m
in the ‘‘unoccupied’’ space. ForU,UPS(V), the system
then separates into a region with double occupancies at e
second site~i.e., checkerboard order with two electrons p
occupied site! and a region in which the other electrons c
gain kinetic energy by hopping. For the one-dimensional s
tem it is possible to solve theV5` problem exactly becaus
it maps onto noninteracting spinless fermions moving
open chain segments.19 While the mapping to spinless ferm
ons is similar for the ladder system, the geometry leads
interactions among the fermions that preclude an exact s
tion. Nevertheless, the qualitative behavior should be sim
to the 1D case, i.e., forV5` there should be a critica
UPS(`) @UPS(`)54t in 1D# below which the system phas
separates. For smallV, the phase separation should disa
pear.

The numerical results for charge and spin-correlat
functions at smallU are shown in Fig. 8. Incommensura
peaks appear in both theqy5p channel ofC(q) and the
qy50 channel ofS(q) asV is increased. At the largest valu
shown,V/t58, there are strong oscillations and side peak
C(q), an indication of PS.

To examine the thermodynamic stability of the syste
we have numerically computed the compressibility of t
system that is defined as

k5
4L

N2 @E0~L,N12!1E0~L,N22!22E0~L,N!#21.

~6!

FIG. 7. Same as Fig. 6, but fort' /t i51.4. The lower panel now
shows the charge gap only; the spin gap is zero within the num
cal accuracy for all values ofV.
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Our results clearly show the occurrence of phase separa
in the largeV, small U region indicated by~i! a diverging
compressibility, ~ii ! oscillating incommensurate spin an
charge correlations with wave vectors strongly dependen
the system size, and~iii ! the occurrence of site charge de
sities greater than unity. Note that at quarter filling no dou
occupancies occur even in the perfectly charge ordered s
The appearance of doubly occupied sites in the pha
separated state is clearly consistent with the phase-separ
mechanism explained above. The criteria~i!–~iii ! give con-
sistent results and allow for a reasonably accurate dete
nation of the PS boundary~see Fig. 1! even though finite-size
effects in the calculation of the compressibility are large.19

In contrast to that found in the 1D chain, the phas
separation boundary has nonmonotonic behavior,
UPS(V) shows a maximum at aroundV/t'8, U/t'2.4, as
can be seen in Fig. 1. The described ‘‘re-entrant’’~nonmono-
tonic! behavior of the PS boundary is illustrated in Fig. 9
which we display the charge gap as a function ofV for
U/t52.2. Here we find a homogeneous phase at smallV, a
charge-ordered phase at largeV, and a region of phase sepa
ration in between, for 4.8,V/t,13.5.

Another difference with the behavior of the single-cha
extended Hubbard model is that no homogeneous phase
pears for largeV and small or intermediate values ofU:
increasingU in the PS region drives the system directly in
the charge ordered state~Fig. 1!. In contrast, in the 1D sys
tem, a homogeneous phase is present at anyV, and the

ri-

FIG. 8. Charge- and spin-correlation functions for a 6432 sys-
tem with isotropic hopping andU/t52. The rapid oscillations in
C(q) at V/t58 indicate that increasingV drives the system into
phase separation.
5-6
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boundaries to the charge ordered and to the PS phases m
~at U/t54) only in theV→` limit.19

For the present ladder system, the behavior at the bou
ary between the charge-ordered state and the PS regio
quite interesting: The charge gap appears to vanish con
ously at this boundary~Fig. 9!. However, the charge-density
wave order parameterh does not tend to zero when ap
proaching the PS boundary from the charge order ph
Moreover, the numerical results for smallU ~in the PS re-
gion! indicate charge-density oscillations in the spatial
gions without double occupancies. This suggests that str
CDW correlations exist on both sides of the PS bounda
and the transition can be interpreted as ‘‘continuous.’’

IV. SPIN DYNAMICS IN THE STRONG-COUPLING LIMIT

This section focuses on the low-energy spin dynamic
largeU andV in the checkerboard charge-ordered state. T
charge gap in this state can be estimated to beDc
5min(U,3V) whent!U,V by neglecting the kinetic energy
In this limit, each occupied site in the charge-ordered s
carries chargee and spin1

2, and the spin states are degener
for V5`. We would like to discuss the spin ordering arisin
from effective exchange interactions that occur for small
finite t/V. We can do this by treatingt/V as a perturbation
in a manner similar to the derivation of the effective sp
exchange in the large-U Hubbard model athalf filling that
leads to the mapping to an antiferromagnetic Heisenb
model. However, the present problem is slightly more co
plicated because the degeneracy is lifted in fourth orde
the hopping rather than in second order as in the half-fi
Hubbard model.

The aim is to find an effective Hamiltonian for the r
sidual spin degrees of freedom. It is easy to see that
model will be a frustrated antiferromagnetic Heisenbe
J1-J2 chain whereJ1 andJ2 are a diagonal~1,1! and a hori-
zontal ~2,0! coupling between the spins in the checkerbo
ordered state. It is well known37–40 that this model has a
zero-temperature phase transition as a function ofa

FIG. 9. Charge gap as function ofV/t for U/t52.2 and isotropic
hopping. There is a homogeneous insulating phase at smallV and a
charge-ordered insulating phase at largeV; an intervening region of
phase separation~shaded!, characterized by diverging compressib
ity, is found for 4.8,V/t,13.5. In the stable phases, the spin gap
zero to within the numerical accuracy.
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5J2 /J1. For a,ac , the ground state is gapless with powe
law correlations. Fora.ac , a spontaneous dimerization oc
curs that leads to a spin gap and a doubly degenerate gr
state. The numerical estimate38 for ac is 0.2411. Ata5 1

2

~the Majumdar-Ghosh point!, the ground state has bee
shown to be an exact product of nearest-neighbor single41

Therefore, a corresponding spin-gap transition is also p
sible in the charge-ordered state of thet-U-V ladder~i.e., a
CDW-CDWsg transition! provided that the effectivea can be
tuned through the critical value by changing the system
rameters.

We use a recently developed method42 based on cumu-
lants to derive an effective Hamiltonian for the spin degre
of freedom in the charge-ordered state of the quarter-fi
model. We give the derivation in the appendix, and he
state only the final result for isotropic nearest-neighbor
pulsionVi5V'5V:

J15
2t'

2 t i
2

V2 H 2

U
1

2

U12V
1

1

VJ ,

J25
t i
4

V2 H 1

U
1

2

U12VJ . ~7!

The lowest-order nonzero contributions toJ1 andJ2 are in-
deed of ordert4/V3 and terms of ordert4/(V2U) also appear.
For anisotropicV, the general expressions become mo
complicated and are given in the Appendix. It turns out th
the ratio a5J2 /J1,1/4 for the isotropic caset i5t' and
Vi5V' ; it approaches 1/4 forV@U@t, as shown in Fig.
10. The plot shows that the dimerization transition will ta
place atV/U'2. However, this transition is hard to observ
numerically since the induced gap is very small as we d
cuss below. To access larger values ofa a hopping anisot-

FIG. 10. The ratio of the effective coupling constantsa
5J2 /J1 calculated from Eq.~A2! at isotropic hopping. The differ-
ent curves correspond toV' /Vi50,0.5,1@thick line—see Eq.~7!#,
and 2 from top to bottom. In order to obtain values for anisotro
hopping,a must be multiplied by (t i /t')2. The horizontal dashed
line marks the critical valueac50.2411 for the dimerization tran
sition of the frustrated spin chain.
5-7
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ropy t' /t i,1 is necessary. The parametera can be tuned to
any value by varying the hopping ratio.

To verify the expressions forJ1 andJ2 given above, we
have studied the behavior of the charge-ordered state in
strong-coupling limit for different hopping anisotropies.
order to interpret results for the spin gap, it is important
note thatDs in the J1-J2 chain vanishes exponentially ne
the critical pointac , leading to nonzero but very small va
ues for a,0.3. Therefore, the spin-gap calculations in t
charge-ordered state require an anisotropy int or V in order
to reacha values significantly larger than 0.3. Furthermo
they are feasible only in a window of intermediate values
U/t,V/t: overly small values do not lead to a charge-orde
state whereas overly large values ofV lead to an unobserv
ably small spin gap~of orderJ;t4/V3).

The nature of the magnetic ground state can also
probed using static spin-correlation functions. For theJ1-J2
chain it is known39,40 that the static structure factorS(q) is
peaked atq5p for a, 1

2 . Fora. 1
2 , the peak position shifts

FIG. 11. Spin-correlation functionsS(q) in the charge-ordered
state of the quarter-filled ladder. As in Fig. 8,qy50, p data are
plotted using full and dashed lines, respectively. The parameter
L564 andU5V58t' the different values of the hopping rati
t i /t' correspond to effective exchange constants@from Eq. ~7!#
with a5J2 /J150.227, 0.327, 0.511, 0.582, 0.736, and 0.909.
04510
he

,
f
d

e

to smallerq asa is increased, approachingp/2, the value for
two uncoupled chains with a doubled lattice constant, aa
becomes large.

The spin correlations atU5V58t' and various hopping
ratios obtained from the DMRG calculations are shown
Fig. 11. ~Note that we uset' rather thant i as the energy
reference in this section.! A shift of the maximum fromqx

5p to qx5p/2 ~at qy50) with increasingt i /t' is clearly
visible. To compare quantitatively with the strong-couplin
picture of the frustrated spin chain we show in Fig. 12 t
results for the spin gapDs and for the peak positionq* in the
spin structure factor~see Fig. 11! for different parameter set
in the charge-ordered phase. Data for the frustrated s
chain from Ref. 40 are also shown for comparison. Note t
the data are plotted as a function of the ratioJ2 /J1 with the
values of theseeffectivecouplings taken from the strong
coupling expressions~7!. The spin gap value follows the
strong-coupling prediction closely even for intermediate v
ues ofU/t and V/t. The peak position also shows the e
pected behavior, i.e., it deviates fromp when the effective
J2 /J1 exceeds a certain value. For largeU andV, the agree-
ment with the results from the frustrated spin chain is nea
perfect, clearly indicating that the spin dynamics in t
strong-coupling, charge-ordered state is correctly descri
by the J12J2 spin chain. For smaller values ofU and V,
there are slight deviations in the peak position from the sp
chain data: the region of incommensurate spin order
comes narrower with decreasing interaction. This might
expected because there is no incommensurability at half
ing in the noninteracting limit. A similar behavior forS(q)
has been found for the half-filled Hubbard chain with ne
nearest-neighbor hopping43 that can also be mapped onto a
effective frustrated spin chain in the large-U limit.

Now we turn to a discussion of the special case of isot
pic hopping for which theV50 weak-coupling system is
near the one-band to two-band transition. The numerical
sults obtained by DMRG indicate a zero-spin gap and n
zero charge gap for any finiteV ~outside the phase-separatio
region!. This is in disagreement with the strong-couplin
analysis presented above that predicts a CDWsg phase at
large V/U due to spontaneous dimerization. Sincea
5J2 /J1 is close toac , however, the spin gap would be ver

re
e

e

FIG. 12. Spin gap~left! and peak position in
the spin structure factor~right! for the charge-
ordered state of the quarter-filledt-U-V ladder.
The different curves are obtained by varying th
hopping ratiot i /t' at fixed values ofU/t' and
V/t' . The horizontal axis shows the ratio of th
effective exchange constantsJ1 and J2 obtained
from the strong-coupling expressions~7!. Data
marked ‘‘J1-J2 chain’’ are taken from Ref. 40.
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small and therefore hard to observe using numerical m
ods. By assuming that the strong-coupling picture is a
valid in the intermediate-coupling regime, we can locate
CDW-CDWsg boundary as shown in Fig. 1. Since it is n
possible to deduce the behavior of the spin gap close to
charge order transition from the current numerical results
cannot decide whether the charge order transition line
the spin-gap transition line meet for the case of isotro
hopping. Additional numerical approaches~e.g., based on
level crossing methods! could be used to check the spin-ga
scenario and to determine the precise location of the bou
ary of the spin-gap phase.

It is worth pointing out that although a spin gap is pres
in both the homogeneous and the charge-ordered phas
small t' /t i , the mechanisms for the spin-gap opening app
to be quite different: The strong-coupling CDW-CDWsg tran-
sition involves spontaneous dimerization in a spin model
is described by a sine-Gordon theory whereas the we
coupling case atV50 is more complicated due to the pre
ence of low-lying charge modes~see Ref. 32 for a discussio
on the RG forV50), however, not much is known about th
V.0 case.

V. CONCLUSIONS

In summary, we have studied the phase diagram of
extended Hubbard model on a quarter-filled two-leg ladd
At very smallV, the system behaves as in theV50 case,32

while slightly larger values ofV lead to an insulating stat
with either zero~HI! or nonzero (HIsg) spin gap depending
on the hopping anisotropy. ForU and V both strong, the
ground state shows zigzag charge order. In this phase,
occupied site carries spin12 and the residual kinetic energ
leads to effective antiferromagnetic exchange interacti
between the spins. We have rigorously established the m
ping of the spin degrees of freedom to a frustrated sp1

2

chain in the strong-coupling limit,U,V@t. This effective
spin chain can be either in the gapless regime~CDW! with
algebraic spin correlations or in the spontaneously dimeri
regime (CDWsg) with gapped spin excitations. Fort',t i ,
the spin gap in the charge-ordered state could be numeric
observed. Its magnitude is in good agreement with the res
for a correspondingJ1-J2 spin chain down toU/t54. The
dimerization of the effective spin chain can be interpreted
bond-order wave44 in the original Hubbard model, so th
system has an insulating CDWsg ground state with coexisting
bond-order and charge-density waves. Finally, at small
ues ofU and moderate to large values ofV, the system phase
separates into a phase of immobile double occupancie
every second site and a phase of mobile single electron

We have identified a purely electronic mechanism for
opening of a spin gap in a quarter-filled CDW system on
ladder based on the physics of a frustrated spin chain. H
ever, we note here that the spin-gap physics discussed in
IV probably cannot be realized in NaV2O5 since this material
has t''2t i ~see Refs. 4 and 45! leading toJ1@J2 for the
effective spin chain. It is likely that the spin-gap opening
NaV2O5 is driven by the interplay of charge ordering an
phonons, as suggested in Ref. 45. Other effects that are
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portant for the spin dynamics in NaV2O5 are hopping pro-
cesses between the ladders that may lead to quite large
change terms across the ladders.11

We have found no evidence for ‘‘exotic’’ phases in th
examined ladder system like the ones present in the sin
chain model.19,25There appears to be no metallic phase in
quarter-filled model except for the one at very smallV and
t',t i ~Fig. 2!. This phase has been discussed32 in the con-
text of the ‘‘bare’’ Hubbard model on the ladder.

Any effects of interladder couplings have been neglec
in the present treatment, as well as the interplay of elect
and lattice effects that is known to lead to further interest
ordering effects;46 these should be investigated in the futur
Also, a more detailed study of the spin dynamics in a p
tially charge ordered state (V,`) could be performed.
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APPENDIX: EFFECTIVE HAMILTONIAN
FOR THE CHARGE-ORDERED STATE

This appendix provides the derivation of the effective e
change Hamiltonian for the quarter-filled ladder in t
strongly charge-ordered regime, (V,U)@t. The charge de-
grees of freedom are projected out, i.e., the effective Ham
tonianHeff acts in a Hilbert space where every second site
singly occupied. This is analogous to the derivation of t
Heisenberg model as large-U limit of the half-filled, one-
band Hubbard model. The present problem maps onto a f
tratedJ1-J2 spin chain. The effective exchange arises fro
fourth-order hopping processes that makes the problem m
complicated than the half-filled Hubbard model for whic
the lowest nontrivial contributions arise at second order it.

We apply a recently developed cumulant method42 to de-
rive Heff . It is useful to splitH5H01H1 , whereH0 con-
tains the dominating interaction terms andH1 the perturba-
tion caused by hopping. We start with broken translatio
symmetry from the outset and define a projection operatoP
that projects onto the low-energy space where the cha
show perfect checkerboard charge order, i.e.,^ni&5@1
1exp(iQRi)#/2 with Q5(p,p). This order defines two sub
lattices that we will denote asA and B for occupied and
unoccupied, respectively. Transitions between states wi
the P space are only possible with four or more hoppi
processes; the fourth-order processes only involve inter
diate states outside theP space. The fourth-order Hamil
tonian can be obtained by fourth-order perturbation the
and is given by42

Heff52PH1Q
1

H0
QH1Q

1

H0
QH1Q

1

H0
QH1P ~A1!
5-9
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MATTHIAS VOJTA, ARND HÜBSCH, AND R. M. NOACK PHYSICAL REVIEW B63 045105
whereQ[12P.
This expression can be easily used to identify the p

cesses contributing to the effective exchange. We first
cuss the fourth-order processes leading toJ2 , i.e., the pro-
cesses coupling two spins located on the same leg of
ladder. They involve exactly one site in between the t
originally occupied sites. Therefore, any fourth-order ho
ping process must involve a temporary double occupancy
suitable classification of the possible processes is show
Fig. 13.

Any process involves three transition states giving rise
the energy denominator of the final expression forJ2 . It is
easy to see that~a! and ~b! have transition states with ene
giesVi1V' , U, andVi1V' ~theV' arises from the nearby
occupied site on the second leg! whereas~c!–~f! have tran-
sition state energiesVi1V',U12V' , and Vi1V' . The

FIG. 13. Processes contributing toJ2 . Here, i , j PA are the
originally occupied lattice sites whereaskPB is the intermediate
site.⇑ and⇓ denote spins being reversed with respect to the ini
configuration.
r

e

a
.

,
e
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sum of all processes has the formJ2(ni ,snj ,2s

1ci ,s
† ci ,2scj ,scj ,2s

† ). Examination of the signs shows tha
the resulting exchange is antiferromagnetic,J2.0. For the
J1 processes, there are two intermediate empty sites in
tween the two occupied sites. Therefore, processes inv
ing one or both of these two sites are possible. Particula
interesting are the circular hopping processes contributin
the diagonal exchangeJ1 in which both intermediate site
are involved and no temporary double occupancy occ
These processes include four sites and the two electrons
der consideration are never on the same site. Neverthe
these processes lead to an effective spin-spin interac
S1•S2 ~and not only a constant energy shift!: For parallel
spins, the process reproduces the original state, wherea
tiparallel spins arealwaysexchanged. This leads to the e
change formS1

2S2
11S1

1S2
212(S1

zS2
z11/2).

For isotropic hopping and interaction, these consid
ations can be summarized toJ152J21Jcirc , where Jcirc
arises from the circular hopping processes; in the gen
anisotropic case theJ1 processes will have energy denom
nators different from the ones quoted above. Collecting
terms leads to the following~general! result for the exchange
couplings:

J154t'
2 t i

2H S 1

U
1

1

U12Vi
D S 1

~2Vi!
2 1

1

Vi~V'1Vi!

1
1

~Vi1V'!2D1
1

Vi
2~V'1Vi!

J ,

J25
4t i

4

~Vi1V'!2 H 1

U
1

2

U12V'
J . ~A2!

For isotropic repulsion,Vi5V' , these expressions reduce
Eq. ~7! quoted in the body of the paper.
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