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We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor
Coulomb repulsiorV using the density matrix renormalization-group technique. The ground state is homoge-
neous at smalV/, a “checkerboard” charge-ordered insulator at lakg@nd not too small on site Coulomb
repulsionU, and is phase separated for moderate or lafgend smallU. The zero-temperature transition
between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous
and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to
intrachain hopping. In the second part of the paper we construct an effective Hamiltonian for the spin degrees
of freedom in the strong-coupling, charge-ordered regime that maps the system onto a frustrated spin chain.
The opening of a spin gap is thus connected with spontaneous dimerization.
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I. INTRODUCTION seems not to be able to reproduce the experimentally found
spin gap and magnon dispersion ddt is clear that more
Quasi-one-dimensional systems present a unique opportexperimental work is necessary to clarify the nature of the
nity to study the interplay between strong quantum fluctualow-temperature phase of NaWs.
tions on the one hand, and a tendency to charge or spin One of the simplest models of interacting electrons that
ordering on the other. Examples include Peierls or spinallows for charge ordering is the extended Hubbard model,
Peierls behavior, as well as charge ordering due to electron-€., the Hubbard model supplemented by an additional
electron interaction. One material in which such behavior hagearest-neighbo(NN) Coulomb repulsionV. This model
been found is the two-leg ladder material N@¢. NaV,O;  has been studied in one dimensi¢hD) in the strong-
undergoes a phase transitionTat=34K that is character- coupling limit}’ at quarter filling}®*°and at half filling?°~*3
ized by the opening of a spin gap and a doubling of the unignd in betweeri}*in the 2D system at half filling>*" and
cell. Although this transition was originally thought to be within the dynamical mean-field theofyhe limit of infinite
spin Peierls, recent studies have found evidence for charg@imensionsat quarte?® and half filling? A variety of tech-
order!~3 Above the transition, the material seems to be beshiques, such as mean-field approximations, perturbation
described as a quarter-filled ladderSuch two-leg-ladder theory, as well as numerical methods as quantum Monte
structures have also been found in a number of other maté=arlo and the density matrix renormalization graMRG)
rials, including the vanadates Mg®s; and Ca\Os, and the have been employed.
cuprates SrCD; and S§,Cu,,0,;. For a more detailed de- The result of investigations of the charge order transition
scription of ladder materials and models as well as a discugsan be summarized as follows: At the mean-field level, the
sion of the extensive theoretical work on ladder models, wdransition between a homogeneous state and a charge density
direct the reader to a recent revieand the references con- wave (CDW) state at half filling in a hypercubic lattice oc-
tained therein. curs atV.=U/zy, wherez, denotes the number of nearest
In NaV,0s, the character of the charge ordering and theneighbors ¢,=2d) andU is the on-site interaction. Numeri-
nature of the transition are currently under debate. Whilecal studie$"*?indicate a slightly higher value of., at least
evidence is growing® that the charge-ordered state has ain 1D. Interestingly, the transition at half filling in 1D has
zigzaglike charge arrangement, the question of whether thiseen found to be second order at smlt and first order at
charge ordering is continuous or discontinuous has not ydargeU/t with the tricritical point located ay, /t~4-62223
been settled experimentally. Theoretically, the magnetidiere we use the term “first order” to denote discontinuous
properties of the compound far<T. have been calculated behavior of the charge order parameter as a function of mi-
for different charge-ordering patteffi$® and compared to croscopic parameters such\ér band filling, and “second
experiments. Again, zigzag charge ordering on lad@ers-  order” to denote continuous behavior. For fillings below half
sibly with intervening disordered laddéfsleads to magnon filling in 1D, the situation is more complicated because a
dispersions in good agreement with neutron-scattering dataumber of phases compete at laigé®**For dimensions
Additionally, the possibility of two separate transitions atlarger than one, indications are that the charge order transi-
nearby temperatures has been raisedin this scenario the tion is generally first orde?®~?*However, conclusive studies
charge order would set in at one temperature while the spithat can reliably distinguish between first- and second-order
gap would open at a second, lower critidalVery recently, transitions are lacking. At small and largeV, the extended
a scenario of singlet cluster formation instead of zigzagHubbard model undergoes phase separaf®® rather than
charge ordering has been suggesfedowever, this model a transition to a CDW state. For the 1D model between quar-
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ter and half filling, it has been establisfgdhat PS occurs
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for |U|/t<4 in the V=< limit, whereas forU/t>4, the 14'_ :. ]
system undergoes a transition tgq& = CDW state for suf- I ':
ficiently large V.?* Phase separation in higher dimensions 12F 1 .
has also been discuss&d. I :, CDW

For the 1D system in particular, there has been recent 10 ) ]
interest in the possibility of dominant superconducting cor- Z sl ': "'
relations in the uniform ground state away from half-filling (S \ e
when V>U~t,9% je. in the proximity of the phase- 6F \ ol .
separated region. We note here that the uniform phase in 1D [ '\‘ 277 CDW
off half filling is metallic and can, in general, be described 4_' . ¥ ]
within the Luttinger-liquid picture. Although dominant su- 2k HI i -
perconducting correlations have not been established in the s / PS
ground state of the 1D extended Hubbard model to date, a 0 S E— S —
number of non-Luttinger-liquid effects have been 0 2 4 6 8 10 12 14 16
observed® Vi

Some of the present authors have previously stddie FIG. 1. Ground-state phase diagram of the extended quarter-
charge order transition in the extended Hubbard model ofilled Hubbard model on a two-leg ladder with isotropic hopping as
the two-leg ladder at various band fillings foft=4 and 8.  a function of the on-site and nearest-neighbor repulsibt, and
A transition to a checkerboard charge-ordered state wag/t. The phase labeling is explained in the text; the dashed lines
found for all fillings between quarter and half filling. The represent second-order phase transitions. The solid line marks the

transition is second order near quarter filling and first ordelboundary of the phase-separation regiB® where the thermody-
near half filling for sufficiently largeJ. namic compressibility diverges.
The focus of the present paper is on this model at quarter

fiIIing. with a twofold purpose: First, we preser_lt a compre- of the CDW-CDW,, boundary at which the spin gap closes
hensive study of the phase diagram as a functiodiifand 4t jntermediate coupling could not be obtained by the meth-

VIt for repulsiveU andV, and discuss the properties of the g5 used here; we have indicated this uncertainty by a ques-
ground-state phases, as well as the nature of the phase tragsny mark in the phase diagram.

sitions. Second, we derive an effective Hamiltonian for the | the case of anisotropic hopping, we have not mapped
spin degrees of freedom in the charge-ordered state at StroRgt the full phase diagram, but the numerical res(dtis-

coupling, and compare the predictions of this effective low-cyssed in Sec. IjIprovide the schematic pictures shown in
energy theory with our numerical results. Fig. 2. Varying the ratio of the rung to leg hopping strengths,

t, /t,, has two effects(a) For smallt, /t;, there appears a
metallic phase (HN) with spin gap and dominating
d-wave-like singlet pair correlation&s in the “bare” V

Our main results, the phase diagrams deduced from the 9 Hubbard ladder (b) The existence of a spin gap de-

numerical calculations, are summarized in Fig(isbtropic  pends strongly on the hopping ratio, i.e., there is a transition
hopping and 2(anisotropic hopping The phases are distin-

guished by the presence or absence of a gap for spin and/or
charge excitations. To denote this, we employ the following
labelling: Hk, denotes a homogeneous insulataonzero
charge gapwith a spin gap, Hl a homogeneous insulator
without a spingap HN, (HM) a homogeneous metallic
phase having zero charge gap withithout) spin gap, and
CDWs4 (CDW) is a charge-ordered state witwithout) spin
gap. The CDW states are always insulating in the presen
quarter-filled model. The phase diagrams can be roughly di- \
vided into four regions(i) Weak coupling: for smalU and M
V we find homogeneous phases similar to the ones in the |3
“bare” Hubbard model(see discussion in Sec. Il and results |4}
in Sec. llIB). (i) Large U, small V: These homogeneous
strong-coupling phases have characteristics similar to the *

weak-coupling region(iii) Small U, largeV: phase separa- FIG. 2. Proposed schematic phase diagrams for the extended

tion, this is discussed further in Sec. Ill Dv) Strong cou-  quarter-filled Hubbard model wittarge) hopping anisotropy. The
pling: large U and V lead to an insulating checkerboard phases are labeled as before. Eort,, the spin gap is nonzero in

charge prdered with gither gapless or gapped spin excitationgcordance with the weak-coupling predictions whereas fort,
depending on the ratio of/U. the spin gap is always zero. In the former case, the spin gap can be

For isotropic hopping we have numerically determinedsuppressed deep in the charge-ordered phagkfis smaller than
the phase boundaries as shown in Fig. 1. The precise locatiancritical value.
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as function oft, /t, where a spin gap open& both the have four possible modetsymmetric and antisymmetric
homogeneous and CDW phag€eghe critical hopping ratio charge and spin modg®ach of which can be either massive
may depend on the interaction strength, but is near unity imr massless. The phases can therefore be classified using the
the homogeneous phases for reasonable values of the interetationCnSmwheren andm designate the number of gap-
actions. less charge and spin modes, respectively (Q m=2). At
The rest of the paper is organized as follows: In Sec. ll,quarter filling, the weak-coupling RGRef. 32 for the
we introduce the extended Hubbard model and discuss som&are” Hubbard model ¥ =0) yields the following results:
results known for the/=0 case, i.e., the “bare” Hubbard fort, >t,, the system behaves as a half-filled Luttinger lig-
model on a two-leg ladder. In Sec IIl, we present our numeri-uid; umklapp scattering in the bonding channel is a relevant
cal results, discuss the properties of the phases shown jperturbation that leads to a charge gapped COS1 phase at
Figs. 1 and 2, and examine the transition to the chargesmallU. In contrast, deep in the two band regions<t, one
ordered state. At larg¥, where charge order is well estab- finds a metallic C1S0 phase in the weak-coupling limit. Near
lished, it is possible to derive an effective Hamiltonian for isotropic hopping, the bottom of the antibonding band just
the residual spin degrees of freedom; this is done in Sec. IVitouches” the Fermi surface, and the curvature of the dis-
A summary and a discussion of the relevance of our resultpersion becomes important, leading to additional narrow re-
to experimental system@specially NayOs) terminates the gions of C2S2 and C2S1 phases. Several of these weak-
paper. coupling predictions have been verified by numerical DMRG
calculations in the intermediate- and strong-coupling regimes
Il. EXTENDED HUBBARD MODEL for a wide range of fiIIing3.3 Systematic studies of the phases
of the extended Hubbard model on a two-leg ladder away

The single-band extended Hubbard model has the Hamikrom half filling have, to our knowledge, not yet been carried
tonian out.

H=— > tij(c?(,ch+H.c.)+U > nini, + > Vijnin; . lIl. NUMERICAL RESULTS
(i)o i (i)
(1) In this section, we present the results of our numerical

. . - . investigations and discuss the characteristics of the phases
Here we consider a lattice consisting of two chains of lengthy, o\ " Figs. 1 and 2

L, i.e., a ladder, and restrict ourselves to the band filling
(ny=N/(2L)=1/2 whereN is the number of electrons. The )
summation(ij) runs over all pairs of nearest-neighbor sites A. Technique and observables
on the ladder, taking open boundary conditions between the The numerical results have been calculated with the
chains. The hopping matrix elements along the legs an®MRG techniqué® on lattices of up to X80 sites, with
rungs of the ladder are denotgdandt, , respectively, and open boundary conditions at the ends of the chains, as well
the nearest-neighbor Coulomb interactions are similarly deas between the two chains. Most data shown are obtained by
notedV, andV, . Unless otherwise noted, we will useas  keeping 600 states per block resulting in the sum of the
a unit of energy. In this work, we will treat primarily the discarded density matrix eigenvalues being typically®.6r
“isotropic” caset,=t, =t andV,=V, =V. less. For small system sizes we have checked the conver-
The noninteracting Hamiltonian(=V=0) can be di- gence by using up to 1000 states per block. Unless otherwise
agonalized by a Fourier transforffior periodic boundary noted, we estimate the errors in the gap energies and corre-
conditions in the chain direction leading to the single- Ilation functions obtained using the DMRG procedure to be

particle energies less than a few percent.
Important ground-state properties are the static charge and
€q= — 2t cosgy+t, cosqy, (2)  spin-correlation functions: we have calculated the static

whereq=(dy,d,), dy is the momentum along the chains and charge structure factor

the momentay, =0 and 7 correspond to bonding and anti- 1

bonding symmetry, respectively. Either one or both of the C(q)= _z eiq~Ri6(R_) 3)

bands can be occupied in the noninteracting system, depend- 2L 5 .

ing on the total particle density and the ratiotofandt; . At

quarter filling, the transition occurs at isotropic hopping: for Where

t, <t, both bands are less than half filled, whereas tfor L

>t,, the bonding band is half filed and the antibonding o

band is unoccupied. C(R)= N_av% (onjion;) (4)
The effect of the Hubbard interactidd on this system

has been extensively studied. In the weak-coupling lichit (... denotes the ground-state expectation valig=n;

<t the phase diagram has been investigated using the per-(n;), and we average over typicallj,,~6 sites to re-

turbative renormalization groufRG).>? A variety of phases move oscillations due to the open boundaries. The spin struc-

have been shown to exist as a function of band filling andure factorS(q) is defined similarly in terms of the spin-spin

hopping anisotropy. In general, the two-band system caorrelation functior(SjZHSjZ).
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FIG. 3. Finite-size scaling for the charge and spin gapd/at
=8, V/t,=2 and different, /t,. The solid lines are guides to the

eye; the dashed lines are quadratic fits through the data points f%rh

L =24 through 80.

The nature of the low-lying excitations can be determine
by calculating the energy gaps of the system. In particular
we will consider the charge and spin gaps, defined as

AC:%[EO(L,N+2)+EO(L,N—z)—zEO(L,N)],

As=Eo(L,N,5,=1)—Eq(L,N,S,=0), ©)

whereEq(L,N) is the ground-state energy of the ladder sys
tem with 2L sites andN electrons. Since we calculate the

gapsA(L) on finite systems, the gaps must be extrapolated?/0-Pand transition: Fot,

to L—; we do this by performing a polynomial fit in L1/
through the data points from the larger system sizes (
=24). Although we include both ll/and 1L? terms, the
coefficient of the quadratic term is quite small in most cases
The uncertainty of the extrapolated value depends strongl
on finite-size effects that become large when the correlatio

length becomes large; the results for the gaps are most accl?

rate in the strong-coupling regiod,V>t, and for not too
smallt, .

B. Homogeneous phases

First, we concentrate on the states without charge orde
i.e., the region of smal as shown in Fig. 1. The calculated
charge and spin-correlation functiofsee, e.g., Fig. 1 of Ref.
31) indicate antiferromagnetic correlations peaked at order

PHYSICAL REVIEW B63 045105

L/

FIG. 4. Charge and spin gapsltt,=8, V/t;=0,2 as a function
of the hopping ratiot, /t;. Since the finite-size effects become
substantial for smalt, , we have indicated the estimated errors
from the extrapolation to the thermodynamic limit by error bars.
For data points without error bars, the uncertainties are of the order
of the symbol size or less.

ow results for charge and spin gap$Jat,=8V/t;=2 and
different values of the hopping ratig /t;,. As noted above,

OIIinite-size effects increase with decreasing interchain cou-

pling t, . However, we have verifiedby keeping more
DMRG states per block and/or using a fit with & lterm
only) that, within the numerical accuracy availabl®, in
Fig. 3 vanishes fot, /t,=1, but is nonzero fot, /t;=0.7.

The extrapolated DMRG results for charge and spin gaps
in the homogeneous phase are displayed in Fig. 4. First we
discuss thé/=0 case, i.e., the “bare” Hubbard ladder. Ac-
cording to the weak-coupling R&, both spin and charge
gaps vanish in the case of isotropic hopping. Varying the
hopping ratiot, /t; tunes the system through the one-band to
>t, umklapp scattering opens a
charge gagdCOS1 phase with decreasing, /t;, one finds
narrow regions of C2S2 and C2S1, followed by a C1S0
phase. Our results fdd/t=8 agree with these predictions:
we find a COS1(HI) phase fort, >t, and a C1SHMy)

hase fort, <0.%,. The data also indicate a narrow region
here bothA.=0 andA;=0 (HM), possibly corresponding
the C2S2 and C2S1 phases. Turning\tz-0, the de-
scribed behavior continues to small nonzero valueg,dfut
the transition points shift to smaller /t,. A further increase
of V suppresses the metallic phase, and only the spin-gap
transition remains. Data fov/t;=2 is shown in Fig. 4: the
behavior of the spin gap is similar to tve=0 case, i.e., itis
finite for smallt, and vanishes fot, /t, larger than some
critical value. However, the charge gap is found to be non-
zero for all hopping ratios examined hegee also Figs. 6
and 7 below.

ing vector(ar, ). The nature of the phases is best probed by These data can be understood from the RG analysis of

calculating spin and charge gaps. The extrapolation to th
thermodynamic limit is illustrated in Fig. 3, in which we

Ref. 32: the additional nearest-neighbor repulsion does not
introduce a new relevant operator, but only changes the scal-
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FIG. 5. Finite-size scaling for the staggered charge correlation
function atU/t=4 and isotropic hopping. The curves correspond to  FIG. 6. Order parametey/s (upper panéland charge(solid)
V/it=3.0, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 4.0, 6.0, and 8.0, fromand spin(dashedl gaps(lower panel as function ofV/t, for U/t,
bottom to top. The dashed lines are quadratic fits through the data8 andt, /t;=0.7. Although the spin gap decreases when entering
points forL=24. The inset shows the extrapolated values\fgr ~ the charge-ordered state, it is nonzero fonall
indicating a second-order transition\4g/t=3.45+0.1.
g di o of th hation infroduced by This | treated here, similar to the behavior found in X0ur re-
Ing dimension of the perturbation introduced by This Im- sults for largeU suggest tha¥/ is nonzero in thel —o

plies that smallvV does not modify the phases found\at . . . ) .
=0. However, our data indicate that relatively small values“_rnlt as in 1D; an extrapolation based on data upUd

of V are enough to drive the system to an insulating state__64 ylelds_\/_c(U=oo)w2t_. Its interesting to contrast th|s
with half filling, for which weak- and strong-coupling
even fort, <t;. T . o331
approximationg>® as well as numerical studié>! yield

V.~U/z, for a hypercubic lattice witlzy being the number
of nearest neighbors, i.e., in the half-filled cA&eincreases

As the nearest-neighbor repulsidhis increased, we ex- with U.
pect a transition to a checkerboard charge-ordered state. As The behavior of the low-energy electronic excitations in
this has been examined in our earlier pafidrere we sum-  the vicinity of V provides further information on the char-
marize the main findings: At larg¥, an insulating CDW acter of the charge order transition. Since the energy gaps
state with ordering wave-vect@= (7, ) occurs for all fill- ~ show different behavior for different values of the hopping
ings between quarter and half filling. At quarter filling, the ratiot, /t;, as seen in Fig. 4, we focus on two representative
transition is second order, i.e., the order parameter values of the hopping anisotropy.
=lim__... C(Q)/(n)? vanishes continuously upon approach- The energy gaps as function dt, together with the
ing a critical V,(U) from above. Interestingly, the transition order parameter dt)//t,;=8 are shown in Figs. 6 and 7 for
has been found to change from second order to first order at /t;=0.7 and 1.4. The main observation is that no gap
higher band filling as a function ofi/t;! such tricritical opens or closes at the transition to the charge-ordered state.
behavior has also been observed in the 1D case at haBmallt, /t; leads to fully gapped COSO phases on both sides
filling.?>??In the quarter-filled CDW state, the spin correla- of the transition (HjzCDWj, transition whereas at large
tions indicate zigzag antiferromagnetic ordering of the sping, /t, both the homogeneous and the charge ordered phase
1/2 on the occupied sites; at larger filling the spin correla-have zero spin gap and nonzero charge G#pCDW tran-
tions become incommensurate and are gradually suppressegition). For the former caséFig. 6), the spin gap decreases

We now turn to our results and a more detailed discussiomppreciably as the charge-ordered state is entered. This indi-
of the quarter-filled system. In Fig. 5, the finite-size scalingcates a change in the spin dynamics from a “weak-
for 7, as well as the extrapolated values fdn that corre-  coupling” regime dominated by band effects to a “strong-
sponds to the relative difference of the sublattice occupanciesoupling” regime determined by the physics of a frustrated
in the broken-symmetry charge-ordered state, are shown fapin chain. This behavior will be discussed in detail in Sec.
a typical second-order transitio(Data for first-order transi- V.
tions at larger filling are shown in Ref. 31, Figs. 2 and 3.  In any case, it appears that low-lying fermionic excita-
The inclusion of the quadratic fit term turns out to be impor-tions do not play a role in the critical dynamics at the charge
tant near the transitiofr. The V.(U) values obtained from order transition. This implies that this zero-temperature tran-
the numerics are displayed as phase boundary in Fig. 1. Nowtion must be in the universality class of the
thatV, decreases with increasitgjin the quarter-filled case (1+ 1)-dimensional Ising model. Note, however, that inter-

C. CDW phases and charge-ordering transition
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FIG. 7. Same as Fig. 6, but for /t;=1.4. The lower panel now
shows the charge gap only; the spin gap is zero within the numeri-
cal accuracy for all values of.

ladder couplings will increase the effective dimensionality of
this transition in experimental ladder systems at low enough 49x x

energies or temperatures. FIG. 8. Charge- and spin-correlation functions for a<@4sys-

. tem with isotropic hopping antl/t=2. The rapid oscillations in
D. Phase separation C(q) at V/t=8 indicate that increasiny drives the system into
For smallU and largeV, phase separation is expected: In phase separation.
the V—oo limit, existing double occupancies are immobile

and cannot be broken up, whereas single fermions can mov§yr results clearly show the occurrence of phase separation
in the “unoccupied” space. Fo<UpgV), the system , the largeV, small U region indicated by(i) a diverging
then separates into a region with double occupancies at evegy, hessibility, (ii) oscillating incommensurate spin and
second sitgi.e., checkerboard order with two electrons perCharge correlations with wave vectors strongly dependent on

occupied sitgand a region in which the other electrons cany o system size, anii) the occurrence of site charge den-

gain kinetic energy by hopping. For the one-dimensional sys;;. ¢ greater than unity. Note that at quarter filling no double
tem it is possible to solve thé= o« problem exactly because

it maps Qnto noninteracfting Spinless_ fermior)s moving .0”?—?1?Zancézfa?géuroivzgl:&theoggrfeg:jy znzrsgeinort?]eeredhsatzs
open chain segment$ While the mapping to spinless fermi- PP y P P

ons is similar for the ladder system, the geometry leads t(§eparated state is clearly consistent with the phase-separation

interactions among the fermions that preclude an exact soldl'€chanism explained above. The critefii-iii) give con-

tion. Nevertheless, the qualitative behavior should be similafiStent results and allow for a reasonably accurate determi-
to the 1D case, i.e., foV=o there should be a critical Nnation of the PS boundargee Fig. 1even though finite-size
Upd=) [Upds) =4t in 1D] below which the system phase €ffects in the calculation of the compressibility are latge.
separates. For small, the phase separation should disap- In contrast to that found in the 1D chain, the phase-
pear. separation boundary has nonmonotonic behavior, i.e.,
The numerical results for charge and spin-correlationJpgV) shows a maximum at around't~8, U/t~2.4, as
functions at smallU are shown in Fig. 8. Incommensurate can be seen in Fig. 1. The described “re-entra@itbnmono-
peaks appear in both thg,=7 channel ofC(q) and the tonic) behavior of the PS boundary is illustrated in Fig. 9 in
q,=0 channel 0f5(q) asV is increased. At the largest value Which we display the charge gap as a function\offor
shown,V/t=8, there are strong oscillations and side peaks ifJ/t=2.2. Here we find a homogeneous phase at smal
C(q), an indication of PS. charge-ordered phase at laigeand a region of phase sepa-
To examine the thermodynamic stability of the system,ration in between, for 48V/t<13.5.

we have numerically computed the compressibility of the Another difference with the behavior of the single-chain
system that is defined as extended Hubbard model is that no homogeneous phase ap-

pears for largeV and small or intermediate values bf.

increasingU in the PS region drives the system directly into

the charge ordered statEig. 1). In contrast, in the 1D sys-
(6) tem, a homogeneous phase is present at \dnyand the

4L
K=W[EO(L,N—FZH—EO(L,N—2)—2EO(L,N)]’1.
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FIG. 9. Charge gap as function gft for U/t=2.2 and isotropic
hopping. There is a homogeneous insulating phase at $fraid a
charge-ordered insulating phase at lavgean intervening region of
phase separatiaishaded characterized by diverging compressibil- FIG. 10. The ratio of the effective coupling constards
ity, is found for 4.8<V/t<13.5. In the stable phases, the spin gap is=J,/J; calculated from Eq(A2) at isotropic hopping. The differ-
zero to within the numerical accuracy. ent curves correspond ¥, /V,=0,0.5,1[thick line—see Eq(7)],

and 2 from top to bottom. In order to obtain values for anisotropic

boundaries to the charge ordered and to the PS phases meftgPping,a must be multiplied by t/t,)?. The horizontal dashed
(atU/t=4) only in theV—oe limit.° line marks the critical valuer,=0.2411 for the dimerization tran-
For the present ladder system, the behavior at the boundgition of the frustrated spin chain.
ary between the charge-ordered state and the PS region is
quite interesting: The charge gap appears to vanish contini=J2/J1. For a<a., the ground state is gapless with power-
ously at this boundargFig. 9. However, the charge-density- law correlations. Fow> «a., a spontaneous dimerization oc-
wave order parameter; does not tend to zero when ap- curs that leads to a spin gap and a doubly degenerate ground
proaching the PS boundary from the charge order phasétate. The numerical estimdtefor a is 0.2411. Ata=3
Moreover, the numerical results for small (in the PS re- (the Majumdar-Ghosh point the ground state has been
gion) indicate charge-density oscillations in the spatial re-shown to be an exact product of nearest-neighbor sinfflets.
gions without double occupancies. This suggests that strongherefore, a corresponding spin-gap transition is also pos-
CDW correlations exist on both sides of the PS boundarysible in the charge-ordered state of th&J-V ladder(i.e., a
and the transition can be interpreted as “continuous.” CDW-CDWg, transition provided that the effective can be
tuned through the critical value by changing the system pa-
rameters.
We use a recently developed metffotased on cumu-
This section focuses on the low-energy spin dynamics alants to derive an effective Hamiltonian for the spin degrees
largeU andV in the checkerboard charge-ordered state. Thef freedom in the charge-ordered state of the quarter-filled
charge gap in this state can be estimated to &e model. We give the derivation in the appendix, and here,
=min(U,3V) whent<U,V by neglecting the kinetic energy. state only the final result for isotropic nearest-neighbor re-
In this limit, each occupied site in the charge-ordered stat@ulsionV,=V, =V:
carries charge and sping, and the spin states are degenerate
for V=c. We would like to discuss the spin ordering arising 21212 ( 2 2 1
from effective exchange interactions that occur for small but 1772 [U+ U+2V + v]'
finite t/VV. We can do this by treatinfVV as a perturbation,
in a manner similar to the derivation of the effective spin 4
exchange in the large- Hubbard model ahalf filling that 4y i+ 2
leads to the mapping to an antiferromagnetic Heisenberg 27Vv2 U T U+2v
model. However, the present problem is slightly more com-
plicated because the degeneracy is lifted in fourth order iThe lowest-order nonzero contributionsp andJ, are in-
the hopping rather than in second order as in the half-filledieed of ordet*/V® and terms of ordet*/(V2U) also appear.
Hubbard model. For anisotropicV, the general expressions become more
The aim is to find an effective Hamiltonian for the re- complicated and are given in the Appendix. It turns out that
sidual spin degrees of freedom. It is easy to see that thithe ratio a=J,/J;<1/4 for the isotropic cas¢,=t, and
model will be a frustrated antiferromagnetic HeisenbergV,=V, ; it approaches 1/4 fo>U>t, as shown in Fig.
J;-J, chain wherel; andJ, are a diagonall,1) and a hori-  10. The plot shows that the dimerization transition will take
zontal (2,0) coupling between the spins in the checkerboardplace atv/U~2. However, this transition is hard to observe
ordered state. It is well knowfi° that this model has a numerically since the induced gap is very small as we dis-
zero-temperature phase transition as a function aof cuss below. To access larger valuesaoé hopping anisot-

IV. SPIN DYNAMICS IN THE STRONG-COUPLING LIMIT

. (7)
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3 ' ' ,“/tf'l'o 1F 't"/tf'm ] to smallerq as«a is ir_ncrea;ed, approaching_z, the value for
two uncoupled chains with a doubled lattice constanteas
becomes large.

The spin correlations dl =V=_8t, and various hopping
ratios obtained from the DMRG calculations are shown in
Fig. 11. (Note that we use, rather thant, as the energy
reference in this sectionA shift of the maximum fromg,
= to g,=m/2 (at q,=0) with increasingt,/t, is clearly
visible. To compare quantitatively with the strong-coupling
picture of the frustrated spin chain we show in Fig. 12 the
results for the spin gajy; and for the peak positiog* in the
spin structure factofsee Fig. 11for different parameter sets
in the charge-ordered phase. Data for the frustrated spin
chain from Ref. 40 are also shown for comparison. Note that
the data are plotted as a function of the rakjdJ,; with the
values of theseeffectivecouplings taken from the strong-

FIG. 11. Spin-correlation function$(q) in the charge-ordered coupling expressions7). The spin gap value follows the
state of the quarter-filled ladder. As in Fig. =0, 7 data are strong-coupling prediction closely even for intermediate val-
plotted using full and dashed lines, respectively. The parameters at¢es of U/t and V/t. The peak position also shows the ex-
L=64 andU=V=8t, the different values of the hopping ratio pected behavior, i.e., it deviates fromwhen the effective
t,/t, correspond to effective exchange constditem Eq. (7)]  J,/J; exceeds a certain value. For laldeandV, the agree-
with @=J,/3,=0.227, 0.327, 0.511, 0.582, 0.736, and 0.909.  ment with the results from the frustrated spin chain is nearly

perfect, clearly indicating that the spin dynamics in the
ropyt, /t;<1is necessary. The parametecan be tuned to strong-coupling, charge-ordered state is correctly described
any value by varying the hopping ratio. by the J;—J, spin chain. For smaller values &f andV,

To verify the expressions fal; andJ, given above, we there are slight deviations in the peak position from the spin-
have studied the behavior of the charge-ordered state in thshain data: the region of incommensurate spin order be-
strong-coupling limit for different hopping anisotropies. In comes narrower with decreasing interaction. This might be
order to interpret results for the spin gap, it is important toexpected because there is no incommensurability at half fill-
note thatAq in the J;-J, chain vanishes exponentially near ing in the noninteracting limit. A similar behavior f&(q)
the critical pointe., leading to nonzero but very small val- has been found for the half-filled Hubbard chain with next-
ues for <0.3. Therefore, the spin-gap calculations in thenearest-neighbor hoppifitthat can also be mapped onto an
charge-ordered state require an anisotropyonV in order  effective frustrated spin chain in the largelimit.
to reacha values significantly larger than 0.3. Furthermore, Now we turn to a discussion of the special case of isotro-
they are feasible only in a window of intermediate values ofpic hopping for which thev=0 weak-coupling system is
U/t,V/t: overly small values do not lead to a charge-orderechear the one-band to two-band transition. The numerical re-
state whereas overly large values\ofiead to an unobserv- sults obtained by DMRG indicate a zero-spin gap and non-
ably small spin gagof orderJ~t4/V3). zero charge gap for any finiié (outside the phase-separation

The nature of the magnetic ground state can also beegion. This is in disagreement with the strong-coupling
probed using static spin-correlation functions. For dhel, analysis presented above that predicts a GDhase at
chain it is knowr®*°that the static structure fact@(q) is  large V/U due to spontaneous dimerization. Sinece
peaked atj= 7 for a<3. Fora>3, the peak position shifts =J,/J; is close toa,, however, the spin gap would be very

1
7
4]

7

S(q)

0 w2 =wn 3w2 20 W2 =® 3wW2 2n
9y qx

--8--  J-J,chain

0.5 T A U/IJ_=8, V/IJ_=8 T T 1
I —w— U/t =8,Vit; =16
04 FIG. 12. Spin gagleft) and peak position in
the spin structure factofright) for the charge-
ordered state of the quarter-filledU-V ladder.
'f 031 The different curves are obtained by varying the
<« hopping ratiot; /t, at fixed values oU/t, and
02r V/t, . The horizontal axis shows the ratio of the
effective exchange constanis and J, obtained
o1k from the strong-coupling expressioi(g). Data
[ marked *J;-J, chain” are taken from Ref. 40.
ol
0
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small and therefore hard to observe using numerical methportant for the spin dynamics in Na@s are hopping pro-
ods. By assuming that the strong-coupling picture is alsgesses between the ladders that may lead to quite large ex-
valid in the intermediate-coupling regime, we can locate thechange terms across the laddérs.
CDW-CDW4 boundary as shown in Fig. 1. Since it is not We have found no evidence for “exotic” phases in the
possible to deduce the behavior of the spin gap close to theéxamined ladder system like the ones present in the single-
charge order transition from the current numerical results wehain modef®? There appears to be no metallic phase in the
cannot decide whether the charge order transition line anguarter-filled model except for the one at very sméland
the spin-gap transition line meet for the case of isotropia, <t, (Fig. 2). This phase has been discus¥ed the con-
hopping. Additional numerical approachés.g., based on text of the “bare” Hubbard model on the ladder.
level crossing methogi€ould be used to check the spin-gap  Any effects of interladder couplings have been neglected
scenario and to determine the precise location of the boundn the present treatment, as well as the interplay of electron
ary of the spin-gap phase. and lattice effects that is known to lead to further interesting
It is worth pointing out that although a spin gap is presentordering effect$® these should be investigated in the future.
in both the homogeneous and the charge-ordered phasesto, a more detailed study of the spin dynamics in a par-

smallt, /t;, the mechanisms for the spin-gap opening appeafially charge ordered state/ =) could be performed.
to be quite different: The strong-coupling CDW-CRytan-

sition involves spontaneous dimerization in a spin model and ACKNOWLEDGMENTS
is described by a sine-Gordon theory whereas the weak-

coupling case a¥=0 is more complicated due to the pres-
ence of low-lying charge modésee Ref. 32 for a discussion
on the RG fo’v=0), however, not much is known about the
V>0 case.
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In summary, we have studied the phase diagram of thgresden.
extended Hubbard model on a quarter-filled two-leg ladder.
At very smallV, the system behaves as in tfe=0 case’?
while slightly larger values o¥ lead to an insulating state
with either zero(HI) or nonzero (Hly spin gap depending This appendix provides the derivation of the effective ex-
on the hopping anisotropy. Fdy and V both strong, the change Hamiltonian for the quarter-filled ladder in the
ground state shows zigzag charge order. In this phase, eastrongly charge-ordered regimey,U)>t. The charge de-
occupied site carries spifand the residual kinetic energy grees of freedom are projected out, i.e., the effective Hamil-
leads to effective antiferromagnetic exchange interactionsonian’ ¢ acts in a Hilbert space where every second site is
between the spins. We have rigorously established the magingly occupied. This is analogous to the derivation of the
ping of the spin degrees of freedom to a frustrated gpin- Heisenberg model as lardg-limit of the half-filled, one-
chain in the strong-coupling limitJ,V>t. This effective  band Hubbard model. The present problem maps onto a frus-
spin chain can be either in the gapless regi@®W) with  tratedJ;-J, spin chain. The effective exchange arises from
algebraic spin correlations or in the spontaneously dimerizetburth-order hopping processes that makes the problem more
regime (CDW,) with gapped spin excitations. For <t;, complicated than the half-filled Hubbard model for which
the spin gap in the charge-ordered state could be numericallhe lowest nontrivial contributions arise at second order in
observed. Its magnitude is in good agreement with the results We apply a recently developed cumulant metidad de-
for a corresponding;-J, spin chain down tdJ/t=4. The rive Heg. It is useful to splitH="Hy+H,, whereH, con-
dimerization of the effective spin chain can be interpreted asains the dominating interaction terms ahf the perturba-
bond-order wav¥ in the original Hubbard model, so the tion caused by hopping. We start with broken translational
system has an insulating CQy\ground state with coexisting symmetry from the outset and define a projection operRtor
bond-order and charge-density waves. Finally, at small valthat projects onto the low-energy space where the charges
ues ofU and moderate to large values\of the system phase show perfect checkerboard charge order, i@;)=[1
separates into a phase of immobile double occupancies ohexp(QR;)]/2 with Q= (7, 7). This order defines two sub-
every second site and a phase of mobile single electrons. lattices that we will denote a8 and B for occupied and

We have identified a purely electronic mechanism for theunoccupied, respectively. Transitions between states within
opening of a spin gap in a quarter-filled CDW system on ahe P space are only possible with four or more hopping
ladder based on the physics of a frustrated spin chain. Howprocesses; the fourth-order processes only involve interme-
ever, we note here that the spin-gap physics discussed in Safiate states outside thP space. The fourth-order Hamil-

IV probably cannot be realized in Na®s since this material tonian can be obtained by fourth-order perturbation theory
hast, ~2t, (see Refs. 4 and 48eading toJ;>J, for the  and is given b§?

effective spin chain. It is likely that the spin-gap opening in 1 1 1

NaV,0Os is driven by the interplay of charge ordering and - _ _ _

phonons, as suggested in Ref. 45. Other effects that are im- Thet PHlQHo QHlQHo QHlQHo QruP (AD)

APPENDIX: EFFECTIVE HAMILTONIAN
FOR THE CHARGE-ORDERED STATE
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_ T T 1T 1(a) sum of all processes has the forndy(n;,n; _,
vky o tk) | k) k1 vk +cfvgci'_acl~,ac;_g). Examination of the signs shows that
»D_%jﬂ——@%ﬁm(b) the resulting exchange is antiferromagnetflgz>0. For the
L] tE] J; processes, there are two intermediate empty sites in be-
T 1(c) tween the two occupied sites. Therefore, processes involv-
1 kJ 1kJ 1 k] ing one or both of these two sites are possible. Particularly
(d) interesting are the circular hopping processes contributing to
W the diagonal exchang&; in which both intermediate sites
(e) are involved and no temporary double occupancy occurs.
W These processes include four sites and the two electrons un-
der consideration are never on the same site. Nevertheless,

W(f) these processes lead to an effective spin-spin interaction
S;-S, (and not only a constant energy shifEor parallel

FIG. 13. Processes contributing &3. Here,i,jeA are the spins, the process reproduces the original state, whereas an-
originally occupied lattice sites wherelas B is the intermediate tiparallel spins arelwaysexchanged. This leads to the ex-
site.7 and || denote spins being reversed with respect to the initialchange formS; S; +S/'S, +2(S{S5+ 1/2).

configuration. For isotropic hopping and interaction, these consider-
ations can be summarized th=2J,+Jg, Where Jg.
whereQ=1—7P. arises from the circular hopping processes; in the general

anisotropic case th&, processes will have energy denomi-

This expression can be easily used to identify the pro ; .
cesses coﬁtributing to the effect?/ve exchange. V\f/ye firstpdisr-]ators different from the ones quoted ahave. Collecting all

cuss the fourth-order processes leadingl4o i.e., the pro- t%rLrPTirI]eas(.js to the followinggeneral result for the exchange
cesses coupling two spins located on the same leg of the2uPIings:

ladder. They involve exactly one site in between the two 1 1 1
originally occupied sites. Therefore, any fourth-order hop-  Ji=4t7t? TRETETY, ((2\/ )2 Ty vV, V)
ping process must involve a temporary double occupancy. A ! | T
suitable classification of the possible processes is shown in 1 1

Any process involves three transition states giving rise to o IR =L
the energy denominator of the final expressionJer It is 4tﬁ 1 2
easy to see than) and(b) have transition states with ener- 2:—2{—+ —] (A2)
giesV,+V,, U, andV,+V, (theV, arises from the nearby (ViFV)T U U+2v,

occupied site on the second Jeghereas(c)—(f) have tran-  For isotropic repulsiony,=V, , these expressions reduce to
sition state energie¥,+V,,U+2V,, andV,+V,. The Eq.(7) quoted in the body of the paper.

*Permanent address: Theoretische Physik 11, Elektronische Korret?S. van Smaalen and J. tlecke, Europhys. Lettt9, 250 (2000.
lationen  und Magnetismus, Univerdita Augsburg, M. Koppen, D. Pankert, R. Hauptmann, M. Lang, M. Weiden, C.

D-86135 Augsburg, Germany. Geibel, and F. Steglich, Phys. Rev.3B, 8466(1998.

1T. Ohama, H. Yasuoka, M. Isobe, and Y. Ueda, Phys. Re59,B *p. Thalmeier and P. Fulde, Europhys. Ld, 242 (1998.
3299(1999. 15J. L. de Boer, A. Meetsma, J. Baas, and T. T. M. Palstra, Phys.

2M. Isobe and Y. Ueda, J. Phys. Soc. JBB, 1178(1996. Rev. Lett.84, 3962(2000.

16C. Gros, R. Valenti, J. V. Alvarez, K. Hamacher, and W. Wenzel,
cond-mat/0004404unpublishegl

173, Hubbard, Phys. Rev. B7, 494 (1978.

18F Mila and X. Zotos, Europhys. LetP4, 133(1993.

19K, Penc and F. Mila, Phys. Rev. 89, 9670(1994.

203, W. Cannon, R. T. Scalettar, and E. Fradkin, Phys. Re44,B

3y, Fujii, H. Nakao, T. Yosihama, M. Nishi, K. Nakajima, K.
Kakurai, M. Isobe, Y. Ueda, and H. Sawa, J. Phys. Soc. 8@n.
326 (1997.

4H. Smolinski, C. Gros, W. Weber, U. Peuchert, G. Roth, M.
Weiden, and C. Geibel, Phys. Rev. Le30, 5164(1998.

°H. Seo and H. Fukuyama, J. Phys. Soc. J#.2602(1998. 5995 (1991).
®E. Dagotto and T. M. Rice, Scien@71, 618(1996. 213, E. Hirsch, Phys. Rev. Letb3, 2327(1984); Phys. Rev. B31,
"T. Ohama, A. Goto, T. Shimizu, E. Ninomiya, H. Sawa, M. Isobe, 6022(1985.
and Y. Ueda, cond-mat/000314anpublishegl 22G. P. Zhang, Phys. Rev. 86, 9189(1997).
8H. Nakao, K. Ohwada, N. Takesue, Y. Fuijii, M. Isobe, Y. Ueda, 22M. Nakamura, J. Phys. Soc. J#8, 3123(1999; Phys. Rev. B
M. v. Zimmermann, J. P. Hill, D. Gibbs, J. C. Woicik, I. 61, 16 377(2000; cond-mat/0003419unpublishegl

Koyama, and Y. Murakami, cond-mat/00031@tpublishedl 2H. Q. Lin, E. R. Gagliano, D. K. Campbell, E. H. Fradkin, and J.
9B. Grenier, O. Cepas, L. P. Regnault J. E. Lorenzo, T. Ziman, J. E. Gubernatis inThe Hubbard Model, its Physics and Math-
P. Boucher, A. Hiess, T. Chatterji, J. Jegoudez, and A. Rev- ematical Physicsedited by D. Baeriswylet al, NATO Ad-

colevschi, Phys. Rev. LetB5, 4349(2000. vanced Studies Institute, Serig@enum, New York, 1996
10¢. Gros and R. Valenti, Phys. Rev. LeB2, 976 (1999. 5R. T. Clay, A. W. Sandvik, and D. K. Campbell, Phys. Re\6®
1p. Thalmeier and A. N. Yaresko, Eur. Phys. J148 495 (2000). 4665(1999.

045105-10



PHASE DIAGRAM OF THE QUARTER-FILLED . .. PHYSICAL REVIEW B53 045105

26y, Zhang and J. Callaway, Phys. Rev.3B, 9397(1989. Bari, ibid. 3, 2662 (1971).

27B. Chattopadhyay and D. M. Gaitonde, Phys. Re\v68 15364  3’F. D. M. Haldane, Phys. Rev. B5, 4925(1982; I. Affleck, D.
(1997. Gepner, H. J. Schulz, and T. Ziman, J. Phys22\ 511 (1989.

28R. Pietig, R. Bulla, and S. Blawid, Phys. Rev. LeB2, 4046  38S. Eggert and I. Affleck, Phys. Rev. B6, 10 866 (1992; S.
(1999. Eggert,ibid. 54, 9612(1996.

29p_ G. J. van Dongen, Phys. Rev.4B, 7904(1994; 50, 14016  *°R. Chitra, S. Pati, H. R. Krishnamurthy, D. Sen, and S. Ramase-
(1994. sha, Phys. Rev. B2, 6581(1995.

30p, G. J. van Dongen, Phys. Rev.58, 1584(1996. 4035, R. White and I. Affleck, Phys. Rev. B4, 9862(1996.

3IM. Vojta, R. E. Hetzel, and R. M. Noack, Phys. Rev6@ R8417  “'C. K. Majumdar and D. K. Ghosh, J. Math. PhysD, 1388
(1999. (1969.

2. Balents and M. P. A. Fisher, Phys. Rev58, 12133(1996.  “2A. Hubsch, M. Vojta, and K. W. Becker, J. Phys.: Condens. Mat-

33R. M. Noack, S. R. White, and D. J. Scalapino, Physica70, ter 11, 8523(1999.
281(1996. 433, Daul and R. M. Noack, Phys. Rev.@, 1646(2000.

343, R. White, Phys. Rev. Let69, 2863(1992; Phys. Rev. B48,  %*S. Mazumdar, S. Ramasesha, R. T. Clay, and D. K. Campbell,
10 345(1993. Phys. Rev. Lett82, 1522(1999; S. Mazumdar, R. T. Clay, and

35The present/, values are more accurate and slightly larger than D. K. Campbell, cond-mat/9910164; Phys. Rev6B 13 400
the ones reported in Ref. 31; this is due to more data points and (2000.
the additional quadratic term for thelLlfinite-size extrapola- “°M. V. Mostovoy and D. I. Khomskii, Solid State Commutl3
tion. 159 (2000.

36D, Cabib and E. Callen, Phys. Rev. B, 5249 (197); R. A.  %8J. Riera and D. Poilblanc, Phys. Rev.5B, 2667(1999.

045105-11



