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Strongly interacting Luttinger-liquid state in the integrable model of spinless fermions
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A family of spinless fermion models with a hard core potential is formulated and solved by the Bethe ansatz
method in one dimension for an arbitrary core radius. The Hamiltonian has two levels of strong interaction: the
repulsive hard core potential and the kinetic energy with hopping integrals, values of which depend on the
configuration of the particles. The Fermi velocity and the critical exponents describing the asymptotic behavior
of the correlation functions at long distances have been calculated numerically for an arbitrary density of
electrons and hard core radius. We discuss the effect of the hard core potential. The hard core potential defines
an anomalous behavior of the critical expon®nof the momentum distribution function. In the high-electron-
density region the long-distance behavior is described by a strongly interacting Luttinger-liquid stafetith
and the residual Fermi surface disappears.
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Many one-dimensional quantum systems, in particular, in- L *

teracting electron and spin systems, can be described as Lut- H= —2 (cLlciJrciTciH) E t“*mPifnPiil,m, (1)

tinger liquids. In one-dimensiondlLD) interacting systems =1 nm=0

all low-energy excitations are collective modes, whereas no

guasiparticle type elementary excitations exist. Correlatiorvvhereci’f andc; are the creation and annihilation operators

functions then have nonuniversal, power-law behavior at lowsf electrons at sitei and many-particle electron con-

energies. The difficult feature inherent in the marginal liquidfigurations are described via the operatorsPiinzl'IrAjll

is the absence of a jump in the momentum distribution at th?l—nitn(Ml)ir)HE:lmiia(Aﬂ) for n>0 and P,

Fermi levelkg . Notably, it has been found that many inte- :HA+1(1_n_ ) for n=0 Herem: = n. 12 (1—n,.,) for
r=1 i*r . i 1Hr=1 i+r

grable models, such as the 1D Hubbard mdd#le super-

. del2 models with lated hoppirigand A>0 andm;=n; for A=0. The hard core interaction in Eq.
symmetrict-J model;” models with correlated hoppintan (1) forbids two particles at distances smaller or equalAto

models with long-range interactiofgxhibit different physi- (A=0,1,2 is measured in units of the lattice spacing
cal behavior. Different forms of the interaction have been o t

studied in these models: on-site Coulomb repulsion, spin ex;_)arameter By ni=cic;, we denote the number operator for
) LT P  SP conduction electrons on site the hopping matrix element

change coupling, and kinetic energy with correlated | itv for individual el h

hopping® equal to unity for individual electrons. The casel corre-

The aim of this article is to study the competition be- spon_ds to_hopplng integrals of_unlty fqr an arb|tr_ary electron
configuration; as a result, the interaction terms in the model

E/(\;eeri}; oir:]tt8her a?;?anzanodr; tt::s (I)(tlr?g:“r:]aenr:jer?gev;/\g? ddéféféenéjamiltonian(l) take into account the hard core potential of
pping g ' ' Plectrons only. A similar situation is realized for the case

tential with an arbitrary core radius. We argue that apart‘i ; I .
from the on-site Coulomb repulsion the hard core potential —1, since the lcontrlbutlon of t_he porrelated hopping terms
should be taken into account for description of the behaviof® 2" €Ven function of the hopping mte_gralf_s.

of electrons in metals. The metallic properties of correlate We write out the terms of the H'am|lton.|e(|1) for A>0

1D systems are not those of the usual Fermi liquid, but of th%hat |Ilustr.ate the structure Of the_ interaction for two- and
marginal liquid. We switch on the hard core potential in the hree-particle complexesee Fig. I for n=2,
integrable model of spinless fermions proposed recently in
Ref. 6. The model Hamiltonian contains kinetic terms de- L A+1

scribing nearest-neighbor hopping with different hopping in- 3= —t > (¢l ci+clciiq) IT (a=ni_qoani_qos
tegrals, namely, the hopping integta=t"~* describes one- i=1 r=1

particle hopping in electron configurations W'nh%articles. A A+l

We investigate an extended version of the modbhat is o o

exactly soluble and exhibits a strongly interacting Luttinger- Xrll (A=noiaen 1 @m0
liquid behavior. This state is characterized by a large value L
of the critical exponent of the momentum distribution func- S (¢ c+cle T (1-n
tions ® when the residual Fermi surface disappears. We “~ (Ci4+1Ci+CiCita) LAY (1-ni-y)
show that a strongly interacting Luttinger-liquid state is
formed at a high electron density as a result of strong corre- -

lations. The Hamiltonian of the modified model with the ad- X Hl (1=Nis140)Nit24a rH1 (1=Njs24a+1),
ditional repulsion hard core interaction between electrons on "~ -

a one-dimensional lattice with sites andN electrons is

given by and forn=3,

r=1

A+1

A+1
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L A+1 A
H=—t? 21 (cliacitclciy) rl;[l (1=ni—a-2a—r)Ni—2-24 rl:[l (1=Ni—g-a-)Ni—1-a

A+1

xH (1-ni_1-a+0) H (1=niiqey)

L A+1 A A A+1
2 T T
-t Zl (Ci4+1CiTCiCit1) Hl (1_ni7r)Hl (1=Njs140)Nig24a Hl (I=njyora+0)Nita+2a Hl (1—njy342841)
r= r= r= r=

i=
A+1

tzz (C|+1C+C C|+1) H (1 Ni—1-a- rn| 1- AH (1 ni— r) H (1 Nit24a- r)

A+1
XMNit24a Hl (1=Nit24a+0)-
r=

Two lines of the formulas fon=2 andn=3 correspond to for diagonalization of the Hamiltoniafl) is identical to that

one line in Figs. 1a) and Xb), respectively. Similar terms of for the caseA=0. We now turn to discrete Bethe equations

the Hamiltonian(1) are represented in Ref. 6 far=0. that generalize the ones for arbitraty The quasimomenta
A detailed investigation of the integrability of modgl) are determined by the Bethe ansatz equations

for the caseA=0 was presented in Ref. 6. The two-particle

scattering matrix is multiplied by an additional scattering

phase shift due to the hard core potential and the procedure explik;L)=(— Nk H exp{ ki—k)(A+1)

a sie| S 2

—2i > || @

o @ 00 where ®(\)=arctarfcothvtan)), tanhv=c for [c|<1, O(\)
i-2-24 i-1-A i+2+A

=arctarftanhvtan\), and cothwv=c for ¢>1. The solution
(2) is incorporated in the parameter=2/t2—1 varying in
the intervals—1<c<0, 0sc<.
The total energy of the system in a state corresponding to
solutions of{k;} is

O 0O i@. Q@ "O N

i-1-A N At i+2+A  i+3+A

=t E=— 221 cosk; . 3
i=
At A=0 the Bethe equation®) are reduced to those for the
b model proposed in Ref. 6. We will briefly analyze the effect
{2 of the repulsive hard core potential for different values of the
core radius. The results of the calculations are compared with
O O @ O e O g : those forA=0. In .the thermodynamic limit the quasimo-
i-3-3A i-2-24 i-1-A A i+1 1+2+a menta {k;} have, in general, complex valuds , ,=\; ,
2 t +ip(p—2n+1)/2,n=1,2,... p. The ground state of the
system is described by real rapidities, ;= \; ; for the case
O O O @ O @ O O of the repulsive effective interaction>0 (|t|< J2) and
i-1-8 tz + i+2+4 +3+2a i+4+34 complexk; (or strings with the lengtip, wherep— ) for
t2 the attractive effective interaction<0 (|t|>2)° The
strings withp length describe the-particle bound states; as
|(2)2A O : A O N Ai+1 O |+?+A o .+C3)+2A a result, forc<0 the electrons form a cluster witN par-

2 ticles, in other words, a phase separation takes place. Let us
analyze the>0 case. In the thermodynamic limit the quasi-

FIG. 1. Graphical representation of one-particle hopping in themomenta are closely spaced and may be regarded as a con-
configurations with two(a) and three(b) particles. The hopping tinuous variable. It is then usual to define the distribution
matrix elements are equal tdor n=2 andt? for n=3. function p(\) for the set of quasimomenta. Taking loga-
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rithms of Eq.(2), and afterwards performing the thermody-

namic limit, we are able to obtain an integral equation of 4 t=05
Fredholm’s type for the distribution functiop(\) for the
variableX: 3
3
Q 1 -
p(k)_f dMRN=A)p(N)=5=[1-(A+1)n], > 2 2
-0 2w A=1
4 1
with the kernel being 0 )

. 02 04 06 08 1.0
i Slnf(Z,u,) n(1+A)
27 cosi2u)Fcog\)’

R(N)=

where the upper and lower signs correspond to the cases 0 151 t=1.3 3
<c<1 (1<|t|<y2) andc>1 (Jt|<1), respectively. The
cutoff parameteR is determined by the density of electrons;

one findsn=f2,d\p(\). The band filling is controlled by o 19

the paramete®; Q= 7 corresponds to a full band with den-

Sity Npax=1/(1+A), while atQ=0 the band is empty. The 5.

solution of this equation yields the ground state energy per

site: ‘
0- S : ¢ :

Q 02 04 06 08 10
s=—2f Qd)\ COSAp(N). (5) n(1+4)

. . FIG. 2. The Fermi velocity versus the electron density. The
Below, we consider the behavior of electrons for severa|gividual curves are labeled by the value of the paramateFhe

values oft and A and an arbitrary electron density. We resyit forA=0 is plotted(dotted ling for comparison.

compare the results obtained for smgl|€1) and large

(1<[t|<+2) hopping integrals. Let us consider the Fermi  The long-distance behavior of the density-density correla-
velocity of electrons and the long-distance behavior of thejon function is given by

correlation functions characterized by the critical exponents.

The analysis of low-lying excitations shows that there is one <n(x)n(0)):n2+A1x‘2+A2x‘”‘ cog 2Kex), (7)
massless branch of charge excitations. The Fermi velocit

- / }//vhere n(x;)=n;, kg is the Fermi momentum, and
of the gapless charge excitatior¢'(Q)/[27p(Q)] (here ™ ) R X
by the prime we mean a derivatives determined by the =2[&(Q)]°. £(Q) is the dressed charge at the Fermi sur-

dressed energy(Q), wheree()) is the solution of the inte- [@C€: the dressed charge functigth) is defined asé(h)
gral equation =2mp(M).
The exponentr is plotted in Fig. 3. In the low-density
0 limit n—0 and, as foft|—1, the value ofa—2, which is
€(N)=—2COS\— u+ f dNR(N=N")e(N"), (6) the same as for noninteracting fermions. This value separates
- the regimes with dominant correlation effects in the density-

such thate(+Q)=0 (u is the chemical potentigl density correlation function. The oscillating term in E@)
In Fig. 2 we show the Fermi velocity calculated numeri- dominates in the high-density region for large hopping inte-
cally for two values oft (t=0.5 orc=7 andt=1.3 orc grals at an arbitrary electron core radius. The valuexof

=0.183) andA=0,1,2,3. We see that the Fermi velocity de- decrelasfes witd and, ‘f"s_la resurl]t, the region with dom:cnant
cays to zero at the extreme densities-0 andn—n, ... correlations grows. Similar behavior af is observed for

The system is metallic except at the extreme electron corsMall hopping integrﬁls ai>0. behavior of the densi
centrations. It is to be noted that &, the model displays Let us compare the asymptotic behavior of the density-

a metal-insulator phase transition in the insulator phase Witﬁieni'ty cc_)rrelatlon functiok7) with that of the pair correla-
a new spacing parametar+1. We clearly observe a differ- 10N function

ent behavior of v forlt|<1 and 1<|t|< 2. This is easily 1 A v-B

understood: the fermions are more mobile in small com- (CT00C(0) =A%, ®
plexes afit|<1 and in large complexes atd|t|<\2. The whereCT(xi)zciJ‘ciT+1 and the critical exponeng is given
height of the maximum is shifted in the small-electron- by the inverse ofx (8=1/). In Fig. 3 we indicatg/dashed
density region aft|<1 and in the high-electron-density re- line) the region with dominant pair correlations whem-1.

gion at 1<|t|<\/§. For|t|=1 the maximum of the Fermi The range of this region depends on the hopping integral and
velocity is realized at a “half-filling” density X2+A). The  the core radius. An analogous behavior of the correlation
maximal value of v increases with. functions is observed in models with attractive effective in-
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FIG. 4. The exponer® as a function of the electron density for
t=0.5 andt=1.3. The solid line separates the strongly interacting
Luttinger-liquid state.

FIG. 3. The exponent. As in Fig. 2 for values ofx above the
dashed line we have dominant pair correlations.

teraction of the particles when the ground state configuration | lati h |
contains a bound pair characterized by a pair of complesPU€ 10 strong electron correlations the valueaofiecreases

particle rapidities with a finite binding enerdyn the super- With A and consequently the value 6f increases® is a

symmetrict-J model the spin and charge rapidities are clas-nonmonotonic function of the electron density; it has one

sified as bound states with an arbitrarily small binding en-maximum for 1<|t|< 2 or two for|t|<1. The maximum
ergy: therefore this system does not manifestv@lue of ® is realized in the high-electron-density region
superconducting properties. In contrast with other mddelsWhen the interaction between_partlcles_ pr_eva_lls; on the other
the regions with dominant pair correlations is realized on thd!@nd, at a low electron density the distribution of the par-
basis of the real rapidities of the Bethe ansatz equations. IHC!€S iS so dilute as to render the effect of interaction negli-
regions with dominant density-density correlations the pardiPle- In Fig. 4 we separate by the solid line the region of
ticles prefer to move individually, instead of by pair hopping, density that corresponds to a strongly interacting Luttinger-
but in the region with pair correlations they create two-atom!i9uid state with®>1. For comparison we plot in Fig. 5 the
molecules. As we will see below, at high electron density thd©Sults of calculations fof) at t=1. This is the case of a
repulsive hard core potential stimulates formation of a PUre” hard core interaction between particle8.is an in-
strongly interacting Luttinger-liquid state, destroying the paircréasing function of the electron density for al-0. The
correlations.

The correlation effects produced by the hard core poten-
tial are most impressively displayed in the momentum distri- 6{ t=1
bution function. The momentum distribution function around
the Fermi point can be written as
@ 41 A=3
(ny=(n.)—const< [k—ke| “sgrtk—ke),  (9)
where the exponer®d is expressed in terms af, 21 2
1 ( a) 2 1
O=—|1-=] . (10 0-
a@ 2 02 04 06 08 10
n(1+A)

In Fig. 4 the correlation expone® is shown as a func-
tion of the electron density for the same values of the hard FIG. 5. The exponer® as a function of the electron density for
core radius. Fon=0 we have the Fermi liquid resu@=0. t=1.
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resultant critical exponen®=0 is a canonical exponent density-density or pair correlations. In the low-density region
characteristic of the noninteracting electron systéfior  where the hard core potential is of little consequence the pair
A=0). We see tha® increases rapidly with increasing band correlations dominate. In the high-electron-density region
filling in the high-density region, reaching the maximum where density-density correlations dominate the state is iden-
value {[A(A+2)/(1+A)]? at the extreme concentration tified as a strong interacting Luttlnger Ilquu_j with>1. Thls_
Nmay. COmparing the behavior @ in Figs. 4 and 5, we see State is realized due to the strong interaction of the particles
that both the hard core potential and the correlated hoppinﬁ'a correlated hopping and the hard core potential. In the

give rise to a strongly interacting Luttinger-liquid state in the Nigh-density limit the model exhibits a metal-insulator tran-
high-density region. sition in the insulator phase with the new spacing parameter

To summarize, we have introduced an integrable tWO-A+1'

parameter model of spinless fermions on a discrete lattice. The author would like to thank A. A. Ovchinnikov for
The exact solution allows for a detailed study of themany stimulating discussions. The author acknowledges the
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unusual properties of the model proposed. There are tw8ysteme, Dresden, Germany, and of the International Centre
distinct regimes of the phase diagram with dominatingfor Theoretical Physics, Trieste, Italy.

1E.H. Lieb and F.Y. Wu, Phys. Rev. Le®0, 1445(1968. et al, cond-mat/990713%npublishegl

2Bill Sutherland, Phys. Rev. B2, 3795(1975; P. Schlottmann, SV.E. Korepin and F.H.L. EsslerExactly Solvable Models of
ibid. 36, 5177(198%: P.A. Bareset al, ibid. 44, 130(1991). Strongly Correlated ElectrongWorld Scientific, Singapore,

31.N. Karnaukhov, Phys. Rev. Leff3, 1130(1994); F.C. Alcaraz 19949; V.E. Korepin, N.M. Bogolubov, and A.G. IzergiQuan-
and R.Z. Bariev, Phys. Rev. B9, 3373(1999; F. Dolcini and tum Inverse Scattering Method and Correlation Functions
A. Montorsi, cond-mat/991232@npublishegl (Cambridge University Press, Cambridge, 1993

4F.D.M. Haldane, Phys. Rev. Let60, 365 (1988; B.S. Shastry, 6].N. Karnaukhov, Phys. Rev. B0, 15 496(1999.
ibid. 60, 639 (1988; A. Polychronakosjbid. 70, 2329 (1990; "R.Z. Barievet al, J. Phys. A26, 1249(1993; I.N. Karnaukhov,
Bill Sutherland and B.S. Shastrijid. 71, 5(1993; M. Arikawa Int. J. Mod. Phys. BLO, 3673(1996.

045102-5



