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Strongly interacting Luttinger-liquid state in the integrable model of spinless fermions
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A family of spinless fermion models with a hard core potential is formulated and solved by the Bethe ansatz
method in one dimension for an arbitrary core radius. The Hamiltonian has two levels of strong interaction: the
repulsive hard core potential and the kinetic energy with hopping integrals, values of which depend on the
configuration of the particles. The Fermi velocity and the critical exponents describing the asymptotic behavior
of the correlation functions at long distances have been calculated numerically for an arbitrary density of
electrons and hard core radius. We discuss the effect of the hard core potential. The hard core potential defines
an anomalous behavior of the critical exponentQ of the momentum distribution function. In the high-electron-
density region the long-distance behavior is described by a strongly interacting Luttinger-liquid state withQ.1
and the residual Fermi surface disappears.
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Many one-dimensional quantum systems, in particular,
teracting electron and spin systems, can be described as
tinger liquids. In one-dimensional~1D! interacting systems
all low-energy excitations are collective modes, whereas
quasiparticle type elementary excitations exist. Correlat
functions then have nonuniversal, power-law behavior at
energies. The difficult feature inherent in the marginal liqu
is the absence of a jump in the momentum distribution at
Fermi levelkF . Notably, it has been found that many int
grable models, such as the 1D Hubbard model,1 the super-
symmetrict-J model,2 models with correlated hopping,3 and
models with long-range interactions,4 exhibit different physi-
cal behavior. Different forms of the interaction have be
studied in these models: on-site Coulomb repulsion, spin
change coupling, and kinetic energy with correlat
hopping.5

The aim of this article is to study the competition b
tween, on the one hand, the kinetic energy with differ
hopping integrals and, on the other hand, the hard core
tential with an arbitrary core radius. We argue that ap
from the on-site Coulomb repulsion the hard core poten
should be taken into account for description of the behav
of electrons in metals. The metallic properties of correla
1D systems are not those of the usual Fermi liquid, but of
marginal liquid. We switch on the hard core potential in t
integrable model of spinless fermions proposed recently
Ref. 6. The model Hamiltonian contains kinetic terms d
scribing nearest-neighbor hopping with different hopping
tegrals, namely, the hopping integraltn5tn21 describes one-
particle hopping in electron configurations withn particles.
We investigate an extended version of the model6 that is
exactly soluble and exhibits a strongly interacting Lutting
liquid behavior. This state is characterized by a large va
of the critical exponent of the momentum distribution fun
tions Q when the residual Fermi surface disappears.
show that a strongly interacting Luttinger-liquid state
formed at a high electron density as a result of strong co
lations. The Hamiltonian of the modified model with the a
ditional repulsion hard core interaction between electrons
a one-dimensional lattice withL sites andN electrons is
given by
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H52(
i 51

L

~ci 11
† ci1ci

†ci 11! (
n,m50

`

tn1mPi ,n
2 Pi 11,m

1 , ~1!

whereci
† and ci are the creation and annihilation operato

of electrons at sitei and many-particle electron con
figurations are described via theP operatorsPi ,n

6 5) r 51
D11

(12ni 6n(D11)6r))a51
n mi 6a(D11) for n.0 and Pi ,0

6

5) r 51
D11(12ni 6r) for n50. Heremi5ni) r 51

D (12ni 1r) for
D.0 andmi5ni for D50. The hard core interaction in Eq
~1! forbids two particles at distances smaller or equal toD
~D50,1,2, . . . is measured in units of the lattice spacin
parameter!. By ni5ci

†ci , we denote the number operator fo
conduction electrons on sitei, the hopping matrix elemen
equal to unity for individual electrons. The caset51 corre-
sponds to hopping integrals of unity for an arbitrary electr
configuration; as a result, the interaction terms in the mo
Hamiltonian~1! take into account the hard core potential
electrons only. A similar situation is realized for the caset
521, since the contribution of the correlated hopping ter
is an even function of the hopping integrals.

We write out the terms of the Hamiltonian~1! for D.0
that illustrate the structure of the interaction for two- a
three-particle complexes~see Fig. 1!: for n52,

H52t (
i 51

L

~ci 11
† ci1ci

†ci 11! )
r 51

D11

~12ni 212D2r !ni 212D

3)
r 51

D

~12ni 212D1r ! )
r 51

D11

~12ni 111r !

2t (
i 51

L

~ci 11
† ci1ci

†ci 11! )
r 51

D11

~12ni 2r !

3)
r 51

D

~12ni 111r !ni 121D )
r 51

D11

~12ni 121D1r !,

and forn53,
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H52t2 (
i 51

L

~ci 11
† ci1ci

†ci 11! )
r 51

D11

~12ni 2222D2r !ni 2222D )
r 51

D

~12ni 212D2r !ni 212D

3)
r 51

D

~12ni 212D1r ! )
r 51

D11

~12ni 111r !

2t2 (
i 51

L

~ci 11
† ci1ci

†ci 11! )
r 51

D11

~12ni 2r !)
r 51

D

~12ni 111r !ni 121D )
r 51

D

~12ni 121D1r !ni 1312D )
r 51

D11

~12ni 1312D1r !

2t2 (
i 51

L

~ci 11
† ci1ci

†ci 11! )
r 51

D11

~12ni 212D2r !ni 212D)
r 51

D

~12ni 2r ! )
r 51

D

~12ni 121D2r !

3ni 121D )
r 51

D11

~12ni 121D1r !.
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Two lines of the formulas forn52 andn53 correspond to
one line in Figs. 1~a! and 1~b!, respectively. Similar terms o
the Hamiltonian~1! are represented in Ref. 6 forD50.

A detailed investigation of the integrability of model~1!
for the caseD50 was presented in Ref. 6. The two-partic
scattering matrix is multiplied by an additional scatteri
phase shift due to the hard core potential and the proce

FIG. 1. Graphical representation of one-particle hopping in
configurations with two~a! and three~b! particles. The hopping
matrix elements are equal tot for n52 andt2 for n53.
04510
re

for diagonalization of the Hamiltonian~1! is identical to that
for the caseD50. We now turn to discrete Bethe equatio
that generalize the ones for arbitraryD. The quasimomenta
are determined by the Bethe ansatz equations

exp~ ik jL !5~21!N )
i 51

N

expF i ~kj2ki !~D11!

22iQS kj2ki

2 D G , ~2!

whereQ~l!5arctan~cothn tanl!, tanhn5c for ucu,1, Q~l!
5arctan~tanhn tanl!, and cothn5c for c.1. The solution
~2! is incorporated in the parameterc52/t221 varying in
the intervals21,c,0, 0<c,`.

The total energy of the system in a state correspondin
solutions of$kj% is

E522(
j 51

N

coskj . ~3!

At D50 the Bethe equations~2! are reduced to those for th
model proposed in Ref. 6. We will briefly analyze the effe
of the repulsive hard core potential for different values of t
core radius. The results of the calculations are compared
those for D50. In the thermodynamic limit the quasimo
menta $kj% have, in general, complex valueskj ,p,n5l j ,p
1 im(p22n11)/2, n51,2, . . . ,p. The ground state of the
system is described by real rapiditieskj ,1,15l j ,1 for the case
of the repulsive effective interactionc.0 (utu,A2) and
complexkj ~or strings with the lengthp, wherep→`) for
the attractive effective interactionc,0 (utu.A2).6 The
strings withp length describe thep-particle bound states; a
a result, forc,0 the electrons form a cluster withN par-
ticles, in other words, a phase separation takes place. Le
analyze thec.0 case. In the thermodynamic limit the quas
momenta are closely spaced and may be regarded as a
tinuous variable. It is then usual to define the distributi
function r(l) for the set of quasimomenta. Taking log

e
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STRONGLY INTERACTING LUTTINGER-LIQUID . . . PHYSICAL REVIEW B63 045102
rithms of Eq.~2!, and afterwards performing the thermod
namic limit, we are able to obtain an integral equation
Fredholm’s type for the distribution functionr(l) for the
variablel:

r~l!2E
2Q

Q

dl8R~l2l8!r~l8!5
1

2p
@12~D11!n#,

~4!

with the kernel being

R~l!5
1

2p

sinh~2m!

cosh~2m!7cos~l!
,

where the upper and lower signs correspond to the cas
,c,1 (1,utu,A2) andc.1 (utu,1), respectively. The
cutoff parameterQ is determined by the density of electron
one findsn5*2Q

Q dlr(l). The band filling is controlled by
the parameterQ; Q5p corresponds to a full band with den
sity nmax51/(11D), while atQ50 the band is empty. The
solution of this equation yields the ground state energy
site:

«522E
2Q

Q

dl coslr~l!. ~5!

Below, we consider the behavior of electrons for seve
values of t and D and an arbitrary electron density. W
compare the results obtained for small (utu,1) and large
(1,utu,A2) hopping integrals. Let us consider the Fer
velocity of electrons and the long-distance behavior of
correlation functions characterized by the critical expone
The analysis of low-lying excitations shows that there is o
massless branch of charge excitations. The Fermi velo
of the gapless charge excitation v5e8(Q)/@2pr(Q)# ~here
by the prime we mean a derivative! is determined by the
dressed energye(Q), wheree(l) is the solution of the inte-
gral equation

e~l!522 cosl2m1E
2Q

Q

dl8R~l2l8!e~l8!, ~6!

such thate(6Q)50 ~m is the chemical potential!.
In Fig. 2 we show the Fermi velocity calculated nume

cally for two values oft (t50.5 or c57 and t51.3 or c
50.183) andD50,1,2,3. We see that the Fermi velocity d
cays to zero at the extreme densitiesn→0 and n→nmax.
The system is metallic except at the extreme electron c
centrations. It is to be noted that atnmax the model displays
a metal-insulator phase transition in the insulator phase w
a new spacing parameterD11. We clearly observe a differ
ent behavior of v forutu,1 and 1,utu,A2. This is easily
understood: the fermions are more mobile in small co
plexes atutu,1 and in large complexes at 1,utu,A2. The
height of the maximum is shifted in the small-electro
density region atutu,1 and in the high-electron-density re
gion at 1,utu,A2. For utu51 the maximum of the Ferm
velocity is realized at a ‘‘half-filling’’ density 1/~21D!. The
maximal value of v increases withD.
04510
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The long-distance behavior of the density-density corre
tion function is given by

^n~x!n~0!&.n21A1x221A2x2a cos~2kFx!, ~7!

where n(xi)5ni , kF is the Fermi momentum, anda
52@j(Q)#2. j(Q) is the dressed charge at the Fermi s
face; the dressed charge functionj~l! is defined asj~l!
52pr~l!.

The exponenta is plotted in Fig. 3. In the low-density
limit n→0 and, as forutu→1, the value ofa→2, which is
the same as for noninteracting fermions. This value separ
the regimes with dominant correlation effects in the dens
density correlation function. The oscillating term in Eq.~7!
dominates in the high-density region for large hopping in
grals at an arbitrary electron core radius. The value ofa
decreases withD and, as a result, the region with domina
correlations grows. Similar behavior ofa is observed for
small hopping integrals atD.0.

Let us compare the asymptotic behavior of the dens
density correlation function~7! with that of the pair correla-
tion function

^C†~x!C~0!&.A3x2b, ~8!

whereC†(xi)5ci
†ci 11

† and the critical exponentb is given
by the inverse ofa ~b51/a!. In Fig. 3 we indicate~dashed
line! the region with dominant pair correlations whena.1.
The range of this region depends on the hopping integral
the core radius. An analogous behavior of the correlat
functions is observed in models with attractive effective

FIG. 2. The Fermi velocity versus the electron density. T
individual curves are labeled by the value of the parameterD. The
result forD50 is plotted~dotted line! for comparison.
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teraction of the particles when the ground state configura
contains a bound pair characterized by a pair of comp
particle rapidities with a finite binding energy.7 In the super-
symmetrict-J model the spin and charge rapidities are cl
sified as bound states with an arbitrarily small binding e
ergy; therefore this system does not manif
superconducting properties. In contrast with other mod7

the regions with dominant pair correlations is realized on
basis of the real rapidities of the Bethe ansatz equations
regions with dominant density-density correlations the p
ticles prefer to move individually, instead of by pair hoppin
but in the region with pair correlations they create two-at
molecules. As we will see below, at high electron density
repulsive hard core potential stimulates formation of
strongly interacting Luttinger-liquid state, destroying the p
correlations.

The correlation effects produced by the hard core pot
tial are most impressively displayed in the momentum dis
bution function. The momentum distribution function arou
the Fermi point can be written as

^nk&.^nkF
&2const3uk2kFuQsgn~k2kF!, ~9!

where the exponentQ is expressed in terms ofa,

Q5
1

a S 12
a

2 D 2

. ~10!

In Fig. 4 the correlation exponentQ is shown as a func-
tion of the electron density for the same values of the h
core radius. Forn50 we have the Fermi liquid resultQ50.

FIG. 3. The exponenta. As in Fig. 2 for values ofa above the
dashed line we have dominant pair correlations.
04510
n
x

-
-
t
s
e
In
r-
,

e

r

-
i-

d

Due to strong electron correlations the value ofa decreases
with D and consequently the value ofQ increases.Q is a
nonmonotonic function of the electron density; it has o
maximum for 1,utu,A2 or two for utu,1. The maximum
value of Q is realized in the high-electron-density regio
when the interaction between particles prevails; on the o
hand, at a low electron density the distribution of the p
ticles is so dilute as to render the effect of interaction ne
gible. In Fig. 4 we separate by the solid line the region
density that corresponds to a strongly interacting Lutting
liquid state withQ.1. For comparison we plot in Fig. 5 th
results of calculations forQ at t51. This is the case of a
‘‘pure’’ hard core interaction between particles.Q is an in-
creasing function of the electron density for allD.0. The

FIG. 4. The exponentQ as a function of the electron density fo
t50.5 andt51.3. The solid line separates the strongly interact
Luttinger-liquid state.

FIG. 5. The exponentQ as a function of the electron density fo
t51.
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STRONGLY INTERACTING LUTTINGER-LIQUID . . . PHYSICAL REVIEW B63 045102
resultant critical exponentQ50 is a canonical exponen
characteristic of the noninteracting electron system~for
D50!. We see thatQ increases rapidly with increasing ban
filling in the high-density region, reaching the maximu
value 1

2 @D(D12)/(11D)#2 at the extreme concentratio
nmax. Comparing the behavior ofQ in Figs. 4 and 5, we see
that both the hard core potential and the correlated hopp
give rise to a strongly interacting Luttinger-liquid state in t
high-density region.

To summarize, we have introduced an integrable tw
parameter model of spinless fermions on a discrete latt
The exact solution allows for a detailed study of t
asymptotic behavior of the correlation functions. Note t
unusual properties of the model proposed. There are
distinct regimes of the phase diagram with dominat
04510
g

-
e.

e
o

density-density or pair correlations. In the low-density regi
where the hard core potential is of little consequence the
correlations dominate. In the high-electron-density reg
where density-density correlations dominate the state is id
tified as a strong interacting Luttinger liquid withQ.1. This
state is realized due to the strong interaction of the partic
via correlated hopping and the hard core potential. In
high-density limit the model exhibits a metal-insulator tra
sition in the insulator phase with the new spacing param
D11.
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