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Mobility edge in aperiodic Kronig-Penney potentials with correlated disorder:
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It is shown that a nonperiodic Kronig-Penney model exhibits mobility edges if the positions of the scatterers
are correlated at long distances. An analytical expression for the energy-dependent localization length is
derived for weak disorder in terms of the real-space correlators defining the structural disorder in these
systems. We also present an algorithm to construct a nonperiodic but correlated sequence exhibiting desired
mobility edges. This result could be used to construct window filters in electronic, acoustic, or photonic
nonperiodic structures.
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The Kronig-Penney model has been widely used to exers ofequalamplitude,U,=U, but with varying positions,
plore the characteristics of electrons in a periodic potentiali.e., the case of “structural” or “positional” disorder. An
as this model provides one with perhaps the simplest inebvious experimental realization of this model is a semicon-
stance of Bloch states. This model is also used systematicaluctor superlattice with fluctuating period.
to provide estimates of the bandwidths in semiconductor su- The case ofcompositionaldisorder, i.e., a periodic ar-
perlattices with high reliability. The Kronig-Penney model rangement of sites,=n, with random amplituddJ,,, has
and its relation with superlattices has also been used in recebten studied intensively during the last decade. The impor-
times to provide an implementation of the physics of randomtance of short-range correlations was explored recérnityd
and quasiperiodic systerisind interesting experiments have a “random dimer” model was studied as a specific
been reported on arrangements such as the well-known Féexample® Using this model, it was shown that short-range
bonacci sequencédt is because of its importance and wide correlations in the infinite random sequertg,} give rise to
applicability that we focus our attention on the Kronig- a discretenumber of delocalized states as well as to some
Penney model. We will demonstrate that the aperiodic modednomalies in transport propertiésThe presence of such
with constant scattering potential but random spacings yieldanomalies has been recently observed in experiments with
mobility edges if the disorder has long-range correlations, irGaAs-AlGaAs random-dimer superlatticédloreover, the
sharp contrast to the situation for white noise potentials. nontrivial role of correlations in the formation of mobility
The Kronig-Penney model in this study is given by a one-edges has been pointed out by the study of localization in
dimensional1D) chain of delta-function scatterers with am- pseudorandom and incommensurate potertiéscontrast,
plitude U,, and centered at points,. The Schrdinger equa- only relatively recently the role of long-range correlations in
tion for a particle moving in this random potential has therandom potentials has received special attention. The inter-
form play of long-range correlations and disorder has been shown
" to lead to the existence of@ntinuumof extended states in
the energy spectrum and to the appearance of mobili
(h#/2m) W(ZHE’J’(Z)ZHZW Unth(z0)8(z=20). (1) edgesl.o*“g¥hege edges have been sh%F\)/vn to exist in expe;[i)f
ments of microwave transmission in a single-mode wave-

This is equivalent to the discrete equation, guide with a random array of correlated scattetérand
. . their possible relevance for metal-insulator transitions in 2D
SINn-1¥n+ 1t SINKRYn-1 electron systems has been recently expldfed.
=[sin( e+ mp_1) + (U la)sinun_ 1 Singn]tn, ) Localization length for weak disordeifo calculate the

localization lengtH (E) in the case ostructural disordemwe
where = (2,), mn=0(Zn+1—2,), q=+E, and the en- use a Hamiltonian approadh.n this scheme, the discrete
ergy is measured in units whe€/2m=1. The linear rela- ~ Schralinger equation is replaced by a classical Hamiltonian
tion (2) betweeny,_1, ¥, andy,,1, can be easily arrived map for coordinatex,, and momentunp,,. For the case of
at by integrating Eq(1) in the vicinity of sitesn—1, n, and Eq. (2), conjugate variables are introduced &s= i, and
n+1, and substituting the amplitudes for the various conp, = (x,cosu,_1—X,_1)/sinu,_;.  Correspondingly, the
stants in the piecewise zero-potential regions between thgiscrete-time evolution o%, andp,, is obtained from
scatterers. If the site potential is different from a delta func-
tion, a linear relation similar to Eq2) can be obtained using
a general method described in Ref. 4. Therefore,(Bqgcan
be considered as a rather generic relation for 1D chains with
potential scatterers. We focus here on a sequence of scatter- Xnt+1=(Pnt+ApXp)Sin s+ X, COSu,, . 3)

Pn+1= (PntAnXn)COSUn— X SiNiy,
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This map describes the behavior of a linear rotator subjected Following our previous approachiit is convenient to in-
to nonperiodicdelta-kicks with amplitudeA,=U,/q. Free troduce action-angle variables for mép,

rotation between kicks corresponds to free propagation be-
tween scatterers and each kick corresponds to scattering at (8)
each §-function potential. It is easy to check that the first

equation in Eq(3) is equivalent to Eq(2), while the second The inverse localization length for the original quantum

P,=R,siné,, X,=R,cos6,.

is reduced to an identity aftqr, substitution.

model Eq.(1) [or equivalently, the Lyapunov exponent for

In what follows we consider the case of weak disorderthe dynamical map in Eq3)], can be expressed in terms of
assuming that the deviation of the scatterers from their posithe ratioR, /R, (see details in Ref. 14

tions in a periodic lattice is smal|s,|=q|z,—n|<1. We
can then expand trigonometric functions in E8). and up to
second order il,=q(d,.1— J,), obtain the approximate
map for constant kick amplitudad=U/q,

2 2
)\n n
Pn+1= COSQ| Pn 1_? +Xn A_)\n_A?
)\2
. n
—sing| ppAnt+Xnl 1+AN— ?H
AZ
n
Xn+1= COSQ| PpAnt Xn| 1 +AN,— 7”
2 2
+ sing| pn 1—% +X, A—)\n—A7n”. (4)

Note that since\,<q=\E, this expansion is valid only for
low energies.

In order to extract the effect that comes only from the
positional nonperiodicity, it is convenient to eliminate the

mean field associated with the constant amplitudeThis
can be done by a canonical transformation of variables,

ph=a lcos¢P,— asindX,,

Xp=a tsingP,+ a coseX,.

©)

The parameters of this transformation @nd ¢) are ob-
tained from the condition that to zeroth order iy, the

dynamical map for P,,X,) be a simple rotation with-
out kicks, i.e., P, =P®cosy—XPsiny, and X,

=P siny+X® cosy. Applying this condition to Eqs(5)

and (4) we get after some algebra

¢=3%q, cosy= cosq+(A/2q)sing,

a*=1+2A/[2 sing—A(1+ cosq)]. (6)

It is clear thaty plays the role of the Bloch number in the

periodic Kronig-Penney modélWe can now rewrite the
map (4) in terms of variablesR,,X,) and angley,

Pni1=(1—A\%2)(P, cosy—X,siny)
—\na?(P, siny+ X, cosy),
Xp+1=(1=N3/2)(P,siny+ X, cosy)

+ N 2(P, cosy—X,siny). (7)

~ Pny Xn+ 1/ R2,
| 1(E)=<In ¢n1>=<|n Xn1>=§<ln R21>. (9)

Here,( ...)=limy_.,1/N=N_,( ...) andexponential local-
ization of quantum states is assumed. Using the (Mapve
can calculate the rati®,, ;1 /R,, as

(Rn+1/Rn)2:1_U)\n sif2(6,—y)]/(gsiny)
+N @ *sirt(0,— )

+ a* cog(6,— y)—1]. (10
The fact that the rati®,,, ; /R, is close to unity for smalk
is what motivated switching from the variablep,(Xx,) to
(Ps,X,) using Eq.(5). The logarithm in Eq(9) can be ex-
panded as In(Ax)~x—x%/2, and, up to second order ky,,
the average is performed over the unperturbed motion given
by the P'?,X(?) variables. Since this motion isfeee ro-
tation (in the old variables it is a rotation witlperiodic
kicks, the angle variabl#, is clearly distributed uniformly
within the interval[0,27]. One then obtains thasir? 6,)
=(cog 6,)=1/2, and

(A\hu?
8g2sify gsin

I"Y(E)= S(asif2(6,-9). (D

The first term in Eq.(11) gives the inverse localization
length in an uncorrelated random potential. In this Born ap-
proximation, it is proportional to the varian¢g2) and to the
squared amplitude of the scattering potentidf. Since
()\ﬁ)ocqz, the factorg® disappears and the only energy de-
pendence is due to the factor %ipin the denominator. At
the edges of the allowed zones $#0, and here the local-
ization lengthl (E) approaches zero. A similar enhancement
of localization in the vicinity of the band edd@s® has
stimulated the study of photonic-band-gap materials in the
last decade.

The second term in Eq11) describes the contribution of
correlations in the scattering potential. To calculate explicitly
the correlatok A, sif2(6,—y)]), one needs the recursion re-
lation for the angle variablé, . Since this correlator already
contains a factok,,, only linear terms in the recursion rela-
tion are needed from Eqg7) and (8), so that6,=6,_
—y—An_1[@®—U sir’(6,_,—y/(gsiny)]. The correlator
(N siM2(6,— )]y can be written as a Fourier series in Bloch
numbery, where the dimensionless correlat@ik) are the
Fourier coefficients?
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q solution would give us in general a random scattering poten-
(NpSIN2(0,—y) )=~ >sin 2 &(n)coq2yn). tial {U,,d8,} through the dependend€E). In the present
Yn (12) case of positional disordet),,=U, we need to calculate

only the relative displacements. One can explicitly evaluate

Here A2=(A2), with £(K)=(An. An)/A2 andA,=6,,, the correlatoré(k) as the Fourier coefficient

— &, . Note that the localization length is determined by the 5 (i2

statistical properties of the sequence refative displace- _Z J' m

mentsA,,, and not by the displacemensy themselves. &k 0 ¢(y)cos2ky)dy, (19
Substituting the correlatail2) into Eq. (11) we get the

final result for the inverse localization length where the energy dependenceqfy) =8 Sinz?’/[UZAzl(E)]'
is assumed to be known. The enerfy=q? is expressed
1 U2A2 * throughy via the dispersion relation in E@6). It is easy to
@ZSSW? o(y), e(y)= 1+22 &(n)cog2yn). chegk that the blnary gorrelatpr of a sequence, /A)
(13 =3, _.B(K)Z,;k, coincides with&(k) if Z, are random

numbers with zero mean and unit variance, and where the
This formula has the same structure as that obtained for function B(k) is given by1121°
tight-binding (and the corresponding Kronig-Penneyodel )
with random amplitudesU,,, but equidistant sites z{ /2
=n).!12 These three different models have a different de- pk)= ;fo Ve(y)cod2ky)dy. (16)
pendence on energy via the factgrsand sirf y. The present
case exhibits the weakest dependence of the localizatio@nce the relative displacementg are known, a sequence of
length on energy within the allowed zone since a factor ~absolute displacements can be easily calculated, seffjng
=E appears in other cases but not here. This property should 0, for example, and thed;=A,, 5,=A¢+A;, ..., J,
be favorable for the experimental observation of mobility=3§_3A,. This procedure allows the calculation of dis-
edges in superlattices with positional disorder. placements,, for any energy dependence of the localization
Correlations and mobility edgdf the sequence of ran- lengthl(E), including situations with mobility edges. Appro-
dom displacements,, is uncorrelatedé(k) =0, the localiza-  priately correlated elements may be used for fabrication of
tion length is given by the first term in Eq13). In the effective filters of electrical or optical signals, even if the
opposite limit of a completely correlated sequengék) system isnot periodic?’ The bandwidth of a filter can be
= const, the displacements are independent on the site nurmade arbitrarily wide or narrow depending on #tatistical
ber, §,= &y, giving a regular sequence with period-»,, properties of the random sequence usgda the function
and extended statels,*=0, for all energies. A smooth tran- B(K)].
sition between these two limits can be described by an ex- Numerical exampledn order to examine our predictions,
ponential functiong(k) = exp(—kl/ky), wherek, is a correla-  we construct explicit random sequende®} for which the
tion radius. Substituting this form into E¢L3) one obtains  function ¢(y) in Eq. (13) has four mobility edges a;
=0.271, i=1,...,4. Thepositions of the mobility edges
g U2A? sinh(1/ko) 14 are chosen within the intervakQy< r, symmetrically about
(B)= 8 sir? y Coshi1/ko)—cog2y)’ 14 y=mp2. Via relation(6), the position of the mobility edges
on the axigy/ 7 are given by 0.326, 0.478, 0.649, and 0.850,
For any finitek, all states are localizednly in a periodic  for the mean-field amplitudd =0.7. In the ideal lattice with
lattice (ko=) does the inverse localization lendtt¥) van-  the same strength of the potential, the first allowed band lies
ish and the states become delocalized. This localizationbetweenq,/7=~0.26 (y=0) andq,/7~1 (y= ). Numeri-
delocalization transition occurs simultaneously for all eneral data are given for two complimentary situatiansy y):
gies, and a mobility edge does not appear in the spectrung, vanishedi.e.,|(E)=c and states are delocalizeid the
This conclusion is vaI|d for the arbitrary amplitude of the region ye (0, 'yl)U('yz,'yg)U(y4,7T) while ¢, vanishes in
scattering potential.!” A discrete number of delocalized the complementary region e (y1,7v,)U(ys,vs). Outside
states can in fact appear if the binary correlagfk) oscil-  these regions, the functiop; i(y) is a constant defined by
lates with exponentially decaying amplitutfeThis can be the normalization conditiort; (0)=1. From Eq.(15), we
obtained from Eq(14), if the correlation radiuk, is allowed  get that because of the presence of sharp mobility edges the
to take complex values. On the other hand, a mobility edgeorrelators(Fourier components of a discontinuous funcfion
may appear if correlatlons decay not exponentially but acedecay slowly:
cording to a power la#’~*?> We show numerically below
that sharp mobility edges exist if, e.g (k)= 1/k. For corr- &1(k)=—1.5¢,(k) = (5/27k)[ sin(0.87k) — sin(0.47k) ].

elators decaying faster thankithe mobility edges also may (17
exist but they become smoother. We show the corresponding data in Figs. 1 and 2Uor
Designed mobility edgesn a real(or numerical experi-  =0.7. The analytical dependen¢E3) for the dimensionless

ment one needs to know explicitly the displacemess inverse localization length =81 (E)U2A? is shown by the
which provide a desirable dependeri¢E). This leads us to full lines for A=0.05 in the figures. Numerical data are ob-
the “inverse problem” in the theory of localization. The tained for a large sample si2é=10°, with two amplitudes
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FIG. 1. Inverse localization length for band with four mobility FIG. 2. Results for complementary system to Fig. 1, with four
edges, three regions of extended states, and different amplitude pfobility edges but only two regions of extended states. Lines
disorder: circles ©), A=0.05; crossesX), A=0.15. Solid lines  through circles 4 =0.05) and crosses\(= 0.15) are guides to the
show Eq.(13) for A=0.05. Inset showsl= 10 sites averaged over eye.

only 100 samplings. - ) )
mobility ¢; and band edgesy, .. Notice that Eq.(13) is

excellent at giving the mobility edges at the prescribed ener-
of disorder,A=0.05 (circles and A=0.15 (crosses The  gies, which proves its usefulness, and breadth of appli-
insets show results for a much shorter samile; 1000,  cability?*
with additional average over 100 different realizations of dis- This work was supported by CONACyT Grants No.
order but the same correlations. One can see that for smal6163-E and 28626-E, and by the US Department of Energy
disorder,A=0.05, Eq.(13) describes the numerical results Grant No. DE-FG02-91ER45334. A.A.K. is grateful for fi-
very well, with only minor deviations close to the onset of nancial support from Ohio University.
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