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Mobility edge in aperiodic Kronig-Penney potentials with correlated disorder:
Perturbative approach
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It is shown that a nonperiodic Kronig-Penney model exhibits mobility edges if the positions of the scatterers
are correlated at long distances. An analytical expression for the energy-dependent localization length is
derived for weak disorder in terms of the real-space correlators defining the structural disorder in these
systems. We also present an algorithm to construct a nonperiodic but correlated sequence exhibiting desired
mobility edges. This result could be used to construct window filters in electronic, acoustic, or photonic
nonperiodic structures.
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The Kronig-Penney model has been widely used to
plore the characteristics of electrons in a periodic poten
as this model provides one with perhaps the simplest
stance of Bloch states. This model is also used systematic
to provide estimates of the bandwidths in semiconductor
perlattices with high reliability.1 The Kronig-Penney mode
and its relation with superlattices has also been used in re
times to provide an implementation of the physics of rand
and quasiperiodic systems,2 and interesting experiments hav
been reported on arrangements such as the well-known
bonacci sequences.3 It is because of its importance and wid
applicability that we focus our attention on the Kroni
Penney model. We will demonstrate that the aperiodic mo
with constant scattering potential but random spacings yie
mobility edges if the disorder has long-range correlations
sharp contrast to the situation for white noise potentials.

The Kronig-Penney model in this study is given by a on
dimensional~1D! chain of delta-function scatterers with am
plitudeUn and centered at pointszn . The Schro¨dinger equa-
tion for a particle moving in this random potential has t
form

~\2/2m!c9~z!1Ec~z!5 (
n52`

`

Unc~zn!d~z2zn!. ~1!

This is equivalent to the discrete equation,

sinmn21cn111 sinmncn21

5@sin~mn1mn21!1~Un /q!sinmn21 sinmn#cn , ~2!

where cn[c(zn), mn5q(zn112zn), q5AE, and the en-
ergy is measured in units where\2/2m51. The linear rela-
tion ~2! betweencn21 , cn , andcn11, can be easily arrived
at by integrating Eq.~1! in the vicinity of sitesn21, n, and
n11, and substituting the amplitudes for the various co
stants in the piecewise zero-potential regions between
scatterers. If the site potential is different from a delta fun
tion, a linear relation similar to Eq.~2! can be obtained using
a general method described in Ref. 4. Therefore, Eq.~2! can
be considered as a rather generic relation for 1D chains
potential scatterers. We focus here on a sequence of sca
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ers of equal amplitude,Un[U, but with varying positions,
i.e., the case of ‘‘structural’’ or ‘‘positional’’ disorder. An
obvious experimental realization of this model is a semic
ductor superlattice with fluctuating period.

The case ofcompositionaldisorder, i.e., a periodic ar
rangement of sites,zn5n, with random amplitudeUn , has
been studied intensively during the last decade. The imp
tance of short-range correlations was explored recently,5 and
a ‘‘random dimer’’ model was studied as a speci
example.6 Using this model, it was shown that short-ran
correlations in the infinite random sequence$Un% give rise to
a discretenumber of delocalized states as well as to so
anomalies in transport properties.7 The presence of such
anomalies has been recently observed in experiments
GaAs-AlGaAs random-dimer superlattices.8 Moreover, the
nontrivial role of correlations in the formation of mobilit
edges has been pointed out by the study of localization
pseudorandom and incommensurate potentials.9 In contrast,
only relatively recently the role of long-range correlations
random potentials has received special attention. The in
play of long-range correlations and disorder has been sh
to lead to the existence of acontinuumof extended states in
the energy spectrum and to the appearance of mob
edges.10,11 These edges have been shown to exist in exp
ments of microwave transmission in a single-mode wa
guide with a random array of correlated scatterers,12 and
their possible relevance for metal-insulator transitions in
electron systems has been recently explored.13

Localization length for weak disorder. To calculate the
localization lengthl (E) in the case ofstructural disorderwe
use a Hamiltonian approach.14 In this scheme, the discret
Schrödinger equation is replaced by a classical Hamilton
map for coordinatexn and momentumpn . For the case of
Eq. ~2!, conjugate variables are introduced as,xn5cn and
pn5(xn cosmn212xn21)/sinmn21. Correspondingly, the
discrete-time evolution ofxn andpn is obtained from

pn115~pn1Anxn!cosmn2xn sinmn ,

xn115~pn1Anxn!sinmn1xn cosmn . ~3!
©2001 The American Physical Society02-1
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This map describes the behavior of a linear rotator subje
to nonperiodicdelta-kicks with amplitudeAn5Un /q. Free
rotation between kicks corresponds to free propagation
tween scatterers and each kick corresponds to scatterin
eachd-function potential. It is easy to check that the fir
equation in Eq.~3! is equivalent to Eq.~2!, while the second
is reduced to an identity afterpn substitution.

In what follows we consider the case of weak disord
assuming that the deviation of the scatterers from their p
tions in a periodic lattice is small,udnu5quzn2nu!1. We
can then expand trigonometric functions in Eq.~3! and up to
second order inln5q(dn112dn), obtain the approximate
map for constant kick amplitudeA5U/q,

pn115 cosqFpnS 12
ln

2

2 D 1xnS A2ln2A
ln

2

2 D G
2 sinqFpnln1xnS 11Aln2

ln
2

2 D G ,
xn115 cosqFpnln1xnS 11Aln2

ln
2

2 D G
1 sinqFpnS 12

ln
2

2 D 1xnS A2ln2A
ln

2

2 D G . ~4!

Note that sinceln}q5AE, this expansion is valid only for
low energies.

In order to extract the effect that comes only from t
positional nonperiodicity, it is convenient to eliminate th
mean field associated with the constant amplitudeU. This
can be done by a canonical transformation of variables,

pn5a21 cosfPn2a sinfXn ,

xn5a21 sinfPn1a cosfXn . ~5!

The parameters of this transformation (a and f) are ob-
tained from the condition that to zeroth order inln the
dynamical map for (Pn ,Xn) be a simple rotation with-
out kicks, i.e., Pn11

(0) 5Pn
(0) cosg2Xn

(0) sing, and Xn11
(0)

5Pn
(0) sing1Xn

(0) cosg. Applying this condition to Eqs.~5!
and ~4! we get after some algebra

f5 1
2 q, cosg5 cosq1~A/2q!sinq,

a45112A/@2 sinq2A~11 cosq!#. ~6!

It is clear thatg plays the role of the Bloch number in th
periodic Kronig-Penney model.1 We can now rewrite the
map ~4! in terms of variables (Pn ,Xn) and angleg,

Pn115~12ln
2/2!~Pn cosg2Xn sing!

2lna2~Pn sing1Xn cosg!,

Xn115~12ln
2/2!~Pn sing1Xn cosg!

1lna22~Pn cosg2Xn sing!. ~7!
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Following our previous approach,11 it is convenient to in-
troduce action-angle variables for map~7!,

Pn5Rn sinun , Xn5Rn cosun . ~8!

The inverse localization length for the original quantu
model Eq.~1! @or equivalently, the Lyapunov exponent fo
the dynamical map in Eq.~3!#, can be expressed in terms o
the ratioRn11 /Rn ~see details in Ref. 14!,

l 21~E!5 K ln
cn11

cn
L 5 K ln

Xn11

Xn
L 5

1

2 K ln
Rn11

2

Rn
2 L . ~9!

Here,^ . . . &5 limN→`1/N(n51
N ( . . . ) andexponential local-

ization of quantum states is assumed. Using the map~7! we
can calculate the ratioRn11 /Rn as

~Rn11 /Rn!2512Uln sin@2~un2g!#/~q sing!

1ln
2@a24 sin2~un2g!

1a4 cos2~un2g!21#. ~10!

The fact that the ratioRn11 /Rn is close to unity for smallln
is what motivated switching from the variables (pn ,xn) to
(Pn ,Xn) using Eq.~5!. The logarithm in Eq.~9! can be ex-
panded as ln(11x)'x2x2/2, and, up to second order inln ,
the average is performed over the unperturbed motion gi
by the (Pn

(0) ,Xn
(0)) variables. Since this motion is afree ro-

tation ~in the old variables it is a rotation withperiodic
kicks!, the angle variableun is clearly distributed uniformly
within the interval @0,2p#. One then obtains that̂sin2 un&
5^cos2 un&51/2, and

l 21~E!5
^ln

2&U2

8q2 sin2 g
2

U

q sing
^ln sin@2~un2g!#&. ~11!

The first term in Eq.~11! gives the inverse localization
length in an uncorrelated random potential. In this Born a
proximation, it is proportional to the variance^ln

2& and to the
squared amplitude of the scattering potential,U2. Since
^ln

2&}q2, the factorq2 disappears and the only energy d
pendence is due to the factor sin2 g in the denominator. At
the edges of the allowed zones sing50, and here the local-
ization lengthl (E) approaches zero. A similar enhanceme
of localization in the vicinity of the band edges15,16 has
stimulated the study of photonic-band-gap materials in
last decade.

The second term in Eq.~11! describes the contribution o
correlations in the scattering potential. To calculate explic
the correlator̂ ln sin@2(un2g)#&, one needs the recursion re
lation for the angle variableun . Since this correlator alread
contains a factorln , only linear terms in the recursion rela
tion are needed from Eqs.~7! and ~8!, so thatun5un21
2g2ln21@a22U sin2(un212g)/(qsing)#. The correlator
^ln sin@2(un2g)#& can be written as a Fourier series in Bloc
numberg, where the dimensionless correlatorsj(k) are the
Fourier coefficients,11
2-2
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^ln sin@2~un2g!#&52
UqD2

2 sing (
n51

`

j~n!cos~2gn!.

~12!

Here D25^Dn
2&, with j(k)5^Dn1kDn&/D

2, and Dn5dn11

2dn . Note that the localization length is determined by t
statistical properties of the sequence ofrelative displace-
mentsDn , and not by the displacementsdn themselves.

Substituting the correlator~12! into Eq. ~11! we get the
final result for the inverse localization length

1

l ~E!
5

U2D2

8 sin2 g
w~g!, w~g!5112(

n51

`

j~n!cos~2gn!.

~13!

This formula has the same structure as that obtained f
tight-binding ~and the corresponding Kronig-Penney! model
with random amplitudesUn , but equidistant sites (zn
5n).11,12 These three different models have a different d
pendence on energy via the factorsq2 and sin2 g. The present
case exhibits the weakest dependence of the localiza
length on energy within the allowed zone since a factorq2

5E appears in other cases but not here. This property sh
be favorable for the experimental observation of mobil
edges in superlattices with positional disorder.

Correlations and mobility edge. If the sequence of ran
dom displacementsDn is uncorrelated,j(k)50, the localiza-
tion length is given by the first term in Eq.~13!. In the
opposite limit of a completely correlated sequence,j(k)
5const, the displacements are independent on the site n
ber, dn5d0, giving a regular sequence with period 11d0,
and extended states,l 2150, for all energies. A smooth tran
sition between these two limits can be described by an
ponential function,j(k)5 exp(2k/k0), wherek0 is a correla-
tion radius. Substituting this form into Eq.~13! one obtains

l 21~E!5
U2D2

8 sin2 g

sinh~1/k0!

cosh~1/k0!2cos~2g!
. ~14!

For any finitek0 all states are localized.Only in a periodic
lattice (k05`) does the inverse localization length~14! van-
ish and the states become delocalized. This localizat
delocalization transition occurs simultaneously for all en
gies, and a mobility edge does not appear in the spectr
This conclusion is valid for the arbitrary amplitude of th
scattering potentialU.17 A discrete number of delocalize
states can in fact appear if the binary correlatorj(k) oscil-
lates with exponentially decaying amplitude.18 This can be
obtained from Eq.~14!, if the correlation radiusk0 is allowed
to take complex values. On the other hand, a mobility e
may appear if correlations decay not exponentially but
cording to a power law.10–12 We show numerically below
that sharp mobility edges exist if, e.g.,j(k)}1/k. For corr-
elators decaying faster than 1/k the mobility edges also ma
exist but they become smoother.

Designed mobility edges. In a real~or numerical! experi-
ment one needs to know explicitly the displacementsdn
which provide a desirable dependencel (E). This leads us to
the ‘‘inverse problem’’ in the theory of localization. Th
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solution would give us in general a random scattering pot
tial $Un ,dn% through the dependencel (E). In the present
case of positional disorder,Un5U, we need to calculate
only the relative displacements. One can explicitly evalu
the correlatorj(k) as the Fourier coefficient

j~k!5
2

pE0

p/2

w~g!cos~2kg!dg, ~15!

where the energy dependence ofw(g)58 sin2 g/@U2D2l(E)#,
is assumed to be known. The energyE5q2 is expressed
throughg via the dispersion relation in Eq.~6!. It is easy to
check that the binary correlator of a sequence (Dn /D)
5(k52`

` b(k)Zn1k , coincides withj(k) if Zk are random
numbers with zero mean and unit variance, and where
function b(k) is given by11,12,19

b~k!5
2

pE0

p/2
Aw~g!cos~2kg!dg. ~16!

Once the relative displacementsDn are known, a sequence o
absolute displacements can be easily calculated, settind0
50, for example, and thend15D0 , d25D01D1 , . . . , dn

5(k50
n21Dk . This procedure allows the calculation of di

placementsdn for anyenergy dependence of the localizatio
lengthl (E), including situations with mobility edges. Appro
priately correlated elements may be used for fabrication
effective filters of electrical or optical signals, even if th
system isnot periodic.20 The bandwidth of a filter can be
made arbitrarily wide or narrow depending on thestatistical
propertiesof the random sequence used@via the function
b(k)].

Numerical examples. In order to examine our predictions
we construct explicit random sequences$dn% for which the
function w(g) in Eq. ~13! has four mobility edges atg i
50.2p i , i 51, . . . ,4. Thepositions of the mobility edges
are chosen within the interval 0,g,p, symmetrically about
g5p/2. Via relation~6!, the position of the mobility edges
on the axisq/p are given by 0.326, 0.478, 0.649, and 0.85
for the mean-field amplitudeU50.7. In the ideal lattice with
the same strength of the potential, the first allowed band
betweenql /p'0.26 (g50) andqr /p'1 (g5p). Numeri-
cal data are given for two complimentary situationsw1,2(g):
w1 vanishes@i.e., l (E)5` and states are delocalized# in the
region gP(0,g1)ø(g2 ,g3)ø(g4 ,p); while w2 vanishes in
the complementary regiongP(g1 ,g2)ø(g3 ,g4). Outside
these regions, the functionw1,2(g) is a constant defined by
the normalization conditionj1,2(0)51. From Eq.~15!, we
get that because of the presence of sharp mobility edges
correlators~Fourier components of a discontinuous functio!
decay slowly:

j1~k!521.5j2~k!5~5/2pk!@sin~0.8pk!2 sin~0.4pk!#.
~17!

We show the corresponding data in Figs. 1 and 2 forU
50.7. The analytical dependence~13! for the dimensionless
inverse localization lengthL58/l (E)U2D2 is shown by the
full lines for D50.05 in the figures. Numerical data are o
tained for a large sample sizeN5106, with two amplitudes
2-3
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of disorder,D50.05 ~circles! and D50.15 ~crosses!. The
insets show results for a much shorter sample,N51000,
with additional average over 100 different realizations of d
order but the same correlations. One can see that for s
disorder,D50.05, Eq.~13! describes the numerical resul
very well, with only minor deviations close to the onset

FIG. 1. Inverse localization length for band with four mobili
edges, three regions of extended states, and different amplitud
disorder: circles (s), D50.05; crosses (3), D50.15. Solid lines
show Eq.~13! for D50.05. Inset showsN5103 sites averaged ove
only 100 samplings.
tor

04110
-
all

mobility qi and band edges,ql ,r . Notice that Eq.~13! is
excellent at giving the mobility edges at the prescribed en
gies, which proves its usefulness, and breadth of ap
cability.21
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FIG. 2. Results for complementary system to Fig. 1, with fo

mobility edges but only two regions of extended states. Lin
through circles (D50.05) and crosses (D50.15) are guides to the
eye.
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