
PHYSICAL REVIEW B, VOLUME 63, 035404
Collective and single-particle excitations in Raman scattering of multilayerd-doped systems
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We report theoretical calculations of resonant Raman cross sections via spin- and charge-density mecha-
nisms. The theory clearly demonstrates that the sufficient conditions for the appearance in extreme resonance
regime of simultaneous collective and single-particle modes in the nonuniform electron gas of multilayer
d-doped systems resides in the existence of degenerate and equally coupled intersuband excitations. A com-
parison between theoretical and experimental data lead us to believe that the disorder inherent to the doping
process should be relevant in order to give the correct intensity between the collective and single-particle
modes.
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Among the various spectroscopic probes, inelastic li
scattering is an especially powerful technique. By means
polarization selection rules,1 one can excite collective
charge- and spin-density excitations~CDE’s and SDE’s!.
The first are observed when the incoming and scattered
polarizations are parallel to each other~polarized geometry!.
Their energy modes are renormalized with respect to sin
particle excitations~SPE’s! due to direct and exchange Co
lomb interactions. SDE’s occur when the polarizations
perpendicular~depolarized geometry!, and are affected only
by exchange interactions resulting in redshifted modes w
respect to the single-particle energies. An intriguing fact
curs when Raman measurements are performed in a re
where the incoming laser energy matches an optical ga
the host semiconductor, theextreme resonanceregime. In
this case, Raman spectra of quantum wells,2 quantum wires
and dots,3 and even ofn-GaAs,4 exhibit, in addition to col-
lective CDE’s and SDE’s, unexpected unscreened SP
Additionally to intersubband SPE, intrasubband SPE w
also reported.5–7 From theoretical point of view~also experi-
mentally! it is consensual that for a correct description of t
experiments the valence band states should be taken in
count. In fact, recently SPE’s were obtained in calculatio
performed by means of a resonant random-ph
approximation8 in one dimensional~1D! and 2D systems
and also in quantum dots using the TDLDA~time-dependent
local-density approximation!.9 Both papers stressed th
relevance of the valence band in the resonant process,
suggested that so-called single-particle excitations are in
ality the collective ones. Reinforcement of this interpretat
was also reported for quantum wires treated within the L
tinger model, where low energy peaks in polarized spe
commonly associated with SPE’s, were interpreted as in
subband collective spin-density excitations.10 Although the
puzzle of simultaneous SPE’s and collective excitations
been the subject of a great amount of work, in our opin
there is still a lack of information concerning the physics
the phenomenon. This is the main subject of the pres
work. We propose in a clear physical basis anintersubband
theory of resonant Raman scattering which providessuffi-
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cient conditions for the signature of SPE in an otherwi
collective spectra. Such conditions rely on the existence
degenerate and equally coupled intersubband excitation
an electron gas. We show that the very nature of SPE
related to the existence ofunrenormalizedcollective excita-
tions.

Our theoretical TDLDA-based studies, conducted in n
and extreme resonance regimes, deal with the existenc
single-particle and collective excitations ofd-Si:GaAs
multilayer systems. Such well-known structures, for re
tively high silicon planar doping, result in periodical spac
charge potentials along the growth direction which confin
nonuniform electron gas around the donor sheets. T
shallow-well confinement makes them adequate for reson
Raman studies performed in theE01D0 spin-split edge. For
incident light perpendicular to the doping sheets and re
nant with theE01D0 optical gap, our theoretical polarize
and depolarized cross sections show that the Raman sp
will be composed of collective and single-particle intersu
band contributions. Calculations performed for a particu
d-doped structure agree with our available experimental d
and with those previously reported,11 providing a complete
understanding of the spectral line shapes. In the depolar
case, a collective term could not be observed due to sm
exchange-correlation contributions which confers to
spectrum a single-particle character. On the other hand
the polarized case, Coulombian coupling effects give rise
single-particle excitations similar to those of the depolariz
spectra, as well as to a definite ‘‘pure’’ collective mod
Comparison between theoretical and experimental data
lead us to believe that the disorder inherent to the dop
process should be relevant in order to give the correct in
sity between the collective and single-particle excitatio
The process can be understood as a back transferenc
oscillator strengths to the single-particle transitions cau
by the lost of coherence of the ‘‘pure’’ collective modes.

The electronic system considered is an 11-per
d-doping superlattice grown along thez direction with a unit
cell d5500 Å and a sheet carrier density ofns51.0
31012 cm22. Density-functional theory calculations in th
local-density approximation~LDA ! result in a conduction
©2000 The American Physical Society04-1
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band formed of three occupied minibands. The first is a
2D band confining 76% of the electrons. The remaining t
are nearly free-electron~NFE! bands with 21% and 3% o
the total number of available electrons, respectively, the
ter being half filled.12 For the intermediate spin-split hol
states, the same conduction-band boundary conditions w
adopted, with the assumption that holes are subjected on
the Hartree part of the self-consistent potential.

To calculate the scattering cross sections, we extended
Hamilton and McWhorter formula13 within a time-dependen
LDA.14,15 Based on such an extension, zero-tempera
cross-sections may be expressed in terms of autocorrela
functions of the form

G~v!5E dt

2p
eivt^M†~ t !M ~0!&, ~1!

where M†(t) is the appropriate scattering operator in t
Heisenberg representation. These in turn are related v
fluctuation-dissipation theorem to the response funct
^M†(0)&ve2 ivt of the system submitted to a time-depende
perturbation of the formM (0)e2 ivt; that is,

G~v!52
\

p
Im@^M†~0!&v#, ~2!

where^M†(0)&v is the Fourier amplitude at2v of the ex-
pectation value of the effective Schro¨dinger operatorM (0)
5(ab@dVba

ext#c,s(cb↑
† ca↑6cb↓

† ca↓),1 in the evolving many-
particle stateuC(t)& originally the ground state att52`. In
the preceding equations\v5\(vL2vS) is the light energy
transferred to the system, withvL(vS) being the incident
~scattered! light frequency. Since we are only concerned w
intersubband excitations, we assume a light wave-num
transfer,uqu5ukL2kSu and an incoming and scattered lig
wave number,ukLu5ukSu5q/2 along the growth direction o
the superlattice, thez axis. The above considerations sho
that the power spectrum of the density fluctuations may
obtained from a knowledge of the response function

^M†~0!&v
c,s5(

ab
@dVba

ext#c,s* ^ca↑
† cb↑6ca↓

† cb↓&v , ~3!

where the fermion operators stand to statesa and b in the
conduction band along the growth direction (n,kz), with spin
up ~down!, and to two-dimensional plane-wave states, pa
lel to the doping planes, with wave vectorski . c(s) and
1(2) refer to the charge-~spin-! density mechanism, with
enhancement factors given by

@dVba
ext#c,s5

@Pcv
2 #c,s

3m0
(

h

^bue~1/2!iqzuh&^hue~1/2!iqzua&
Eg1 igg1eb1eh2\vL

,

~4!

where theh’s are the valence-band intermediate states,Eg is
the split-off gap broadened by a phenomenological damp
constantgg , and@Pcv

2 #c,s are the interband matrix elemen
for the appropriate scattering geometry.16 eb(eh) stand for
the conduction~valence! subband energies. To simplify th
notation in the following,@dVba

ext#c,s5dVba
ext .
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In order to solve Eq.~3!, we observe that the expecte
value on its right-hand side is just the induced density fl
tuation of the charge or spin, which in the time-coordina
representation is written as

dn~x,t !5(
ab

ca* ~x!cb~x!^ca↑
† cb↑6ca↓

† cb↓& t . ~5!

The central idea behind our generalized self-consistent-fi
approximation is to assume that the many-body sys
responds to the total field

dVtot~ t !5dVext~ t !1dVind~ t !, ~6!

as a system of independent particles. HeredVext(t) is the
weak external perturbation, anddVind(t) the induced~charge
or spin! fluctuation. In the static case where these fluctu
tions are treated exactly within the formalism of densi
functional theory (v50), induced potentials are given i
terms of the functional derivatives of the electron-electr
energy density. Besides direct Coulomb interactions~the
Hartree term!, these include many-body effects due to e
change and correlation. Even without a formal justificatio
we take these potentials as representative of a ti
dependent situation (vÞ0). This means that the induce
charge-density potential is given by

dVind~x,t !5
1

eL~v!
E e2

ux2yu
dn~y,t !dy1Ucd~x!dn~x,t !,

~7!

with eL(v) being the frequency-dependent lattice dielect
function where the phonon lifetime was neglected.15 On the
other hand, the induced potential due to spin-density fluct
tions is given by

dVind~x,t !5Usd~x!dn~x,t !. ~8!

In Eqs.~7! and~8!, Ucd(x) andUsd(x) are functional deriva-
tives whose expressions may be obtained from the unifo
electron-gas data.17

Besides the problem of solving the equations of mot
for expectation values of the electron-hole pairs of Eq.~5!,
we were also aware of the fact that the local current mus
conserved, i.e., that

“•J1
]

]t
n50. ~9!

In order to take such a fact in account, the following possi
current-conserving scheme is proposed. First we cons
equations of motion in the absence of damping, that is,

i\
]

]t
^ca

†cb1cb*
† ca* & t5\vba^ca

†cb2cb*
† ca* & t ~10!

and
4-2
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i\
]

]t
^ca

†cb2cb*
† ca* & t

5\vba^ca
†cb1cb*

† ca* & t12~na2nb!dVba
tot ,

~11!

where na(b) denotes the Fermi occupation number of t
initial ~occupied! and final ~unoccupied! conduction-band
states. In these equations we have considered thata
~which here includes also spin coordinate! corresponds to a
state with energyea and an orbital wave functionca(x…,
then the statea* corresponds to a one-particle state with
orbital wave functionca* (x… with the same energyea . Note
also that dVba

tot(t)5dVa* b*
tot (t). To include damping, we

keep the first of these equations without modification, a
modify the second by the inclusion of an Ohmic relaxati
term gba which is associated with the damping of each p
transition with energy\vba5eb2ea , that is,

i\
]

]t
^ca

†cb2cb*
† ca* & t

5\vba^ca
†cb1cb*

† ca* & t12~na2nb!dVba
tot

2 i\gba^ca
†cb2cb*

† ca* & t . ~12!

Since

]

]t
n~x,t !52 i

v

2 (
ab

^ca
†cb1cb*

† ca* & tca* ~x!cb~x!

~13!

and

“•JÄ
i

2 (
ab

vba^ca
†cb2cb*

† ca* & tca* ~x!cb~x!, ~14!

it is clear that the equation of motion of Eq.~10! is simply a
statement of conservation of the local current. Solving E
~10!, ~12!, ~13!, and ~14! for ^ca

†cb& t , we found that the
induced density fluctuations are given by

dn~x,t !5(
ab

Fba~x!
2\vbana~12nb!

\2~v22vba
2 1 igbav!

dVba
tot~ t !,

~15!

whereFba(x)5ca* (x)cb(x).
In the next step we associate a harmonic coordinatexba

with each pair transition (ba),

xba5
A2\vbanba

\2~v22vba
2 1 igbav!

dVba
tot , ~16!

where nba5na(12nb). Since pair transitions interact vi
their associated density fluctuations, the various amplitu
xba are coupled to one another, resulting such that Eq.~6!
may be rewritten as
03540
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\2~v22vba
2 1 igbav!xba

5(
dg

Uba,dgxdg1A2\vbanbadVba,
ext , ~17!

where the matrix elementsUba,dg for the case of charge
density fluctuations are defined as

Uba,dg~v!5A4\vba\vdgnbandgE E Fba* ~x!Fdg~y!

3F e2

eL~v!ux2yu
1Ucd~x!d~x2y!Gdxdy. ~18!

Therefore, the problem is reduced to that of finding t
response of a set of driven linearly coupled damped h
monic oscillators. Instead of considering the general sit
tion where the external potential may depend on coordina
that run perpendicular to the superlattice axis, we restric
ourselves to the case of external fields varying only along
superlattice axis. Since in this case the density fluctuati
are functions ofz only, the induced potentials produce
collective oscillation within a pair of subbands (ab) in
which all vertical transitions participate with equal amp
tudes. Accordingly, we define a collective harmonic coor
natex̄ba by

x̄ba5
A2\vbaNba

\2~v22vba
2 1 igbav!

dVba
tot , ~19!

in which Nba52(ki
na(ki)@12nb(ki)#, and where the fac-

tor 2 arises from the sum over the spin configurations. Fr
now on, the subscriptsa andb denote quantum numbers fo
motion along the superlattice axis, and

dVba
tot5 f ba

[1]1dVba
ind , ~20!

with

f ba
[1]5

(
ki

na~ki!@12nb~ki!#dVba
ext~ki!

(
ki

na~ki!@12nb~ki!#

. ~21!

With these definitions, the equation of motion forx̄ba re-
mains the same as that previously given forxba , provided
the factornba is replaced byNba and the factordVba

ext by
f ba

[1] . Similar equations are obtained for spin-density fluctu
tions. They are obtained simply by dropping the Coulom
term and replacing the potentialUcd(x) by its equivalent
Usd(x) in the expression previously given for the couplin
matrix U.

Returning to the question of determining the scatter
cross sections, from the previous equations we now h
that,

^M†~0!&v
c,s5 (

abki
@dVba

ext~ki!#*
2\vba2na~ki!@12nb~ki!#

\2~v22vba
2 1 igbav!

3@dVba
ext~ki!1dVba

tot2 f ba
[1] #. ~22!

Using the definitions
4-3
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f ba
[2]52\vbaNba

(
ki

na~ki!@12nb~ki!#udVba
ext~ki!u2

(
ki

na~ki!@12nb~ki!#

~23!

and

f ba5A2\vbaNba

(
ki

na~ki!@12nb~ki!#dVba
ext~ki!

(
ki

na~ki!@12nb~ki!#

,

~24!

we obtain the final expression

^M†~0!&v5(
ab

~ f ba
[2]2u f bau2!

\2~v22vba
2 1 igbav!

1(
ab

f ba* x̄ba ,

~25!

wherex̄ba are the vector components of the following matr
equation:

@\2v22Ū~v!1 i G\v#• x̄5f. ~26!

In Eq. ~26!, the components of the matrixG are associated
with the dampinggba , and the elements of the vectorf,
identified as the external pumping of our oscillator schem
are given by Eq.~24!. The expression of the matrixŪ cor-
responds to that of the matrixU joined with the diagonal
matrix composed of the square of the intersubband energ
As we assumed an external potential of the formdVba

ext

}eiqz and wave functions with periodic boundary conditio
in the P periods of the multilayer system, Bloch momentu
conservation assures that only excitations pairs (i 5ba) and
( j 5dg) with wave numbers differing from each other b
q1g are coupled. In this case, the elements of the matriŪ
for the charge-density mechanism, for instance, become

Ū i , j5
A4\v i\v jNiNj

PĀd
F(

g

4pe2

eL~v!

r i* ~g!r j~g!

uq1gu2

1dE
cell

Ucd~z!F i* ~z!F j~z!dzG1d i , j~v i !
2.

~27!

In the above equation,Ā is the area of the cross sectio
normal to the superlattice~SL! axis, d is the length of the
unitary cell, andg5(2p/d3 integer) is the wave number o
the reciprocal lattice. For the expressions ofF j (z) and
r j (g)5*celle

2 i (q1g)zF j (z)dz, each wave functionc(z) was
normalized in the unit cell.

Analyzing Eq.~25!, one can see that the first term in th
right-hand side has poles on the bare frequencies transit
so it represents the contributions of thesingle-particle exci-
03540
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tations. The second, having poles in the eigenfrequencies
the coupled system, represents thecollectiveresponse of the
electron gas.

Based on the expressions of Eqs.~23! and ~24!, the nu-
merator of the single-particle term is clearly expressed a
variance. This variance will be different from zero only
the extreme resonance regime where eachki will furnish
different contributions in the energy denominators of t
dVba

ext(ki) due to the in-plane valence-band dispersio
Therefore the occurrence of SPE can be interpreted as
result of a deviation from the mean value of the reson
energy denominators. In near-resonance conditions, on
other hand, all the energy denominators ofdVba

ext(ki) are
replaced by an average one with a consequent eliminatio
the intermediate valence-band states through compl
ness.12,15Thus the entire dependence of the external poten
on ki is lost, canceling the single-particle term. Our res
therefore consistently shows that in the near-resonance
gime only collective excitations are present.

In Fig. 1 we show theoretical (T50 K) and experimental
(T56 K) depolarized Raman data for various incident la
energies without@Fig. 1~A!# and with @Fig. 1~B!# exchange-
correlation effects. The theoretical results are the result of
plot of the imaginary part of Eq.~2!, and were fitted to the
experimental ones only by adjusting the peak intensity of
curve labeled (c). The remaining intensities are automa
cally considered as a result of this fit. The numerical pa
meters used in our calculations are shown in Fig. 1~A! ~a
detailed discussion of their values was given in Ref. 12!. The
first aspect readily seen from the spectra is that their
shapes are extremely dependent on the incoming laser
ergy, which characterizes a resonant process. Moreover,
consist of basically two structures: one localized on the lo
energy side of the spectra, and a broad one on the h
energy side. The origins of such structures are easily ide

FIG. 1. Depolarized spectra of ad-doped SL without~A! and
with ~B! excitonic effects. The experimental~circles! and the theo-
retical ~lines! curves were obtained for~a! 1855~b! 1863,~c! 1872,
~d! 1880, and~e! 1897 meV incident laser energies. The inset c
responds to the oscillator strength in near resonance regime wit
many-body corrections. The symbols indicate the minibands fr
which the transitions originate. The empty squares are the res
for the corresponding uniform system.
4-4
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FIG. 2. Theoretical~A! and experimental~B!
polarized spectra of the same sample with t
same incident laser energies of Fig. 1. The in
of Fig. 2~A! indicates the spectral distribution o
oscillator strength in conditions of near resonan
without excitonic effects. The inset of Fig. 2~B!
shows the respective distribution for the 3D ga
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fied by the spectral distribution of the oscillator strength
the near-resonance regime without exchange-correlation
teraction, shown in the inset of Fig. 1~B!. For clarity, in this
and in the following oscillator strength plots, transitions w
very small strengths were suppressed. As mentioned ab
in the near-resonance regime the response function is g
only by the collective term of Eq.~25!. Therefore, we are led
to look for eigenvalues and eigenvectors of the imagin
part of the matrixx̄. This was done through an expansion
x̄ in terms of the spectral decomposition of the matrixŪ,
which is real and symmetric.18 In near resonance and withou
considering many-body effects, the diagonalization is triv
~not for the polarized case, where Coulomb interactions
present!, since in this case the matrixŪ is already diagonal.
As a result two sets of transitions arise. The first is a lo
energy one originating from transitions of the NFE bands.
shown in the inset, these excitations are bounded by tra
tions of the correspondent uniform electron gas, which c
fers on them the status of 3D transitions. The second
unbounded results from transitions that originate from
flat miniband states, therefore, with a 2D character. Suc
set will resonate at higher laser energies due to the sp
separation of electrons and holes. Strictly speaking, wha
did was to obtain a collective spectrum with zero interacti
and this, as we will see in the following, is sufficient
understand the depolarized spectra.

Returning to the extreme resonance regime, one can
that the discussion conducted above completely explains
plots of Figs. 1~A! and 1~B!. Without ~with! many-body ef-
fects, both plots present basically two resonant structure
the same region of the near-resonance regime. Moreo
they are obtained totally~mainly! by means of the single
particle term of Eq.~25!. Therefore the connection betwee
single-particleexcitations andcollective unrenormalized ex
citations in the depolarized spectra is straightforward. Th
means that the signature of excitonic effects is small in
structure and that, contrarily to what occurs in quant
wells, one cannot resolve the spin-density collective exc
tions that come from the second term of Eq.~25!. In reality
03540
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many-body effects introduced a redshift of approximat
1 meV on the curves, as well as slightly different intensiti
Nevertheless, we observed that scattering intensities with
many-body effects systematically furnished better res
@compare, for example, the intensity of the curve~d! in the
graphs#. We attribute this to the presence of disorder inher
in the doping process which basically produces two effe
The first is a damping of the excitations, taken in acco
through our phenomenological spectral function. The s
ond, caused by in-plane potential fluctuations, results i
breakdown of momentum conservation rules. Such a bre
down would result in the loss of the in-plane coherence
the excitations, producing random fluctuations of cha
which on average decrease the coupling between the in
subband transitions. Consequently the strength of the co
tive excitations should be reduced or, from another persp
tive, an enhancement of the single-particle contributio
should be observed. In fact, such fluctuations invalidate
plane-waves description assumed in the normal plane of
superlattice axis. Instead, a superposition of these shoul
used. This would introduce additional phases into the s
tering operator, resulting in a enhancement of the varianc
Eq. ~25!. This would also explain why we previously ob
tained an excellent result compared with the experime
even without taking many-body effects into account.12 Such
a transference of oscillator strengths will be more evid
when we present the results of the polarized spectra. In s
mary, the line shapes of the depolarized spectra at extr
resonance are basically constituted by two sets of not re
malized intersubband collective excitations or, as usua
termed,single-particle excitations.

Turning now to the polarized case, Fig. 2 presents th
retical ~A! and experimental~B! Raman data where the sam
parameters of the SDE case are used. In spite of the di
ence in intensity between the structure around 15~theory!
and 16 meV~experiment! the two sets of spectra are almo
identical. To reveal the nature of the spectra, the inset of F
2~A! displays the correspondent oscillator strengths in
near-resonance regime, where only Coulombian interac
4-5
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is considered. Comparing the oscillator strengths of the S
and CDE mechanisms, one immediately see that the effe
the Coulombian coupling is basically to deform the lo
energy distributions, forming a pronounced peak. Pursu
the same line of reasoning, the inset of Fig. 2~B! shows the
spectrum of oscillator strengths of the corresponding u
formly doped 3D gas. In this respect, a comparison of t
plot with the 3D depolarized case shows that almost all
oscillator strength is taken from the region ofsingle-particle
excitations, and transferred to a collective excitati
~plasma! mode on the high-energy side. In near resona
only this pure collective mode is excited. Nevertheless, t
single-particle modesor again, theunrenormalized collective
modes, exist, and can be excited in the extreme resona
regime. The same situation occurs with the superlat
modes in the spectral region of the NFE bands. The coup
electron system tries to transfer oscillator strength to a p
collective mode. Obviously this cannot be done in the sa
way as in a uniform 3D gas, since the electrons feel
effect of the confining potential. Now we have sufficient e
ements to understand the nature of the structures on the
energy side of the extreme resonance polarized plots.
first, around 9 meV, corresponds to resonant 3Dsingle-
particle modes, and comes mainly from contributions of t
single-particle term of Eq.~25!. The second, around 16 meV
arises basically from a collective plasmalike excitation d
rived from the NFE gas. Previously such a peak was in
preted as being due to intersubband transitions.11 Concerning
the difference of theoretical and experimental intensities
the plasmalike excitation, our explanation is much the sa
as the one given for the depolarized case; the discrepan
due to the breakdown of momentum conservation cause
the presence of disorder, with a consequent partial trans
ence of oscillator strength back to the single-particle mod
Momentum conservation is assumed in the coupling ma
Ū, so it is not surprising to find a greater intensity betwe
the theoretical and experimental collective modes in Fig
Naturally the effect is larger than in the depolarized ca
because the Coulombian coupling is also larger.

Considering the higher-energy structure in polarized sp
tra, the interpretation is almost the same as in the depolar
case, i.e., the spectra are composed of a set of resonan
lective intersubband transitions with single-particle charac
~an exception around the LO-phonon region to be discus
below!. This may be seen from comparison of the oscilla
strengths of SDE’s and CDE’s in the region around 30 a
60 meV. Basically the form of the structure in this regio
remains the same. In this situation the matrixŪ has diagonal
elements much greater than the off-diagonal elements~Cou-
lombian coupling!, which are composed of superpositions
localized and delocalized states. Concluding, the polari
spectra in the extreme resonance regime is composed o
sically three structures. Two, on the low- and high-ene
sides, have single-particle character; the third, intermedi
structure represents a collective plasmalike mode.

Now we are going to discuss the very nature and
conditions for the appearance of single-particle excitatio
Let us take a pair of subbands. As already seen, the geom
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of the experiment assures us that the induced potential
duces a collective oscillation within a pair of subbands
which all vertical transitions participate with equal amp
tudes. Therefore, foreachpair of subbands we have to fin
the in-plane response function of a set ofN equally coupled

and degenerate oscillators. In this case, the matrixŪ is con-
stituted ofN degenerate diagonal elements and constant

diagonal elements, say,Ū i j 5V, wherei and j represent each
possible vertical pair transition. Diagonalizing such a matr
theN-fold degenerate states will be split into an (N21)-fold
renormalized eigenstates lowered in energy toE52V and a
single nondegenerate higher state with a renormalization
ergy E5(N21)V. The number of statesN is directly pro-
portional to the transversal area of the sample. The oppo
occurs in the coupling matrix elements, that depend of
inverse of the area@see Eq.~27!#. As a result, basicallyno
energy renormalization is produced in th
(N21)-degenerate excitations, which establishes th
single-particle character, although collective in their very
nature. On the other hand, the single mode has a net re
malization, as the product ofN andV is independent of the
area. This attributes a ‘‘pure’’collective characterto such an
eigenstate. The system in this work has sets of intersubb
transitions such as just described. Nevertheless, the phy
of the phenomenon is essentially the same. If this collec
system is nearly equally coupled and degenerate, we
have single-particle and collective excitations. This is wha
shown in the graphics of the oscillator strengths. In the
polarized case, for example, the condition of equal deg
eracy and coupling is fulfilled. Therefore, we have we
defined collective and single-particle excitations. For the
larized d-doped case we have the conditions reasona
satisfied in the nearly 3D part of the system, and poo
satisfied in the 2D part of the system. It is important to no
that the degree of degeneracy is linked to the value of
couplingV. We remark that such a formalism is identical
the one which leads to the formation of Cooper pairs in
superconducting phase of metals.19 There, electron pairs in
the Fermi surface can scatter to states around the Ferm
ergy due to Pauli’s exclusion principle. Those states h
nearly the same energy and the same coupling, which c
figures the same situation as that of our oscillator schem

A final feature must be discussed in CDE spectra in
region of the LO phonon, where asymmetric lines appear
conditions ofnearresonance these lines were interpreted20 as
due to the interference of the LO phonon and a continuum
single-particle transitions. Here the asymmetries app
when the frequency of the excitation matches that of the
phonon, taken in account via lattice dielectric function. Th
will cause an infinite coupling which results in an absence
transitions in this region.

In summary, we provided a resonant theory for inelas
light scattering cross sections for both charge- and sp
density mechanisms in the nonuniform electron system o
periodically d-doped superlattice that shows that the pr
ence of SPE’s are related to the existence of nea
degenerate and equally coupled transitions in the elec
gas. Their very nature reside in zero renormalized collec
4-6
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excitations. In near resonance the SPE oscillator stren
are transferred to thepure collective mode. Nevertheless
SPE’s exist, and can emerge in conditions of extreme re
nance regime. Our calculations suggest that an additio
contribution to the single-particle cross sections may
given as a result of disorder effects which break down m
mentum conservation rules. In order to avoid effects of d
order and also an excess of transitions, we suggest the u
0354
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‘‘cleaner’’ structures like quantum wells which clearly po
sess degenerate and equally coupled excitations in the
tering geometry proposed in this paper.

One of the authors~V. A.! gratefully acknowledges Dr
M. J. V. Bell and Dr. L. A. O. Nunes for furnishing the
measurements, and CNPQ and FAPESP, Brazil, for finan
support.
*Present address.
1For a review, see G. Abstreiter, M. Cardona, and A. Pinczuk,

Light Scattering in Solids IV, edited M. Cardona and G.
Güntherodt~Springer-Verlag, Berlin, 1984!, p. 5.

2A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L. N
Pfeiffer, and K. W. West, Phys. Rev. Lett.63, 1633~1989!.

3C. Schüller, G. Biese, K. Keller, C. Steinebach, D. Heitmann, P
Grambow, and K. Eberl, Phys. Rev. B54, 17 304~1996!, and
references therein.

4A. Pinczuk, L. Brillson, and E. Burstein, Phys. Rev. Lett.27, 317
~1971!.

5G. Fasol, N. Mestres, H. P. Hughes, A. Fischer, and K. Ploo
Phys. Rev. Lett.56, 2517~1986!.

6M. Berz, J. F. Walker, P. von Allmen, E. F. Steigmeier, and F. K
Reinhart, Phys. Rev. B42, 11 957~1990!.

7B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. R
Lett. 69, 848 ~1992!.

8S. Das Sarma and Daw-Wei Wang, Phys. Rev. Lett.83, 816
~1999!.

9C. Steinebach, C. Schu¨ller, and D. Heitmann, Phys. Rev. B59,
10 240~1999!.

10M. Sassetti and B. Kramer, Phys. Rev. Lett.80, 1485~1998!.
11A. C. Maciel, M. Tatham, J. F. Ryan, J. M. Worlock, R. E. Na-
in

.

.

g,

.

ev.

hory, J. P. Harbinson, and L. T. Florez, Surf. Sci.228, 251
~1990!.

12V. Anjos, L. Ioriatti, and L. A. O Nunes, Phys. Rev. B49, 7805
~1994!.

13D. C. Hamilton and A. L. McWhorter, inLight Scattering Spectra
of Solids, edited by by G. B. Wright~Springer, New York,
1969!, p. 297.

14A. Zangwill and P. Soven, Phys. Rev. Lett.45, 204~1980!; E. K.
U. Gross and W. Kohn,ibid. 55, 2850~1985!.

15S. Katayama and T. Ando, J. Phys. Soc. Jpn.54, 1615~1985!.
16M. V. Klein, in Light Scattering in Solids, edited by M. Cardona

~Springer-Verlag, Berlin, 1975!, p. 147.
17D. Gammon, B. V. Shanabrook, J. C. Ryan, and D. S. Katzer,

Phys. Rev. B41, 12 311~1990!.
18For simplicity, in this calculation we neglected the frequency de-
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