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Collective excitations in symmetricp-type GaAdAl,Ga;_,As quantum wells
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We present a calculation of the collective plasmon excitationstype GaAs/A|Ga, _,As quantum wells
that is based on the random-phase approximation and, withirk tbemodel takes exactly into account
band-structure effects and the strong dependence of the subband wave functions on the in-plane wave vector.
For symmetrically modulation-doped wells, the subband structure in the Hartree approximation, plasmon
dispersions, single-particle excitations, and energy-loss spectra at zero temperature are consistently calculated.
In contrast to the correspondimgtype quantum wells, a multisubband approximation yields a strong coupling
of the intra- and intersubband plasmons, even in symmetrical wells, and predicts the existence of an additional
intersubband plasmon at finite wave vectors. These drastic differences between electron and hole quantum
wells are attributed to the finite overlap between eigenfunctions belonging to different subbands and different
in-plane wave vectors, which exists in hole but not in electron systems.
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[. INTRODUCTION restricted to intrasubband plasmons or to vertical intersub-
band excitationsd=0).
Collective excitation modegplasmon$ in quasi-two- In a recent communicatiotf,we have presented prelimi-

dimensional(Q2D) electrort® and holé~8 systems charac- nary theoretical results on the collective excitations in hole
terize the optical response of these systems and have begHantum wells for a simplified isotropic model, i.e., the axial
studied experimentally by inelastic light scattering or far-approximation that neglects the warping of the band struc-
infrared absorption for decades. Recently, it was found thafure. In the present paper, we discuss in some detail our
plasmons also play an important role for the dynamica|theore_tical method for the calculatio_n th_e collective e_xcita-
screening or enhancement of interlayer particle interactiondons in the hole quantum wells, which is developed in the
in Coulomb drag experiments. The Coulomb drag effect inffamework of the random-phase approximati&PA), and
electrondouble layers in the presence and in the absence dF aPI€ to take, within a %4k p calculation, the full anisot-

a perpendicular magnetic field has been studied extensively’PY: the nonparabollcny_ and the dependgnce of the wave
in recent years, both experimentally and theoreticélly a hctions onk correctly into account..As N most of_the
recent review see Ref) SExperiments omoledouble layers, previous works, we use the self-consistent field version of

the RPA and consider only longitudinal fields described by
on the other hand, have been presented only recEh@par- scalar potential®’ As a test of our method, we first apply it

acteristic differences between hole and electron double Iay-0 the case of arelectron system with nearly parabolic

ers have been reported and traced back to the more COMPliz s and recover the known results: the inter- and intrasub-
cated_ bfand structu_re of the hole systems. A detallgd thec_)ry ¥and plasmons in symmetrit-type quantum wells are de-
the frictional drag in coupled hole quantum wells, '”ClUd'”g-coupled, and(due to the minor effect of the finite well
e.g., dynamical screening effects in single and/or doubl§yigtn4) the intrasubband plasmon dispersion is well ap-
quantum We||S, iS, hOWeVer, not available. In this Situation,proximated by the dispersion relations for the ideal two-
and as a possible ingredient of such a theory, the theoreticgimensional electron system in the long-wavelength limit.
understanding of the collective excitations in the hole sysThus, the effective plasmon mass is close to the cyclotron
tems becomes especially important. However, up to nownass. Then, applying our method petype quantum wells,
most theoretical investigatiols*® of collective excitations we show that the intra- and intersubband plasmons now are
focus on the electron systems, in which the energy bands aistrinsically coupled(due to the dependence of the wave
parabolic and the wave function, ,(r,z) factorize into an  functions onk) even in the symmetric structures. As a con-
in-plane part expk-r) and a subband functiow (z),  sequence, the plasmon masses are affected and are much
which is independent of the in-plane wave vedtoHerez  heavier than the cyclotron masses. We also find that, at finite
denotes the direction perpendicular to the quantum well and, the hybridization of wave functions between adjacent va-
r=(x,y) the in-plane position. These simplifications are ex-lence subbands in the Q2D hole systems leads to the occur-
plicitly exploited in Refs. 11-16. Ip-type quantum wells, rence of two branchesof the intersubband plasmons,
however, the band structure is strongly nonparabolic and theshereas electron systems have only one. One of them has
subband wave functiong, ((z) of holes strongly depend on only weakly g-dependent frequencies slightly above the re-
k due to the coupling between valence subbdidehere- gion of single-particle excitation$SPE’S, which may be
fore, the methods that have been developed for the calculdewered and thus damped due to the coupling to higher sub-
tion of plasmons in electron quantum wells are not appropriband excitations. The other plasmon branch, unlike usual
ate for hole systems. Previous plasmon calculations for twoitersubband plasmons, exhibits a stronglgependent dis-
dimensional hole systend® on the other hand, have been persion and appears only at finite Both these features
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originate from the hybridization of wave functions between Hn+V(2) c b 0
adjacent valence subbands at firk{evhich IeaAds to a strong A o H+V(2) 0 b
k-dependence of the subband wave functigng(z) and a H b* 0 H+V(2) c ,
finite overlap betweer&q,k(z) with different| andk. !

The aim of this paper is to emphasize the typical differ- 0 —b* c* Hp+V(2)
ences between the collective excitations in hole quantum @
wells and those in electron quantum wells, which result fromwhere
the strong nonparabolicity and tkedependence of the wave
functions in the hole systems. To this end, we want to keep h? (v — 2k S o AE
the formalism as simple as possible, and we neglect, e.g., 2me 717 2v2)k; 2_mo(7'l ¥2) TE.(2),
exchange and correlation effects as well as spin density ex-
citations. We do, however, calculate the band structure of the h2 #2k2
quantum wells within the Hartree approximation, in order to Z_mOkZ( Y1t+2y2)k,— 2_%(71_ ¥2) +Ey(2),
treat the ground state and linear response consistently.

In the next section, we present our theoretical approach in \/5 2
some detail. First, we introduce our model and notation. b= K_ (3K, +K,y3), ®)
Then, we define and evaluate a suitable dielectric matrix that 2mg

determines screening and plasmon modes impthge Q2D
systems. Based on this theory, we also investigate the
energy-loss spectra. In Sec. lll, we apply our approach first
to the symmetricn-type GaAs/AlGa, _,As quantum wells . s 2 o
in order to compare the results with those obtained by th&lere, k;=—19/9z, k.=kxik,, k*=ki+kj, and y; and
methods of Refs. 11-15. Then, we present our results fof. are the position-dependent Luttinger parameters and the
symmetricp-type GaAs/AlGa, _,As quantum wells, includ- valence-band ) edge, respectively. In the axial
ing the plasmon dispersions, single-particle excitations, an@PProximatiorf? the last term with parametetyg— ) of c
energy-loss spectra. The difference between the electron ar@ E- (3) is ignored to obtain an approximate isotropic band
hole plasmons will be discussed in detail. The effects of theStructure in thek,-k, plane. An external or interngHartree
nonparabolicity, anisotropy, and dependence of the wavglectrostatic potential energy(z) is considered and added

functions onk will be quantitatively evaluated. to the diagonal terms. The energy of the stdté)( can be
obtained by solving

2
€= Zmg L7279k + (72~ 7o)KL ).

Hi k=E1 k¥ - (4)
Taking the band edge in the well as energy zero, we have

Il. THEORY
A. Electronic structure of quantum wells

We use the &4 Luttingerk-p model to calculate the 0,
band structure op-type GaAs/AlGa _,As quantum wells. E,(2)=
The wave function of a particle in the statek), wherel is
a subband index anki=(k, ,k,) an in-plane wave vector, is where AE, is the band edge discontinuity and the well
expressed aﬁflyk(nz) = (1/\/K)e'k'rfplyk(z), whereA is the  width. For simplicity, we neglect the difference of the values

area of the sample. The envelope functign in the basis of  ©f the ¥ (and thus of the hole massesetween barrier and

J=2 states has the form ’ well, and we take the values for the well in our calculations.
The internal electrostatic potential due to the distribution of
charges is taken into account in the Hartree approximation.

for |z|<wi/2

AE,, for |z|>w/2 ®

1k Ik The Hartree potentia¥/(z) satisfies Poisson’s equation,
91 (2) Cin
Ik Ik
. 9:°(2) C3n d? 4me?
(2)= => f.(2 |, (1) —V(2)= 2)—NA(2)+Nj(2)], (6)
hi@=| gy | =2 D] e 52V@= = P2 ~Na(2)+ N5 (2)]
9:(2) C|4',ir<1 where « is the background dielectric constant. We neglect

the difference of thec values between well and barrier, and
take the GaAs value=13.1.N, (Np) is the number den-
%Tty of occupied acceptgempty donoy states angy, is the
hole density, given by

where the components are ordered with respect to the mal
netic quantum number according ton;=(+3/2,—1/2,
+1/2,—3/2). The right-hand side of Ed1) indicates, for
later use, the expansion of tzedependence with respect to
an orthonormal basiff,}. The expansion coefficien(s'j'y';
form four-vectorscl:¥. Luttinger's 4x4k-p Hamiltonian
can be written d$%!

4
pr(2=2 2 |0/ @1~ FE B D],
| e valence band, (7)
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where F denotes the Fermi-Dirac distribution function and Thus, the screenetbr self-consistentpotential in the sys-
Er is the Fermi energy. tem, V55, (r,.z,t) = V§S,(r,2)e "=V, (2)€' @Y, is the

In our calculations, we assume no donor impuritlg,  sum of the external potentiafg”,(r,z,t) and Vg’fg(r,z,t),
=0, and two doped layers with acceptor impurities that comawhich is induced by polarization. In the spirit of the RPA, we

pensate the charge of all free carriésleg and are located replace the response of the Coulomb-interacting hole system

symmetrically on the both sides of the well, to the external potential by the response of the noninteracting
N N system to the self-consistent fie‘tﬁfw(r,z,t). The charge
Ny (2)= L 5(z—dI2)+ — 8(z+d/2), (8) density induced by/g’, can be calculated accordi(?g to stan-
2 2 dard linear response thed®¥.It has the formn"%(r,z,t)

_ 9,0

whered(>w, sufficiently large is the distance between the =ngu(2)e'@"~*Y, and can be written as

two acceptor planes, anN = [dzp,(z) equals the fixed

value of the areal density of holes in the quantum well. nind(z):f dZ'T(z,2';q,0)VSE (2) (11)
To solve Eq.(4) self-consistently, we follow the algo- e o Gen

rithm in Ref. 23. We expand envelope functions in terms o

a suitable set of basis functiof,}, as indicated in Eq(1).

Since we take constant values for the Luttinger parameters

¥, the envelope functions and their derivatives with respect ~ 11(z,2';0,0) = lim 2, & +qi(2)ih(2)

fwhere the polarizability has the form

to z will be continuous at the well edges, and the expansion y—0 12
will converge rapidly even if we work with continuous basis F(E,) — F(E,)
functionsf,(2). ! 22 (2.
- - - Ei—Ey+hw+iy’ ? !

Expanding the matrix elementd; ; of the k-p Hamil- 1 =2 Y
tonian in Eq. (2) in the same basis,(m[H;;[n) (12)
=[dzf*(2)H; . f,(z), we have, according to Eq$l) and o -
(4), m(@HiiTa(2) g a Here the subscripti{ = 1,2) denote the states, (k;) and "

denotes the adjoinfcomplex conjugate and transpogexd
(the four-vectoy ¢, which reduces to the complex conjugate

if 1,71 is scalar(one-band modgl Instead of taking the limit
] o ) ) v—0, we may consider a finite but small value of the phe-
Solving this elgenva!ue problgm, weI Ean obtain Fhe e'genvalhomenological damping parametetto model scattering ef-
uesk, , and expansion coefficienfe; ] of the eigenfunc-  fects. The induced density determines the induced potential,
tions, which yield the Fermi energy and hole density accord-
ing to Eq.(7), and from the solution of Poisson’s equation ind ind
the new result for the Hartree potential, which enters the next Vgol2)= f dz'Wy(z—=2")ng ,(Z'), (13
iteration step.

In the actual calculations we use, in contrast to Ref. 23where the Green's function of Poisson’s equatidd,(z

4
; le <m|Hi,j|”>C}',lr(1:E|,kC!:km- 9

the plane-wave basis —7')=vqexp(-qz—Z|) with v,=2me?/(xq) represents
the Coulomb interaction. SinCégf‘w(z)=V3fw(z)—vh’fg(z),
exp(1k,z) 2mn we can express the external potential in terms of the screened
fn(Z)ZT, knET, n=0,+x1,=2,..., one,
(10)
on the interval|z| <L/2, whereL>w is taken so large that ng‘w(z):f d7'€q,0(2:2)Vau(2'), (14

for the subbands of interest the functiogn}sk(z) are suffi- ] ] ) ) )
ciently small at|z|~L/2, but small enough to avoid an un- Which defines the dielectric function
necessarily large basis sé¥lote that in this basis the Hamil-
tonian matrix elements are Fourier coefficientdle took L €q.0(z:2')= 5(2—2’)—[ d2W(z—2)11(z,2;q,w)
~2w and achieved with 21 basis functions|<10) satis- '
fying results. In the self-consistent calculation convergence
is as_sumed vyhen the relative variation of the values of the;: Q2D system. Note théﬂ(zzl;q’w) is nonzero only
Fourier coefficients o/ (z) and #(z) between subsequent . — , .
iterations is less than 2%. The above algorithm is also useﬁ both arguwenrt]sz anr:j Z are flocat_ed n th? area r?f the
for the 6X6k-p calculation in Sec. Ill and may also be ﬂgﬁgﬂg}r m{zg’vﬁnggrglse ;/;al\zlgszjln?gtlgr?é (alr4e) Iggte.n-gt ?Osr,ame
extended straightforwardly to other multibakdp models. the z dependence in Eq&13)—(15), which is asymptotically
= exp(—q|Z) and decays only slowly for smalj.
For the calculation of collective excitations and of absorp-
We expose the quantum well to an external, harmonidion spectra, one needs the determinant and the inverse of the
longitudinal electric field with an in-plane wave vectqr  operatore, ,(2;2"), respectively. For an efficient evaluation
=(0y,dy) and frequencyw, which polarizes the system. of these quantities, it is useful to expaag,(z;z’) in terms

(15

B. Screening and dielectric function
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of a suitable, preferably small set of basis functions. It is theey, p., o reduces to the 83 matrix discussed in the

choice of this basis in which our approach differs from theliterature'131f more transitions have to be considered since

previous ones!3 higher bands are partially occupied or higher excitation en-

ergies become important, the excitation representation may
1. Excitation basis become inconvenient since the dimension of the dielectric
In order to clarify this difference and for later comparison Matrix becomes too large.

of the results, we first recall the conventional approach in a

slightly generalized form!3We expand the subband wave

functions with respect to the basis indicated in Eb. [In If the subband functiong, ,(z) really depend otk as for

the parabolic approximation for the conduction band, whergne pole quantum wells of our interest, they cannot be used

the subband functlon$, «(z) are scalars mdependent kf  to build such an excitation basis. Then we explicitly use the

these may be taken as basis functiohgz)= (ﬁn «(2), SO basis defined in Eq.10) and exploit the fact that the poten-

2. Plane-wave Fourier basis

that the expansion coefficients in Edql) becomec tial matrix elements reduce to the Fourier coefficients
=6, n, independent ok.] We insert this expansion |nto Eq. Lo

(12) and take matrix elements of E(1L4), to obtain with the Vemxn:f d_zel(kn—km)zvex <(Z)=VEX 1)
notation(m|Vg%,[ny=V5<, ' L2l e

ex of the plane-wave Fourier expansion Vg, (2)
Vinn= Z emnm Vo o (16) =3 explk2V e of the external potential in the well re-
gion. With the analogous expansion 6}’ (2), the Fourier
where the subscriptq,w have been suppressed for brevity. transform of Eq(14) becomes
The dielectric matrix is obtained from Eqd4)—(16) as

Vex 2 eq wvsc (22)
Em,n;m’,n’:5m,m'6n,n’_z_vm,n;a,n m,n:m’,n’ 17
m,n )
with with
L/2 L/2 Ckez K, S
um,n;a;:szJ Azt %(2) Fn(2)Wo(z— 2) (D) Fr(2) JL,Z JL,Z me(zz')e™". (23

(18)

the Coulomb matrix element in this basfs:® and with the
generalized polarizability function

This again has the structure

€0 =mn— 2 v o I (24)
m!

I kytal’ k
l_[m,n;m’,n’ZE‘J [Cm ]Tcn a

Uk wherev,  andII; are the Fourier transforms calculated as

in Eq. (23) but with €(z,z") replaced byW,(z—z") and
F(E 1) = FE kg A1 ktarre I1(z,2';q,w), respectively. The matrices in th|s plane-wave
XE —E,, +ﬁw+l7[ mo 1C n" Fourier representation are related to those in the excitation
Lk Slhkeg representation of Sec. 11 B 1 by

(19

which contains the expansion coefficients introduced in Eq. Um,n;m’ n’_(llL)Um n,n’—m’ >
(1). The condition for plasmon modes is the vanishing of the
determinant of the dielectric matrix, def, 5./ n/]=0. q o

For the parabolic approximation of the conduction band, M (1/L)mzn Mo emin 40 (25

=6 n, Eq. (19 simplifies to

TP 5, 5 2 F(Emi) = FEnk+qg) Eqw 2 €m+m’,m’;n+n’,n’ -

momtt I A Bk~ Enjcrq tho T 1Y "

(20 (Here the last expression does not depend on the arbitrary

, ) ) . .
and the matrix element¥, , indicate excitations between valge gfm ) Now the ghspersmn relations of the COIIPTC“Ve
the subbanda andm. If only one subband is partially occu- excitations are determined by the zeros of the determinant of

! X : ) Qo
pied, say that with the wave functio&)l(z), Hﬁs;;m’,n’ i the dielectric matrix defined by E¢23), def €, 7]1=0.
nonzero only if at least one of the indicagn is 1. If only

the low-energy transitions between the partially occupied
subband and the adjacent subband are considered, only the The average power dissipation per unit area in the
matrix elementsVy,, Vi,, andV,; enter Eq.(16), and screened system is given by

C. Energy-loss spectra
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P= %Ref d*r[E*Y(r,2)]* - I"(r,2), (26)

whereE®(r,z) = — VVg’,(r,z)/e is the amplitude of the dy-
namical self-consistent electric fielaith e the charge of a
hole. The induced current density, J"9(r,zt)
=J"d(r,z)exp(—1wt) satisfies the continuity equation
V-1, z;t) +e(alat)n'"(r,z;t)=0, where n'"(r,z;t)
=n'qn’g(z)ex;{|(q~r—wt)]. Thus, Eq.(26) can be integrated
by parts and written as

— (O]

P==3Im f dZVgS,(2)]* nga(2)

w

2

Lim2, (VR9* ', 27)

wheren’ is the Fourier component afy's(z). Here we
have exploited the fact thaafter integrating by parjsonly

the region near the quantum well, When‘gg(z) is honzero,

contributes to the integral, and our plane-wave Fourier ex-
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FIG. 1. Subband energies relative to the Fermi ledzshed
line) for then-type symmetric GaAs/AQl,Ga, 7¢As quantum well of
width 30 nm and electron densily,=2.9x 10! cm™2. Solid lines
are calculated from the 6k - p model. Dotted lines are parabolic
bands with the effective mass* =0.067M,. The inset schemati-
cally shows the band edge profiles of the conduction and valence

pansion can be applied. Next we use the Fourier transformasands of the quantum well.

tion of Eq.(13), Vin?== 03 .ni'?, to express'® in terms

of the Fourier coefficienty'"?= VS~V From the defini-

tions given in Eq.(23) and below, it is easily seen that the
matrix vy}, , is real and symmetric. The same holds for its

inverse with the matrix eIemenEsfl(q)]m,n (see Appendix
A for explicit results. Therefore, the quadratic term W°
does not contribute to the imaginary part in E2j7). Finally,
in the term containing\(;)* and V:*, we express/:r in
terms ofVE* to obtain

P YlmY [z (el>m,nw:;} [2 [01(Q) T V.

(28)

OSTIRS

In order to obtain a reasonable normalization of this result; g1 j o
we consider only a single Fourier component of the extern | ’

potential VeX(r,z) =V exp([q-r +k,z]) and divide the ab-

sorbed power per sample area by the field energy per are

u,=L|VV®(r,z)/e|?/(16m«),?> produced by the external
field in the slab of thicknes&. This can be writtenu,

=L|VRPI(4kvyY), wherev!=4me®l (k[ g’ +K}]) is the

Ill. RESULTS AND DISCUSSIONS
A. n-type quantum wells

To verify our approach and for a later detailed compari-
son with the hole quantum wells, we apply the different ex-
pansion methods discussed in Sec. Il first to electron quan-
tum wells. We consider a symmetric GaAs{AiGay 7AS
quantum well with the width 30 nm and the electron density
Ne=2.9x 10" cm 2.

First, we calculate the subband structure in the one-band
effective mass approximation, with? = 0.067m,, wheremy
is free electron mass, and obtain subband wave functions
i k(2), which are independent of the in-plane wave vector
k. The two lowest, parabolic subbands are shown in Fig. 1 as
dotted lines. Then we apply the formalism sketched in Sec.
the usual approach;®to calculate the disper-

ajon relations of collective excitations. Since only the lowest

subband is partially occupied for the chosen parameter val-
@les, we consider only the two lowest subbands in the exci-
tation basis and obtain a>33 dielectric matrixey, n.;m o’ -

The results are indicated in Fig. 2 by plus signs, and fully
consistent with previous work. For the symmetric electron

three-dimensional Fourier component of the Coulomb intergquantum wells, the intra- and intersubband plasmons are

action and has the same dimension as the maffix. Ex-

decoupled? i.e., if we consider only the lowest subband in

ploiting the symmetry properties of the inverse matrixOur plasmon calculation, we obtain the same dispersion for

[v~%(q)]m.n ONCe more, we get the result

Pp/Up=—(2c203)Im X [0 D)]nm(e Dmn,
(29

which has the dimension set In the plots of our numerical
results we omit the factor:&’zug‘:.

the intrasubbandplasmons. It has also been shown that the
finite well width affects the intrasubband plasmon dispersion
only slightly asq— 0.1412So, the intrasubband plasmon dis-
persion in symmetric electron quantum wells can be well
approximated by the plasmon frequency of ideal two-
dimensionaklectron systeni2DES in the long-wavelength
limit, which is given by?

wp=(27Ne?q/ kmy) Y2 (30)

035314-5



SHUN-JEN CHENG AND ROLF R. GERHARDTS PHYSICAL REVIEW B3 035314

25-0 T T T T 4.0 T T

=2

ol

+ e

200 [ Fddbbbrtbrrr vy ]

E(meV)

-6.0 . .
0.0 1.0 2.0 3.0

k (10°cm™)

FIG. 2. Plasmon dispersions and single-particle excitations FIG. 3. Band structure for the symmetricp-type
(SPE’S for the sample of Fig. 1. Filled circles: intrélower and ~ GaAs/Al 3/Ga eAs quantum well of width 22 nm and hole density
intersubbanduppe) plasmon modes calculated by the approach ofNp=3X 10" cm™?, from the 4x<4k-p flat-band model. Dashed
Sec. Il B 2, with full band structure of theX66k - p model. The plus  line: Fermi level, taken as energy zero.

symbol: intra- (lowen and intersubbanduppe) plasmon modes rier coefficients tgm|<M. For the purpose in this work, a

calculated by the approach of Sec. II B 1, based on the parabO“CmaII value ofM (=3) is enough to make the calculated

band structure and wave functions calculated with the single-banresults well conver/ge The calcgulated plasmon dispersions
. o e }

effective mass _approximation - withm”=0.06#no. ~Dashed and the SPE’s, i.e., the bare transitions between subbands

line: ideal two-dimensional  plasmon frequency w, - ;
= (27Ne?q/km*) 2 Hatched area: the inter- and intrasubband °0€YINg_only energy and momentum conservation, are
SPE ) shown in Fig. 2 for temperatur€=0. As usual, the SPE

between bandl; andl, at (q,) is numerically obtained by

the requirement Iny# 0, wherey is the polarizability func-
Here my=mg =0.067n,, i.e., for the ideal 2DES the plas- tion and defined by XEIimonk[}'(EH,k)
mon mass, the cyclotron effective mass, and the band Mass F(E,, «+q) J/(Ei, k—Ei, k+qt iw+17). Because the sub-

of the electrons are all identical. The ideal 2D diSpel‘Sion Ofbands are para”e| for the e|ectr0n System’ the a”owed inter-
Eq. (30) is shown in Fig. 2 as a dashed line. The effectivesubband SPE energies approach the value of the energy dif-
plasmon massn, for quasi-two-dimensionadystems is de- ference of the subbands,,, asq—0, i.e., the width of the
fined and determined by fitting E¢30) to the measured or SPE region shrinks to zero with— 0.
calculated curve of intrasubband plasmons. Apparently, the The plasmon dispersions calculated from thevi(21)
effective plasmon masses for symmetric electron quantunx (2Mm +1) matrix [emn], indicated in Fig. 2 by filled
wells are very close tang (see Fig. 2 circles, are very close to those obtained by the method of
In order to test the formalism presented in Sec. Il B 2,Refs. 11-16. This should be the case, because the nonpara-
which allows us to treat the dependenceypf(z) onk and  bolicity and dependence of the subband wave functions on
the nonparabolicity exactly withik-p theory, we then per- for the electron system are very weak, and it shows that our
formed a second calculation based on the Kane6B-p  more general approach reproduces the known results of the
model, which is given in Ref. 26. Here we made the spheriexcitation-basis approach in the limits of its applicability.
cal approximation and used the followirg p parameters

and values for the band offsett; =0.067n,, E;=1.52 eV, B. Hole quantum wells in the flat-band model
[24] E,=257 eV, e 6.85, y,=v3=258, P In order to manifest the basic characteristics of the collec-
= VhZE l2mg, F=mg/2m% —E,/3E,—1/2, AE;=0.15 eV, tive excitations in hole systems and contrast them with those

AE,=—0.1 eV. In this work, we describe the barriers only of electron systems, we first consider the hole quantum wells
by the band edge discontinuities and assume that the otheét a simplified model, i.e., the flat-band model in connection
k-p parameters in the barrier have the same value as in thgith the axial approximation. Results for the more realistic
well. As shown in Fig. 1, the calculatdéd p band structure is  model including the warping and Hartree effect will be pre-
very close to that of the one-band parabolic model at skjall sented in the next section. Figure 3 shows the subband struc-
and becomes only slightly flatter &sincreases. AT =0 K,  ture of a symmetricp-type GaAs/A};/Gay g AS quantum
one subband of the quantum well is occupied by electrongvell of width w=22 nm and hole densityN,=3

and the two lowest subbands will be relevant in our plasmonx 10'* ¢cm™? calculated within the Luttinger % 4k-p and
calculations. In our numerical calculation, we use the planeflat-band model, in which the energy edge profile is
wave Fourier expansion and trunc@tg, ,] of Eq.(23) to a  piecewise-continuous by ignoring any band-bending effect
(2M +1)X(2M + 1) matrix, restricting the considered Fou- due to an electrostatic potential. In thisp calculation, we
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made the axial approximatiéhto neglect warping and used 4.0 . . . -
the following k-p parameters and values for the valence- (a)

band offset:y,;=6.85, y,=2.1, y3=2.9, andAE,=—0.18 I
eV [24]. Due to the subband coupling, the band shapes are

nonparabolic and the subband wave functic{h;‘k(z) are
strongly dependent on the in-plane wave vectar$he sub-
band label[HHn (LHN) means that the wave functions of
this subband ak=0 purely consist of heavydight-) hole

components. However, at finite the l://|,k(2) are hybrids of
these heavy-hole and light-hole eigenfunctibhdhe hy-
bridization is especially strong in the region of the anti-
crossing, where the energies of the subbartikl andLH1
come very close|k|~9%x10° cm ). Plasmon dispersions
and SPE for this flat-band model are shown in Figa) 4nd
4(b). Since the valence subbands are not par&iet Fig. 3,
intersubband SPE’s cover a wide energy region, eveq as ~0.0 1.0 2.0 3.0 4.0 5.0
0. q (10°%em™)

o (meV)

1. Single-subband approximation

In the plasmon calculations, we first consider only the o, |
upper degenerate subbahkdH1 (see Fig. 3 in thel andl’ | },"
summations of Eq(19). The resulting intrasubband disper-
sion is shown in Fig. @) by filled circles. Since the intra-
subband plasmons for smajlinvolve only excitations be-
tween the states near the Fermi edge, the intrasubbang 4.0 fiesiaiiot a0 HHI-LHISPE 01
plasmon dispersion in our isotropic model can be well ap-& [
proximated by the ideal 2D plasmon frequency in the long- © 3.0 -
wavelength limit;® i.e., w,=(27Npe?q/km,)*?
the effective plasmon mass,, is replaced by the relevant 20|
band mass near the Fermi energy.(kg). This is the
“cyclotron mass” defined by A2k /mg(kg) 1.0 +
=[dEqn1(K)/d k]k:kF. Since the Fermi edge crosses the an- -

----- HH]-HH1 SPE

ticrossing region, where the cyclotron effective mass varies 0.0 . .
strongly with respect td, the intrasubband plasmons can be 0.0 10 20 (1050m'1)3.0 4.0 50
well approximated by the frequencies of ideal 2D plasmon g
with plasmon mass in the rangen,(ke+Qqma)<my FIG. 4. Plasmon dispersions and SPE for the sample and the
<mq(kg), where mi(kg)=~21.4m; and mq(Ke+qman model of Fig. 3.(a) Filled circles: intrasubband plasmon, only high-
~0.9m, for ke=1.4x10° cm ! and gy,,=5%X10° cm™ %, est subbandHH1 considered. Dotted lines: ideal 2D plasmon fre-
as shown in Fig. @). quency with me(k=kg=1.4x10°cm )=1.4m, (lower and
me(k=1.9x10°cm™)=0.9m, (uppe), see text(b) Filled circles:
intra- and intersubband plasmon modes, full calculation including
the two highest subband$iH1,LH1). Dotted line: intrasubband

Next, we include, in addition ttiH1, the subband H1 plasmon, only highest subbamtH1 considered, as shown {@).
in thel andl’ summations of Eq(19). The results are shown Dashed line: plasmon dispersion obtained by EB{); see text.
in Fig. 4(b) as filled circles and, as compared witktype  Hatched area: inter- and intrasubband SPE.
quantum wells they exhibit two surprising features. First,
it is found that there exists a stronglydependenintersub-  we neglect the minor difference of the scalar envelope func-
band plasmon that shows a positive dispersion and is dampeibns of theHH1 andLH1 eigenfunctions ak=0 in the
in the SPE region fog<2.2x10° cm™ !, whereas the inter- two-subband approximatiorisee Appendix B the wave
subband plasmons in the electron system are wegldg-  function is expressed as the product of a single basis function
pendent. Second, thg mtrasubband plasmon is apparentmz) and a four-component vecto&'l'k, e, ¥ (2)
strongly coupled to this intersubband plasmon, even thougr;]c Ik d imat lar dielectric functi
the quantum well has a symmetric structure, since its fre- 12y " an. an approximat&calar dielectric function
quency is lowered and its effective mass is much heaviefa" be derived:
than the cyclotron massi;(kg).

To understand the origin of this plasmon feature, we ex- €=1-vy114dl11:1.1, (31
pand the dielectric function in the excitation basis, as shown
in Sec. I B 1, and try to obtain an analytical formulation. If where

, provided IR IR IR IR DS b

ooooooooooooooooooooooo

2. Two-subband approximation
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My, 2 KK k+a)PP(kig,e), (32

11"k

F(E 1) —FEp kg
E|’k_E|r‘k+q+ﬁw+|’y,

and (LK1 k+ay=1dZ ¢ 17(2) th+ k+4(2)
=[c; K]tel k*9 (Appendix B. The calculated plasmon dis-
persion determined by the zeros of Eg1) is shown in Fig.
4(b) as dashed line.

Further analyzing E¢32), we notice thall, ;.; ; contains
not only the terms related to intrasubband excitatid?s,,
but also those related timtersubbandexcitations,P, | (|
#1"). Note that vertical §=0) intersubband excitations be-
tween the HH1,s) and (LH1s') are not possible in this
case, since, although(z) is the same for both states, the

four-vectors are orthogonal, i.pc;*]'c} *=0 (see Appen-

P|’|/(k;q,(x)) = I|m
y—0

PHYSICAL REVIEW B3 035314

5.0

3.0 -

-5.0
-2.5

-0.5 0.5

. L0 15
k(10" cm™)

25

FIG. 5. Band structure for the symmetrically dopedype

dix B). Therefore, there exists no intersubband plasmon fof5aAs/Ab 3/Ga sAs quantum well with the same well width and

g=0 in Fig. 4b). On the other hand, it is due to the finite

density as those in Fig. 3 i(l00 and (110 directions, calculated

overlap between the wave functions of different subband§el-consistently from the 4 4k-p model within the Hartree ap-

and wave vectors, i.e() ,k|l",k+q)#0, thatP,, for | #I’

proximation. Dashed line: Fermi level, taken as energy zero. Inset:

appears in Eq(32). In contrast to the situation met with banq-edge energy profile of the quantum well in Hartree approxi-
parabolic conduction bands, the wave functions of differenf@ton €==0).
hole subbands are only orthogonal if they are taken at the

samek value. Atdifferentk values, they are, in general, not

valence-band offsetsas that in Fig. 3, which is self-

orthogonal, and, due to the hybridization of heavy- and light-consistently calculated within the Luttingex<4k-p model

hole states, the overlad ,k|l’,k+q) is nonzero forq+0

and the Hartree approximation. We assumed that all free

andl #1’. We expected and confirmed numerically, that thiscarriers (holeg come from two identically doped layers,
overlap increases as q increases and is especially large if thghich have the same dopaf@icceptoy density and the same

k values come from a region where the band structure showgeparation from the quantum well, as described in @By.
strong nonparabolicities, like the anticrossing-type feature athe band structure exhibits a nonparabolic and anisotropic

|k|~8.5x10° cm ! in Fig. 3, which indicates a strong hy-
bridization of wave functions. The,,, (I#1") in Eq. (32),

which are absent in the dielectric function of the single-

feature. In Fig. 5, the values of the Fermi wave vectors in the
direction (100) and (110) are different. Besides, one can
notice that the second highest subband in Fig. F42

subband model, do affect the intrasubband plasmons deteinstead ofLH1 in the flat-band modelsee Fig. 3. For the

mined in the single-subband mod#&ig. 4(a)] and lead to the

quantum well in the flat-band modeE,yn k=o0/ELpm k=0

coupling of the intrasubband plasmons to the intersubbanet[(y1—2y2)n?]/[(y1+27y,)m?] (if the energy of the band

plasmons. On the other hand, tRg,, (1#1") lead also to
zeros ofe(q,w), Eq.(31), at the higher frequencies of inter-
subband excitations, and cause the stromngtependent in-
tersubband plasmons, denoted@amodes, if the wave func-
tion overlap, [(I,k[lI",k+q)|, is sufficiently large. Since
[{I,k[I",k+q)| is strongly q dependent, vanishing at=0
and increasing with increasimg the 8 modes are damped as
g becomes too small and appear, s sufficiently large,

edge is taken as zeroTherefore,LH1 has always higher
energy tharHH2 becausé (y;—27,)2%)/[(y1+2y,)]>1

for the parameters of GaAs. It is due to the Hartree potential
that theHH?2 state(atk=0) has higher energy thadnH1 in

Fig. 5. The relaxation of the axial approximation does not
affect the bound state &=0 and has nothing to do with
such exchange of subbands. The Hartree effect is particularly
crucial in wide quantum wells, in which holes are separately

with strongly g-dependent frequencies. The inclusion of localized in two trianglelike confinement potentials near the
other higher subbands will affect again the plasmon disperside walls of the well due to the strong Hartree potential. In
sion in Fig. 4b). But, we will not investigate this further in the extreme wide wells, the highest subband is fourfold de-

the simplified model. generate, i.e HH1 andHH2.

C. Hole quantum wells within the Hartree approximation 1. Single-subband approximation

To be consistent with the spirit of RPA, we now consider  First consider only the highest degenerate sublddhid
the sample with the ground state calculated in the Hartre thel andl’ summations of Eq(19). The calculated intra-
approximation. Also, the axial approximation used so far issubband dispersions in the long-wavelength rangeqgfan
relaxed. Figure 5 shows the subband structure of the synboth (100) and (110) directions are shown in Fig.(&. For

metrically modulation-dopedp-type GaAs/A} 3/Gay gAS
guantum well, with the same structure parametersgnd

isotropic cases, it has been shown in the preceding section
that the intrasubband plasmons in the single-subband ap-
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3.0 . . . - A2 sity of states of degenerate subbaHdH1 at the Fermi
(a) A},A'. o ® energy?’ We find that the intrasubband plasmons in this an-
%%‘. °* isotropic system cannot be so well approximated by the ideal

2D plasmon frequency witt,=m.(Eg) in Eq.(30) as those

- in isotropic cases. However, with the value slightly lighter
20+ than the cyclotron massy.(Eg) =~ 1.2mg, the extracted plas-
mon effective masan,~0.9m,, is still in the same order as
that of m.(Ep). It is also found that the effect of anisotropy

of the plasmon dispersion is weak, at least for this sample,
even though the band structure has a remarkable anisotropy,
10 L and only a minor difference between the plasmon dispersions
in (100 and (110 directions can be noticed fogq>3

x10° cm!

o (meV)

oooooo
* o o o o o o

----- HH1-HH1 SPE

@ o o ¢ o e s @

2. Two-subband approximation

. . The results calculated in the two-subbandH1 and
0.0 1.0 20 3.0 4.0 5.0 HH2) approximation are shown in Fig(l§ as filled circles.
q(10°cm™) The plasmon dispersion shown in Fig(bb possesses the

same basic characteristic of that in Figby which we have
previously discussed in detail. But, the intersubband plas-
mons haveéwo branches, instead of only one. Besides ghe
mode, the other mode, denoted as has a frequency de-
= pending only weakly org in the long-wavelength limit and
occurs also forg=0. It is difficult to obtain an analytical
: formulation like the analysis in Sec. llIB 2 in this case,
: which involves more basis functiods$,}. However, such a
change of the plasmon feature in FighBis not surprising
because the intersubband excitations betwedHnl and
HH2 have different selection rules from those betwilhl
andLH1 for the case in Sec. Ill B 2. For instance, consider
the vertical excitation between the states at khd1 and

: : : : LH1 subbands in the two-subband approximation in Sec.
o 88 A AL LA N Il B 2. The zero overlap of théiH1- andLH1-like states

m? with the samek means that such vertical excitation cannot

0.0 R S E N AL L HIL happen, regardless of the polarization of the incident light,
0.0 10 20 3.0 because the inner product of the four-component vectors

5 —1
a(oem’) c(HHL8)k gandc(tH1s) K js zero and these states have the same
FIG. 6. Plasmon dispersions and SPE'’s for the sample of Fig. 5parity. In contrast, the excitations between the states in the
(@ Intrasubband plasmon dispersions and SPE'’s, obtained by thgH1 andHH2 subbands, which do not have the same parity
calculation considering only highest subbadti1. Filled circles (but atk=0 the Same":(HHn,s),O) and cannot be represented

[empty triangle intrasubband plasmon dispersion fpin (100 : : . :
[q ir?(y110)]. £'?’hick solid(dashe()zl?ine: ideal tv\t)o—dimentg)ional plas- orlly by a s_lng_le ba§|s functiohy(z), are p_oss_lble even for

~ 5 2 . g=0 if the incident light has proper polarization. Therefore,
mon frequency wp=(2mNye"q/«xm,) ", with the effective plas- we do not attribute ther modes to the effect of finite over-
mon massm,=m(kg) =1.2my (m,=0.9m); see text. Hatched ) . .
area: the intrasubband SPE. Thin solid lines: the extreme bouncl‘:ip' like theﬂ-m(.)des, but consider them as the usual inter-
aries of intrasubband SPE region fgrin (100 (uppe) andqin  Subband excitation betweeHH1- and HH2-like states,
(110 (lowen). (b) Filled circles(empty trianglek intra- and inter- similar to the intersubband excitations in electron quantum
subband plasmon modes fgin (100) [q in (110)], calculated with wells.
the two highest subband$id1,HH2). Plus symbols: overlap of To check this point, we deliberately neglected this overlap
wave functions neglected, see text. Solid line: intrasubband plagh the polarizability, Eq. (19), by the replacements
mon for g in (100, only highest subbandiH1 considered, as [ghk]Tg!"k+a_,[glktgl"k gnqg [a'rT;;kJrq]Ta'r{f_)[e'n;;k]Ta'r{f,
shown in(a). Hatched area: the allowed inter- and intrasubban but we did not neglect thg dependence in the Fermi func-
SPE. tion and the energy denominator. The plasmon dispersion
calculated with this modification is shown by the plus sym-
proximation can be well approximated by the ideal 2D plas-bols in Fig. &b). We find that the intersubband plasmon
mon frequency of Eq(30) with the effective plasmon mass mode disappears but the modestill exists in this model.
replaced by the effective cyclotron mass near the Fermirurthermore, the intrasubband plasmons are now decoupled
energy*® For anisotropic two-dimensional systems, the “cy- from the only surviving intersubband plasmon branel,(
clotron mass” for the highest degenerate subbiitdll is  and the depression of the frequencies of the intrasubband
defined bym.(Ep)==#%°D(Eg) , whereD(Ef) is the den- plasmons does not occur. Therefore, the coupling of the in-

e e o & o & & s e s s e 2 e .
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2 ]
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40t fwgi/_%
LU a2 spE - e
30+~ S A b et 4 ;
> D s
3 s s e e e e s e e e e e e e 2
e £
10 b T T T T 4
YL T \
———— *HH1-HH1 SPE:
0.0 — % &  :hnl-hnl bk,
0.0 1.0 2.0 3.0 a(meV)

105 -1 ]
a(ioem ) FIG. 8. Calculated energy-loss spectra for the sample of Fig. 5,

FIG. 7. Plasmon dispersions and SPE’s, obtained by the calcu¥hose plasmon dispersion is shown in Fig. 7, for various values of
lation considering the three highest subbahtid1, HH2, LH1,  the wave vectord,q,) of the externally applied longitudinal elec-
for the same sample of Fig. 5. Filled circlgampty triangle§ the  tric field.
plasmon dispersion fog in (100) [g in (110)]. Hatched area: the
allowed inter- and intrasubband SPE’s. the absorption signal of the intersubband SPE. The absorp-

tion signal for the intrasubband plasmon is much weaker

trasubband plasmons to the intersubband plasmons has tHen those for intersubband plasmons and shown in the inset
same origin as the existence of the intersubband plasmo®f Fig. 8@). It is even weaker than the structureless absorp-
branch, and can be attributed to thedependence of va- tion signal from the SPE continuum. FiguréoBshows the
lence subband wave functions, notably to the finite overlagbsorption spectra fay=1.6<10° cm™*. In Fig. &b), be-

of wave functions with different and differentk values. sides the absorption signal from taemode, the absorption
peak at the frequency~3.9 meV due to the8 mode is

also observable but the peak partially overlaps with the SPE
continuum. Asg increases tg=2.2x 10°cm 1, as shown in

The existence of the intrinsic coupling in hole systems,:ig_ 8(c), the strong@ mode can be clearly distinguished
makes the inclusion of higher subbands in the plasmon cakom the signals of the SPE and mode.

culation necessary. Figure 7 shows the plasmon dispersion \ye aiso find that the intensity of absorption strongly de-
obtained by the calculation, in which the three highest subpends on the Fourier component of the applied electric field.
bandsHH1, HH2, andLH1 are included. We see that, due pq the intrasubband plasmon and intersubband plasgjon
to the coupling of théiH1-LH1 excitations, ther branchis e strongest signal is obtained for pe=0 component, and
depressed into the region of SPE, and only gheranch is e strength decays ag increases. The strongest absorption

left in the gap between the edge ¢iH1-LH1 and  gignal for the plasmonr results when the wavelengtk,
HH1-HH2 SPE. Thea mode therefore disappears in the —2m/q, is comparable with the well thicknessw(

diagram of plasmon dispersion. Nevertheless, we will see. 5o nm), i.e., whem,~w. Thus, in Figs. &), 8(b), and
later that this Landau-damped mode is still observable in OUB(c), the absorption signals for theplasmon have the stron-
calculated energy-loss spectra. gest intensity fog,~4/L(L=40 nm, i.e.\,=20 nm), and
decay asq, becomes smaller or larger. According to such
D. Absorption spectra variousq, dependences, the minor signal nes+ 2.5 meV
_ in Fig. 8@), which is observable only foq,=0, could be
Figure 8 shows the calculated energy-loss speRffal,  attributed to the strongly Landau-dampegl mode. The
for a Fourier component of the external electric field with syrength of the absorption signals from the intersubband
wave vector 0.9.=ky), for simplicity without the factor  andg plasmons have also different dependences on the mag-
2k an . The calculation includes the three hlghest degenernitude of the in_p|ane] vector. Asq increases, the absorp_
ate subbands and is based on the results of Fig. 5. The damjen signals for theB plasmons become stronger but those
ing parametery=0.1 meV is taken in Eq12). In Fig. 8a@), for the « plasmons become weaker.
we see a broad absorption signal in the range of the SPE
energies (1—-3.8 meMor q=6x 10*cm ! and a local maxi-
mum nearo=3.6 meV, the upper edge of the intersubband
SPE energy. One also notices an absorption peak @ear In conclusion, we have developed a theoretical approach
=3.2 meV, which we attribute to the Landau-damped interto the calculation of collective excitations in hole quantum
subband plasmon mode [see Figs. @) and 7, merged in  wells, which treats the nonparabolicity and the wave-vector

3. Three-subband approximation

IV. SUMMARY
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dependence of the subband wave functions withinkhe  rable, it is straightforward to calculate its inverse. With the
model exactly. We calculated the plasmon modes, singlerestriction|m|<M, we have a square matrix of dimension
particle excitations, and energy-loss spectra, and comparetM + 1. For the inverse matrix we obtain

them to the electron quantum wells in detail. The calculated

results show that there are two different intersubband plas- 1

mon modes for holes, and that inter- and intrasubband plas- [v (Q)]m,nzﬁ
mons in thep-type quantum wells are intrinsically coupled, 4
even though the structure of quantum wells has inversion 2

symmetry. These couplings cause the effective plasmon X (am0” = Bukmkn) |,
masses to be heavier than the cyclotron masses. In the cal-

culated energy-loss spectra, we find that intersubband plagvith the prefactors ay(y)=1[1+ry(y)] and Bu(y)
mons have stronger absorption signals than intrasubbard 1[1+ry(y)+(2M +1)/(7y)], wherey=qL/(2#) and
plasmons, and the intensity of the absorption signals isy(y)=(2/7)Im (M +1+1y). Here (z) is the digamma
strongly dependent on the Fourier component of the inciderfunction, and we have used the identity

electric field. In order to obtain the correct types of plasmon
modes and selection rules for low-energy intersubband exci- M
tations, it was essential to include interaction effects also in E TN
the ground-state calculation, since, for sufficiently wide ™=1 M°+Yy
guantum wells, the Hartree potential changes the second va- (A4)
lence subband from light- to heavy-hole-like. . .

To keep the discus?sion transp\grent, we neglected the eﬂthh holds for real and yields forM>1
change and correlation effe@vhich may affect the intersub-
band excitation energigsand presented explicit calculations
only for symmetric quantum wells with sufficiently low hole
density, so that only the highest valence subband is partially
occupied. Asymmetric doping leads to asymmetric wells 1
with a more complicated band structure, in which the spin 5
degeneracy(at the samek+0) is lifted, so that always at
least two hole subbands are occupied. The general formalism
developed in this paper can, of course, also be applied to thisPPENDIX B: APPROXIMATE DIELECTRIC FUNCTION
more complex situation. IN THE TWO-SUBBAND (HH1 AND LH1) MODEL

2(_1)m+n

qg‘ngm,n—i_ ql—

(A3)

T 1
= Ecotr(wy)—z—y—lm Y(M+1+1y),

m y +1 y
Er,\,|(y)~arctar‘.'v“rl > (M+1)21y?

y(M+1)

[(M+1)2+y?2 (A9

If the two highest valence subbands in a hole quantum
well areHH1- andLH1-like, an approximatscalar dielec-
The authors thank V. Latussek and A. Pfeuffer-Jeschkéric function can be derived in the two-subbartdH{1 and
for helpful suggestions abolk-p calculations. S.J.C. ac- LH1) approximation. This is very different from the case of
knowledges support from the Deutscher Akademischer Auselectron quantum wells, where the orthogonality of the sub-

ACKNOWLEDGMENTS

tauschdiestDAAD). band wave functions of adjacent subbands results from the
z-dependence, which leads to the dielectric matrix in the ex-
APPENDIX A: THE MATRIX ELEMENTS OF THE citation basis(Sec. 11 B 1. In the present case, the Hamil-
COULOMB INTERACTION WITHIN THE PLANE-WAVE tonian [Eq. (2)] is diagonal atk=0 and the eigenfunctions
FOURIER EXPANSION have, according to Eq.(1), the structure ¥, _q(2)
It is straightforward to calculate within the plane-wave = #1(2)c', with only a single nonzero component of the
Fourier expansion the matrix elements four-vectors ¢"® and with slightly different basis sets
{énun(2)} and {¢ un(2)} for heavy-[I=(HHn,s)] and
» :@J'L’Z dz L2 dze e a7 g’ (o) iGNt [1=(LHN,s)] holes states, respeciively, whesdis
mnoL ) e L2 spin. For infinitely high valence-band offset, these basis sets

would be identical, and for realistic band offsets at least the
n=1 (cosinelikg functions ¢yn1(2)~ ¢ 41(2) are nearly
equal. At finitek, we find that the wave functions of the two
uppermost hole subbands are a hybridization of mainly

‘i’(HHl,s),o(Z) and\if(LHLS,)’O(z), with only small admixture
(A2)  of higher (1>1) subbands, and can be well approximated by

where ky,=27m/L and g3=q?+k2,. Apparently the first A

diagonal term reestablishes the three-dimensional Fourier v, (2)=fi(2)Ct, (B1)
component of the Coulomb interaction, instead of the 2D

formv,. The second term describes edge effects due to theith the same (normalized function fi(2)= ¢nyn1(2)
finite slab thicknes&. Since the matrix in Eq(A2) is sepa- = ¢ y1(2) for I=(HH1,s) and LH1,s"). Thus, the overlap

of the Green’s functioW,(z—z2") in Eq. (13):

1 1—e 9t g?— Kk
_25m,n_(_1)m+n d —

vl =2qu
S ak  gral
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. . Al KatAl K functions as in electron quantum wells. As a consequence, no
(I ,k||’-k'>:f dz ¢n 1" (2) ¢ 0 (2)=[c ey vertical (k' =k) intersubband excitations between the upper-
(B2) most heavy- and light-hole subbands are possible, since, due
to the factorizatiofEg. (B1)], the corresponding intersub-
ate band matrix element will be zero, whatever the polarization
reduces to the scalar product of the four-vectdfs, andthe  o'the incident light may be. Evaluating the dielectric tensor
overlap fork’=k andl’#| vanishes due to the orthogonal- \yitn the ansatz E@B1) in Egs. (17—(19), we obtain the

ity of the c/¥, not due to thez dependence of the wave scalar dielectric function of E¢31).
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