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Collective excitations in symmetricp-type GaAsÕAl xGa1ÀxAs quantum wells

Shun-Jen Cheng and Rolf R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

~Received 28 September 2000; published 2 January 2001!

We present a calculation of the collective plasmon excitations inp-type GaAs/AlxGa12xAs quantum wells
that is based on the random-phase approximation and, within thek•p model takes exactly into account
band-structure effects and the strong dependence of the subband wave functions on the in-plane wave vector.
For symmetrically modulation-doped wells, the subband structure in the Hartree approximation, plasmon
dispersions, single-particle excitations, and energy-loss spectra at zero temperature are consistently calculated.
In contrast to the correspondingn-type quantum wells, a multisubband approximation yields a strong coupling
of the intra- and intersubband plasmons, even in symmetrical wells, and predicts the existence of an additional
intersubband plasmon at finite wave vectors. These drastic differences between electron and hole quantum
wells are attributed to the finite overlap between eigenfunctions belonging to different subbands and different
in-plane wave vectors, which exists in hole but not in electron systems.
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I. INTRODUCTION

Collective excitation modes~plasmons! in quasi-two-
dimensional~Q2D! electron1–5 and hole6–8 systems charac
terize the optical response of these systems and have
studied experimentally by inelastic light scattering or fa
infrared absorption for decades. Recently, it was found
plasmons also play an important role for the dynami
screening or enhancement of interlayer particle interacti
in Coulomb drag experiments. The Coulomb drag effect
electrondouble layers in the presence and in the absenc
a perpendicular magnetic field has been studied extensi
in recent years, both experimentally and theoretically~for a
recent review see Ref. 9!. Experiments onholedouble layers,
on the other hand, have been presented only recently.10 Char-
acteristic differences between hole and electron double
ers have been reported and traced back to the more com
cated band structure of the hole systems. A detailed theor
the frictional drag in coupled hole quantum wells, includin
e.g., dynamical screening effects in single and/or dou
quantum wells, is, however, not available. In this situatio
and as a possible ingredient of such a theory, the theore
understanding of the collective excitations in the hole s
tems becomes especially important. However, up to n
most theoretical investigations11–16 of collective excitations
focus on the electron systems, in which the energy bands
parabolic and the wave functionsC l ,k(r ,z) factorize into an
in-plane part exp(ık•r ) and a subband functionc l ,k(z),
which is independent of the in-plane wave vectork. Herez
denotes the direction perpendicular to the quantum well
r5(x,y) the in-plane position. These simplifications are e
plicitly exploited in Refs. 11–16. Inp-type quantum wells,
however, the band structure is strongly nonparabolic and
subband wave functionsc l ,k(z) of holes strongly depend o
k due to the coupling between valence subbands.17 There-
fore, the methods that have been developed for the calc
tion of plasmons in electron quantum wells are not appro
ate for hole systems. Previous plasmon calculations for t
dimensional hole systems,18 on the other hand, have bee
0163-1829/2001/63~3!/035314~12!/$15.00 63 0353
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restricted to intrasubband plasmons or to vertical inters
band excitations (qÄ0).

In a recent communication,19 we have presented prelimi
nary theoretical results on the collective excitations in h
quantum wells for a simplified isotropic model, i.e., the ax
approximation that neglects the warping of the band str
ture. In the present paper, we discuss in some detail
theoretical method for the calculation the collective exci
tions in the hole quantum wells, which is developed in t
framework of the random-phase approximation~RPA!, and
is able to take, within a 434k•p calculation, the full anisot-
ropy, the nonparabolicity and the dependence of the w
functions onk correctly into account. As in most of th
previous works, we use the self-consistent field version
the RPA and consider only longitudinal fields described
scalar potentials.20 As a test of our method, we first apply
to the case of anelectron system with nearly parabolic
bands, and recover the known results: the inter- and intras
band plasmons in symmetricn-typequantum wells are de
coupled, and~due to the minor effect of the finite wel
width14! the intrasubband plasmon dispersion is well a
proximated by the dispersion relations for the ideal tw
dimensional electron system in the long-wavelength lim
Thus, the effective plasmon mass is close to the cyclot
mass. Then, applying our method top-typequantum wells,
we show that the intra- and intersubband plasmons now
intrinsically coupled~due to the dependence of the wa
functions onk) even in the symmetric structures. As a co
sequence, the plasmon masses are affected and are
heavier than the cyclotron masses. We also find that, at fi
k, the hybridization of wave functions between adjacent
lence subbands in the Q2D hole systems leads to the oc
rence of two branches of the intersubband plasmons
whereas electron systems have only one. One of them
only weakly q-dependent frequencies slightly above the
gion of single-particle excitations~SPE’s!, which may be
lowered and thus damped due to the coupling to higher s
band excitations. The other plasmon branch, unlike us
intersubband plasmons, exhibits a stronglyq dependent dis-
persion and appears only at finiteq. Both these features
©2001 The American Physical Society14-1
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originate from the hybridization of wave functions betwe
adjacent valence subbands at finitek, which leads to a strong

k-dependence of the subband wave functionsĉ l ,k(z) and a

finite overlap betweenĉ l ,k(z) with different l andk.
The aim of this paper is to emphasize the typical diff

ences between the collective excitations in hole quan
wells and those in electron quantum wells, which result fr
the strong nonparabolicity and thek dependence of the wav
functions in the hole systems. To this end, we want to k
the formalism as simple as possible, and we neglect, e
exchange and correlation effects as well as spin density
citations. We do, however, calculate the band structure of
quantum wells within the Hartree approximation, in order
treat the ground state and linear response consistently.

In the next section, we present our theoretical approac
some detail. First, we introduce our model and notati
Then, we define and evaluate a suitable dielectric matrix
determines screening and plasmon modes in thep-type Q2D
systems. Based on this theory, we also investigate
energy-loss spectra. In Sec. III, we apply our approach
to the symmetricn-type GaAs/AlxGa12xAs quantum wells
in order to compare the results with those obtained by
methods of Refs. 11–15. Then, we present our results
symmetricp-type GaAs/AlxGa12xAs quantum wells, includ-
ing the plasmon dispersions, single-particle excitations,
energy-loss spectra. The difference between the electron
hole plasmons will be discussed in detail. The effects of
nonparabolicity, anisotropy, and dependence of the w
functions onk will be quantitatively evaluated.

II. THEORY

A. Electronic structure of quantum wells

We use the 434 Luttinger k•p model to calculate the
band structure ofp-type GaAs/AlxGa12xAs quantum wells.
The wave function of a particle in the state (l ,k), wherel is
a subband index andk5(kx ,ky) an in-plane wave vector, is
expressed asĈ l ,k(r ,z)5(1/AA)eık•rĉ l ,k(z), whereA is the
area of the sample. The envelope functionĉ l ,k in the basis of
J5 3

2 states has the form

ĉ l ,k~z!5F g1
l ,k~z!

g2
l ,k~z!

g3
l ,k~z!

g4
l ,k~z!

G5(
n

f n~z!F c1,n
l ,k

c2,n
l ,k

c3,n
l ,k

c4,n
l ,k

G , ~1!

where the components are ordered with respect to the m
netic quantum number according tomJ5(13/2,21/2,
11/2,23/2). The right-hand side of Eq.~1! indicates, for
later use, the expansion of thez dependence with respect t
an orthonormal basis$ f n%. The expansion coefficients$cj ,n

l ,k%
form four-vectors ĉn

l ,k . Luttinger’s 434k•p Hamiltonian
can be written as17,21
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Ĥ5F Hh1V~z! c b 0

c* Hl1V~z! 0 2b

b* 0 Hl1V~z! c

0 2b* c* Hh1V~z!

G ,

~2!

where

Hh52
\2

2m0
kz~g122g2!kz2

\2k2

2m0
~g11g2!1Ev~z!,

Hl52
\2

2m0
kz~g112g2!kz2

\2k2

2m0
~g12g2!1Ev~z!,

b5
A3\2

2m0
k2~g3kz1kzg3!, ~3!

c5
A3\2

4m0
@~g21g3!k2

2 1~g22g3!k1
2 #.

Here, kz52ı]/]z, k65kx6 iky , k25kx
21ky

2 , and g i and
Ev are the position-dependent Luttinger parameters and
valence-band edge, respectively. In the ax
approximation,22 the last term with parameter (g22g3) of c
in Eq. ~3! is ignored to obtain an approximate isotropic ba
structure in thekx-ky plane. An external or internal~Hartree!
electrostatic potential energyV(z) is considered and adde
to the diagonal terms. The energy of the state (l ,k) can be
obtained by solving

Ĥĉ l ,k5El ,kĉ l ,k . ~4!

Taking the band edge in the well as energy zero, we hav

Ev~z!5H 0, for uzu,w/2

DEv , for uzu.w/2
~5!

where DEv is the band edge discontinuity andw the well
width. For simplicity, we neglect the difference of the valu
of the g i ~and thus of the hole masses! between barrier and
well, and we take the values for the well in our calculation
The internal electrostatic potential due to the distribution
charges is taken into account in the Hartree approximat
The Hartree potentialV(z) satisfies Poisson’s equation,

d2

dz2
V~z!5

4pe2

k
@rh~z!2NA

2~z!1ND
1~z!#, ~6!

wherek is the background dielectric constant. We negle
the difference of thek values between well and barrier, an
take the GaAs valuek513.1. NA

2 (ND
1) is the number den-

sity of occupied acceptor~empty donor! states andrh is the
hole density, given by

rh~z!5(
l ,k

(
j 51

4

ugj
l ,k~z!u2@12F~El ,k ;EF ,T!#,

l Pvalence band, ~7!
4-2
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whereF denotes the Fermi-Dirac distribution function an
EF is the Fermi energy.

In our calculations, we assume no donor impurities,ND
1

[0, and two doped layers with acceptor impurities that co
pensate the charge of all free carries~holes! and are located
symmetrically on the both sides of the well,

NA
2~z!5

NA

2
d~z2d/2!1

NA

2
d~z1d/2!, ~8!

whered(.w, sufficiently large! is the distance between th
two acceptor planes, andNA5*dzrh(z) equals the fixed
value of the areal density of holes in the quantum well.

To solve Eq.~4! self-consistently, we follow the algo
rithm in Ref. 23. We expand envelope functions in terms
a suitable set of basis functions$ f n%, as indicated in Eq.~1!.
Since we take constant values for the Luttinger parame
g i , the envelope functions and their derivatives with resp
to z will be continuous at the well edges, and the expans
will converge rapidly even if we work with continuous bas
functions f n(z).

Expanding the matrix elementsHi , j of the k•p Hamil-
tonian in Eq. ~2! in the same basis,^muHi , j un&
[*dz fm* (z)Hi , j f n(z), we have, according to Eqs.~1! and
~4!,

(
n

(
j 51

4

^muHi , j un&cj ,n
l ,k5El ,kci ,m

l ,k . ~9!

Solving this eigenvalue problem, we can obtain the eigen
uesEl ,k and expansion coefficients@cj ,n

l ,k # of the eigenfunc-
tions, which yield the Fermi energy and hole density acco
ing to Eq. ~7!, and from the solution of Poisson’s equatio
the new result for the Hartree potential, which enters the n
iteration step.

In the actual calculations we use, in contrast to Ref.
the plane-wave basis

f n~z!5
exp~ ıknz!

AL
, kn[

2pn

L
, n50,61,62, . . . ,

~10!

on the intervaluzu,L/2, whereL.w is taken so large tha
for the subbands of interest the functionsgj

l ,k(z) are suffi-
ciently small atuzu;L/2, but small enough to avoid an un
necessarily large basis set.~Note that in this basis the Hamil
tonian matrix elements are Fourier coefficients.! We tookL
'2w and achieved with 21 basis functions (unu<10) satis-
fying results. In the self-consistent calculation converge
is assumed when the relative variation of the values of
Fourier coefficients ofV(z) and c(z) between subsequen
iterations is less than 2%. The above algorithm is also u
for the 636k•p calculation in Sec. III and may also b
extended straightforwardly to other multibandk•p models.

B. Screening and dielectric function

We expose the quantum well to an external, harmo
longitudinal electric field with an in-plane wave vectorq
5(qx ,qy) and frequencyv, which polarizes the system
03531
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Thus, the screened~or self-consistent! potential in the sys-
tem, Vq,v

sc (r ,z,t)5Vq,v
sc (r ,z)e2ıvt5Vq,v

sc (z)eı(q•r2vt), is the
sum of the external potentialVq,v

ex (r ,z,t) and Vq,v
ind(r ,z,t),

which is induced by polarization. In the spirit of the RPA, w
replace the response of the Coulomb-interacting hole sys
to the external potential by the response of the noninterac
system to the self-consistent fieldVq,v

sc (r ,z,t). The charge
density induced byVq,v

sc can be calculated according to sta
dard linear response theory.20 It has the formnq,v

ind(r ,z,t)
5nq,v

ind(z)eı(q•r2vt), and can be written as

nq,v
ind~z!5E dz8P~z,z8;q,v!Vq,v

sc ~z8!, ~11!

where the polarizability has the form

P~z,z8;q,v!5 lim
g→0

(
1,2

dk2,k11qĉ1
†~z!ĉ2~z!

3
F~E1!2F~E2!

E12E21\v1ıg
ĉ2

†~z8!ĉ1~z8!.

~12!

Here the subscriptsi (51,2) denote the states (l i ,k i) andĉ†

denotes the adjoint~complex conjugate and transposed! of
~the four-vector! ĉ, which reduces to the complex conjuga
if ĉ is scalar~one-band model!. Instead of taking the limit
g→0, we may consider a finite but small value of the ph
nomenological damping parameterg to model scattering ef-
fects. The induced density determines the induced poten

Vq,v
ind~z!5E dz8Wq~z2z8!nq,v

ind~z8!, ~13!

where the Green’s function of Poisson’s equation,Wq(z
2z8)5vq exp(2quz2z8u) with vq52pe2/(kq) represents
the Coulomb interaction. SinceVq,v

ex (z)5Vq,v
sc (z)2Vq,v

ind(z),
we can express the external potential in terms of the scree
one,

Vq,v
ex ~z!5E dz8eq,v~z;z8!Vq,v

sc ~z8!, ~14!

which defines the dielectric function

eq,v~z;z8!5d~z2z8!2E dz̄W~z2 z̄!P~ z̄,z8;q,v!

~15!

of our Q2D system. Note thatP( z̄,z8;q,v) is nonzero only
if both argumentsz̄ and z8 are located in the area of th
quantum well, where the wave functions are finite. The sa
holds for thez8 integrals in Eqs.~13! and ~14!, but not for
the z dependence in Eqs.~13!–~15!, which is asymptotically
} exp(2quzu) and decays only slowly for smallq.

For the calculation of collective excitations and of abso
tion spectra, one needs the determinant and the inverse o
operatoreq,v(z;z8), respectively. For an efficient evaluatio
of these quantities, it is useful to expandeq,v(z;z8) in terms
4-3
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of a suitable, preferably small set of basis functions. It is
choice of this basis in which our approach differs from t
previous ones.11,13

1. Excitation basis

In order to clarify this difference and for later comparis
of the results, we first recall the conventional approach i
slightly generalized form.11,13 We expand the subband wav
functions with respect to the basis indicated in Eq.~1!. @In
the parabolic approximation for the conduction band, wh
the subband functionsĉ l ,k(z) are scalars independent ofk,
these may be taken as basis functions,f n(z)5ĉn,k(z), so
that the expansion coefficients in Eq.~1! become cn

l ,k

5d l ,n , independent ofk.# We insert this expansion into Eq
~12! and take matrix elements of Eq.~14!, to obtain with the
notation^muVq,v

ex un&5Vm,n
ex ,

Vm,n
ex 5 (

m8,n8
em,n;m8,n8Vm8,n8

sc , ~16!

where the subscriptsq,v have been suppressed for brevit
The dielectric matrix is obtained from Eqs.~14!–~16! as

em,n;m8,n85dm,m8dn,n82(
m̄,n̄

vm,n;m̄,n̄Pm̄,n̄;m8,n8 ~17!

with

vm,n;m̄,n̄5E dzE dz̄f m* ~z! f n~z!Wq~z2 z̄! f m̄
* ~ z̄! f n̄~ z̄!

~18!

the Coulomb matrix element in this basis,11,13 and with the
generalized polarizability function

Pm,n;m8,n85 (
l ,l 8,k

@ ĉm
l ,k#†ĉn

l 8,k1q

3
F~El ,k!2F~El 8,k1q!

El ,k2El 8,k1q1\v1ıg
@ ĉm8

l 8,k1q
#†ĉn8

l ,k,

~19!

which contains the expansion coefficients introduced in
~1!. The condition for plasmon modes is the vanishing of
determinant of the dielectric matrix, det@em,n;m8,n8#50.

For the parabolic approximation of the conduction ba
cn

l ,k5d l ,n , Eq. ~19! simplifies to

Pm,n;m8,n8
par

5dn8,mdm8,n(
k

F~Em,k!2F~En,k1q!

Em,k2En,k1q1\v1ıg
,

~20!

and the matrix elementsVm,n indicate excitations betwee
the subbandsn andm. If only one subband is partially occu
pied, say that with the wave functionĉ1(z), Pm,n;m8,n8

par is
nonzero only if at least one of the indicesm,n is 1. If only
the low-energy transitions between the partially occup
subband and the adjacent subband are considered, onl
matrix elementsV1,1, V1,2, and V2,1 enter Eq.~16!, and
03531
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em,n;m8,n8 reduces to the 333 matrix discussed in the
literature.11,13 If more transitions have to be considered sin
higher bands are partially occupied or higher excitation
ergies become important, the excitation representation m
become inconvenient since the dimension of the dielec
matrix becomes too large.

2. Plane-wave Fourier basis

If the subband functionsĉ l ,k(z) really depend onk, as for
the hole quantum wells of our interest, they cannot be u
to build such an excitation basis. Then we explicitly use
basis defined in Eq.~10! and exploit the fact that the poten
tial matrix elements reduce to the Fourier coefficients

Vm,n
ex 5E

2L/2

L/2 dz

L
eı(kn2km)zVq,v

ex ~z![Vm2n
ex , ~21!

of the plane-wave Fourier expansion Vq,v
ex (z)

5(m exp(ıkmz)Vm
ex of the external potential in the well re

gion. With the analogous expansion ofVq,v
sc (z), the Fourier

transform of Eq.~14! becomes

Vm
ex5(

n
em,n

q,vVn
sc ~22!

with

em,n
q,v5

1

LE2L/2

L/2

dzE
2L/2

L/2

dz8e2ıkmze~z,z8!eıknz8. ~23!

This again has the structure

em,n
q,v5dm,n2(

m8
vm,m8

q Pm8,n
q,v , ~24!

wherevm,n
q andPm,n

q,v are the Fourier transforms calculated
in Eq. ~23!, but with e(z,z8) replaced byWq(z2z8) and
P(z,z8;q,v), respectively. The matrices in this plane-wa
Fourier representation are related to those in the excita
representation of Sec. II B 1 by

vm,n;m8,n85~1/L !vm2n,n82m8
q ,

Pm,n
q,v5~1/L ! (

m8,n8
Pm8,m81m;n81n,n8 , ~25!

em,n
q,v5(

n8
em1m8,m8;n1n8,n8 .

~Here the last expression does not depend on the arbit
value ofm8.! Now the dispersion relations of the collectiv
excitations are determined by the zeros of the determinan
the dielectric matrix defined by Eq.~23!, det@em,n

q,v #50.

C. Energy-loss spectra

The average power dissipation per unit area in
screened system is given by
4-4
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P̄5
1

2A
ReE d3r @Esc~r ,z!#* •Jind~r ,z!, ~26!

whereEsc(r ,z)52“Vq,v
sc (r ,z)/e is the amplitude of the dy-

namical self-consistent electric field~with e the charge of a
hole!. The induced current density, Jind(r ,z;t)
5Jind(r ,z)exp(2ıvt) satisfies the continuity equatio
¹•Jind(r ,z;t)1e(]/]t)nind(r ,z;t)50, where nind(r ,z;t)
5nq,v

ind(z)exp@ı(q•r2vt)#. Thus, Eq.~26! can be integrated
by parts and written as

P̄52
v

2
ImE dz†Vq,v

sc ~z!] * nq,v
ind~z!

52
v

2
L Im(

n
~Vn

sc!* nn
ind , ~27!

where nn
ind is the Fourier component ofnq,v

ind(z). Here we
have exploited the fact that~after integrating by parts! only
the region near the quantum well, wherenq,v

ind(z) is nonzero,
contributes to thez integral, and our plane-wave Fourier e
pansion can be applied. Next we use the Fourier transfor
tion of Eq. ~13!, Vm

ind5(nvm,n
q nn

ind , to expressnn
ind in terms

of the Fourier coefficientsVn
ind5Vn

sc2Vn
ex . From the defini-

tions given in Eq.~23! and below, it is easily seen that th
matrix vm,n

q is real and symmetric. The same holds for
inverse with the matrix elements@v21(q)#m,n ~see Appendix
A for explicit results!. Therefore, the quadratic term inVn

sc

does not contribute to the imaginary part in Eq.~27!. Finally,
in the term containing (Vm

sc)* and Vn
ex , we expressVm

sc in
terms ofVn

ex to obtain

P̄5
v

2
L Im(

m F(
m̄

~e21!m,m̄Vm̄
exG* F(

n
@v21~q!#m,nVn

exG .
~28!

In order to obtain a reasonable normalization of this res
we consider only a single Fourier component of the exter
potential,Vex(r ,z)5Vn

ex exp(ı@q•r1knz#) and divide the ab-
sorbed power per sample area by the field energy per a
un5Lu¹Vex(r ,z)/eu2/(16pk),25 produced by the externa
field in the slab of thicknessL. This can be writtenun

5LuVn
exu2/(4k2vqn

3d), where vqn

3d54pe2/(k@q21kn
2#) is the

three-dimensional Fourier component of the Coulomb in
action and has the same dimension as the matrixvm,n

q . Ex-
ploiting the symmetry properties of the inverse mat
@v21(q)#m,n once more, we get the result

P̄n /un52v~2k2vqn

3d!Im (
m

@v21~q!#n,m~e21!m,n ,

~29!

which has the dimension sec21. In the plots of our numerica
results we omit the factor 2k2vqn

3d .
03531
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III. RESULTS AND DISCUSSIONS

A. n-type quantum wells

To verify our approach and for a later detailed compa
son with the hole quantum wells, we apply the different e
pansion methods discussed in Sec. II first to electron qu
tum wells. We consider a symmetric GaAs/Al0.22Ga0.78As
quantum well with the width 30 nm and the electron dens
Ne52.931011 cm22.

First, we calculate the subband structure in the one-b
effective mass approximation, withmc* 50.067m0, wherem0

is free electron mass, and obtain subband wave funct
c l ,k(z), which are independent of the in-plane wave vec
k. The two lowest, parabolic subbands are shown in Fig. 1
dotted lines. Then we apply the formalism sketched in S
II B 1, i.e., the usual approach,11–16 to calculate the disper
sion relations of collective excitations. Since only the lowe
subband is partially occupied for the chosen parameter
ues, we consider only the two lowest subbands in the e
tation basis and obtain a 333 dielectric matrixem,n;m8,n8 .
The results are indicated in Fig. 2 by plus signs, and fu
consistent with previous work. For the symmetric electr
quantum wells, the intra- and intersubband plasmons
decoupled,14 i.e., if we consider only the lowest subband
our plasmon calculation, we obtain the same dispersion
the intrasubbandplasmons. It has also been shown that t
finite well width affects the intrasubband plasmon dispers
only slightly asq→0.14,13So, the intrasubband plasmon di
persion in symmetric electron quantum wells can be w
approximated by the plasmon frequency of theideal two-
dimensionalelectron system~2DES! in the long-wavelength
limit, which is given by13

vp5~2pNee
2q/kmp!1/2. ~30!

FIG. 1. Subband energies relative to the Fermi level~dashed
line! for then-type symmetric GaAs/Al0.22Ga0.78As quantum well of
width 30 nm and electron densityNe52.931011 cm22. Solid lines
are calculated from the 636k•p model. Dotted lines are paraboli
bands with the effective massm* 50.067m0. The inset schemati-
cally shows the band edge profiles of the conduction and vale
bands of the quantum well.
4-5
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SHUN-JEN CHENG AND ROLF R. GERHARDTS PHYSICAL REVIEW B63 035314
Here mp5mc* 50.067m0, i.e., for the ideal 2DES the plas
mon mass, the cyclotron effective mass, and the band m
of the electrons are all identical. The ideal 2D dispersion
Eq. ~30! is shown in Fig. 2 as a dashed line. The effect
plasmon massmp for quasi-two-dimensionalsystems is de-
fined and determined by fitting Eq.~30! to the measured o
calculated curve of intrasubband plasmons. Apparently,
effective plasmon masses for symmetric electron quan
wells are very close tomc* ~see Fig. 2!.

In order to test the formalism presented in Sec. II B
which allows us to treat the dependence ofc l ,k(z) on k and
the nonparabolicity exactly withink•p theory, we then per-
formed a second calculation based on the Kane 636k•p
model, which is given in Ref. 26. Here we made the sph
cal approximation and used the followingk•p parameters
and values for the band offset:mc* 50.067m0 , Eg51.52 eV,
@24# Ep525.7 eV, g156.85, g25g352.58, P
5A\2Ep/2m0, F5m0/2mc* 2Ep/3Eg21/2, DEc50.15 eV,
DEv520.1 eV. In this work, we describe the barriers on
by the band edge discontinuities and assume that the o
k•p parameters in the barrier have the same value as in
well. As shown in Fig. 1, the calculatedk•p band structure is
very close to that of the one-band parabolic model at smak,
and becomes only slightly flatter ask increases. AtT50 K,
one subband of the quantum well is occupied by electr
and the two lowest subbands will be relevant in our plasm
calculations. In our numerical calculation, we use the pla
wave Fourier expansion and truncate@em,n# of Eq. ~23! to a
(2M11)3(2M11) matrix, restricting the considered Fou

FIG. 2. Plasmon dispersions and single-particle excitati
~SPE’s! for the sample of Fig. 1. Filled circles: intra-~lower! and
intersubband~upper! plasmon modes calculated by the approach
Sec. II B 2, with full band structure of the 636k•p model. The plus
symbol: intra- ~lower! and intersubband~upper! plasmon modes
calculated by the approach of Sec. II B 1, based on the parab
band structure and wave functions calculated with the single-b
effective mass approximation withm* 50.067m0. Dashed
line: ideal two-dimensional plasmon frequency vp

5(2pNee
2q/km* )1/2. Hatched area: the inter- and intrasubba

SPE.
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rier coefficients toumu<M . For the purpose in this work, a
small value ofM (>3) is enough to make the calculate
results well converge. The calculated plasmon dispersi
and the SPE’s, i.e., the bare transitions between subb
obeying only energy and momentum conservation,
shown in Fig. 2 for temperatureT50. As usual, the SPE
between bandl 1 and l 2 at (q,v) is numerically obtained by
the requirement ImxÞ0, wherex is the polarizability func-
tion and defined by x[ limg→0(k@F(El 1 ,k)
2F(El 2 ,k1q)#/(El 1 ,k2El 2 ,k1q1\v1ıg). Because the sub
bands are parallel for the electron system, the allowed in
subband SPE energies approach the value of the energy
ference of the subbandsE12, asq→0, i.e., the width of the
SPE region shrinks to zero withq→0.

The plasmon dispersions calculated from the (2M11)
3(2M11) matrix @em,n#, indicated in Fig. 2 by filled
circles, are very close to those obtained by the method
Refs. 11–16. This should be the case, because the non
bolicity and dependence of the subband wave functions ok
for the electron system are very weak, and it shows that
more general approach reproduces the known results of
excitation-basis approach in the limits of its applicability.

B. Hole quantum wells in the flat-band model

In order to manifest the basic characteristics of the coll
tive excitations in hole systems and contrast them with th
of electron systems, we first consider the hole quantum w
in a simplified model, i.e., the flat-band model in connecti
with the axial approximation. Results for the more realis
model including the warping and Hartree effect will be pr
sented in the next section. Figure 3 shows the subband s
ture of a symmetricp-type GaAs/Al0.37Ga0.63As quantum
well of width w522 nm and hole densityNh53
31011 cm22 calculated within the Luttinger 434k•p and
flat-band model, in which the energy edge profile
piecewise-continuous by ignoring any band-bending eff
due to an electrostatic potential. In thisk•p calculation, we

s

f

lic
d

FIG. 3. Band structure for the symmetricp-type
GaAs/Al0.37Ga0.63As quantum well of width 22 nm and hole densi
Nh5331011 cm22, from the 434k•p flat-band model. Dashed
line: Fermi level, taken as energy zero.
4-6
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COLLECTIVE EXCITATIONS IN SYMMETRIC p-TYPE . . . PHYSICAL REVIEW B 63 035314
made the axial approximation22 to neglect warping and use
the following k•p parameters and values for the valenc
band offset:g156.85, g252.1, g352.9, andDEv520.18
eV @24#. Due to the subband coupling, the band shapes
nonparabolic and the subband wave functionsĉ l ,k(z) are
strongly dependent on the in-plane wave vectorsk. The sub-
band labelHHn (LHn) means that the wave functions o
this subband atk50 purely consist of heavy-~light-! hole
components. However, at finitek, the ĉ l ,k(z) are hybrids of
these heavy-hole and light-hole eigenfunctions.17 The hy-
bridization is especially strong in the region of the an
crossing, where the energies of the subbandsHH1 andLH1
come very close (uku;93105 cm21). Plasmon dispersion
and SPE for this flat-band model are shown in Figs. 4~a! and
4~b!. Since the valence subbands are not parallel~see Fig. 3!,
intersubband SPE’s cover a wide energy region, even aq
→0.

1. Single-subband approximation

In the plasmon calculations, we first consider only t
upper degenerate subbandHH1 ~see Fig. 3! in the l and l 8
summations of Eq.~19!. The resulting intrasubband dispe
sion is shown in Fig. 4~a! by filled circles. Since the intra
subband plasmons for smallq involve only excitations be-
tween the states near the Fermi edge, the intrasubb
plasmon dispersion in our isotropic model can be well
proximated by the ideal 2D plasmon frequency in the lon
wavelength limit,13 i.e., vp5(2pNhe2q/kmp)1/2, provided
the effective plasmon mass,mp , is replaced by the relevan
band mass near the Fermi energy,mc(kF). This is the
‘‘cyclotron mass’’ defined by \2kF /mc(kF)
5@dEHH1(k)/dk#k5kF

. Since the Fermi edge crosses the a
ticrossing region, where the cyclotron effective mass va
strongly with respect tok, the intrasubband plasmons can
well approximated by the frequencies of ideal 2D plasm
with plasmon mass in the rangemc(kF1qmax),mp
,mc(kF), where mc(kF)'1.4m0 and mc(kF1qmax)
'0.9m0 for kF'1.43106 cm21 and qmax553105 cm21,
as shown in Fig. 4~a!.

2. Two-subband approximation

Next, we include, in addition toHH1, the subbandLH1
in the l andl 8 summations of Eq.~19!. The results are shown
in Fig. 4~b! as filled circles and, as compared withn-type
quantum wells,14 they exhibit two surprising features. Firs
it is found that there exists a stronglyq-dependentintersub-
band plasmon that shows a positive dispersion and is dam
in the SPE region forq,2.23105 cm21, whereas the inter-
subband plasmons in the electron system are weaklyq de-
pendent. Second, the intrasubband plasmon is appar
strongly coupled to this intersubband plasmon, even tho
the quantum well has a symmetric structure, since its
quency is lowered and its effective mass is much hea
than the cyclotron massmc(kF).

To understand the origin of this plasmon feature, we
pand the dielectric function in the excitation basis, as sho
in Sec. II B 1, and try to obtain an analytical formulation.
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we neglect the minor difference of the scalar envelope fu
tions of theHH1 and LH1 eigenfunctions atk50 in the
two-subband approximation~see Appendix B!, the wave
function is expressed as the product of a single basis func

f 1(z) and a four-component vectorĉ1
l ,k , i.e., Ĉ l ,k(z)

5 f 1(z) ĉ1
l ,k , and an approximate,scalar dielectric function

can be derived:

e512v1,1;1,1P1,1;1,1, ~31!

where

FIG. 4. Plasmon dispersions and SPE for the sample and
model of Fig. 3.~a! Filled circles: intrasubband plasmon, only high
est subbandHH1 considered. Dotted lines: ideal 2D plasmon fr
quency with mc(k5kF51.43106cm21)51.4m0 ~lower! and
mc(k51.93106cm21)50.9m0 ~upper!, see text.~b! Filled circles:
intra- and intersubband plasmon modes, full calculation includ
the two highest subbands (HH1,LH1). Dotted line: intrasubband
plasmon, only highest subbandHH1 considered, as shown in~a!.
Dashed line: plasmon dispersion obtained by Eq.~31!; see text.
Hatched area: inter- and intrasubband SPE.
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SHUN-JEN CHENG AND ROLF R. GERHARDTS PHYSICAL REVIEW B63 035314
P1,1;1,1' (
l ,l 8,k

z^ l ,ku l 8,k1q& z2Pl ,l 8~k;q,v!, ~32!

Pl ,l 8~k;q,v!5 lim
g→0

F~El ,k!2F~El 8,k1q!

El ,k2El 8,k1q1\v1ıg
,

and ^ l ,ku l 8,k1q&5*dz@ĉ l ,k#†(z)ĉ l 8,k1q(z)

5@ ĉ1
,l ,k#†ĉ1

l 8,k1q ~Appendix B!. The calculated plasmon dis
persion determined by the zeros of Eq.~31! is shown in Fig.
4~b! as dashed line.

Further analyzing Eq.~32!, we notice thatP1,1;1,1contains
not only the terms related to intrasubband excitations,Pl ,l ,
but also those related tointersubbandexcitations,Pl ,l 8 ( l
Þ l 8). Note that vertical (q50) intersubband excitations be
tween the (HH1,s) and (LH1,s8) are not possible in this
case, since, althoughf 1(z) is the same for both states, th

four-vectors are orthogonal, i.e.@ ĉ1
l ,k#†ĉ1

l 8,k50 ~see Appen-
dix B!. Therefore, there exists no intersubband plasmon
q50 in Fig. 4~b!. On the other hand, it is due to the fini
overlap between the wave functions of different subba
and wave vectors, i.e.,^ l ,ku l 8,k1q&Þ0, thatPl ,l 8 for lÞ l 8
appears in Eq.~32!. In contrast to the situation met wit
parabolic conduction bands, the wave functions of differ
hole subbands are only orthogonal if they are taken at
samek value. Atdifferentk values, they are, in general, no
orthogonal, and, due to the hybridization of heavy- and lig
hole states, the overlap̂l ,ku l 8,k1q& is nonzero forqÞ0
and lÞ l 8. We expected and confirmed numerically, that t
overlap increases as q increases and is especially large
k values come from a region where the band structure sh
strong nonparabolicities, like the anticrossing-type featur
uku;8.53105 cm21 in Fig. 3, which indicates a strong hy
bridization of wave functions. ThePl ,l 8 ( lÞ l 8) in Eq. ~32!,
which are absent in the dielectric function of the sing
subband model, do affect the intrasubband plasmons d
mined in the single-subband model@Fig. 4~a!# and lead to the
coupling of the intrasubband plasmons to the intersubb
plasmons. On the other hand, thePl ,l 8 ( lÞ l 8) lead also to
zeros ofe(q,v), Eq. ~31!, at the higher frequencies of inte
subband excitations, and cause the stronglyq-dependent in-
tersubband plasmons, denoted asb modes, if the wave func-
tion overlap, z^ l ,ku l 8,k1q& z, is sufficiently large. Since
z^ l ,ku l 8,k1q& z is strongly q dependent, vanishing atq50
and increasing with increasingq, theb modes are damped a
q becomes too small and appear, asq is sufficiently large,
with strongly q-dependent frequencies. The inclusion
other higher subbands will affect again the plasmon disp
sion in Fig. 4~b!. But, we will not investigate this further in
the simplified model.

C. Hole quantum wells within the Hartree approximation

To be consistent with the spirit of RPA, we now consid
the sample with the ground state calculated in the Har
approximation. Also, the axial approximation used so far
relaxed. Figure 5 shows the subband structure of the s
metrically modulation-dopedp-type GaAs/Al0.37Ga0.63As
quantum well, with the same structure parameters (g i and
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valence-band offsets! as that in Fig. 3, which is self-
consistently calculated within the Luttinger 434k•p model
and the Hartree approximation. We assumed that all f
carriers ~holes! come from two identically doped layers
which have the same dopant~acceptor! density and the same
separation from the quantum well, as described in Eq.~8!.
The band structure exhibits a nonparabolic and anisotro
feature. In Fig. 5, the values of the Fermi wave vectors in
direction (100) and (110) are different. Besides, one c
notice that the second highest subband in Fig. 5 isHH2
instead ofLH1 in the flat-band model~see Fig. 3!. For the
quantum well in the flat-band model,EHHn,k50 /ELHm,k50
'@(g122g2)n2#/@(g112g2)m2# ~if the energy of the band
edge is taken as zero!. Therefore,LH1 has always higher
energy thanHH2 because@(g122g2)22#/@(g112g2)#.1
for the parameters of GaAs. It is due to the Hartree poten
that theHH2 state~at k50) has higher energy thanLH1 in
Fig. 5. The relaxation of the axial approximation does n
affect the bound state atk50 and has nothing to do with
such exchange of subbands. The Hartree effect is particu
crucial in wide quantum wells, in which holes are separat
localized in two trianglelike confinement potentials near t
side walls of the well due to the strong Hartree potential.
the extreme wide wells, the highest subband is fourfold
generate, i.e.,HH1 andHH2.

1. Single-subband approximation

First consider only the highest degenerate subbandHH1
in the l and l 8 summations of Eq.~19!. The calculated intra-
subband dispersions in the long-wavelength range forq in
both ~100! and ~110! directions are shown in Fig. 6~a!. For
isotropic cases, it has been shown in the preceding sec
that the intrasubband plasmons in the single-subband

FIG. 5. Band structure for the symmetrically dopedp-type
GaAs/Al0.37Ga0.63As quantum well with the same well width an
density as those in Fig. 3 in~100! and ~110! directions, calculated
self-consistently from the 434k•p model within the Hartree ap-
proximation. Dashed line: Fermi level, taken as energy zero. In
band-edge energy profile of the quantum well in Hartree appro
mation (EF50).
4-8
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COLLECTIVE EXCITATIONS IN SYMMETRIC p-TYPE . . . PHYSICAL REVIEW B 63 035314
proximation can be well approximated by the ideal 2D pl
mon frequency of Eq.~30! with the effective plasmon mas
replaced by the effective cyclotron mass near the Fe
energy.19 For anisotropic two-dimensional systems, the ‘‘c
clotron mass’’ for the highest degenerate subbandHH1 is
defined bymc(EF)[p\2D(EF) , whereD(EF) is the den-

FIG. 6. Plasmon dispersions and SPE’s for the sample of Fig
~a! Intrasubband plasmon dispersions and SPE’s, obtained by
calculation considering only highest subbandHH1. Filled circles
@empty triangles#: intrasubband plasmon dispersion forq in ~100!
@q in ~110!#. Thick solid ~dashed! line: ideal two-dimensional plas
mon frequency,vp5(2pNhe2q/kmp)1/2, with the effective plas-
mon massmp5mc(kF)51.2m0 (mp50.9m0); see text. Hatched
area: the intrasubband SPE. Thin solid lines: the extreme bo
aries of intrasubband SPE region forq in ~100! ~upper! and q in
~110! ~lower!. ~b! Filled circles~empty triangles!: intra- and inter-
subband plasmon modes forq in ~100! @q in ~110!#, calculated with
the two highest subbands (HH1,HH2). Plus symbols: overlap o
wave functions neglected, see text. Solid line: intrasubband p
mon for q in ~100!, only highest subbandHH1 considered, as
shown in ~a!. Hatched area: the allowed inter- and intrasubba
SPE.
03531
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i

sity of states of degenerate subbandHH1 at the Fermi
energy.27 We find that the intrasubband plasmons in this a
isotropic system cannot be so well approximated by the id
2D plasmon frequency withmp5mc(EF) in Eq. ~30! as those
in isotropic cases. However, with the value slightly light
than the cyclotron mass,mc(EF)'1.2m0, the extracted plas-
mon effective mass,mp'0.9m0, is still in the same order as
that of mc(EF). It is also found that the effect of anisotrop
of the plasmon dispersion is weak, at least for this sam
even though the band structure has a remarkable anisotr
and only a minor difference between the plasmon dispers
in ~100! and ~110! directions can be noticed forq.3
3105 cm21.

2. Two-subband approximation

The results calculated in the two-subband (HH1 and
HH2) approximation are shown in Fig. 6~b! as filled circles.
The plasmon dispersion shown in Fig. 6~b! possesses the
same basic characteristic of that in Fig. 4~b!, which we have
previously discussed in detail. But, the intersubband p
mons havetwo branches, instead of only one. Besides theb
mode, the other mode, denoted asa, has a frequency de
pending only weakly onq in the long-wavelength limit and
occurs also forq50. It is difficult to obtain an analytical
formulation like the analysis in Sec. III B 2 in this cas
which involves more basis functions$ f n%. However, such a
change of the plasmon feature in Fig. 6~b! is not surprising
because the intersubband excitations betweenHH1 and
HH2 have different selection rules from those betweenHH1
andLH1 for the case in Sec. III B 2. For instance, consid
the vertical excitation between the states at theHH1 and
LH1 subbands in the two-subband approximation in S
III B 2. The zero overlap of theHH1- andLH1-like states
with the samek means that such vertical excitation cann
happen, regardless of the polarization of the incident lig
because the inner product of the four-component vec
ĉ(HH1,s),k andĉ(LH1,s),k is zero and these states have the sa
parity. In contrast, the excitations between the states in
HH1 andHH2 subbands, which do not have the same pa
~but atk50 the sameĉ(HHn,s),0) and cannot be represente
only by a single basis functionf 1(z), are possible even fo
q50 if the incident light has proper polarization. Therefor
we do not attribute thea modes to the effect of finite over
lap, like theb modes, but consider them as the usual int
subband excitation betweenHH1- and HH2-like states,
similar to the intersubband excitations in electron quant
wells.

To check this point, we deliberately neglected this over
in the polarizability, Eq. ~19!, by the replacements

@ ĉm
l ,k#†ĉn

l 8,k1q→@ ĉm
l ,k#†ĉn

l 8,k and @ ĉm8
l 8,k1q

#†ĉn8
l ,k→@ ĉm8

l 8,k
#†ĉn8

l ,k ,
but we did not neglect theq dependence in the Fermi func
tion and the energy denominator. The plasmon dispers
calculated with this modification is shown by the plus sy
bols in Fig. 6~b!. We find that the intersubband plasmo
modeb disappears but the modea still exists in this model.
Furthermore, the intrasubband plasmons are now decou
from the only surviving intersubband plasmon branch (a),
and the depression of the frequencies of the intrasubb
plasmons does not occur. Therefore, the coupling of the
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SHUN-JEN CHENG AND ROLF R. GERHARDTS PHYSICAL REVIEW B63 035314
trasubband plasmons to the intersubband plasmons ha
same origin as the existence of the intersubband plas
branchb, and can be attributed to thek dependence of va
lence subband wave functions, notably to the finite over
of wave functions with differentl and differentk values.

3. Three-subband approximation

The existence of the intrinsic coupling in hole syste
makes the inclusion of higher subbands in the plasmon
culation necessary. Figure 7 shows the plasmon disper
obtained by the calculation, in which the three highest s
bandsHH1, HH2, andLH1 are included. We see that, du
to the coupling of theHH1-LH1 excitations, thea branch is
depressed into the region of SPE, and only theb branch is
left in the gap between the edge ofHH1-LH1 and
HH1-HH2 SPE. Thea mode therefore disappears in th
diagram of plasmon dispersion. Nevertheless, we will
later that this Landau-damped mode is still observable in
calculated energy-loss spectra.

D. Absorption spectra

Figure 8 shows the calculated energy-loss spectraP̄n /un
for a Fourier component of the external electric field w
wave vector (q,qz5kn), for simplicity without the factor
2k2vqn

3d . The calculation includes the three highest degen

ate subbands and is based on the results of Fig. 5. The d
ing parameterg50.1 meV is taken in Eq.~12!. In Fig. 8~a!,
we see a broad absorption signal in the range of the S
energies (1 – 3.8 meV! for q563104cm21 and a local maxi-
mum nearv53.6 meV, the upper edge of the intersubba
SPE energy. One also notices an absorption peak neav
53.2 meV, which we attribute to the Landau-damped int
subband plasmon modea @see Figs. 6~b! and 7#, merged in

FIG. 7. Plasmon dispersions and SPE’s, obtained by the ca
lation considering the three highest subbandsHH1, HH2, LH1,
for the same sample of Fig. 5. Filled circles@empty triangles#: the
plasmon dispersion forq in ~100! @q in ~110!#. Hatched area: the
allowed inter- and intrasubband SPE’s.
03531
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the absorption signal of the intersubband SPE. The abs
tion signal for the intrasubband plasmon is much wea
than those for intersubband plasmons and shown in the i
of Fig. 8~a!. It is even weaker than the structureless abso
tion signal from the SPE continuum. Figure 8~b! shows the
absorption spectra forq51.63105 cm21. In Fig. 8~b!, be-
sides the absorption signal from thea mode, the absorption
peak at the frequencyv'3.9 meV due to theb mode is
also observable but the peak partially overlaps with the S
continuum. Asq increases toq52.23105cm21, as shown in
Fig. 8~c!, the strongb mode can be clearly distinguishe
from the signals of the SPE anda mode.

We also find that the intensity of absorption strongly d
pends on the Fourier component of the applied electric fie
For the intrasubband plasmon and intersubband plasmob,
the strongest signal is obtained for theqz50 component, and
the strength decays asqz increases. The strongest absorpti
signal for the plasmona results when the wavelengthlz
52p/qz is comparable with the well thickness (w
522 nm), i.e., whenlz'w. Thus, in Figs. 8~a!, 8~b!, and
8~c!, the absorption signals for thea plasmon have the stron
gest intensity forqz'4p/L(L540 nm, i.e.,lz520 nm!, and
decay asqz becomes smaller or larger. According to su
variousqz dependences, the minor signal nearv52.5 meV
in Fig. 8~a!, which is observable only forqz50, could be
attributed to the strongly Landau-dampedb mode. The
strength of the absorption signals from the intersubbanda
andb plasmons have also different dependences on the m
nitude of the in-planeq vector. Asq increases, the absorp
tion signals for theb plasmons become stronger but tho
for the a plasmons become weaker.

IV. SUMMARY

In conclusion, we have developed a theoretical appro
to the calculation of collective excitations in hole quantu
wells, which treats the nonparabolicity and the wave-vec

u-

FIG. 8. Calculated energy-loss spectra for the sample of Fig
whose plasmon dispersion is shown in Fig. 7, for various value
the wave vector (q,qz) of the externally applied longitudinal elec
tric field.
4-10
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dependence of the subband wave functions within thek•p
model exactly. We calculated the plasmon modes, sin
particle excitations, and energy-loss spectra, and comp
them to the electron quantum wells in detail. The calcula
results show that there are two different intersubband p
mon modes for holes, and that inter- and intrasubband p
mons in thep-type quantum wells are intrinsically couple
even though the structure of quantum wells has invers
symmetry. These couplings cause the effective plasm
masses to be heavier than the cyclotron masses. In the
culated energy-loss spectra, we find that intersubband p
mons have stronger absorption signals than intrasubb
plasmons, and the intensity of the absorption signals
strongly dependent on the Fourier component of the incid
electric field. In order to obtain the correct types of plasm
modes and selection rules for low-energy intersubband e
tations, it was essential to include interaction effects also
the ground-state calculation, since, for sufficiently wi
quantum wells, the Hartree potential changes the second
lence subband from light- to heavy-hole-like.

To keep the discussion transparent, we neglected the
change and correlation effect~which may affect the intersub
band excitation energies! and presented explicit calculation
only for symmetric quantum wells with sufficiently low hol
density, so that only the highest valence subband is part
occupied. Asymmetric doping leads to asymmetric we
with a more complicated band structure, in which the s
degeneracy~at the samekÞ0) is lifted, so that always a
least two hole subbands are occupied. The general forma
developed in this paper can, of course, also be applied to
more complex situation.
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APPENDIX A: THE MATRIX ELEMENTS OF THE
COULOMB INTERACTION WITHIN THE PLANE-WAVE

FOURIER EXPANSION

It is straightforward to calculate within the plane-wa
Fourier expansion the matrix elements

vm,n
q 5

vq

L E
2L/2

L/2

dzE
2L/2

L/2

dz8e2ıkmze2quz2z8ueıknz8 ~A1!

of the Green’s functionWq(z2z8) in Eq. ~13!:

vm,n
q 52qvqF 1

qm
2

dm,n2~21!m1n
12e2qL

qL

q22kmkn

qm
2 qn

2 G ,

~A2!

where km52pm/L and qm
2 5q21km

2 . Apparently the first
diagonal term reestablishes the three-dimensional Fou
component of the Coulomb interaction, instead of the
form vq . The second term describes edge effects due to
finite slab thicknessL. Since the matrix in Eq.~A2! is sepa-
03531
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rable, it is straightforward to calculate its inverse. With t
restriction umu<M , we have a square matrix of dimensio
2M11. For the inverse matrix we obtain

@v21~q!#m,n5
1

2qvq
Fqm

2 dm,n1
2~21!m1n

qL

3~aMq22bMkmkn!G , ~A3!

with the prefactors aM(y)51/@11r M(y)# and bM(y)
51/@11r M(y)1(2M11)/(py)#, where y5qL/(2p) and
r M(y)5(2/p)Im c(M111ıy). Herec(z) is the digamma
function, and we have used the identity28

(
m51

M
y

m21y2
5

p

2
coth~py!2

1

2y
2Im c~M111ıy!,

~A4!

which holds for realy and yields forM@1

p

2
r M~y!'arctan

y

M11
1

1

2

y

~M11!21y2

1
1

6

y~M11!

@~M11!21y2#2
1••• . ~A5!

APPENDIX B: APPROXIMATE DIELECTRIC FUNCTION
IN THE TWO-SUBBAND „HH 1 AND LH 1… MODEL

If the two highest valence subbands in a hole quant
well areHH1- andLH1-like, an approximatescalardielec-
tric function can be derived in the two-subband (HH1 and
LH1) approximation. This is very different from the case
electron quantum wells, where the orthogonality of the s
band wave functions of adjacent subbands results from
z-dependence, which leads to the dielectric matrix in the
citation basis~Sec. II B 1!. In the present case, the Hami
tonian @Eq. ~2!# is diagonal atk50 and the eigenfunctions

have, according to Eq.~1!, the structure Ĉ l ,k50(z)
5f l(z) ĉl ,0, with only a single nonzero component of th
four-vectors ĉl ,0 and with slightly different basis set
$fHHn(z)% and $fLHn(z)% for heavy- @ l 5(HHn,s)# and
light- @ l 5(LHn,s)# holes states, respectively, wheres is
spin. For infinitely high valence-band offset, these basis s
would be identical, and for realistic band offsets at least
n51 ~cosinelike! functions fHH1(z)'fLH1(z) are nearly
equal. At finitek, we find that the wave functions of the tw
uppermost hole subbands are a hybridization of mai

Ĉ (HH1,s),0(z) and Ĉ (LH1,s8),0(z), with only small admixture
of higher (n.1) subbands, and can be well approximated

Ĉ l ,k~z!' f 1~z!ĉ1
l ,k , ~B1!

with the same ~normalized! function f 1(z)5fHH1(z)
5fLH1(z) for l 5(HH1,s) and (LH1,s8). Thus, the overlap
4-11
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^ l ,ku l 8,k8&5E dz@ĉ l ,k#†~z!ĉ l 8,k8~z!5@ ĉ1
l ,k#†ĉ1

l 8,k8

~B2!

reduces to the scalar product of the four-vectorsĉ1
l ,k , and the

overlap fork85k and l 8Þ l vanishes due to the orthogona
ity of the ĉ1

l ,k , not due to thez dependence of the wav
m

ys

nn

lid

te

aff

t,

, P

03531
functions as in electron quantum wells. As a consequence
vertical (k85k) intersubband excitations between the upp
most heavy- and light-hole subbands are possible, since,
to the factorization@Eq. ~B1!#, the corresponding intersub
band matrix element will be zero, whatever the polarizat
of the incident light may be. Evaluating the dielectric tens
with the ansatz Eq.~B1! in Eqs. ~17!–~19!, we obtain the
scalar dielectric function of Eq.~31!.
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