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Broken-symmetry ground states with uniform electron density are common in quantum Hall systems when
two Landau levels simultaneously approach the chemical potential at integer filling fadtbe close analogy
between these two-dimensional electron system states and conventional itinerant electron ferromagnets can be
emphasized by using a pseudospin label to distinguish the two Landau levels. As in conventional ferromagnets,
the evolution of the system’s state as external field parameters are varied is expected to be sensitive to the
dependence of ground-state energy on pseudospin orientation. We discuss the predictions of Hartree-Fock
theory for the dependence of the sign and magnitude of the pseudospin anisotropy energy on the nature of the
crossing Landau levels. We build up a classification scheme for quantum Hall ferromagnets that applies for
single layer and bilayer systems with two aligned Landau levels distinguished by any combination of real spin,
orbit radius, or growth direction degree-of-freedom quantum numbers. The possibilitgiad tuning between
easy-axis and easy-plane quantum Hall ferromagnets is discussed for biased bilayer systems with total filling
factorsy=3 or v=4. Detailed predictions are made for the bias dependence of pseudospin reversal properties
in v=3 bilayer systems.
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[. INTRODUCTION =1 in balanced bilayer 2D systems where the single-particle
LLs in the two layers are degenerate. In the ordered ground
Studies of magnetic phenomena in semiconductors havetate?>®the electrons occupy a LL that is a linear combina-
opened fruitful new ways to explore the subtleties of quan+ion of the isolated layer levels, forming a state with sponta-
tum magnetism. In quantum Hall samples, the tunability ofneous interlayer phase coherence. Recently, Josephson-like
semiconductor electronic systems and the quantization dfehavior seehin 2D-to-2D tunneling spectroscopy studies
single-particle energies into macroscopically degeneratef bilayer systems has provided a direct manifestation of
Landau levelgLLs) combine to open up a rich and varied collective behavior generated by this broken symmetry. In
phenomenology. The effective zero width of electronic en-v=1 bilayer systems, the broken-symmetry state minimizes
ergy bands enhances the role of inter-particle interactionshe Hartree energy cost by distributing charge equally be-
and can frequently lead to the formation of ordered manytween layers and gives up part of the intralayer exchange
particle ground states, including ferromagnetic ones. energy while gaining more in interlayer exchange energy.
Most studies of quantum Hall ferromagrfetQHF9 have  Unlike the single layew=1 QHF, the ordered HF ground
focused on spontaneous spin-alignment in a single-layer twestate is not exact in this case, and the order predicted by HF
dimensional(2D) electron system at LL filling factor=1. theory can be destroyed. With decreasing interlayer ex-
In this case, it turns out that electron-electron interactions£hange energy, quantum fluctuations around the mean-field
favor fully aligned electron spins even in the limit of vanish- ordered state become more important, and for layer separa-
ingly small Zeeman couplifg and the ferromagnetic tions larger than approximately two magnetic lengths, fluc-
ground state of the system is described exactly by Hartreguations destroy the spontaneous coherence. The correspond-
Fock (HF) theory. Because of the near spin independence ahg order-disorder quantum phase transition has been
the Coulomb interaction, the=1 single-layer QHF is a observed experimentalfyln »=1 bilayer QHFs, it is the
Heisenberg-like isotropic two-dimensional ferromagnet. Ondayer degree of freedom that is represented pseudospin
of the unique properties of this simple itinerant electron fer-3. With this mapping the phase-coherent state is equivalent
romagnet is that its instantoh&kyrmions carry charge and to a spiny easy-plane ferromagnet. Finite-temperature
can be observédin the ground states at filing factors Kosterlitz-Thouless phase transitidrgontinuous quantum
slightly deviating from 1. phase transition induced by an in-plane magnetic fieldd
The notion of the QHF can be generalized, however. Itmacroscopic collective transport effecare among the re-
turns out that, at least according to HF theory, broken-markable phenomena which have been studied on bilayer
symmetry ground states occur at integer filling factors inQHFs.
quantum Hall systems any time two or more valence LLs are Recent experiments in single-lay®and bilayet! 2D sys-
degenerate and the number of electrons is sufficient to filtems at even-integer filling factors have further enlarged the
only some of the LLs. In effect, electrons in the ordered statdield of quantum Hall ferromagnetism. It has been shown
occupy spontaneously generated LLs that are linear combthat easy-axis ferromagnetic ground states can &tair
nations of the single-particle levels chosen to minimize thehigher filling factors when LLs with different orbit radius
electron interaction energy. quantum numbers are brought close to alignntéitin HF
The simplest example of a pseudospin QHF obtaing at language, easy-axis anisotropy means that many-body states
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with either of the two aligned LLs completely filled and the d
other empty are energetically more favorable than the coher T
ent superposition state. The easy-axis pseudospin anisotror. \
occurs in this case because intra-LL exchange is stronge [T
than exchange between particles from LLs with different or-
bit radius quantum numbers. Transport measurerhetits
have demonstrated that easy-axis QHFs exhibit hysteresi
with a complicated phenomenology, presumably associatec i
with an interplay between disorder and domain morphology | — b Nl
similar to that in conventional thin-film magnets. (A + A2V)1/2 [AV
In this paper, we classify QHFs according to their pseu-
dospin anisotropy energies as either isotropic, easy-axis, 0
easy-plane systems. We report on a HF-based analysis thi
predicts how the class of broken-symmetry ground states de ]
pends on the nature of the crossing LLs. In some cases, com-
peting effects allow the anisotropy energy to be tuned con- FIG. 1. Schematic of the conducti_on-band edge pro_file of a bi-
tinuously generating a zero-temperature quantum pha@ed double-quantum-well sample with nonzero tunneling between

transition between different classes of states. We consideiP '2yers. Energy levels due to quantization of electron motion
only cases in which no more than two LLs are nearly degenglong the growth direction are also indicated. For concrete calcula-
jons, we assume infinitely narrow quantum wells separated by the

erate and the number of electrons is sufficient to occupy On%istanced
of them. We will always assume that lower-energy LLs, if '
present, are completely full and higher-energy LLs are com-

X in order to draw on the analogy between double-quantum-
pletely empty, co_upllng to these remote LLs can usually bg ell systems av=1 and 2D fer?gmagnets. In that wgrk the
treated perturbatively if necessary, although we do not do Sgseudospin degree of freedom represented the layer i|:1dex of
explicitly here. An important example of an instance in

which more than two LLs are close to degeneracy pertains iﬁ bilayer system. Hlere we aIIc_)I_W the &;ehudospln Ilndex_ to
double-layer systems with weak tunneling and weak Zeemafl2ave @ More general meaning. 1o establis termlnp ogy, itis
coupling*15 we do not treat this or other more complex useful to repall the smgle-pa_rtlcle spectrum of a bilayer 2D
cases with many degenerate LLs in this paper. In Sec. Il, Wgystem subject 1o a p_e_rpendlcular magnetic f!eld. Q“?‘”t“m'
ell subbands of individual layers can be mixed by inter-

recisely define the pseudospin language we use in whic . . e .
gne of t%e LLs is refeﬁred to aF\)s the s]seugdospin-up state a;kiyer tunneling and shifted by the application of a bias po-
{

the other LL as the pseudospin-down state. Since we assu %ntial. We limit our attention to the usual case in Whi.Ch only
that the magnetic field is perpendicular to the 2D electron € lowest electric s_u_bband of e'ther quantum well is occu-
layer, growth direction and in-plane degrees of freedom de—p'ed' and for explicit calt_:ulanons we use a zero-width
couple. The pseudospin quantum number then subsumes reqéia.ntum—well model. Allowing f_or external p|as and for tun-
spin, orbit radius, and growth directidgeubbang degrees of heling betvyeen the weII(;see_F|g. J, the bilayer subband
freedom. To make the discussion more transparent, we confrave functions of the zero-width model are
centrate on a system consisting of two nearby infinitely nar- 1
row 2D layers, the simplest model that has a nontrivial _ — - T _
growth direction degree of freedom. Comments are made ha(2) \/5[\/(1+rA)5(Z)_\/(1_rA)5(Z d]. @
throughout the text about realistic samples with more com-
plicated geometries. In Sec. Ill, we derive a general expreswhere &(z) is the Dirac’s delta functiony,=Ay/(Ag
sion for the HF ground-state energy in the pseudospin ferro+A2)2, A is the bias potentialA, the tunneling gap at
magnetic state. Section IV summarizes the ratherero bias, andl is the layer separation. To account for spe-
cumbersome evaluation of Coulomb interaction matrix ele<ific experimental samples, finite width effects can be incor-
ments. Readers not interested in technical details of the caporated by replacing the wave functiois) with electric
culation are encouraged to skip to Sec. V, where we presesubband wave functions calculated using the self-consistent
our conclusions concerning pseudospin magnetic anisotroppcal-spin-density-approximatioft SDA) model*®
of single layer and bilayer QHFs. This section includes phase In the Landau gauge, the wave functions in the 2D plane
diagrams that show the regimes of physically tunable paramake a formgbnys,k(x)expdky)/\/L—, where
eters with easy-axis and easy-plane anisotropies. Symmetry-
breaking fields and the dynamics of pseudospin reversal are ooon —_— x—1%k
discussed in Sec. VI. Finally, we conclude in Sec. VIl with a b s (X)=[ 1 727(n1) 7]~ H,, |
brief summary of the main results of our paper.
r{ (x—12k)2
Xexpg —————

212

, @

Il. PSEUDOSPIN REPRESENTATION

The pseudospin language was introddcedthe descrip-  k is the wave-vector label that distinguishes states within a
tion of broken-symmetry states in the quantum Hall regimeLL, n=0,1,. .. is the orbit radius quantum numbkis the
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magnetic Iength and we have also explicitly included the TABLE I. Coulomb interaction matrix elementsV;;; i,]
real spin,s= + %, degree of freedom. The single-particle en- =1.x,y,z. The B terms are defined in Eqé8).
ergy spectrum consists of discrete LLs,

1 X y z
f 2 2\1/2 1
Eens=— 5 (AVHAD “Hho(nt3)-slglusB, 3 1 B/+B; B; +B i}Bs—JrilBg B; —B;
whereé=*+1 is the subband indexy. is the cyclotron fre- B +Br BX+B A . BB
. . . 7 8 3 4 —B;—+B 7 8
guency, and the last term is the real-spin Zeeman coupling. iS4
Each LL has a macroscopic degeneracy with the number 1 1 1 1 B _BY 1 1
orbital states per level ,=AB/®,, whereA is the system 7B7T7Bs 7Bst 7B, 274 7B 7Bs
ZLZ%tEr;S the field strength, ane, is the magnetic flux B, +B; BI—B! .EBgf iBg B/ —BJ
. | |

The many-body broken-symmetry states we study in thé
following sections occur when two LLs are brought close to
alignment while remaining sufficiently separated from otherwhere o(1)=1 and o(2)=|. The one-body term®; in-
LLs. In our calculations, each LL can have one of two pos-clude, in general, the external bias potential, tunneling, cy-
sible subband indices, one of two possible spin indices, anglotron, and Zeeman energies, and also the mean field from
any value for the 2D cyclotron orbit kinetic-energy index. interactions with electrons in the frozen LLs lying below the
The two crossing LLs can differ in any or all of these labels.c=1 and| levels. We will give an explicit expression foy
We label one of the two levels as the pseudospin-up ( in Sec. VI. Here and in the following two sections, we con-
=1) state and the other level as the pseudospin-down ( centrate on the two-body terms in the Hamilton{&n
=) state. We truncate the single-particle Hilbert space by The potentialsW; ; represent different combinations of
ignoring higher LLs and introducing effective one-body Coulomb interaction matrix element¥,.: ./ ;. . of the
fields that account for the effect of electrons in lower LLs onsjngle-particle pseudospin states,
the two pseudospin states. Within this model, the set of
single-particle states reduces to the following wave func-

iR ky.ky kg k - - > >
tlons: VI = J d*ry f &y o (MY, (1)
(rl,(rz,(rl,(rz 1% 2%
- expliky)
lﬁa’,k(r):)\fo’(z)gb o), U,k(x)—' (4) eZ -
(T Xty ("D Wy i) (D)
lry—rg T
A particle with the pseudospin oriented along a general unit
vectorm= (sindcosp,sin#sin ¢,cosé) is described by General expressions for the pseudospin-dependent interac-
0 p tions W, ; are given in Table | in terms of the following
¢&1,k(F)=COS< )’/’T (r)+3|n ) I(,odll k(f) (5) matrix element combinations:
L1 L1
IIl. MANY-BODY HAMILTONIAN AND HF TOTAL Br =2V ®Via), Ba=g (Vi =2V ),

ENERGY

In the HF approximation, the QHF has a single Slater 1
determinant state with the same pseudospin orientation forg>_= (v +V ), Br==(V +V )
every orbitalk. In this section, we derive general expressions 47 hELTE LT 4g LT ELLT
for the dependence of the many-electron state energy on (8
pseudospin orientation. It is convenient to express the many- 1
body Hamﬂtoman using Pa}ull spin matriceg, 7, andr_Z BS_:Z(VT,T,T,FVT,LT,T)' Bg:Z(VL,T,L,iiVL,i,L,T)v
and the 2<2 identity matrix, which we labelr;. In this
representation, the Hamiltonian reads

Ng 2

_ "al Tt
H= _i=§<,y,z kzl . azr=1 bi 7" Coar) kCota

1 !
By =7 (V= Via)s Be=z(Vi 2 V0.

1 Ng In Egs. (8), we have omitted orbital guiding center indices
= > > 2 Wk G ke, kzr”“l “.9.%  for simplicity.
2 J=1xy,2 Ky K} a o ] : : . s
o oag,ag, The many- electron state with pseudospin orientatiois
kp.ky=1 ap,ap=1 |w[m])= HN¢ cﬁ] /0), where c}n’k creates the single-
wel t 6) particle state whose wave function is given in E§). We

ola) k; Catag) iy Colaz) keCotay) ky find that
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- {(W[m]|H|Pm]) terms in the single-electron Schilinger equation, is the
eyr(m)= N product of two factors: the subband factor
¢
1 1 2 alz1- 25|
T, bi—5Ugi=5Uia|m, Yol .op.0p, Uz(q) f dzlf dze”
1 5 o XN o)) (ZON o) (Z2) N g0, (ZD) N (o) (22)
+ = U, mm;,
21552y, DMy ® (13
where and the in-plane term
Ng o [
_ Kq ks kq K Ko kq,kq K N S 2
Ui'j_N_¢k1,k2:1 W2z wE ) - (10) Ugi,gé,glvgz(Q)—eq jﬁxdxl d)n((ri),s(ai),qym(xl)
has direct and exchange contributions. Equati@nis the ><¢n(gl)vs(gl)'7qy,2(xl)

most general form for the HF energy of a pseudospin-
QHF. The magnetic anisotropy of the particular QHF system %
is governed by the terms in E(P) that are quadratic in the X f_wdx2 ¢n(o§),s(o§),—qy/2(x2)
pseudospin magnetization, . The values of the coefficients
U;,; depend on the nature of the crossing LLs and can result X ¢n((,2),5((,2),qy,2(x2). (14
in isotropic, easy-plane, or easy-axis quantum Hall ferromag-
netism. For a general sample geometry, the subband fa@t8r
has to be calculated numerically using the self-consistent
IV. PSEUDOSPIN MATRIX ELEMENTS OF THE LSDA wave functions. For our model bilaxer system, how-

COULOMB INTERACTION ever, we can obtain analytic expressionsu‘ér o oo Q).
17201 T2

This section contains the derivation of explicit expres-In the case o&(o)=¢&(— o), Egs.(1) and(13) give
sions for the anisotropy energy coefficietds;, assuming
the zero-width quantum-well model wave functidis. Us-
ing the Fourier representation of the Coulomb interaction, we
write the pseudospin matrix elements as

= 1
v =§[(1+r§)+(1—r§)e*d‘1]. (15)

1192101,07

In the second case, i.&(0)=—§&(—0),

k1 ks kg ,k
Vl,'z,'l’2=—25 K~y O-qy k) —k - 1
01,05.01,07 Ay 17 Ay KK U;,U,U,GZE[(1+ ri)+(l—ri)equ],
X @ldx(ky +k1)/2g—iay(k; +kp)/2,, ot ’Uz(a)
(11) V5 o [(1—ri>+<1+ri>e“‘°‘],
and hence (16)

=_(1-=r2)(1—e dd
Kikaokiky  Kokg kg ko 0,-0,"0,0 2(1 rpd-—e ™,

N ’ ! ’ !
¢ kyko=1  91°792:71:92 71:92:71:92
Ny o

1
= Tvui,(ré,ol,u-z(o)_ Z % vo’i

r
v =n5(1-r})¥1-e )

i,l)’é,(}'l,ﬂ'z

if p=3%7_1[&(a) +&(0)]==1.

-~ d“q 12 - For the in-plane factor in the effective interaction, it is

_f (Zw)ze [Urriyrrémrl,rrz(o)_U(r;,zrg,rrlnrz(q”- necessary to distinguish several cases. If the pseudospin-up
and pseudospin-down levels have the same real-spin index

(120 and the same orbit radius quantum number, iq)
=s(—o) andn(o)=n(—o)=n, the effective interaction is
independent of the pseudospin indices and we obtain from

,Ué,Ul,UZ(Q)

Herel is the unit of length an@?/el is the unit of energy.
Note thatN,/A=1/2m in these units. The first factor in 2) and (14
square brackets in this equation originates from the HartregqS (2) and(14)
contribution to the energy while the second factor originates
A N 2

from the exchange contribution. vy, =—[L(g%2)7? 17

In these equationsvgi,(,éyoly,,z(ﬁ) is a pseudospin- 12
dependent effective 2D interaction that, because of the sepaherelL (x) is the Laguerre polynomial. For identical spins
rability of the in-plane and out-of-plane degree-of-freedombut different orbit radius quantum numbers, i.&(o)
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=g(—0) and n(o)#n(—o), we define n_.=minn(o),n

(=0)] and n.=maxq{n(o),n(—o)]. Then this factor in the
effective interaction is

o,0,0,0

2
v F[Ln(a)(qz/z)]z,

a) by %

FIG. 2. Schematic LL diagrams for=1 (@ and v=2 (b)

N ne—n single-subband QHFs. Index=1,| labels the pseudospin LLs.
N :2_77 n_<|(q_> - <[Ln>—n<( 2/2)]2 The crossing LLs are indicated by half-solid dots, while inert filled
aToTar g onal\ 2 n< q ' LLs are indicated by solid dots and inert empty LLs by open dots.

N 2 5 )
U(r,*(r,(r,f(r:FLn(a)(q /2)Ln(7zr)(q /2)1 (18)

v

1 N — . . .
otherW|sevU£’Ué'Ul’U2—0. tion have identical energy, only the ground state has long-

If the two pseudospin LLs have opposite real spins, theriange order, and there are no finite-temperature phase transi-
only scattering processes that conserve pseudogpid tions. Nevertheless, magnetization correlations become
therefore also real spirat each vertex will contribute to the extremely long at low temperatures. The objective of this
anisotropy energy. Fos(o)=—s(—o) andn(o)=n(—c¢)  Workis to predict which class of QHF occurs for a particular
=n, we obtain pair of crossing LLs.

We start our analysis by considering pseudospin LLs that

N N 2w belong to the same subband, i.&(])=£&(]). In this case,
Uo',o’,a',o_vo’,-o’,o’,—o'_F[Ln(qZ/Z)]z’ (19 only LLs with opposite real spins can be aligned. Two ex-
N amples of QHFs falling into this category—total filling fac-
otherwisevui’oévol’(rfo. tor v=1 with n(7)=n(])=0 and v=2 with n(7)=1,

Finally, if the pseudospin LLs have opposite real sping"(!)=0—are illustrated in Fig. 2. The cases afT)

anddifferent orbit radius quantum numbers, the in-plane fac-” (1) are realized when the ratio of the spin splitting to LL
tor in the effective interactions is separation is an integer. In GaAs, this ratio is only; at

perpendicular fields but can be tuned by tilting the magnetic
\ 2 field away from the normal to the 2D layer. For typical well
va’,o’,o’,o':F[Ln(o)(qzlz)]z! (200 widths, orbital effects of the in-plane field, not included here,
become important at the tilt angles where the coincidences of
20 interest are realized and have to be accounte forobtain
VN oo o= Ln)(0%2) Lo »(0%/2), correct values of the pseudospin anisotropy energy coeffi-
B cients(10). However, recent work on AlAs quantum wéfls
otherwisen ", -0 and InSb quantum wefwith large Zeeman couplings have
S 1921072 o made the situation that we study below, which assumes per-
_ Equation(13) for the_ subband facto'r and eXp|IC.It expres- pendicular magnetic field, accessible.
sions(17)—(20) for the in-plane factor in the effective inter- = \when opposite-spin LLs cross, Eq49) and (20) imply

action, together with Eqg12), (10), (8), and Table I, pro- hat g interactionsB.~ with i>2 in Egs.(8) vanish. Then
vide a formal recipe to calculate the anisotropy coefficientgp e only nonzero anisotropy term is

U, ; for crossing LLs with any combination of quantum-well

subband, orbit radius, and real-spin indices. In the following (e 2 ) 512
section, we use the explicit forn{46) and(15) for the sub- Uzz=— §fo dge " Ln)(a”72)—Ln)(a72)]
band factor to develop a pseudospin anisotropy classification

scheme for our model bilayer system. X[(1+r3)+(1—-r3)e 9] (21)

Note that the Hartree energy contribution to anisotropy al-
ways vanishes when the crossing LLs share the same sub-
The nature of the anisotropy energy is of qualitative im-band wave function. If the two pseudospin levels also have
portance for two-dimensional ferromagnets, including QHFsthe same orbit radius quantum number, then @4) gives
Systems with easy-axis anisotropy, i.e., discrete directions a,,=0 and the ferromagnetic stateigotropic. Physically,
which the energy of the ordered state is minimized, havéhe result follows from the independence of the Coulomb
long-range order at finite temperature and phase transitiorigteraction strength on real spin. An important example of
in the Ising universality class. Systems with easy-plane anthese isotropic QHFs occurs wherfT)=n(|)=0 andr,
isotropy, i.e., a continuum of coplanar pseudospin magneti=1, i.e., there is no tunneling between layers. This is the
zation orientations at which the energy of the ordered state ihoroughly studied single-layer=1 QHF2~*for which the
minimized, do not have long-range order but do haveHF theory ground state happens to be exact. We remark that
Kosterlitz-Thouless phase transitions at a finite temperaturguantitative estimates based on the HF mean-field theory
In the isotropic case, all directions of pseudospin magnetizapresented here require corrections to quantum fluctuation ef-

V. MAGNETIC ANISOTROPY
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Al linear pseudospin magnetization terms in B), the varia-
n=0 < S*J/g n=0 tional energy(9) is minimized when the pseudospins con-
%,(// @ dense into a state magnetized at an arbitrary orientation
o & within the x-y plane. In this state, electronic charge is dis-
b= a) 0= E=+1 tributed equally between the layefpseudospin angled
=0) minimizing the electrostatic energy; spontaneous inter-
Al layer phase coherenfethe physical counterpart of pseu-
n=0 < o= dospin order in this case, lowers the total energy of the sys-
Dy si]/g n=0 tem by strengthening interlayer exchange interactions.
2 o= > Forri<1, Egs.(22) imply the following quadratic terms
o in the HF total energy:
&= b) &=+1
2
FIG. 3. Schematic LL diagrams far=1 (a) and »=2 (b) bi- i,jzzx,y,z Ui jmimy=ulr m,+(1-r5)*mJ% (23
layer QHFs. The pseudospin LLs have opposite subband indices
and the saméa) or opposite(b) real spins. i.e., the easy plane is tilted from they plane in the pseu-

_ _ _ . dospin space by angle=arctarfi(1—r3)¥%r,]. The pseu-
fects in cases in which the ordered pseudospin moment dijospin basis states at different values gfare related, how-
rection is not a good quantum number. A detailed undergyer, by a unitary transformation, which corresponds
standing of these corrections is one challenge for fUth%recisely to a rotation about theaxis by angle- «, as seen
experimental and theoretical work on QHFs. . from Eq. (1). The easy plane where the above anisotropy

For n(T)#n(l), Eq. (21) implies thatU,,<0, making  energy is constant is, for any valuernf, the plane of equal
the z axis the easy pseudospin orientation axis. Again, atharge per layer.
r,=1 our model reduces to that of a single-layer 2D systems \when pseudospin-up and pseudospin-down states differ
whoseeasy-axisanisotropy at even filling factors has been py more than their subband indices, by their spin indices for
identified prevu_)usl)}. In fln!te—thlckness single quantum example, the two pseudospin basis states at differgrmtre
wells, a QHF with pseudospin LLs of the same subband bufot related by a unitary transformation. In this case, the mag-
different real-spin and orbit radius indices is also easy-axispetic anisotropy does depend og. For example, consider
The magnitude of the anisotropy will decrease with layeripe cas&(1)=—&(1), n(1)=n(]), ands(1)=—s(|). For
thickness, as can be seen by comparitg, in Eq. (21)  opposite real-spin LLs, all anisotropy terms that include
calculated forry=1 andr,=0. (Note that the single- pseudospin nonconserving scattering processes drop out. The
subband unbiased double well with finite tunne“ng, ne., On'y nonzero energy terrmz 79 has the same value as in Eq
=0, models a single-layer system with an effective thicknessézz)_ Hence, the QHF i$sofropic in the unbiasedr(,=0)

d.) ) ] ] bilayer system while applying external bias,>0) leads to
We now turn to the crossing of LLs with different sub- easy-planeanisotropy in pseudospin space.

band indices, for which the pseudospin anisotropy physics is At this point let us make an experimentally important
richer. In Fig. 3, we show examples of1)=n(]) bilayer  comment on the bilayer systems realized in wide single
QHFs fory=1 andv=2 based on the same real-spin andquantum well$:*'° The difference between this sample ge-
opposite real-spin LLs, respectively. Equatiofi$), (12,  ometry and the double quantum well with narrdim our
(16), (17), and Table | imply four nonzero anisotropy terms model infinitely narrow layers is in the nature of the barrier
for n(T)=n(l)=nands(1)=s(]): responsible for the bilayer character of the electronic system.
In wide quantum wells the barrier is sdftpriginating from

— 2
Uz =urg, Coulomb interactions among electrons in the well. Then the
_ 5 tunneling probability between layers is strongly dependent
Uxx=u(1-r}), (22 5n the electron density and quantum-well subband popula-

~ B 2112 tions. This tunability makes wide single quantum wells an
Uxz=Uzx=ura(1-ry)™ experimentally attractive alternative to double wells in stud-
where ies of bilayer quantum Hall phenomena. The softness of the
barrier can, however, lead to qualitatively important conse-
d 1(= 22 52 _dq quences for the ordered many-particle states. Translated into
u=5- EJO dge T ILa(q72)]7(1—e™ ). the pseudospin languagg, cannot be treated as an external
one-body field acting on the pseudospin particles but, in gen-
The first term in the expression for enenggomes from the eral, will depend! on the pseudospin orientation in the or-
Hartree interaction. The second term represents the exchandered ground state. For the pseudospin LLs discussed in the
contribution, which is always smaller than the Hartree en{receding paragraplré(1)=—£&(]), n(7)=n(]), ands(T)
ergy in this case, i.ey>0. For zero tunneling between lay- =—s(])] and forr,=0, this effect can lead to an aniso-
ers f,=1), the only nonzero anisotropy energy componenttropic QHF. LSDA calculations indicate that at low electron
U,,=u, is positive, leading to theasy-planeanisotropy of  densities, the anisotropy will be easy-plane while easy-axis
the QHF. In the absence of symmetry-breaking fidlit®  anisotropy is more likely to develop at high densitié&Ve
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ij%ﬂ n.=min[n(1),n(})], n-=ma}{n(1),n(1)].
{ﬁ 54*\9 The HF total energy contributions that are quadratic in the

E=—1 o= pseudospin magnetization components can be grouped as
n=
2) 2 Upmimy=(Uz = Uy)mi+ Uy (29)
§=+1 J=EXY,
(Recall thatm is a unit vector, i.emZ+mj=1-m2.) From
3\\1/2 e Eq. (25)., we obtain thz.it forU, ,— U, 4<0 the QHF hqs
D easy-axisanisotropy while forU, ,—U, ,>0 the system is
\D o=t > an easy-planeferromagnet. At the critical layer separation
n=0 & o~ d=d*, obtained from the conditiotJ, ,=U,,, the mag-
W 2 netic anisotropy vanishes and a fine-tuned isotropy is
E=1 N achieved. It follows from Eqs(24) thatd* is finite for all
45 n=0 values ofr, .
b) :}F For pseudospin LLs With;(T)z—s(l), the anisotrqpy
L E=t1 energy components), , and Uy, vanish and the critical
layer separatiord* corresponds tdJ, ,=0, whereU,, is
FIG. 4. Schematic LL diagrams far=3 (a) andv=4 (b) bi-  given by the same expression as in #i¢)=s(]) case[see

layer QHFs. The pseudospin LLs have opposite subband indice&q. (24)]. SinceU,,<0 atr,=0, the critical separatiod*
different orbit radius quantum numbers, and the saaer oppo-  diverges in the absence of external bias, i.e., easy-axis pseu-
site (b) real spins. dospin anisotropy does not exist for any layer separation. For
r,>0, the transition between easy-plane and easy-axis an-
make this remark to point out that not all results obtained folisotropy occurs at finitel as for thes(7)=s(|) pseudospin
the double-quantum-well model are directly applicable to bi-LLs.
layers in wide single wells. In many cases, the theoretical In Figs. 5a) and §b), we show the magnetic anisotropy
description of QHFs in wide single wells requires modifica-phase diagrams in thé-r, plane calculated for=3 and
tions of the idealized bilayer model to account for mixing of =4 QHFs(see Fig. 4. Since the layer separation is in units
higher electrical subbands. The self-consistent LSDA for theof magnetic length, these figures imply that transition be-
growth direction single-particle orbitals is a particularly con-tween easy-axis and easy-plane anisotropies at a given filling
venient, if somewhaad hoc method that allows any sample factor can be induced in one physical sample by changing
geometry to be studied while retaining the basic structure ofhe density of the 2D electron system. High electron densi-
the many-body HF formalism for QHFs. ties would correspond to the easy-plane region, and low den-
In the remaining part of this section, we consider pseusities to the easy-axis region. Note that these numerical re-
dospin LLs with opposite subband indicasd different orbit  sults confirm the general remark made above, since the
radius quantum numbers. At total filling facter=3, for  critical layer diverges as,—0 for v=4 while it remains
example, the pseudospin LLs will have the same real spirfinite for v=3.
while at v=4 opposite-spin LLs can be aligned, as shown in
Fig. 4. A. common feature Qf the QHF_s dis_cussed below is VI. SYMMETRY-BREAKING FIELDS
the transition from a state with easy-axis anisotropy to a state
with easy-plane anisotropy ag and the layer separatiah The pseudospin orientation in a QHF ground state is de-
are varied. Fos(1)=s(]), Egs.(10), (12, (16), (18), and termined by minimizing the variational total ener¢$). In
Table | give three nonzero anisotropy energies, the absence of energy terms that are linear in pseudospin
magnetization components, the HF ordered states spontane-
Ad 1 ously break continuous SP) or U(1) symmetry in the case
u,,= J’ dge @ ’2{[an(q 12) — Lnu)(q2/2)] of isotropic or easy-plane QHFs, respectively, and the dis-
crete symmetry between pseudospin-up and pseudospin-
down orientations in the case of easy-axis QHFs. In this

X (1+e 99 +ri[L 212)+L 2/2)12 ; . : .
( )+ Al (@772) F Lag)y(a7/2)] section, we take into account external and internal potentials

X (1—e " 99g}, that contribute to the linear terms in the HF total energy and
we comment on the pseudospin reversal that can be triggered
n_t [ g2\ n=n< by adjusting thesg symmetry-breaking f_ields. We focgs on a
Uyx=Uyy= —%J dge e 02 = <_) case that we feel is particularly appropriate for experimental
’ ' n.t\2 study by considering the orderad=3 quantum Hall state.

_ B Similar considerations would apply for all classes of QHFs
XLy "“(@%2)1A(1-r)(1-e", (29 giscussed in this paper.
The pseudospin LLs in the bilayer=3 QHF (see Fig. 4
where have opposite subband indices and orbit radius quantum
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a) TR R 9° 2 2\ a—dg
1.0 le=2 Odqe S [1Hry+(1-rye ]
08 ¢ easy —(1-ri)(1—e 9. 27
plane
06 | : For r,>0, electrons in th¢ é=1, n=0, s=+ 3] LLs pro-
"'5( duce also an electrostatic field, represented py and | 4
= f% in Egs.(26), which screens the external bias potential. Since
04 | casy % this effective field favors occupation of a particular layer
axis rather than a particular pseudospin state, it couplesatadx
o2 components of the pseudospin operator. The energy inbal-
’ ance between the two layers produced pys 2dr, , which,
together with Eq(1), gives
0.0 : : :
0.0 0.5 1.0 15 2.0
d Iy ,=2dr3,
b)
1.0 I x=2dr,(1—r3)Y2 (28
easy In the expression for the HF total ener¢g), we included
0.8 plane explicitly the contribution to the symmetry-breaking fields
that results from Coulomb interactions between electrons in
06 | the pseudospin LLs. For the=3 QHF we are considering
’ here, onlyU, , andU, ; energies are nonzero:
<
= b
04 | sg"‘opl.
¢ 1~ — /2 2 2y4—d
U,,=U,;=— —f dge " 1+ri+(1-ry)e %]
easy ' ' 8Jo
0.2 axis
X (9*=q*4). (29
0o 1 > 3 7 s In the bilayer system with no tunneling {=1), I,
d =0 and the total symmetry breaking fiel!; =b,— U, ,, is

oriented along the pseudospin direction and is given by

FIG. 5. Magnetic anisotropy phase diagrams for bilayer3
() andv=4 (b) QHFs from Fig. 4. In the white region the anisot-

ropy is easy-axis, in the gray region the QHF has easy-plane anisot- p* — _ A2+ A= o+ Jml2/2— 2d— \w/2/8].

ropy. At the phase boundary the ferromagnetic state is isotropic.

numbersn=0 andn=1, respectively. We call theté=—1,
n=0, s=+31] LL the pseudospin-up state and th&=1, n
=1, s=+1] LL the pseudospin-down state. With this defi-
nition, the one-body potentials in E(Q) can be written as

b= —$[(A7+AD P~ hwct =],

_1
bx_ilH,xv

b,=0.

(30

In Figs. 6a)—6(c), we plot the pseudospin evolution with
effective fieldb* for the three anisotropy regimes of:ia
=3 QHF withr,=1. At the phase boundary between easy-
axis and easy-plane anisotropies, ihe3 QHF is isotropic
and the pseudospin reverses abruptlybat=0 [see Fig.
6(a)]. In the easy-plane anisotropy regimél,(,— U, ,>0),
the pseudospin evolves continuously with as illustrated in
Fig. 6(b), reaching alignment witlh* at|b*|=U,,—U,.
For the easy-axis anisotropy caséd,(,— U, «<0), the HF
energy has two local minima at,= =1 when|b*|<|U,,
—Uy|. The pseudospin-up and pseudospin-down polarized
states are separated by an energy barrier that results in the
hysteretic pseudospin-reversal behavior shown in Fig. 6

In bilayer systems with nonzero tunneling, pseudospin re-
versal follows a more complicated pattern in which the com-

The effective field I is the difference between petition betweenx and z components of the symmetry-
pseudospin-up and pseudospin-down particle exchange elreaking field plays an important role. In general, the

ergy with electrons in the fully occupigd=1, n=0, s=

+1]LL, ie.,

pseudospin will rotate in th&-z plane, i.e.,m,= \/1—mzz.
Since the derivative of the HF energy with respectntp
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| ' | b=t
i a Eh=£(h)
g 0 s(hes(h), nch=nch) s(hes(h,nchnch)
-1 1 isotropic easy-axis
) _I1 q 1 2
b gh#Ed)
n(t)=n(}) n()#n(})
s(h=s(}) s(hs(h) s(hy=s(h) s(hs(h
easy-plane =0 d<d'(ry): easy-axis
1 c) isotropic Y .
d=d'(ry): isotropic
EN 0 L 1'A¢ 0: .
easy-plane d>d(ry): easy-plane
-1
s s w FIG. 7. Magnetic anisotropy of QHFs with pseudospin LL sub-
-2 -1 0 1 2

band indicesé( o), orbit radius quantum numberg o), and real

bU,,-U, | spinss(o).

FIG. 6. Pseudospin orientation as a function of the effective
field b* for the isotropic QHF and as a function bf relative to  of orientations. Our mean-field results predict which class of
the anisotropy energl, ,— Uy for the easy-planéb), and easy-  pseudospin quantum Hall ferromagnet occurs in different cir-
axis (c) QHFs atv=3. cumstances. We focus on a model commonly used for bi-
layer quantum Hall systems in which the finite width of both
quantum wells is neglected. The external parameters of the

diverges am,= *1 due to thd  , term, the pseudospin will
never align completely with the axis whenr ,<1.

VIl. SUMMARY

model are the Zeeman coupling strength, the bias potential
between the wella,,, and the single-particle splitting due to
interlayer tunnelingA;. In the limit A;=0, this model ap-
plies to a single quantum well when the crossing Landau

S ) ) levels have the same subband wave function, i.e., are in the
_In the strong magnetic-field limit, the physics of high mo- same quantum well. Classification predictions for this model
bility two-dimensional electron systems is usually dominatedas a function of layer separatiod and the ratior,
by electron-electron interactions except at integer filling fac-= A, /(A2 + A2)Y2 are summarized in Fig. 7.
tors, where the single-particle physics respon5|ble forthe gap for the single-quantum-well case, we find isotropic be-
between Landau levels assumes the dominant role. Wheghyior when the orbit radius quantum numbers of the cross-
external parameters are adjusted so that two or more Landagy | andau levels are identical, and easy-axis behavior oth-
levels simultaneously approach the chemical potential, thenyise. In general, when the crossing Landau levels have
integer filling factor case is less exceptional, interaction efigentical subband wave functions, the nature of the pseu-
fects are always strong, and uniform density broken-yospin anisotropy does not depend on the parameitersd
symmetry ground states analogous to those in convention@l ~ror different subband wave functions, the pseudospin
ferromagnets are common. In this paper, we have discuss isotropy can vary in the-r , plane. Particularly intriguing
how the nature of these states depends on the character of Réine case of crossing LLs with different subband and orbit
nearly degenerate Landau levels. Our attention is restricted, yiys quantum numbers where, at a given filling factor, the
to the case where only two Landau levels are close t0 thgystem can undergo a quantum phase transition from an
chemical potential and we distinguish these crossing '—a”daé'asy-axis to easy-plane QHF. At the phase boundary, the
levels by introducing a pseudospin degree of freedom.  seyudospin anisotropy vanishes and a fine-tuned isotropy is
Using Hartree-Fock variational wave functions, we areachieved. The critical values afandr , are experimentally
able to derive an explicit expression for the dependence 0f..essible and may be accompanied by observable changes

ground-state energy on pseudospin orientation for crossing, nseudospin reversal properties as external parameters are
LLs with any combination of quantum-well subband, orbit,jeq.

radius, and real-spin degree-of-freedom quantum numbers.
As in conventional magnetic systems, qualitative differences
exist between the physical properties of isotroffiteisen-
berg systems with no dependence of energy on pseudospin This work was supported by the National Science Foun-
orientation, easy-axidsing) systems with discrete preferred dation under Grants No. DMR-9623511, No. DMR-
pseudospin orientations, anXY) easy-plane systems for 9714055, and No. DGE-9902579 and by the Grant Agency
which the minimum is achieved simultaneously for a planeof the Czech Republic under Grant No. 202/98/0085.
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