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Pseudospin anisotropy classification of quantum Hall ferromagnets
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Broken-symmetry ground states with uniform electron density are common in quantum Hall systems when
two Landau levels simultaneously approach the chemical potential at integer filling factorn. The close analogy
between these two-dimensional electron system states and conventional itinerant electron ferromagnets can be
emphasized by using a pseudospin label to distinguish the two Landau levels. As in conventional ferromagnets,
the evolution of the system’s state as external field parameters are varied is expected to be sensitive to the
dependence of ground-state energy on pseudospin orientation. We discuss the predictions of Hartree-Fock
theory for the dependence of the sign and magnitude of the pseudospin anisotropy energy on the nature of the
crossing Landau levels. We build up a classification scheme for quantum Hall ferromagnets that applies for
single layer and bilayer systems with two aligned Landau levels distinguished by any combination of real spin,
orbit radius, or growth direction degree-of-freedom quantum numbers. The possibility ofin situ tuning between
easy-axis and easy-plane quantum Hall ferromagnets is discussed for biased bilayer systems with total filling
factorsn53 or n54. Detailed predictions are made for the bias dependence of pseudospin reversal properties
in n53 bilayer systems.

DOI: 10.1103/PhysRevB.63.035305 PACS number~s!: 73.43.2f, 75.10.Lp, 75.30.Gw
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I. INTRODUCTION

Studies of magnetic phenomena in semiconductors h
opened fruitful new ways to explore the subtleties of qu
tum magnetism. In quantum Hall samples, the tunability
semiconductor electronic systems and the quantization
single-particle energies into macroscopically degene
Landau levels~LLs! combine to open up a rich and varie
phenomenology. The effective zero width of electronic e
ergy bands enhances the role of inter-particle interactio1

and can frequently lead to the formation of ordered ma
particle ground states, including ferromagnetic ones.

Most studies of quantum Hall ferromagnets2 ~QHFs! have
focused on spontaneous spin-alignment in a single-layer t
dimensional~2D! electron system at LL filling factorn51.
In this case, it turns out that electron-electron interactio
favor fully aligned electron spins even in the limit of vanis
ingly small Zeeman coupling2,3 and the ferromagnetic
ground state of the system is described exactly by Hart
Fock ~HF! theory. Because of the near spin independenc
the Coulomb interaction, then51 single-layer QHF is a
Heisenberg-like isotropic two-dimensional ferromagnet. O
of the unique properties of this simple itinerant electron f
romagnet is that its instantons3 ~skyrmions! carry charge and
can be observed4 in the ground states at filling factor
slightly deviating from 1.

The notion of the QHF can be generalized, however
turns out that, at least according to HF theory, brok
symmetry ground states occur at integer filling factors
quantum Hall systems any time two or more valence LLs
degenerate and the number of electrons is sufficient to
only some of the LLs. In effect, electrons in the ordered st
occupy spontaneously generated LLs that are linear com
nations of the single-particle levels chosen to minimize
electron interaction energy.

The simplest example of a pseudospin QHF obtains an
0163-1829/2000/63~3!/035305~10!/$15.00 63 0353
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51 in balanced bilayer 2D systems where the single-part
LLs in the two layers are degenerate. In the ordered gro
state,2,5,6 the electrons occupy a LL that is a linear combin
tion of the isolated layer levels, forming a state with spon
neous interlayer phase coherence. Recently, Josephson
behavior seen7 in 2D-to-2D tunneling spectroscopy studie
of bilayer systems has provided a direct manifestation
collective behavior generated by this broken symmetry.
n51 bilayer systems, the broken-symmetry state minimi
the Hartree energy cost by distributing charge equally
tween layers and gives up part of the intralayer excha
energy while gaining more in interlayer exchange ener
Unlike the single layern51 QHF, the ordered HF ground
state is not exact in this case, and the order predicted by
theory can be destroyed. With decreasing interlayer
change energy, quantum fluctuations around the mean-
ordered state become more important, and for layer sep
tions larger than approximately two magnetic lengths, flu
tuations destroy the spontaneous coherence. The corresp
ing order-disorder quantum phase transition has b
observed experimentally.8 In n51 bilayer QHFs, it is the
layer degree of freedom that is represented as apseudospin-
1
2 . With this mapping the phase-coherent state is equiva
to a spin-12 easy-plane ferromagnet. Finite-temperatu
Kosterlitz-Thouless phase transition,9 continuous quantum
phase transition induced by an in-plane magnetic field,8 and
macroscopic collective transport effects7 are among the re-
markable phenomena which have been studied on bila
QHFs.

Recent experiments in single-layer10 and bilayer11 2D sys-
tems at even-integer filling factors have further enlarged
field of quantum Hall ferromagnetism. It has been sho
that easy-axis ferromagnetic ground states can occur10 at
higher filling factors when LLs with different orbit radiu
quantum numbers are brought close to alignment.12,10 In HF
language, easy-axis anisotropy means that many-body s
©2000 The American Physical Society05-1
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with either of the two aligned LLs completely filled and th
other empty are energetically more favorable than the co
ent superposition state. The easy-axis pseudospin aniso
occurs in this case because intra-LL exchange is stron
than exchange between particles from LLs with different
bit radius quantum numbers. Transport measurements11,13

have demonstrated that easy-axis QHFs exhibit hyster
with a complicated phenomenology, presumably associa
with an interplay between disorder and domain morpholo
similar to that in conventional thin-film magnets.

In this paper, we classify QHFs according to their pse
dospin anisotropy energies as either isotropic, easy-axis
easy-plane systems. We report on a HF-based analysis
predicts how the class of broken-symmetry ground states
pends on the nature of the crossing LLs. In some cases, c
peting effects allow the anisotropy energy to be tuned c
tinuously generating a zero-temperature quantum ph
transition between different classes of states. We cons
only cases in which no more than two LLs are nearly deg
erate and the number of electrons is sufficient to occupy
of them. We will always assume that lower-energy LLs,
present, are completely full and higher-energy LLs are co
pletely empty; coupling to these remote LLs can usually
treated perturbatively if necessary, although we do not do
explicitly here. An important example of an instance
which more than two LLs are close to degeneracy pertain
double-layer systems with weak tunneling and weak Zeem
coupling;14,15 we do not treat this or other more comple
cases with many degenerate LLs in this paper. In Sec. II,
precisely define the pseudospin language we use in w
one of the LLs is referred to as the pseudospin-up state
the other LL as the pseudospin-down state. Since we ass
that the magnetic field is perpendicular to the 2D elect
layer, growth direction and in-plane degrees of freedom
couple. The pseudospin quantum number then subsumes
spin, orbit radius, and growth direction~subband! degrees of
freedom. To make the discussion more transparent, we
centrate on a system consisting of two nearby infinitely n
row 2D layers, the simplest model that has a nontriv
growth direction degree of freedom. Comments are m
throughout the text about realistic samples with more co
plicated geometries. In Sec. III, we derive a general exp
sion for the HF ground-state energy in the pseudospin fe
magnetic state. Section IV summarizes the rat
cumbersome evaluation of Coulomb interaction matrix e
ments. Readers not interested in technical details of the
culation are encouraged to skip to Sec. V, where we pre
our conclusions concerning pseudospin magnetic anisot
of single layer and bilayer QHFs. This section includes ph
diagrams that show the regimes of physically tunable par
eters with easy-axis and easy-plane anisotropies. Symm
breaking fields and the dynamics of pseudospin reversa
discussed in Sec. VI. Finally, we conclude in Sec. VII with
brief summary of the main results of our paper.

II. PSEUDOSPIN REPRESENTATION

The pseudospin language was introduced5 to the descrip-
tion of broken-symmetry states in the quantum Hall regi
03530
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in order to draw on the analogy between double-quantu
well systems atn51 and 2D ferromagnets. In that work, th
pseudospin degree of freedom represented the layer inde
a bilayer system. Here we allow the pseudospin index
have a more general meaning. To establish terminology,
useful to recall the single-particle spectrum of a bilayer
system subject to a perpendicular magnetic field. Quant
well subbands of individual layers can be mixed by inte
layer tunneling and shifted by the application of a bias p
tential. We limit our attention to the usual case in which on
the lowest electric subband of either quantum well is oc
pied, and for explicit calculations we use a zero-wid
quantum-well model. Allowing for external bias and for tu
neling between the wells~see Fig. 1!, the bilayer subband
wave functions of the zero-width model are

l61~z!5
1

A2
@A~17r D!d~z!6A~16r D!d~z2d!#, ~1!

where d(z) is the Dirac’s delta function,r D5DV /(DV
2

1D t
2)1/2, DV is the bias potential,D t the tunneling gap at

zero bias, andd is the layer separation. To account for sp
cific experimental samples, finite width effects can be inc
porated by replacing the wave functions~1! with electric
subband wave functions calculated using the self-consis
local-spin-density-approximation~LSDA! model.16

In the Landau gauge, the wave functions in the 2D pla
take a formfn,s,k(x)exp(iky)/ALy, where

fn,s,k~x!5@p l 222n~n! !2#21/4HnS x2 l 2k

l D
3expF2

~x2 l 2k!2

2l 2 G , ~2!

k is the wave-vector label that distinguishes states withi
LL, n50,1, . . . is the orbit radius quantum number,l is the

FIG. 1. Schematic of the conduction-band edge profile of a
ased double-quantum-well sample with nonzero tunneling betw
2D layers. Energy levels due to quantization of electron mot
along the growth direction are also indicated. For concrete calc
tions, we assume infinitely narrow quantum wells separated by
distanced.
5-2
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magnetic length, and we have also explicitly included
real spin,s56 1

2 , degree of freedom. The single-particle e
ergy spectrum consists of discrete LLs,

Ej,n,s52
j

2
~DV

21D t
2!1/21\vc~n1 1

2 !2sugumBB, ~3!

wherej561 is the subband index,vc is the cyclotron fre-
quency, and the last term is the real-spin Zeeman coup
Each LL has a macroscopic degeneracy with the numbe
orbital states per levelNf5AB/F0, whereA is the system
area,B is the field strength, andF0 is the magnetic flux
quantum.

The many-body broken-symmetry states we study in
following sections occur when two LLs are brought close
alignment while remaining sufficiently separated from oth
LLs. In our calculations, each LL can have one of two po
sible subband indices, one of two possible spin indices,
any value for the 2D cyclotron orbit kinetic-energy inde
The two crossing LLs can differ in any or all of these labe
We label one of the two levels as the pseudospin-ups
5↑) state and the other level as the pseudospin-downs
5↓) state. We truncate the single-particle Hilbert space
ignoring higher LLs and introducing effective one-bod
fields that account for the effect of electrons in lower LLs
the two pseudospin states. Within this model, the set
single-particle states reduces to the following wave fu
tions:

cs,k~rW !5lj(s)~z!fn(s),s(s),k~x!
exp~ iky!

ALy

. ~4!

A particle with the pseudospin oriented along a general u
vectorm̂5(sinu cosw,sinu sinw,cosu) is described by

cm̂,k~rW !5cosS u

2Dc↑,k~rW !1sinS u

2Deiwc↓,k~rW !. ~5!

III. MANY-BODY HAMILTONIAN AND HF TOTAL
ENERGY

In the HF approximation, the QHF has a single Sla
determinant state with the same pseudospin orientation
every orbitalk. In this section, we derive general expressio
for the dependence of the many-electron state energy
pseudospin orientation. It is convenient to express the ma
body Hamiltonian using Pauli spin matricestx , ty , andtz
and the 232 identity matrix, which we labelt1 . In this
representation, the Hamiltonian reads

H52 (
i 51,x,y,z

(
k51

Nf

(
a,a851

2

bit i
a8,acs(a8),k

† cs(a),k

1
1

2 (
i , j 51,x,y,z

(
k1 ,k18 ,

k2 ,k2851

Nf

(
a1 ,a18 ,

a2 ,a2851

2

W
i , j
k18 ,k28 ,k1 ,k2t

i

a18 ,a1t
j

a28 ,a2

3cs(a
18),k

18
†

cs(a
28),k

28
†

cs(a2),k2
cs(a1),k1

, ~6!
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where s(1)5↑ and s(2)5↓. The one-body termsbi in-
clude, in general, the external bias potential, tunneling,
clotron, and Zeeman energies, and also the mean field f
interactions with electrons in the frozen LLs lying below th
s5↑ and↓ levels. We will give an explicit expression forbi
in Sec. VI. Here and in the following two sections, we co
centrate on the two-body terms in the Hamiltonian~6!.

The potentialsWi , j represent different combinations o
Coulomb interaction matrix elements,Vs

18 ,s
28 ,s1 ,s2

, of the

single-particle pseudospin states,

V
s

18 ,s
28 ,s1 ,s2

k18 ,k28 ,k1 ,k2
5E d3rW1E d3rW2cs

18 ,k
18

* ~rW1!cs
28 ,k

28
* ~rW2!

3
e2

eurW12rW2u
cs1 ,k1

~rW1!cs2 ,k2
~rW2!. ~7!

General expressions for the pseudospin-dependent inte
tions Wi , j are given in Table I in terms of the following
matrix element combinations:

B1
65

1

4
~V↑,↑,↑,↑6V↓,↓,↓,↓!, B2

65
1

4
~V↑,↓,↑,↓6V↓,↑,↓,↑!,

B3
65

1

4
~V↑,↓,↓,↑6V↓,↑,↑,↓!, B4

65
1

4
~V↑,↑,↓,↓6V↓,↓,↑,↑!,

~8!

B5
65

1

4
~V↑,↑,↑,↓6V↑,↓,↑,↑!, B6

65
1

4
~V↓,↑,↓,↓6V↓,↓,↓,↑!,

B7
65

1

4
~V↑,↑,↓,↑6V↓,↑,↑,↑!, B8

65
1

4
~V↑,↓,↓,↓6V↓,↓,↑,↓!.

In Eqs. ~8!, we have omitted orbital guiding center indice
for simplicity.

The many-electron state with pseudospin orientationm̂ is
uC@m̂#&5)k51

Nf cm̂,k
† u0&, where cm̂,k

† creates the single
particle state whose wave function is given in Eq.~5!. We
find that

TABLE I. Coulomb interaction matrix elementsWi , j ; i , j
51,x,y,z. TheBn

6 terms are defined in Eqs.~8!.

1 x y z

1 B1
11B2

1 B5
21B6

1 1
i

B5
21

1
i

B6
2 B1

22B2
2

x B7
11B8

1 B3
11B4

1 1
i

B3
22

1
i

B4
2 B7

12B8
1

y 1
i

B7
21

1
i

B8
2

1
i

B3
21

1
i

B4
2 B3

12B4
1 1

i
B7

22
1
i

B8
2

z B1
21B2

2 B5
12B6

1 1
i

B5
22

1
i

B6
2 B1

12B2
1

5-3
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eHF~m̂![
^C@m̂#uHuC@m̂#&

Nf

52 (
i 5x,y,z

S bi2
1

2
U1,i2

1

2
Ui ,1Dmi

1
1

2 (
i , j 5x,y,z

Ui , jmimj , ~9!

where

Ui , j5
1

Nf
(

k1 ,k251

Nf

~Wi , j
k1 ,k2 ,k1 ,k22Wi , j

k2 ,k1 ,k1 ,k2! ~10!

has direct and exchange contributions. Equation~9! is the
most general form for the HF energy of a pseudospin1

2

QHF. The magnetic anisotropy of the particular QHF syst
is governed by the terms in Eq.~9! that are quadratic in the
pseudospin magnetizationmi . The values of the coefficient
Ui , j depend on the nature of the crossing LLs and can re
in isotropic, easy-plane, or easy-axis quantum Hall ferrom
netism.

IV. PSEUDOSPIN MATRIX ELEMENTS OF THE
COULOMB INTERACTION

This section contains the derivation of explicit expre
sions for the anisotropy energy coefficientsUi , j , assuming
the zero-width quantum-well model wave functions~1!. Us-
ing the Fourier representation of the Coulomb interaction,
write the pseudospin matrix elements as

V
s

18 ,s
28 ,s1 ,s2

k18 ,k28 ,k1 ,k2
5

1

A (
qW

dqy ,k
182k1

d2qy ,k
282k2

3eiqx(k181k1)/2e2 iqx(k281k2)/2vs
18 ,s

28 ,s1 ,s2
~qW !

~11!

and hence

1

Nf
(

k1 ,k251

Nf

~V
s

18 ,s
28 ,s1 ,s2

k1 ,k2 ,k1 ,k2 2V
s

18 ,s
28 ,s1 ,s2

k2 ,k1 ,k1 ,k2 !

5
Nf

A
vs

18 ,s
28 ,s1 ,s2

~0!2
1

A (
qW

vs
18 ,s

28 ,s1 ,s2
~qW !

5E d2qW

~2p!2
e2q2/2@vs

18 ,s
28 ,s1 ,s2

~0!2vs
18 ,s

28 ,s1 ,s2
~qW !#.

~12!

Here l is the unit of length ande2/e l is the unit of energy.
Note that Nf /A51/2p in these units. The first factor in
square brackets in this equation originates from the Har
contribution to the energy while the second factor origina
from the exchange contribution.

In these equationsvs
18 ,s

28 ,s1 ,s2
(qW ) is a pseudospin-

dependent effective 2D interaction that, because of the s
rability of the in-plane and out-of-plane degree-of-freedo
03530
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terms in the single-electron Schro¨dinger equation, is the
product of two factors: the subband factor

vs
18 ,s

28 ,s1 ,s2

J
~qW !5E

2`

`

dz1E
2`

`

dz2e2quz12z2u

3lj(s
18)~z1!lj(s

28)~z2!lj(s1)~z1!lj(s2)~z2!

~13!

and the in-plane term

vs
18 ,s

28 ,s1 ,s2

N
~qW !5eq2/2E

2`

`

dx1 fn(s
18),s(s

18),qy/2~x1!

3fn(s1),s(s1),2qy/2~x1!

3E
2`

`

dx2 fn(s
28),s(s

28),2qy/2~x2!

3fn(s2),s(s2),qy/2~x2!. ~14!

For a general sample geometry, the subband factor~13!
has to be calculated numerically using the self-consis
LSDA wave functions. For our model bilayer system, ho
ever, we can obtain analytic expressions forvs

18 ,s
28 ,s1 ,s2

J
(qW ).

In the case ofj(s)5j(2s), Eqs.~1! and ~13! give

vs
18 ,s

28 ,s1 ,s2

J
5

1

2
@~11r D

2 !1~12r D
2 !e2dq#. ~15!

In the second case, i.e.,j(s)52j(2s),

vs,s,s,s
J 5

1

2
@~11r D

2 !1~12r D
2 !e2dq#,

vs,2s,s,2s
J 5

1

2
@~12r D

2 !1~11r D
2 !e2dq#,

~16!

vs,2s,2s,s
J 5

1

2
~12r D

2 !~12e2dq!,

vs
18 ,s

28 ,s1 ,s2

J
5h

r D

2
~12r D

2 !1/2~12e2dq!

if h[ 1
2 ( i 51

2 @j(s i8)1j(s i)#561.
For the in-plane factor in the effective interaction, it

necessary to distinguish several cases. If the pseudospi
and pseudospin-down levels have the same real-spin in
and the same orbit radius quantum number, i.e.,s(s)
5s(2s) andn(s)5n(2s)[n, the effective interaction is
independent of the pseudospin indices and we obtain f
Eqs.~2! and ~14!

vs
18 ,s

28 ,s1 ,s2

N
5

2p

q
@Ln~q2/2!#2, ~17!

whereLn(x) is the Laguerre polynomial. For identical spin
but different orbit radius quantum numbers, i.e.,s(s)
5-4
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5s(2s) and n(s)Þn(2s), we define n,[min@n(s),n
(2s)# and n.[max@n(s),n(2s)#. Then this factor in the
effective interaction is

vs,s,s,s
N 5

2p

q
@Ln(s)~q2/2!#2,

vs,2s,s,2s
N 5

2p

q
Ln(s)~q2/2!Ln(2s)~q2/2!, ~18!

vs,2s,2s,s
N 5

2p

q

n,!

n.! S q2

2 D n.2n,

@Ln,

n.2n,~q2/2!#2,

otherwisevs
18 ,s

28 ,s1 ,s2

N
50.

If the two pseudospin LLs have opposite real spins, th
only scattering processes that conserve pseudospin~and
therefore also real spin! at each vertex will contribute to th
anisotropy energy. Fors(s)52s(2s) and n(s)5n(2s)
[n, we obtain

vs,s,s,s
N 5vs,2s,s,2s

N 5
2p

q
@Ln~q2/2!#2, ~19!

otherwisevs
18 ,s

28 ,s1 ,s2

N
50.

Finally, if the pseudospin LLs have opposite real sp
anddifferent orbit radius quantum numbers, the in-plane f
tor in the effective interactions is

vs,s,s,s
N 5

2p

q
@Ln(s)~q2/2!#2, ~20!

vs,2s,s,2s
N 5

2p

q
Ln(s)~q2/2!Ln(2s)~q2/2!,

otherwisevs
18 ,s

28 ,s1 ,s2

N
50.

Equation~13! for the subband factor and explicit expre
sions~17!–~20! for the in-plane factor in the effective inter
action, together with Eqs.~12!, ~10!, ~8!, and Table I, pro-
vide a formal recipe to calculate the anisotropy coefficie
Ui , j for crossing LLs with any combination of quantum-we
subband, orbit radius, and real-spin indices. In the follow
section, we use the explicit forms~16! and ~15! for the sub-
band factor to develop a pseudospin anisotropy classifica
scheme for our model bilayer system.

V. MAGNETIC ANISOTROPY

The nature of the anisotropy energy is of qualitative i
portance for two-dimensional ferromagnets, including QH
Systems with easy-axis anisotropy, i.e., discrete direction
which the energy of the ordered state is minimized, ha
long-range order at finite temperature and phase transit
in the Ising universality class. Systems with easy-plane
isotropy, i.e., a continuum of coplanar pseudospin magn
zation orientations at which the energy of the ordered sta
minimized, do not have long-range order but do ha
Kosterlitz-Thouless phase transitions at a finite temperat
In the isotropic case, all directions of pseudospin magnet
03530
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tion have identical energy, only the ground state has lo
range order, and there are no finite-temperature phase tr
tions. Nevertheless, magnetization correlations beco
extremely long at low temperatures. The objective of t
work is to predict which class of QHF occurs for a particu
pair of crossing LLs.

We start our analysis by considering pseudospin LLs t
belong to the same subband, i.e.,j(↑)5j(↓). In this case,
only LLs with opposite real spins can be aligned. Two e
amples of QHFs falling into this category—total filling fac
tor n51 with n(↑)5n(↓)50 and n52 with n(↑)51,
n(↓)50—are illustrated in Fig. 2. The cases ofn(↑)
Þn(↓) are realized when the ratio of the spin splitting to L
separation is an integer. In GaAs, this ratio is only; 1

60 at
perpendicular fields but can be tuned by tilting the magne
field away from the normal to the 2D layer. For typical we
widths, orbital effects of the in-plane field, not included he
become important at the tilt angles where the coincidence
interest are realized and have to be accounted for10 to obtain
correct values of the pseudospin anisotropy energy co
cients~10!. However, recent work on AlAs quantum wells17

and InSb quantum wells18 with large Zeeman couplings hav
made the situation that we study below, which assumes
pendicular magnetic field, accessible.

When opposite-spin LLs cross, Eqs.~19! and ~20! imply
that all interactionsBi

6 with i .2 in Eqs.~8! vanish. Then
the only nonzero anisotropy term is

Uz,z52 1
8 E

0

`

dq e2q2/2@Ln(↑)~q2/2!2Ln(↓)~q2/2!#2

3@~11r D
2 !1~12r D

2 !e2dq#. ~21!

Note that the Hartree energy contribution to anisotropy
ways vanishes when the crossing LLs share the same
band wave function. If the two pseudospin levels also ha
the same orbit radius quantum number, then Eq.~21! gives
Uz,z50 and the ferromagnetic state isisotropic. Physically,
the result follows from the independence of the Coulom
interaction strength on real spin. An important example
these isotropic QHFs occurs whenn(↑)5n(↓)50 and r D

51, i.e., there is no tunneling between layers. This is
thoroughly studied single-layern51 QHF,2–4 for which the
HF theory ground state happens to be exact. We remark
quantitative estimates based on the HF mean-field the
presented here require corrections to quantum fluctuation

FIG. 2. Schematic LL diagrams forn51 ~a! and n52 ~b!
single-subband QHFs. Indexs5↑,↓ labels the pseudospin LLs
The crossing LLs are indicated by half-solid dots, while inert fill
LLs are indicated by solid dots and inert empty LLs by open do
5-5
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fects in cases in which the ordered pseudospin momen
rection is not a good quantum number. A detailed und
standing of these corrections is one challenge for fut
experimental and theoretical work on QHFs.

For n(↑)Þn(↓), Eq. ~21! implies thatUz,z,0, making
the z axis the easy pseudospin orientation axis. Again,
r D51 our model reduces to that of a single-layer 2D syste
whoseeasy-axisanisotropy at even filling factors has bee
identified previously.10 In finite-thickness single quantum
wells, a QHF with pseudospin LLs of the same subband
different real-spin and orbit radius indices is also easy-a
The magnitude of the anisotropy will decrease with lay
thickness, as can be seen by comparingUz,z in Eq. ~21!
calculated for r D51 and r D50. ~Note that the single-
subband unbiased double well with finite tunneling, i.e.,r D

50, models a single-layer system with an effective thickn
d.!

We now turn to the crossing of LLs with different sub
band indices, for which the pseudospin anisotropy physic
richer. In Fig. 3, we show examples ofn(↑)5n(↓) bilayer
QHFs for n51 andn52 based on the same real-spin a
opposite real-spin LLs, respectively. Equations~10!, ~12!,
~16!, ~17!, and Table I imply four nonzero anisotropy term
for n(↑)5n(↓)[n ands(↑)5s(↓):

Uz,z5urD
2 ,

Ux,x5u~12r D
2 !, ~22!

Ux,z5Uz,x5urD~12r D
2 !1/2,

where

u5
d

2
2

1

2E0

`

dq e2q2/2@Ln~q2/2!#2~12e2dq!.

The first term in the expression for energyu comes from the
Hartree interaction. The second term represents the exch
contribution, which is always smaller than the Hartree e
ergy in this case, i.e.,u.0. For zero tunneling between lay
ers (r D51), the only nonzero anisotropy energy compone
Uzz5u, is positive, leading to theeasy-planeanisotropy of
the QHF. In the absence of symmetry-breaking fields@the

FIG. 3. Schematic LL diagrams forn51 ~a! and n52 ~b! bi-
layer QHFs. The pseudospin LLs have opposite subband ind
and the same~a! or opposite~b! real spins.
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linear pseudospin magnetization terms in Eq.~9!#, the varia-
tional energy~9! is minimized when the pseudospins co
dense into a state magnetized at an arbitrary orienta
within the x-y plane. In this state, electronic charge is d
tributed equally between the layers~pseudospin angleu
50) minimizing the electrostatic energy; spontaneous in
layer phase coherence,6 the physical counterpart of pseu
dospin order in this case, lowers the total energy of the s
tem by strengthening interlayer exchange interactions.

For r D
2 ,1, Eqs.~22! imply the following quadratic terms

in the HF total energy:

(
i , j 5x,y,z

Ui , jmimj5u@r Dmz1~12r D
2 !1/2mx#

2, ~23!

i.e., the easy plane is tilted from thex-y plane in the pseu-
dospin space by anglea5arctan@(12rD

2)1/2/r D#. The pseu-
dospin basis states at different values ofr D are related, how-
ever, by a unitary transformation, which correspon
precisely to a rotation about they axis by angle2a, as seen
from Eq. ~1!. The easy plane where the above anisotro
energy is constant is, for any value ofr D , the plane of equal
charge per layer.

When pseudospin-up and pseudospin-down states d
by more than their subband indices, by their spin indices
example, the two pseudospin basis states at differentr D are
not related by a unitary transformation. In this case, the m
netic anisotropy does depend onr D . For example, conside
the casej(↑)52j(↓), n(↑)5n(↓), ands(↑)52s(↓). For
opposite real-spin LLs, all anisotropy terms that inclu
pseudospin nonconserving scattering processes drop out
only nonzero energy term,Uz,z , has the same value as in E
~22!. Hence, the QHF isisotropic in the unbiased (r D50)
bilayer system while applying external bias (r D.0) leads to
easy-planeanisotropy in pseudospin space.

At this point let us make an experimentally importa
comment on the bilayer systems realized in wide sin
quantum wells.2,9,19 The difference between this sample g
ometry and the double quantum well with narrow~in our
model infinitely narrow! layers is in the nature of the barrie
responsible for the bilayer character of the electronic syst
In wide quantum wells the barrier is soft,19 originating from
Coulomb interactions among electrons in the well. Then
tunneling probability between layers is strongly depend
on the electron density and quantum-well subband pop
tions. This tunability makes wide single quantum wells
experimentally attractive alternative to double wells in stu
ies of bilayer quantum Hall phenomena. The softness of
barrier can, however, lead to qualitatively important con
quences for the ordered many-particle states. Translated
the pseudospin language,D t cannot be treated as an extern
one-body field acting on the pseudospin particles but, in g
eral, will depend11 on the pseudospin orientation in the o
dered ground state. For the pseudospin LLs discussed in
preceding paragraph@j(↑)52j(↓), n(↑)5n(↓), ands(↑)
52s(↓)# and for r D50, this effect can lead to an aniso
tropic QHF. LSDA calculations indicate that at low electro
densities, the anisotropy will be easy-plane while easy-a
anisotropy is more likely to develop at high densities.11 We

es
5-6
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make this remark to point out that not all results obtained
the double-quantum-well model are directly applicable to
layers in wide single wells. In many cases, the theoret
description of QHFs in wide single wells requires modific
tions of the idealized bilayer model to account for mixing
higher electrical subbands. The self-consistent LSDA for
growth direction single-particle orbitals is a particularly co
venient, if somewhatad hoc, method that allows any sampl
geometry to be studied while retaining the basic structure
the many-body HF formalism for QHFs.

In the remaining part of this section, we consider ps
dospin LLs with opposite subband indicesanddifferent orbit
radius quantum numbers. At total filling factorn53, for
example, the pseudospin LLs will have the same real s
while atn54 opposite-spin LLs can be aligned, as shown
Fig. 4. A common feature of the QHFs discussed below
the transition from a state with easy-axis anisotropy to a s
with easy-plane anisotropy asr D and the layer separationd
are varied. Fors(↑)5s(↓), Eqs. ~10!, ~12!, ~16!, ~18!, and
Table I give three nonzero anisotropy energies,

Uz,z5
r D

2 d

2
2

1

8E0

`

dq e2q2/2$@Ln(↑)~q2/2!2Ln(↓)~q2/2!#2

3~11e2dq!1r D
2 @Ln(↑)~q2/2!1Ln(↓)~q2/2!#2

3~12e2dq!g%,

Ux,x5Uy,y52 1
4 E

0

`

dq e2q2/2
n,!

n.! S q2

2 D n.2n,

3@Ln,

n.2n,~q2/2!#2~12r D
2 !~12e2dq!, ~24!

where

FIG. 4. Schematic LL diagrams forn53 ~a! and n54 ~b! bi-
layer QHFs. The pseudospin LLs have opposite subband ind
different orbit radius quantum numbers, and the same~a! or oppo-
site ~b! real spins.
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n,[min@n~↑ !,n~↓ !#, n.[max@n~↑ !,n~↓ !#.

The HF total energy contributions that are quadratic in
pseudospin magnetization components can be grouped

(
i , j 5x,y,z

Ui , jmimj5~Uz,z2Ux,x!mz
21Ux,x . ~25!

~Recall thatm̂ is a unit vector, i.e.mx
21my

2512mz
2 .! From

Eq. ~25!, we obtain that forUz,z2Ux,x,0 the QHF has
easy-axisanisotropy while forUz,z2Ux,x.0 the system is
an easy-planeferromagnet. At the critical layer separatio
d5d* , obtained from the conditionUz,z5Ux,x , the mag-
netic anisotropy vanishes and a fine-tuned isotropy
achieved. It follows from Eqs.~24! that d* is finite for all
values ofr D .

For pseudospin LLs withs(↑)52s(↓), the anisotropy
energy componentsUx,x and Uy,y vanish and the critical
layer separationd* corresponds toUz,z50, whereUz,z is
given by the same expression as in thes(↑)5s(↓) case@see
Eq. ~24!#. SinceUz,z,0 at r D50, the critical separationd*
diverges in the absence of external bias, i.e., easy-axis p
dospin anisotropy does not exist for any layer separation.
r D.0, the transition between easy-plane and easy-axis
isotropy occurs at finited as for thes(↑)5s(↓) pseudospin
LLs.

In Figs. 5~a! and 5~b!, we show the magnetic anisotrop
phase diagrams in thed-r D plane calculated forn53 and
n54 QHFs~see Fig. 4!. Since the layer separation is in uni
of magnetic length, these figures imply that transition b
tween easy-axis and easy-plane anisotropies at a given fi
factor can be induced in one physical sample by chang
the density of the 2D electron system. High electron den
ties would correspond to the easy-plane region, and low d
sities to the easy-axis region. Note that these numerical
sults confirm the general remark made above, since
critical layer diverges asr D→0 for n54 while it remains
finite for n53.

VI. SYMMETRY-BREAKING FIELDS

The pseudospin orientation in a QHF ground state is
termined by minimizing the variational total energy~9!. In
the absence of energy terms that are linear in pseudo
magnetization components, the HF ordered states spont
ously break continuous SU~2! or U~1! symmetry6 in the case
of isotropic or easy-plane QHFs, respectively, and the d
crete symmetry between pseudospin-up and pseudos
down orientations in the case of easy-axis QHFs. In t
section, we take into account external and internal potent
that contribute to the linear terms in the HF total energy a
we comment on the pseudospin reversal that can be trigg
by adjusting these symmetry-breaking fields. We focus o
case that we feel is particularly appropriate for experimen
study by considering the orderedn53 quantum Hall state.
Similar considerations would apply for all classes of QH
discussed in this paper.

The pseudospin LLs in the bilayern53 QHF ~see Fig. 4!
have opposite subband indices and orbit radius quan

s,
5-7
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numbersn50 andn51, respectively. We call the@j521,
n50, s51 1

2 # LL the pseudospin-up state and the@j51, n
51, s51 1

2 # LL the pseudospin-down state. With this de
nition, the one-body potentials in Eq.~9! can be written as

bz52 1
2 @~DV

21D t
2!1/22\vc1I F2I H,z#,

bx5 1
2 I H,x , ~26!

by50.

The effective field I F is the difference between
pseudospin-up and pseudospin-down particle exchange
ergy with electrons in the fully occupied@j51, n50, s5
1 1

2 # LL, i.e.,

FIG. 5. Magnetic anisotropy phase diagrams for bilayern53
~a! andn54 ~b! QHFs from Fig. 4. In the white region the aniso
ropy is easy-axis, in the gray region the QHF has easy-plane an
ropy. At the phase boundary the ferromagnetic state is isotropi
03530
n-

I F5 1
2 E

0

`

dq e2q2/2H q2

2
@11r D

2 1~12r D
2 !e2dq#

2~12r D
2 !~12e2dq!J . ~27!

For r D.0, electrons in the@j51, n50, s56 1
2 # LLs pro-

duce also an electrostatic field, represented byI H,z and I H,x
in Eqs.~26!, which screens the external bias potential. Sin
this effective field favors occupation of a particular lay
rather than a particular pseudospin state, it couples toz andx
components of the pseudospin operator. The energy in
ance between the two layers produced byIWH is 2drD , which,
together with Eq.~1!, gives

I H,z52drD
2 ,

I H,x52drD~12r D
2 !1/2. ~28!

In the expression for the HF total energy~9!, we included
explicitly the contribution to the symmetry-breaking field
that results from Coulomb interactions between electron
the pseudospin LLs. For then53 QHF we are considering
here, onlyU1,z andUz,1 energies are nonzero:

U1,z5Uz,152
1

8E0

`

dq e2q2/2@11r D
2 1~12r D

2 !e2dq#

3~q22q4/4!. ~29!

In the bilayer system with no tunneling (r D51), I H,x
50 and the total symmetry breaking field,b* [bz2U1,z , is
oriented along thez pseudospin direction and is given by

b* 52 1
2 @~DV

21D t
2!1/22\vc1Ap/2/222d2Ap/2/8#.

~30!

In Figs. 6~a!–6~c!, we plot the pseudospin evolution wit
effective field b* for the three anisotropy regimes of an
53 QHF with r D51. At the phase boundary between eas
axis and easy-plane anisotropies, then53 QHF is isotropic
and the pseudospin reverses abruptly atb* 50 @see Fig.
6~a!#. In the easy-plane anisotropy regime, (Uz,z2Ux,x.0),
the pseudospin evolves continuously withb* as illustrated in
Fig. 6~b!, reaching alignment withb* at ub* u>Uz,z2Ux,x .
For the easy-axis anisotropy case (Uz,z2Ux,x,0), the HF
energy has two local minima atmz561 when ub* u,uUz,z
2Ux,xu. The pseudospin-up and pseudospin-down polari
states are separated by an energy barrier that results in
hysteretic pseudospin-reversal behavior shown in Fig. 6~c!.

In bilayer systems with nonzero tunneling, pseudospin
versal follows a more complicated pattern in which the co
petition betweenx and z components of the symmetry
breaking field plays an important role. In general, t
pseudospin will rotate in thex-z plane, i.e.,mx5A12mz

2.
Since the derivative of the HF energy with respect tomz

ot-
5-8
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diverges atmz561 due to theI H,x term, the pseudospin wil
never align completely with thez axis whenr D,1.

VII. SUMMARY

In the strong magnetic-field limit, the physics of high m
bility two-dimensional electron systems is usually domina
by electron-electron interactions except at integer filling f
tors, where the single-particle physics responsible for the
between Landau levels assumes the dominant role. W
external parameters are adjusted so that two or more Lan
levels simultaneously approach the chemical potential,
integer filling factor case is less exceptional, interaction
fects are always strong, and uniform density broke
symmetry ground states analogous to those in conventi
ferromagnets are common. In this paper, we have discu
how the nature of these states depends on the character o
nearly degenerate Landau levels. Our attention is restri
to the case where only two Landau levels are close to
chemical potential and we distinguish these crossing Lan
levels by introducing a pseudospin degree of freedom.

Using Hartree-Fock variational wave functions, we a
able to derive an explicit expression for the dependence
ground-state energy on pseudospin orientation for cros
LLs with any combination of quantum-well subband, orb
radius, and real-spin degree-of-freedom quantum numb
As in conventional magnetic systems, qualitative differen
exist between the physical properties of isotropic~Heisen-
berg! systems with no dependence of energy on pseudo
orientation, easy-axis~Ising! systems with discrete preferre
pseudospin orientations, and (XY) easy-plane systems fo
which the minimum is achieved simultaneously for a pla

FIG. 6. Pseudospin orientation as a function of the effect
field b* for the isotropic QHF and as a function ofb* relative to
the anisotropy energyuUz,z2Ux,xu for the easy-plane~b!, and easy-
axis ~c! QHFs atn53.
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of orientations. Our mean-field results predict which class
pseudospin quantum Hall ferromagnet occurs in different
cumstances. We focus on a model commonly used for
layer quantum Hall systems in which the finite width of bo
quantum wells is neglected. The external parameters of
model are the Zeeman coupling strength, the bias poten
between the wellsDV , and the single-particle splitting due t
interlayer tunnelingD t . In the limit D t50, this model ap-
plies to a single quantum well when the crossing Land
levels have the same subband wave function, i.e., are in
same quantum well. Classification predictions for this mo
as a function of layer separationd and the ratio r D

5DV /(DV
21D t

2)1/2 are summarized in Fig. 7.
For the single-quantum-well case, we find isotropic b

havior when the orbit radius quantum numbers of the cro
ing Landau levels are identical, and easy-axis behavior o
erwise. In general, when the crossing Landau levels h
identical subband wave functions, the nature of the ps
dospin anisotropy does not depend on the parametersd and
r D . For different subband wave functions, the pseudos
anisotropy can vary in thed-r D plane. Particularly intriguing
is the case of crossing LLs with different subband and o
radius quantum numbers where, at a given filling factor,
system can undergo a quantum phase transition from
easy-axis to easy-plane QHF. At the phase boundary,
pseudospin anisotropy vanishes and a fine-tuned isotrop
achieved. The critical values ofd and r D are experimentally
accessible and may be accompanied by observable cha
in pseudospin reversal properties as external parameter
varied.
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