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Breakdown of the Landau-Fermi liquid in two dimensions due to umklapp scattering
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We study the renormalization-grodRG) flow of interactions in the two-dimensiongit’ Hubbard model
near half-filling in anN-patch representation of the whole Fermi surface. Starting from weak to intermediate
couplings the flows are to strong coupling, with different characters depending on the choice of parameters. In
a large parameter region elastic umklapp scatterings drive an instability which on parts of the Fermi surface
exhibits the key signatures of an insulating spin liqU#L), as proposed by Furukawa, Rice, and Salmhofer
[Phys. Rev. Lett81, 3195(1998] rather than a conventional symmetry-broken state. The ISL is characterized
by both strongl-wave pairing and antiferromagnetic correlations; however, it is insulating due to the vanishing
local charge compressibility and a spin liquid because of the spin gap arising from the pairing correlations. We
find that the unusual RG flow, which we interpret in terms of an ISL, is a consequence of a Fermi surface close
to the saddle points at the Brillouin-zone boundaries which provides an intrinsic and mutually reinforcing
coupling between pairing and umklapp channels.
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[. INTRODUCTION constants which can be handled analytically. For repulsive
interactions there are two possible fixed points involving
The Landau theory is widely used to describe Fermi lig-flows either to weak coupling or to strong coupling. The
uids even when the interactions are strong, but it cannot bpossible relevance of the latter to the cuprates was empha-
justifieda priori. The cuprate higi, superconductors show sized by three of the present auth8tsThey showed that
clear deviations from Landau theory in the normal state, andinder certain conditions the local charge compressibility
it has long been argued that the key to understanding thegowed toward zero, indicating that here too umklapp scatter-
materials lies in the breakdown of Landau theb@ne pos- ing opened up a local charge gap.
sible cause is a symmetry-breaking instability such as mag- A proper treatment requires that the flow of interactions
netic order. But in experiments on underdoped cupratas, involving the whole two-dimensional Fermi surface be in-
marked deviations from Landau theory, such as the onset afluded. Already several RG investigations using a discretiza-
the spin gap and gaps in the angle-resolved photoemissidion of the Fermi surface inttN patches withN=32 have
spectra near the saddle points of the Fermi surf@&®, been made. Zanchi and Schtliztudied the RG flows of a
appear without an obvious symmetry breaking. This raise82-patch weak coupling Hubbard model with only nearest-
the question of whether a breakdown of Landau theory withneighbor (NN) hopping in the kinetic-energy term. They
out symmetry breaking is possible. Actually one example ifound a crossover between an antiferromagnétEg) or-
well known and understood, the insulating spin liquid statesiered ground state to d2_2-paired superconductingC)
of even-leg ladder systems at half-filling, which have only aground state as the electron density was lowered away from
short-range magnetic order and an unbroken translationddalf-filling. Recent, more extensive, results by Halboth and
symmetry>® The keys to this behavior are elastic umklapp Metznet? largely confirmed the Zanchi-Schulz results, ex-
scattering processes across the FS which open up a chartgmding them to the case where there is a small next-nearest-
gap at half-filling, in addition to a spin gap caused by theneighbor(NNN) hopping as well, and investigating possible
pairing instability. In this paper the role of these processes iincommensurate AF orderings. Although in both these inves-
a two-dimensional system will be carefully examined. tigations umklapp scattering was included, the possibility of
Renormalization-groupRG) methods allow an analytical a fixed point behavior which would be similar to that of the
treatment and, although the one-loop approximation is inwo-leg ladder was not explicitly considered.
principle applicable only at weak coupling, we can hope to In this paper we will use a one-loop RG method with a
learn about possible instabilities at the strong to intermediatdiscretization of the FS intt patches N=32-96) to ex-
couplings that apply in the cuprates. Such methods have lonamine the flow of the coupling constants and susceptibilities
been successfully applied to one-dimensional models. Thander various starting conditions. Throughout we take a sub-
first attempt§™® to extend this analysis to two dimensions stantial value for the NNN hopping amplitudg, On the
were made shortly after the discovery of high-temperatur@ne hand this is a realistic value for the cuprates. Second, it
superconductivity. They focused on the dominant role ofmoves the critical density, where the saddle points are at the
scattering processes involving Fermi-surface regions in th€S, away from half-filling so that the saddle point effects are
vicinity of van Hove singularities. not mixed with nesting effects on the zone diagonals, as
Limiting the two-dimensional FS to just two patches re- occurs when one set$=0. Whent' is substantial, one can
duces the problem to the flow of a small number of couplingdistinguish three density regions. The simplest is the strongly
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doped region where the saddle points lie above the Fermmagnetism and, as remarked by Halboth and MetZhére
energy, and umklapp scattering is unimportant. Here thé.abbeFriedel or Pomeranchuck instability from square to
leading instability is tod-wave SC—a form of Kohn- rectangular symmetry. These split the saddle points when the
Luttinger instability, in agreement with previous studies. WeFermi energy lies near the van Hove singularity. This is a
call this thed-wave-dominated regime\ second relatively ~drawback of using a weak-coupling approach to describe an
straightforward density regime is the weak doping regimeintermediate to strong coupling problem. We will simply ig-
close to half-filling, where the approximate nesting of FSNore these DOS-related instabilities m_the forwa.rd scattering
segments near the zone diagonals dominates, and an AF ighannel, and concentrate on _those which we peheve are more
stability is favored—again in agreement with previous stud-relevant as yveak—coupllng signatures of the intermediate to
ies. We call this region thapproximate nesting regime strong coupling problem.

The intermediate regime is most interesting and will be  Finally, a defect of our one-loop approximation is that it
the focus of this work. In this case the saddle points liedo€s notlead to a description of the strong-coupling phase of
slightly below the Fermi energy and umklapp processes inthe System which it predicts. There are many approaches in
volving these FS regions are highly relevant. We call thisthe literature which attempt to co'nstruct a theory of such a
density region theaddle-point regimeAs in the case of the State that we can loosely call a lightly dopddvave RVB

1,5,13-15 ; B ;
half-filled two-leg ladder, these umklapp processes, whictPtate- Our aim here is rather different, and seeks to

strongly drive the AF fluctuations, act to reinfordevave complement these strong-coupling theorle_s by examining the
pairing so that this channel competes strongly with the AFaPProach from the strongly overdoped regime which behaves
tendencies. If one looks only at these two instabilities in the?S @ conventional Landau-Fermi liquid with an instability
one-loop RG, it is not possible to decide which dominates. Ifoward weak-couplingl-wave superconductivity. The ques-
the case of the two-leg ladder the unifofiaul) spin sus- tion we seek_tq addres_s is the form (_)f the instability in a
ceptibility flows to zero, indicating singlet pairing in the true L@ndau-Fermi liquid which leads to this doped RVB state.
ground state—a result confirmed when bosonization methodd®W does it differ from a simplel-wave superconducting
are used to examine the strong coupling state below the criti?Stability, and how does the proximity to the Mott insulating
cal scale in the one-loop scheme. Similarly in the presengtate at half-filling manifest itself?
two-dimensional case we find that an examination of the
uniform spin susceptibility favors an assignment of the [l. MODEL AND ITS FERMI SURFACE
strong-coupling fixed point to the class of the two-leg ladder.
Further, the local charge compressibility defined for these F
segments also appears to scale to zero, just as in the half-
filled two-leg ladder. We also note that the unusual RG flow
in both the half-filled two-leg ladder and in the saddle point
regime of the two-dimensionaD) model can be under- with NN hoppingt, NNN hoppingt’, and chemical potential
stood as arising from a mutual reinforcementeivave and . Typically we chooseé’=0.3t, which yields a small con-
umklapp processgsee Sec. I, it is therefore not restricted vex curvature of the FS arourfer,7) at higher fillings. An-
to quasi-1D systems. Beloi@ec. VIII) we present a detailed other essential curve is the umklapp surféd€) which con-
examination of this saddle-point regime. We argue thahects the van Hove points with straight lines. If the FS
rather than the simple crossover betweenave SC and AF  crosses this line, two particles at the FS can be scattered from
order as the density varies, found by previous authors, aone side of the US to the opposite one in an elastic process.
interpretation in terms of the formation of an insulating spinAs we will see, these additional scattering channels then en-
liquid (ISL), which truncates the FS segments near thenance the scale of the transition to a strong-coupling regime.
saddle points, is more appropriate. Although we do not have The initial interaction is taken to be a simple on-site re-
a theory of the strong-coupling phase, and therefore alterngulsion
tive interpretations cannot be ruled out, all information ex-
tracted from the one-loop flow is consistent with our pro-
posal. The ISL can be viewed as a form dfvave RVB HU:UEX: M, 1,1 @)
(resonance valence bonstate as in the case of the two-leg
ladder. Such a state represents a clear violation of the Landavhich is constant irk space. The effective interaction will
theory which does not rely upon a translational symmetrydevelop a pronouncekispace structure in the RG flow.
breaking mechanism. In recent years there have been several RG approaches to
Clearly an instability that partially truncates the Fermithe 2D Hubbard model. Schland Lederer, Montambausx,
surface with a charge gap can be seen as a forerunner of t@d Poilblang studied the RG flow of the processes connect-
Mott insulating state which occurs for intermediate to stronging the saddle points emphasizing the divergence of both AF
interactions. Since our motivation is to understand better thend d-wave pairing correlations. Dzyaloshinkitdiscussed
phase diagram of the highs cuprates, we are most inter- the weak coupling non-Fermi-liquid fixed point of such a
ested in such instabilities. However, we are aware that thermodel. Similar studies were made by Alvarerzal® and
are other instabilities which appear in a weak couplingGonzalezet all’ Later on, in a related formalism based on
theory driven by the diverging density of stat€¥0S) at the  parquet equations, the authors of Ref. 18 examined the inter-
van Hove points. These are the Stoner instability to ferroplay between critical scales and effects of the FS curvature

The kinetic energy of the-t” Hubbard model is given by
e tight-binding dispersion

€(k) = —2t(cosk,+ cosk,) +4t’ cosk, cosk,—u (1)
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FIG. 1. The relevant scattering processes in the two-patch+oo, 94— — 0, andg,— +

model. The gray semicircles denote the phase-space patches aro

the saddle points. The interactions are assumed to be spin indepeIn-

dent and constant over the patches. In this notation the spins of t
initial and final particles connected by an arrow have to be th
same.

for a quasi-2D model restricted to approximately flat FS
faces close to half-filling. Another study of nesting effects
between flat FS segments was given by Vistulo de Abreu an
Doucot!® Zanchi and Schul? presented the first fully two-

dimensional treatment, based on Polchinski's RG equatio
They studied the 2D Hubbard model with=0, and found

two different regimes with dominant AF in the one and
d-wave pairing correlations in the other. A more detailed

analysis of the leading instabilities was given by Halboth and’

Metznel? using RG equations for Wick ordered functiofis.
In this paper we study the RG flow for the one-particle irre-
ducible (1PI) vertex functions for the model given by Egs.
(1) and(2), to investigate the possibility of a strong-coupling
phase which is a precursor of the Mott insulating state, a

suggested by the two-patch study of Ref. 10. A brief accoun

of the RG technique we use here is given in Appendix A.

Ill. TWO-PATCH MODEL REVISITED

We start with a brief discussion of the dominant mecha
nisms for the case where the FS is at the saddle points. The
are most transparent in the two-patch modéi®where only
small phase-space patches around the saddle poifistat
and (0,m) are kept. Neglecting a possible frequency depen

dence, we can approximately describe the scattering pro:

cesses within and between the two patches by four couplin
constantsgq, . .. ,04, depicted in Fig. 1.

The main terms which drive the one-loop RG flow of
these vertices aré) the particle-particle loomly with zero
total incoming momentum, which diverges like f4,/A)
with decreasing energy scale<A, due to the van Hove
singularity in the density of states; aifid) the particle-hole
loop with momentum transfer,7r) denoted byd,, which,
in the presence of a small but nonzerq diverges like
log(Ao/A) with a large prefactof® Keeping only these two
contributions, and denoting=log(Ay/A), so that decreasing
A means increasing, we obtain the RG flow equations

91=2d191(9,—91), (3
9,=0d1(g5+03). (4)
3= —2d0304+2d195(29,— 91), (5)

heg
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(6)

where g, = dg; /dy, anddy,d;=0. It is useful to briefly re-
view the analysis of the two-patch model of Ref. 10. The
second term on the right-hand side of E§) enhances the
basin of attraction of the strong-coupling fixed point. Starting
from the onsite repulsiog;=g,=gs;=g,=U given by Eq.
(2), the coupling constants diverge at a scdle: g;—

g, diverges more slowly. Ini-

ly there is a competition between the two terms on the
ight-hand side of Eq(5), but the right-hand side of E¢6)

94= _do(gg"'gi)-

IS always negative, and thus decreagges Eventually,g,

“becomes negative; then both terms in E5).have the same

sign, which accelerates the flow to strong coupling.

For incoming and outgoing particles directly at the saddle
pointsg; processes correspond to both Cooper and umklapp
Qrocesses. However, away from the saddle points we can

istinguish between Cooper processes with approximately

Fero total incoming momentum driven through the particle-

particle channel and umklapp processes with momentum
transfer ~(r,7r) driven by the corresponding particle-hole
channel. From this point of view, E@5) states that for in-
oming and outgoing wave vectors near the saddle points the
umklapp and thel,._,2-wave Cooper channel are coupled,
and mutually reinforce each other through the and g,
processes which belong to both channels, thereby increasing
the critical scale\. In fact the divergence of the umklapp

gcatterings processes implies a divergence of diveave

?ouplings, and vice versa.

An analysis of the susceptibilities shows a competition
between divergences in tltgz_,2 pairing and the AF chan-
nel controlled by the flow of the combinatiogs—g, and
0,+0s3, respectively. In this case of competing singularities
it is not clear cut which of them dominates. Furukawa, Rice,

gd Salmhofer proposed to resolve the issue by examining

e uniform spin susceptibility and the charge compressibil-
ity. For not-too-weak values dfi/t andt'/t they found that

both are driven to zero by the pairing and umklapp pro-

cesses, respectively. On this basis they assigned the fixed
oint to be in the same class as that of the repulsive two-leg
dder at half-filling. In that system, the one-loop RG also
exhibits competing and equally strong divergences in the
d-wave pairing and AF channels, but the ground state is
known to be an insulating spin liquid from a bosonization
treatment of the strong-coupling regirh®.This form of
ground state is already signaled in the RG calculation by the
suppression toward zero in the uniform spin susceptibility
and the charge compressibility. The ISL in the two-leg lad-
der at half-filling is a form of RVB state with an approximate
d-wave pairing symmetry, but without any explicit transla-
tional or gauge symmetry breaking.

IV. TECHNIQUE

For theN-patch analysis we use a Wilson RG flow for 1PI
vertex functions. The full RG flow associates with every en-
ergy scale\ below the bandwidth\ ; an effective interaction
for the particles with energies(k) below A, in a way that
the generating functional for the Green functions remains
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FIG. 2. The vertex corresponding Y0, (k,k,,k3). - - - >

independent of the scale. Because of this exact invariance,
the effective interaction is no longer just quartic but an infi-
nite power series in the fields. The full RG can be expressec
as an infinite hierarchy of differential equations for the 1PI
m-point vertex functions. Here we study a truncation of this
infinite system in which only the two- and four-point func-
tions are kept. A derivation of the full flow equations is ©
given in Appendix A. Here we just state the results, which
are rather simple. Because our model is two dimensional, F|G. 3. The contributions to the right-hand side of the RGDE.
continuous symmetries cannot be broken by long-range ordes) The particle-particle ternib) The crossed particle-hole teric)
at any positive temperature. Therefore, the effective actiorThe direct particle-hole terms. The first of these three graphs re-
must be gauge invariant and invariant under spin rotations;eives a factor-2 because of the fermion loop.
hence the four-point function is determined by the function
Va(wy,Ky, 05,k ,w3,ks) which describes the scattering of  In the main part of this paper we will neglect self-energy
two incoming particles @,,k;,07) and (w,,k,,0,) into  corrections to the propagator. Th&(i w,,k) = xA(K)[iw,
two outgoing particles @5,ks,03) and (w4,k4,04), where  —¢e(k)] 1, and the single scale propagator is sim@y
01=03, 0,=04, andws=w;+ w,— w3, andk, isgivenby  =0G, /dA. In Appendix A we show some results for a flow
momentum conservation ask,=k;+k,—ks; modulo with the real part of the self-energy on the FS taken into
reciprocal-lattice vectors. Because the spin of partidlirdt ~ account. A more complete study including self-energy ef-
incoming is the same as that of particle(8rst outgoing,  fects, in particular the effects of the wave-function renormal-
and similarly for particles 2 and 4, we may draw the vertexization, is underway.
corresponding to/, as in Fig. 2, where the solid fermion We want to emphasize that our RG method does not rely
lines going through at the top and bottom of the vertex indi-on any form of scale invariance or scalidgsaze The RG
cate that spin is conserved along these lines. we set up in Appendix A provides an exact rewriting of the
The contributions to the right hand side of,  generating functional in terms of the effective action. The

=(a/dA)V, can then be represented graphically as in Fig. 3@pproximations we make in the present paper(greve dis-
In these graphs, one of the internal lines represents a fufiard the 1Pm-point functions withm=86, (i) we project the
electron propagator four-point function to the Fermi surface and frequency zero

(see Sec. V)| and(iii) we neglect the self-energy corrections.
. xA(K) We discussed the justification Gf and(ii) in detail in Ref.
Galkjiwn) =+ S S SINCATRE (7)  22. The justification foxii) is a standard RG argument, and
" XA AV the full momentum dependence can in principle be recon-
where x,(k)=1—{exd(/¢—A)/(0.05A)]+1} ! cuts off structed by calculating susceptibilities and related quantities.
energies below\. The other line stands for a single-scale The justification of(i) is less trivial, but possible for curved
propagator Fermi surfaces and in a specific scale raffgéii) is an
approximation on which we shall improve in a further paper.
) xA(K)[1w,—e(k)] In systems with a Cooper instability, the flow always
Sa(kiiewn) = [iw,—e(K)— xA (K2 A (K iwn) 2 (8 tends toward strong coupling at a sufficiently low scale. This
" non happens even in repulsive systems because of the Kohn-
Because it contains the derivative of the cutoff function withLuttinger effect. However, in repulsive systems, and initially
respect to\, S, is nonzero only at energies closeAoSince  weakly coupled systems, the flow stays in the weak-coupling
there are two possibilities for assignirg, and S, to the
internal lines, each graph stands for two contributions. Apart
from that the usual diagrammatic rules hold: the graph with

the fermion loop receives a factor 2 from the spin trace and a
minus sign. Q
The contributions to the self-energy have a graphical rep- _ _ _ _
resentation shown in Fig. 4. Here the internal line stands for " " e o
a single-scale propagat&, . FIG. 4. The contributions to the self-energy.
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umklapp surface. All phase-space integrations with measure
d?k/(2)? are performed approximately as sums over the
lines and integrations over the radial direction. These imply
Jacobians for polar coordinates with respect to her Y
point, respectively. The interaction vertex (kq,k,,k3) de-
pends on two incoming wave vectoks and k, and one
outgoing wave vectoks lying in segmentk,, k,, andks,
respectively(here we have already projected the frequencies
to zerg. The fourth wave vectok, is fixed by momentum
conservation. In a next approximation we select a large but
finite number of coupling constants representative for certain
regions in the space spanned ky, k,, andks;.?” We
choose to take these wave vectors as the crossing points of
the linesk,, k,, andks with the Fermi surface, i.ekg(ky),
kr(ks), andkg(ks), which lie at the centers of the corre-
sponding FS patches. By Taylor expansion and power count-
ing argument$? the leading part of the flow is given by the
o _ coupling functions on the Fermi surface and at zero fre-
theFIiIr?e.SSi-n-[:s B;lgﬁ“ézri‘é?:};irg’ and umklapp surfaces, andg,ancy Thus we approximatethe functionV, (kq K, ks)

P ' by Vi[Ke(k1),Kr(kz), Ke(ks) = Va(Ky Kz, ks) for all wave

_ ) vectorsk; in the same patck;, wherei=1, 2, and 3.
regime down to a very low scale which may never be

reached because the temperature, which acts as a natural in-
frared cutoff, stops the flow before th@h the usual Kohn-
Luttinger effect, this scale is at most of ordeteonst?. see The initial condition for the flow of the couplings is given
Refs. 23 and 24 In this case the system stays weakly by Hubbard interaction®/, (k;.,kz,ks)=U. For most re-
coupled above a certain temperature, and components of tRgilts discussed here, we talde=3t. We choose this rather
Fermi surface limits of the four-point function can be iden-strong initial interaction because we are interested in the
tified with the Landau interaction functioi(k,k’).%>2 breakdown of the Landau-Fermi liquid due to interaction ef-

When the four-point function flows to strong coupling, fects, and do not aim at a classification of possible weak-
the critical scaleA. where the coupling constants diverge coupling instabilities. For all results shown heté=0.3,
gives an estimate for the scale where the quasiparticles willhich is in the range of the values reported for the cuprates.
be strongly modified or entirely destroyée.g., for the su- We will vary mainly the temperatur@ and the particle
perconducting transition, a gap opens @gee Fig. 5. The  density near and below half-filling via the chemical potential
general picture we find in this model is that the flow always,. We considered values between=-0.7t and u
tends to strong coupling, but that for fillings where umklapp=—1.3% which correspond to fillings betweer=99%
scattering is favored by the geometry of the Fermi surfaceand ~62% of half-filling. The van Hove filling, where the
the critical scale is strongly enhanced. FS exactly touches the saddle points, is givenuby — 4t’

We note that in our RG method the temperatlirs re- =—1.2.
tained as a physical parameter, and that the RG procedure of For a givenu the dependence of the average particle
decreasing the scalk is a priori not related to changing the number onT is weak, and irrelevant for the results. Both
temperature. The four-point vertex at scalés the effective  parameterg. and T change the effective phase space for the
interaction for the modes with energy below and at the various scattering processes. In particular, increased tem-
same time it is the four-point function with infrared cutdff  perature provides a larger phase space for particle-hole pro-
For A<T, one should use the second interpretation. Noteesses with momentum transfer, ), which play an impor-
that because we do not impose a scale-dependent cutoff @ant role. This is similar to the quasi-1D organic conductors
the frequencies, the flow does not stop exactly at the poiniyhere above a certain temperature the band curvature due to
when A decreases below the smallest fermionic Matsubaranterchain hopping becomes irrelevant, and 1D nesting ef-
frequency,w,=T. fects determine the behavior of the systém.

We integrate the RG equations with decreasing energy
scaleA starting from an initial scalé ,~4t. Typically, we
observe a flow to strong coupling where at least some cou-

Next we describe the practical implementation of this RGpling constants take large positive or negative values. We
scheme for the 2D Hubbard model. First we define a phasdefine the critical scald . as the scale where the first cou-
space discretization following Zanchi and SchtfiZhe idea  pling reaches a high absolute value liket 5Burther we in-
is to discretize the Brillouin zonéBZ) into N segments cen- troduce a critical temperaturg, above whichA.=0 (see
tered aroundN lines. Each line with indexkxe{1,... N}  Fig. 13.
starts from the origifI” point) in a certain angular direction The analysis of the divergence of the coupling functions
and from theY point (=, ), so that the lines meet at the yields information on the true strong-coupling state as the

VI. PARAMETERS

V. NUMERICAL IMPLEMENTATION
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p=-0.7t,{n)~0.99 p=-t,(n)~0.86 p=-1.24,(n)~0.72
pLs 3 ; FIG. 6. Fermi surfaces and the 32 points for
05 Jer AN the three different chemical potentials discussed
31.%0 in the text.(n) denotes the average particle num-
£ o7 ! ber per site, i.e.{n)=1 corresponds to half-
< 1 filling. The dots on the F%solid line) indicate the
05 ¢ . 728 patch centers, with patch indices given by the
R A numbers. The dashed line denotes the umklapp
-1 o surface(US).
kxa/n

interaction processes growing most strongly in the RG flomwhere the subscripts and s stand for charge and spin, re-
represent the dominant terms in the Hamiltonian which despectively. Thek-independent bare couplingd,, develop a
termines the low-energy physics. We choose to analyze thiedependence due to vertex renormalizations dependirg on
flow to strong coupling at scalk, where the coupling func- |eading to dressed vertex functiohg,s(k). We cannot di-
tions just exceed the order of the bare bandwidth, i.e., atectly incorporate these renormalizations of the uniform ex-
Vi, max~(8—12). At these scales, and for typical tempera-ternal fields into our present RG scheme with an infrared
tures, the coupling functions have already developed a prddR) cutoff, as they involve only excitations in a low-energy
nounced k-space structure and the dominant interactionregion of width T around the FS. Therefore, we calculate
terms at that scale will certainly be important for the strong-h¢s(k) using the random-phase approximatiqiRPA) for
coupling state. On the other hand, the FS shift due to onethe effective theory below the IR cutoff. This means that
loop self-energy corrections is still smafiee Appendix ¢;  we use the scale-dependent interactigngk, ,k; ,k3) in the
such that it does not qualitatively change the flow aboveone-loop vertex corrections for the external couplings, which
A . Similarly the scattering rate for particles at the @®-  then can be summed up and solved ligr(k,A) (see Ap-
tained from an approximative RG calculation of the two-looppendix B. Note, however, that due to the use of the renor-
self-energy®) remains smaller than,y. Note, however, that malized interactions this scheme goes beyond the normal
at Ay, and for initial interactionU=23t the flow has not RPA. Although it implies a further approximation, it gives a
reached an asymptotic form, and different classes of couqualitatively correct description of the uniform susceptibili-
pling constants would evolve differently if we continued theties in one-dimensional examples, in agreement with
flow below A, (Where our method breaks dowiTherefore, bosonization’

the analysis of the flow to strong coupling remains qualita-

tive, and does not provide definitive conclusions about the

true strong-coupling state. VIll. RESULTS: THREE REGIMES

In the density range we examined, we always found a
VIl. COUPLINGS AND SUSCEPTIBILITIES flow toward strong coupling at sufficiently low temperature.
I . This gives a clear indication that the low-energy single-
b gearv!:ndliﬁlésiitgzxsﬁlz)sn?:1gllirsn;rrmrc]iesrfstl:emt?bﬁi?eimle article excitations of the noninteracting Hamiltonian will be
tt%le rov?// togstron coupling we will identify the F;nost reI.- trongly modified or entirely destroyed by the interactions.
9 piing The character of the flow to strong coupling varies con-

evant, i.e., divergent couplings. In the absence of scale 'nt'inuously with density and temperature. However, we can

variance we cannot expect to obtain simple expressions fqp. e three qualitatively different regimes, which we will
the form of their divergence; therefore, we use their numeri-

cal values as a function of the scale to make a qualitative®, e d-wave-dominated regimene saddle-point regime
comparison q Gnd theapproximate nesting regimas illustrated in Fig. 13.

: . . . For reasons mentioned above, our analysis does not allow us
Along with the interactions we calculate tdevave pair-

. tibilit f ) A dth . to draw sharp boundaries between the different regions.
INg SUSCepUibilityxq, TOr ZEro pair momentum, and the spin Rather, the character of the strong-coupling flow changes in
susceptibility ys(q) aroundq= (7, 7). The method we use

i i ; ; : - a crossoverlike fashion as one moves from one region into
is again described in Appendix A. Typically bogy,, and vert ! v gion |

: . the other.
X%(q) grow strongly as _the Interactions flow 1o strong cou-~ 1, order to show the main features, we examine the flow
pling. In general the ratio of these susceptibilities is a com y

Tor three densities typical for each regime. The Fermi sur-

plicated, nonmonatonic, function of the _scale. Therefo_re, W&aces and locations of the patch centers that label our cou-
do not attempt to draw sharp boundaries between dn‘fererBIing constants are displayed in Fig. 6. In Figs. 7 and 8 we

Cases. show snapshots of the couplings at the scale where the larg-

As discussed earlier in Sec. |, it is often useful also t_oest couplings have exceeded the order of the bandwidth: we

a_\nalyze_ the coupling to uniform external charge and Sp”blot the dependence of the coupling, (K ,k,,ks) with the
fields given by first outgoing wave vectok; fixed at point 1 closest to the
saddle points or at point 3 closer to the BZ diagonal. In Fig.
H :f dk h (k)(ct co el e ) 9 we compare the flow of several relevant couplings as a
osT ) (2m)? s k1 okl = Y ML function the RG scale, and in Fig. 10 we plot the behavior of
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FIG. 7. (Color) Snapshot of the couplingég, (k; ,k,,ks) with the first outgoing wave vectde; fixed at point 1(see Fig. 6 when the
largest couplings have exceeded the order of the bandwidth for the three different choices of chemical potential and temperature discussed
in the text. The colorbars indicate the values of the couplings.
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FIG. 9. (Colon Flow of the couplings for 32-patch systemkwave Cooper couplingblue dashed lingsgs umklapp couplinge.g.,
VA (24,24,1) and/,(23,23,2); solid red lingsg, forward couplinge.g.,V,(24,1,24) and/,(23,2,23); black dashed dotted lijeandg,
umklapp couplingge.g.,V,(16,17,1); solid violet linesand umklapp scatteringg,(21,21,4) in the BZ diagonaigreen for the three

different choices of chemical potential and temperature discussed in the text.
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FIG. 10. d-wave (heavy solid ling and AF susceptibilitytheavy oAt BV
dashed lingfor the three different choices of chemical potential and o ]
temperature discussed in the text. The thin lines denote the flow of FIG- 11.(a) Flow of the charge compressibility normalized to
the bare susceptibilities without vertex corrections. The mark at théheir value at the initial scaléo=4t for u=—1.2 (dashed dotted

A axis indicates the scale, where the largest coupling reaches 10/in€), x=—t (solid lin¢), andn.=—0.8 (dashed ling (b) Flow of
the uniform spin susceptibilities normalized to their initial values

o o . for w=-—t (solid line, u=-0.8 (dashed ling wu=-0.6

the d-wave pairing susceptibilityq,, and the AF suscepti- (gashed-dotted line and x=—0.4 (dotted ling. For increasing
bility xs(7, 7). In the following we describe the three re- glectron densityys(0,A)/xs(0,A0) is less suppressed at low scales.
gimes in detail. For all curvesT=0.04.

(@) The d-wave-dominated regimeéAt band fillings
around the van Hove fillinge=—1.2 and low temperature fulfilled due the large DOS around the van Hove filling. As
T=0.01 (see the right plots in Figs. 7, 8, ang, ¢he diver-  discussed in Sec. | we ignore this effect.
gence of the coupling functions only occurs at a low scale, (b) The saddle-point regiméNext we increase the tem-
and thed-wave pair scatterings are by far the most stronglyperature toT=0.04, and choose a band filling slightly
divergent couplings. In Fig. 7, they appear as red and bluabove the van Hove filling such that the FS crosses the US
features along the lines with patch numbgkg—k,|=N/2  (chemical potentiau=—1t). Now the scale where the cou-
(on these lines, the incoming pair momentum is ze@ther  plings reach the order of the bandwidth is strongly enhanced.
couplings like umklapp and forward scatteringse red, vio- In Fig. 7 we observe that next to tlilewave pair scatterings
let, and black lines in Fig.)9grow too, but are much smaller additional features have developed. The strongly repulsive
than the Cooper couplings. This is the typical flow to stronginteractions, for instance k{,k,)~(24,25)— (ks,k,)
coupling in the lightly shaded regions in Fig. 13. At low =~(1,17), correspond tg;-type umklapp scatterings which
temperatures this also extends to densities slightly highemow diverge together with the repulsive Cooper couplings.
than the van Hove density. Forward scatterings af, type also show a strong increase

A closer analysis shows that thlewvave component in the toward the divergence. In addition, there is a general increase
pair scattering is generated at intermediate scales by thfer couplings with momentum transfésr,7r) due to the en-
particle-hole processes with momentum tranéfetr) corre-  hanced influence of the particle-hole channel with this mo-
sponding to the second term in E&). This type of flow to  mentum transfer. On the other hand, we also observe
strong coupling can be considered as a Kohn-Luttinger-typstrongly attractive couplings emerging, e.g.k; Ks)
Cooper instability, where the repulsive scattering in the~(16,17)— (ks,k,)~(1,18). These processes correspond to
particle-hole between the saddle points first generates a sizmklappg, processes of pairs with both incoming particles
able initial value for thed-wave pair scattering, and is then at the same saddle point, and outgoing particles on opposite
gradually cut off at lower scales because the phase space feides of the FS. Since these pairs have a small total momen-
the (7,7) particle-hole processes decreases due to the shapgm they couple into the Cooper channel, and are driven to
of the FS. The dominance of tlilewave Cooper scattering is strong attraction along with the attractive Cooper couplings
also seen in the comparison of the susceptibilities: thavith zero pair momentum. This clearly demonstrates that
d-wave pairing susceptibility 4,, grows much faster than the umklapp and Cooper channel are strongly coupled. For this
AF susceptibilityys(q) (see Fig. 10 choice of parameters the AF susceptibility grows consider-

The uniform charge susceptibility is somewhat sup- ably toward the divergence, and is as large asdiveave
pressed at intermediate scales, but very close to the instabjbairing susceptibility.
ity the attractive Cooper scatterings in the forward-scattering We call this thesaddle-point regiméecause the flow to
channel start to dominate the vertex corrections to the chargstrong coupling is dominated by the saddle-point regions.
coupling and cause a pole in the RPA-like expresgiee  Here, as we will show, we find the key signatures of the IS],
Eq. (B1)] for hc(k) for k near the saddle points. This is then and the basic mechanism of the two-patch model described
the reason of a sharp upturn in(see Fig. 11, as also ob- in Sec. lll is at work: the diverging,-type umklapp scatter-
served by Halboth and Metzn&r At low scales the uniform  ing between the saddle-point regions drives the forward scat-
spin susceptibilityys(0) is suppressed to zero by the strongtering of g, type to strong repulsion; correspondingly the
attractiveg, couplings favoring singlet formation. However coupling h.(k) of external charge fields to these FS parts,
at higher scales, which are not related to the flow to strongnd thus their contribution to the charge compressibitiig
coupling, the naive Stoner criterion for ferromagnetism isincreasingly suppressed as we approach the instability. This
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1 : 1 b) ; found in thed-wave-dominated regime. However we repeat
P 0@ » ' that in the flow ofV , (k;,k5,k3) the border between saddle-
o point andd-wave-dominated regimes is a continuous cross-
> 08} o over.
s / : The uniform spin susceptibility exhibits a similar, albeit

041 : : somewhat more isotropic, suppressisee Figs. 11 and 12
0 0.5 1 % 0.5 1 when we approach the instability in this saddle-point regime.
AR AR On the one hand, this is plausible because the rapid growth

FIG. 12. Change of the charde.(k) [left plot (8)] and spin  ©f the d-wave susceptibility signals strong singlet pairing
couplingshy(k) (b) normalized to their initial values of quasiparti- tendencies. On the other hand, the AF susceptibility
cles with wave vectok on the FS as the electronic interactions flow xs(7,7) seems to diverge as well, from which one might
to strong coupling from a 96-point calculation at=—t and T expect long-range AF order, i.e., a strong-coupling state with
=0.04. The different lines are for points close to the saddle pointsnonzeroxs(o)_

(solid lines, and points closer to the BZ diagortalashed lines Here we argue that for the saddle-point regime the more
o likely candidate is a spin liquid state with a strong short-
can he seenin F_lgs. 11 "’?”d 12. In contrast to the FS. near th nge AF correlation but a nonzero spin gap. As explained
_saddle_—pomt regions, Wh'Ch tends _toward compressible, I'eabove, the flow to strong coupling in this regime is caused by
|n§ulat|ng be_hawor, fok in the BZ diagonal the charge COU” the coupling and mutual reinforcement of ttkevave pairing

pling he(k) is more or less unchanged. Therefore, th'Sand the umklapp processes between the broad saddle-point

is consistent with a picture where at wave vectors neare ions. Therefore, the strong-coupling state should feature a
(m/2,7/2) gapless charge excitations remain, while near th >9 ) ’ g ping

saddle points the FS is truncated. We use this particular peinglet fpairingfof thij—wave chﬁnnghnda sltrong enhance-
havior of thek-space local charge compressibility to define MeNt of xs(q) for g~ (ar, 7). This is exactly what we ob-
the saddle-point regimédarker gray regions in Fig. 13 serve forygw a_ndXS(q). Moreover, due to the extension of
Here the charge couplings around the saddle points continf8¢ Saddle-point regions, the peak ji(q) is very broad
to go to zero if we integrate the flow far out of the perturba-2round(m,m), and does not sharpen significantly in the flow.

tive range without any indication of the upturn inthat we Therefore, we expect a rr_:lth.er .short AF correlation length of
2-3 lattice spacings. This is in contrast to tHe=0 case

0.16 ' r , . ’ , very close to half-filling, where we find sharp peaksitQq)

= developing aroundy= (7, 7) and where one would expect
0.14f = AF long-range order ai=0.
(c) The approximate nesting regimEhe plots on the left
o12r 8 3 in Figs. 7, 8, and 9 show the flow for a higher filling (
3 g =—0.7). In this case the leading interactions are umklapp
01} ’§‘ = couplings between the BZ regions where the FS intersects
o | 2 E the US and in the !32 diagona(see the red feature; in Fig.
=k 3 = saddle point 8, and the green lines in the left plot in Fig), 3vhile the
2 E po . L .
oosf = =  regime importance of the vicinity of the saddle points decreases. We
@ = call this theapproximate nesting regimedere, due to the
0.04} 8 = e higher band filling, the dominating FS regions are now fur-
g = ther away from the saddle points. As a consequence, the
0.02} = ] coupling between umklapp and pairing channels decreases,
= g Epliarcienie and thed-wave pairing processes become less relevant. This
o= iofg E 3 57 5 14 can best be seen from the weaker flow of the attractive Coo-
n/t per couplings in Fig. 9. Now the AF susceptibility clearly

exceeds the-wave pairing susceptibilityFig. 10. This sig-

FIG. 13. Dependence of the flow to strong coupling on thenals increasing AF ordering tendencies which are in accor-
chemical potentiaj and temperaturd for t’=0.3 and an initial  dance with sharpekr, ) features in the interactiorisee Fig.
interactionU=3t. Above the thick lineA.=0, and we can inte- 8), decreasing suppression gf(0) relative to its initial

grate the flow down to zero scale without reaching an instability.value (see Fig. 11 and a sharper peak of (e) around
Below the thin broken line the-wave pairing susceptibilityy g, 9. _sharper p s\q .
(ar,7m). The charge susceptibility is also suppressed as in the

exceeds the AF susceptibilitys(7,7) when the largest couplings . L . -
have reached the order of thes bandwidth. Above this finérr, ) saddle-point regime; however, the FS regions with smallest

is larger thanyq, . The darker gray region denotes tmddie-point  charge couplings stay fixed to the US, and therefore move
regime where the charge coupling of the saddle point regions goefoward the BZ diagonal if we increase the filling.

to zero and the total charge compressibility is suppressed. The We emphasize that in our RG treatment the next-nearest-
lightly shaded region represents ttiavave-dominated regimeeft ~ Neighbor hopping’ is important for the existence of a siz-

to the thick vertical line, the instability is increasingly dominated by able saddle-point regime. For zero or very smalithe FS is
couplings away from the saddle points; we refer to this region as th€loser to the US in the BZ diagonals, and ther) scattering
approximate nesting regime between the rather flat FS faces dominates even more
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strongly than in our approximate nesting regime with more IX. DISCUSSION AND CONCLUSIONS
FS curvature. If we now decrease the band filling, at some
point, as pointed out in Ref. 18, and explicitly shown for the
2D case in Ref. 11, these processes are cut off at low scall
and can only serve as generators of an attractiveave

initial condition. Witht’ very small the system crosses rather
sharply from a nesting regime intocawave-dominated re-

We have presented aN-patch renormalization-group
eanalysis of the 2D Hubbard model, and found indications
that the path from a Fermi-liquid-like state to the Mott insu-
lating state may pass through a spin liquid phase with par-
tially truncated FS and incompressible regions around the

gime, without going through a saddle-point regime in be_saddle points. Certainly the above results have to be inter-

. . . . .preted with care and are only qualitative as they are an at-
tween. In this sense, in the saddle-point regime substanti . .
, . S empt to learn about possible strong-coupling states from ex-
values oft’ frustrate antiferromagnetism in a twofold way:

! : trapolating weak-coupling flows. However, they demonstrate
first th_ey des’groy the nesting to a large degr?e? and sec_onéllaﬁ the t?reakdown gf agFermi liquid throughyan ISL state
more mteres_tmgly, they I_ead 0 aRG .ﬂOW with clear SPIN"yith a partially truncated FS seems to be a viable concept,
gap tendencies, suggesting the formation of an ISL.

Further we repeat that the unusual flow in the saddle-poin ecause in the ;addle—pomt regime the qu_allltatlve features .Of
the ISL, e.g., spin and charge gaps, are visible as tendencies

regime with the spin- anq charge-gap tendencies is primaril)(n our weak-coupling approach. The essential phenomenon
caused by the mutual reinforcement of Cooper and umkiap hich can be identified as the cause for the ISL in the two-

processes near the saddle points. The scattering of a Cooper . -
: . : . patch model, namely, the coupling of umklapp and pairing
pair from one saddle-point region to the other involves a . L :
. channel, is also found to exist in a sizable temperature and
momentum transfer=(,77), and can therefore be driven by

mkl ; with th me momentum transfer density range in our improved RG calculation, which in-
umkiapp processes wi € same momentu anster, antydes the entire Fermi surface. We believe that this behavior
vice versa. This coupling does not rely on the precise loca

. . : " is robust because it only requires sufficiently large low-
tion or existence of the van Hove singularities. The Iatterenergy phase space around the saddle points, but does not
merely serve to enhance the dominance of the saddle-poiRg|y on further details of the interaction or dispersion rela-

regions over the FS parts near the BZ diagonal, which argon what remains to be clarified is when this interplay be-
already Iess |mp0rtant due to thell‘ dIStance to the UsS. tween pairing and umk'app processeS, which frustrates
Apart from the suppression of the total charge compresssymmetry-breaking tendencies and thus leads to an ISL, in-
ibility described above, there are other potential instabilitieggeed represents an energetically favorable situation for the
in the forward-scattering channel. For example, as pointedystem. Another interesting and related aspect is the question
out by Halboth and Metzné?, there appears to be a strong of the precise conditions for which the overlap between the
tendency toward LabbEriedel or Pomeranchuck FS defor- channels becomes too small, such thafat0O the system
mations which break the square symmetry. These are mainigan still undergo a transition into a symmetry-broken state
rectangular deformation modes which split the degeneracy ofith presumably renormalized properties. In our calculation
the saddle points. However, we will ignore those tendenciesuch symmetry-broken states are suggested on either side of
for the reasons discussed above. We have checked thattle saddle-point regime, e.g., in thevave-dominated phase
moderate deformation of the FS that breaks the square syr@! closer to half-filling in the approximate nesting regime.
metry and leads to saddle point splittings of the order of the Our approach certainly bears some appealing features
critical scale~0.1t does not invalidate the results describedWhen compared to the highs cuprates. However, note that
above. especially very close to half-filling, in the approximate nest-

A difference to the two-patch analysis of Sec. Ill is that "9 régime, our description will be much too simple, as in-

the saddle-point regime, where we observe the ISL sigmj{[_eractlon effects which are not taken into account will be-

tures in ouN-patch calculation, is found at positive tempera- come large. On the other hand further, away from hali-filling

tures and densities slightly higher than the van Hove densitg the saddle-point regime, we can hope o give a reasonable

assumed in the two-patch analysis. The reason for the latt ualitative description of the driving forces for the break-

is that in theN-patch flow the FS parts away from the saddIefoc:\évgm(gntth%el;\?vgde?]u_ggggér“llﬁg' E%Jslggpthsh;nultugvreem—

points reinforce mainly the Cooper channel. Only if the FS,qiiny correlations appear in a natural way at an enhanced
really crosses the US is there sufficient low-energy phasgcaie on the threshold to the Mott state. If the insulating
space for the umklapp processes, which then act togethgingencies are strong enough they will lead to ISL formation
with the Cooper processes, leading to an unusual strong codyound the saddle points.

pling flow. For similar reasons nonzero temperature is The stabilization of the ISL in the vicinity of the saddle
needed for the saddle-point regime. A modefaggnears out  points opens up a channel to enhance Cooper pairing on the
the FS, and provides additional phase space for both particlgemaining open parts of the FS. A similar mechanism was
particle processes with small total momentum and particlerecently proposed in Ref. 31, whose authors examined a
hole processes with momentum transfer,7). Especially model with infinite mass preformed pairs existing at higher
due to the latter there is a certain temperature range whetemperatures in the vicinity of the saddle points. Let us as-
this thermal phase space gain outweighs the ordinary desume that an ISL has formed in a regi@alled theA region
crease of the one-loop contributions for increasingnd the  around the saddle points at an energy scglg . Then the
critical scaleA . is enhanced with respect to its=0 value.  dominant coupling between the ISL and the open FS parts
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(called theB regions will occur through the exchange of was first used by Wetteri¢hin scalar field theory. In the
zero-momentum hole pairs in the Cooper channel. Further ifollowing, we give a largely simplified, self-contained deri-
will occur in thed-wave pairing channel. We denote Wyg  vation of this equation for general fermion systems, and dis-
the pair scattering matrix element between the ISL inAhe cuss the consequences of symmetries, as well as truncation
regions and the opeB regions of the FS at the scalgg , schemes. We first recall the definition and those properties of
and bye, the energy relative to the chemical potential to addthe 1PI functions that we need in the derivation. In the fol-
a hole pair to the ISL. Then, at energy scalestA|g; an  lowing, we shall not need all the details of the specific setup
additional attractionVgg is generated between pairs in the in our model; we shall only use that the fermion propagator

openB regions, which has a pole at C, depends on a parameteiin our applicationsis the scale
parameter, e.g.s=logA, where A is the flowing energy
€ scale.
AcB:A|5L exr{ - —A) '
NAB
(9) 1. Generating function of the 1PI vertices
Nooeh f dk Vag(k) In a general theory with fermionic fields, the fielg$X)
ABTTA Jers(2m)2 wp(k) and(X) are labeled by an index which comprises space-

time, spin, flavor, and possible other indices. We collgct

Here the integral is over the Fermi surface of Bheegions, andEinto a single vectorllfz(E #). We also use the no-
and'n.A denote; the'number qf intermedia}te states with twqion (A,B) = [dX A(X)B(X), wﬁerefdx stands for sum-
additional particles in thé regions per lattice site. mation over the discrete indices and integrals over the con-

Alt.hOUQh we .dp not h_ave a full theory O_f the SrONY- inuous ones. In the Hubbard model, the standard functional
coupling phase, it is plausible to assume that inAhlregions integral representatiofsee, e.g., Ref. 20, Sec. 4gives X
a charge gap spreads out along the US in analogy to Iadde:r(T x,0,C), wherex is thé p.o;ition(.r= o the. third com-
systems W.hiCh whgn lightly doped show SimUIt"’meOUSIypone,zn,t c;f tr'1e spiny- BI2< < pB/2 thé usu_al Euclidean time
cha_nnels with and_wnhout a charge dga.Then the oper sed to convert the grand canonical trace to a functional
region of the FS will enclose an area measured from the U htegral over the Grassmann fields and the charge index
determined by the hole density, and so the superfluid densitg_ L .
will be given by the hole density in the saddle-point regime.c = = distinguishes between the componegtand i of V.
There will also be two energy scales, a higher one determin- 1€ generating function for the connected Green func-
ing the onset of the ISL in thé regions, and a lower scale 1ONS is defined by
setting the transition temperature to the superconductivity,
T.. These features are in nice qualitative agreement with the e‘W<H>=f duc(W)e V+HL) (A1)
observations in the underdoped cuprates. However, a full mi-
croscopic theory of the strong-coupling phase and also thelere the Gaussian integral is given by an invertible operator
crossover to the more conventiordivave superconductiv- Q with integral kernelQ(X,X"). Because of the Grassmann
ity in the lower electron densitg-wave regime remains to be nature of the fields,Q is antisymmetric, i.e.,Q(X’,X)
worked out. Note that in the latter regime umklapp scattering= — Q(X,X’). The covarianceC is C=Q 1, andduc(¥)
is irrelevant at low-energy scales, and the superfluid densityé(detQ)—le—l/Z(w,Q«p)DZDI//’ with (AB) as defined

is determined by the electron density, not the hole density. ;pove. A genera gives rise to non-charge-invariant terms

Finally we note that the ISL concept might provide a mi- ¢ type ¢:(X) ¢(X'): charge invariance corresponds tQaf
croscopic basis for understanding the angle-resolved photqpe form

emission electron spectroscopy results on the cuprates which

clearly show the truncation of the FS around the saddle 0 Q(&,¢)

points®® and also for phenomenological modélsvhich [Q(&,& ) e = _0(¢8) o | (A2)
have proven to be plausible descriptions of the transport '

properties of the normal state of the underdoped Righ- In the Hubbard moddiwith ¢=(7,x,0)],

cuprates. , ,
Q(é::g ): 500”6( TT )[5XX’(077'+ IL‘L)_TXX’]! (AS)
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APPENDIX A: RG TECHNIQUE measure are also invariant under the transformation

In this appendix we derive and discuss the RG equation ¢, (7,X)—i (= 7.X), i, (7,X)—i i (—7,X).
for the 1PI functions. The RG equation for the 1PI functions (A4)
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Observables transform accordingbimilarly as when taking . b AR
adjoints. (W, QW)™ =| == Quer |, (A12)
If W has a nondegenerate quadratic part, the map
H—d (H), with we can reexpress everything in termsWf(H), and obtain
. 1 . 1 s . oW
O (H)(X)= 5H(X)W(H) (AS5) W(H)=>TrH(CQo)+ 5| =7 Qs 57
can be invertedthis is the case in our fermionic models 1/ 8 . &
because the Grassmann variables are nilpotent and the cova- + > (W’Qsm) W(H), (A13)

rianceC is nondegenerate at positive temperature. In bosonic
models, the map would not be invertible if symmetry break-with Tr(AB)=fdX dY AX,Y)B(Y,X). This is an equation
ing occurs. The Legendre transform is then defined by &imilar to Polchinski's equatiofY, but with Q instead ofCq
variational equation; see, e.g., Ref.)3Benote the inverse in the Laplacian because the Green functions generatw by
map by ¢—h(¢) (his an odd element of the Grassmann gre not amputated. By EqéA11), (A6), and (A9), the dif-

algebra generated by), so that ferential equation fol'(s) is
SW
Pelh(d)]= 5 [(P)]= . (AB) I(s|¢)== Tr(CSQS)+ (¢ Qsd)
Taking a derivative with respect ¢ gives 1 . [ 8°T(s|¢p)| L
+=Tr — Al4
f iz 5h(¢>)(Z)( W )[h(qs)] SXY). 2 [ ( op ) (19
op(Y) | 6H(Z)SH(X) This is a nonpolynomial equation fdt, but the inverse con-
(A7) tains a second derivative, which produces a field-
The first Legendre transform a¥ is independent term coming from the quadratic terniiimhus
the equation makes sense in an expansion in the fields.
I'(¢)=W[h(#)]=[h(¢), ] (A8)
(with the last term a bilinear form as aboyé generates the 3. Expansion in the fields
1PI correlation functions. We hawil’/§¢=h(¢), and thus In this section we derive the equation for the scale-
by Eq. (A7) (as operatops dependent 1PIm-point functions yy(s), by expanding
) ) 1 I'(s| ) in the fields. Readers that only want to see the result
ﬂ) (¢)=[5 W[h(gf))]} (A9) can skip to Appendix A 4.
S H? ' The 1PIm-point vertex functionsy,(s|Xi, ... Xy, are
For free particlegV=0), W=1 (H,CH), s0 W/ 8H=CH: ']Eiheelzd(;oefﬂments in an expansion bBfas a power series in the
henceh(¢)=C 1¢ andI'(¢)=3 (#,Q¢). In first order, ’
the four-fermion interaction term i’ is just the original
interaction). T(s|p)= > »™(s|e), (A15)
m=0
2. RG differential equation for I' with

If W depends on a parametgrthenI” andh also depend

ons. By Eq. (A6), (M(s| )= — J d™X y(s|X)pM(X).  (A16)

W[ hg (¢)]— [hs(¢)]+[h (#),#] (Al0)  Here we used the notation$= (X, ... X,) and ¢™(X)
=@d(Xy) - d(X). Because the Grassmann variables anti-
(where the dot denotes the derivative with respec)iso  commute, we choose the functian,(s|X) to be totally an-

Eqg. (A8) implies tisymmetric with respect to permutations of tixg. This
allows us to compare coefficientg,,(s|X) are the 1Pl ver-
I'(¢)=WJhs(d)]. (All) tex functions. Similarly, we have the expansion
We now assume that the dependence oW is given as P

follows. In Eq. (A1), V remains independent o but C is I'(s|¢)= E FM(s|X,Y;$). (A17)

é
replaced byC,=Q; !, whereQ, now depends os. Then the 6(X) 3¢(Y)
derivatived/ ds can act only ord,ucs, that is, on the normal- By the antisymmetry ofy,,, two derivatives applied to
ization factor or on the exponent. In the former case, it just,(m*2) give a factor (n+2)(m+ 1), which combines with
produces a constant term; in the latter case it brings dowfhe 1/(m+2)! to 1/m! [this is the reason for the convention
(¥,Qq¥) in the integral. Using of putting the prefactor bf! in Eq. (A16)]. Thus
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~(m) . _ 1 my// ’ m ’
Y (S|X,Y,¢)—H d™X" Ym+2(S[X, Y, X") (X)),

(A18)
In particular, 7% is independent o#:
FO(s|X,Y; )= ya(s|X,Y). (A19)
Therefore,
5°T(s| ) -
H(X)6HY) Y2(s|X,Y)+T(s|X,Y; ), (A20)
with
T(slX, Vi) = 2, F™(sIX,Y; ). (A21)

It is natural to think ofy,(s|X,Y) and of I'(s|X,Y;¢) as

integral kernels of operatory, and T(s| ¢). By relation
(A9), at =0,

Gs=72(s) ! (A22)

is the full two-point function. As an equation between opera
tors, we thus have

2

5752‘“' b)= v, 1+ G (s]9)], (A23)
so the differential equation fdrf now reads
I'(s|¢p)=3 Tr(CQo) + 3 (,Qsh)
+3 Tr{GQJ1+GI(s|$)] Y} (A29)

To perform the expansion in the fields, we first use the geo-

metric series
THGOJ1+GI(s|$)] 1
=TH(GQs) — T GQGI (s|$)]

+ p;z (—1)P Tr{GQJ GI (s )P} (A25)

PHYSICAL REVIEW B63 035109

the right-hand side of EqA24), we obtain a system of equa-
tions for (™. For m=<6 the equations are

Y2 (s|¢)=13 (6,Qsp) + 3 TITSH? (5] )]
Y (s|¢) =3 T SH (s $)]
—3 TS (| ) GY (5] ¢)]
YO (sl¢)=3 TISH O (s| )]~ 3 T S(FYGH?
+72GH )]+ 5 TSP G PGy,

(A27)

4. RGDE for two- and four-point vertexes
DenoteY=(Y4, ...,Ys),

LOY)=S(Y1,Y2)Gs(Y3,Ya) + +S(Y3,Ya)Gs(Y1,Y>),
(A28)

with S; as in Eq.(A26) andG; as in Eq.(A22) and
Bs(X,Y) = 4(8|X1,X2,Y2,Y3) va(s]Y4,Y1,X3,Xy)
= ¥4(S|1X1,X3,Y2,Y3) y4(s| Y4, Y1, X2, X,)

+ 74(8[X1,X4,Y2,Y3) ¥4(8[ Y4,Y1,X5,X3).
(A29)
The differential equation for the 1PI four-point functign is

'74(S|>_():% f dY;dY; ye(s[X,Y1,Y2)S(Y2, Y1)

-3 J d*Y L(Y)B(X,Y). (A30)

From Eqs.(A18) and(Al19), the equation for the 1Pl two-
point functiony, becomes

Y2(8|X1,X2) = Qg(X1,X2) + 3 f dX3dX, Ss(X4,X3)

X ya(8X1,X2,X3,Xy). (A31)
Equations(A30) and(A31) are the first two equations in the

The first term is a constant, which corresponds to a vacuunkfinite system of RG equationdabeled bym). Note that
energy, and is not interesting for our purposes because fhey do not form a closed system becaygeenters into Eq.
drops out in all correlation functions. The term linearlin ~ (A30). This behavior continues to ath: the right-hand side
generates contractions with single lines; its lowest ordef in of the equation fory,,, containsy . ».

is quadratic ing, and therefore generates self-energy correc- A way to close the system of equations for the 1PI four-

tions. The graphical interpretation of the terms wite 2 is
also straightforward: Thpth order terni G4l (s, ¢) PG is a

linear tree withp vertices. Taking the trace wit@s forms a
loop. Thus only 1PI graphs contribute to the graphical ex
pansion forT".

We define the single-scale propagator as

S=— GSQSGS .

™ defined in Eq(A18) are homogeneous of degreein
¢; inserting Eq(A15) on the left-hand side and EGA21) on

(A26)

point functiony, and the self-energy is to drop the 1PI six-
point vertex from Eq(A30). This truncation is equivalent to
setting all 1Pl functions wittm=6 external legs to zero, so
that the connectedhon-1P) m-point functions withm=6
are given by tree graphs made of four-legged vertices, and
the approximation to the full propagator provided by the so-
lution of the differential equations. The four- and two-point
differential equations are given in terms of one-loop dia-
grams.

Note, however, that even an untruncated system of differ-
ential equations only contains one-loop terms in every equa-
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FIG. 14. The RGDE fof.

HONERKAMP, SALMHOFER, FURUKAWA, AND RICE

tion. This is so because in the differential formulation, only _ -«
one differentiated propagator appears in the equatoml :3:1:
there are no tree terms in an equation for 1P| funchio®$
course, this does not imply that only one-loop graphs appear
in the solution; the full RG produces, after all, the full Green
functions. The perturbation expansion is obtained by inte-
grating the differential equation from 0 s&|nd then iterating
the thus-obtained integral equation until only bare vertices
appear. Upon iteration, graphs with an arbitrary number of
loops are generated; if one uses the untruncated equations,
all graphs are generated. The truncated equations amount to
a summation of part of the diagrams, but these diagrams algyith
contain two-loop graphs, in particular two-loop graphs cor-
responding to the self-energy. The RG strategy does not neep (sl .
essarily aim at taking into account as many graphs as pos-
sible but to single out the important ones by their scaling
behavior.

The initial condition fory, is the bare interaction. To
renormalize the Fermi surface correctly, one also needs tgnd
take into account a Fermi-surface countertésme Refs. 38
and 39. In the bulk of this paper, we neglect the self-energy
correction. TherG,=C, andS,=Cy, and no Fermi-surface Porfsly, -
counterterm is needed. However, in the general discussion
given in this appendix, we keep the self-energy to give the

f(S|&1.€2.63.60)=DPpp(S|E1.5.€3.60)
+Dpy(s[é1,62,€3.€4)
—CDph(S|511521§4=§3)1

(A32)
--:54):% f dni, ... .dnaL(72, 71,73, 74)

XF(s|€1,€2,m2,m3)F(S| 4, 71,€3,64)
(A33)

754):_j dni, ..o dnaL(71, 72,13, 74)

X (8| nq,é2,63,m1)F(S|€1,m2,€4),

more general formulas. Equations for the full Fermi surface (A34)
gﬁ\évntghiﬁ; dporonpo;grst(ll;:rzpc;eu;tier:teRrg;'sAft())L?t use a dynamlcallyand where
L(71, - 74) =S 71, 172)Gs( 73, 72)
5. Consequences of symmetries +Gg(171,72)Ss(73,1m4).  (A35)

The derivation of Eqs(A30) and (A31) did not require  There is no in @, because there are twice as many terms
any symmetries, so these equations are also valid when sy the sum over intermediate charge indicgsn the @, as
metries are broken. In our systems, this means that they alsg ® . The function® ,, is antisymmetric under exchange
hold in the presence of a superconducting gap or magnetigf (¢, ,£,) and (¢3,£,), becauséd has these properties. The
ordering or translational symmetry breaking. In two dimen-function @, is not, but the difference appearing in Eq.
sions, continuous symmetry breaking is impossible at anyA32) is antisymmetric.
positive temperature by the Mermin-Wagner theorem. A Equation(A32) has the graphical representation shown in
noninvariance of the effective action leads immediately toFig. 14. The internal lines in these graphs correspond to
long-range order, and hence mean-field-type results. In ordefull” propagators G4, and to single scale propagators
to compare competing instabilities, we therefore first assum&, respectively. The inverse ofGg is g(S|é1,&)
that all continuous symmetries of the action remain unbro= y,[s|(£1,+),(£2,—)], and satisfies
ken. This leads to further simplifications in the differential
equations, which we now successively discuss.

925/ €1,62) = Qo(£1.£2)

a. Charge invariance

Recalling thatX=(&,c) where¢ consists of space, time,
and spin indices, and where==* is the charge index,
charge invariance implies thaSJ(¢,c),(¢',c’)] and
G4 (&,0),(¢',c')] are nonzero only ifc#c’, and that
va(s|X1, ... X4)#0 only if two of the charge indices are
and two are —. Because vy, is antisymmetric in all
arguments, it is then determined by(s|é;, ... &)
:‘}/4[S|(§li+)!(§21+)1(§31_)1(§4!_)]' Also, f inherits
the antisymmetry under exchange &fand ¢, and that un-
der exchange of; andé,.

Equation(A30) gives the following equation fof:

- j déydé, S(é4,83)F(8]é1,63,64.82).
(A36)

b. Spin rotation invariance

We now derive the consequences of(3Unvariance.

The initial interaction of important many-fermion models
has the SIR) spin invariance. For instance, the initial Hub-
bard interaction, and interactions of the foi8pS,, where
S,= (X)(o/2)(x) is the spin ak, have this property.

Spin rotation invariance restricts the formfadis follows.

If we define a spin tensor
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F(S|X1, P !(X4!O-4):|;

(A37)

’X4)0'l ...0'4:f[s|(xlio-1)! s

then

F(s[Xq, ... Xa)=—@(S[X1,X2,X3,X4) D

(A38)
5 =0y.0.0
4

0'10'4 0'20'3'

+¢(S|Xl 1X2 1X3 1X4)E1
where Do, =085,0,0 andE, .
The equatiorE(,Z,,m%: and the antisymme-

try of f under &,,07) < (X,,0,) imply that

B(S[X1,X2,X3,X4) = @(S|X2,X1,X3,Xs)

0'20'4

0'10'20'30'4

=(P(S|X11X21X41X3)' (A39)
Exchanging twice, we havisimilarly to Eq.(A39)]
(P(S|X21X11X41X3):(P(S|X11X21X31X4)' (A4O)

However there is no symmetry @f under exchange of only
one pair of coordinates.
The Fierz identity

3
Z Nl 0) ap= 280,05, 8,00 (A4L)

implies that interactions of the fori§,S, can be written in
the form of Eq.(A38). Using Eq.(A41), one can also recon-

struct the four-fermion interaction in the for8S+7p,

PHYSICAL REVIEW B63 035109

L(Y1,Y2,Y3:Y4) =S(Y1,Y2)G(Y3,Ya) + G(Y1,Y2) S(Y3.Ya)-

Similarly, the equation for the full inverse two-point func-
tion is
Y2(8[X1,%2) = Qs(X1,X2) = Zg(X1,X2) (A46)

with a scale-dependent self-enerdy that satisfies

Es(xlyxz):j dxg dXg S(X4,X3)[ —2¢(S[X1,X3,X2,X4)

+(P(S|X11X31X41X2)]- (A47)

The initial condition for3 s depends on how the Fermi sur-
face is renormalized.

The graphical interpretation of the equations feris
given in the bulk of the paper. The symmefigq. (A4)]
implies that

@(S|X1,X2,X3,X4) = @0(S|RX4,RX%3,R%,R¥;), (A48)

whereR(7,x)=(— 7,x). Similarly, the self-energy satisfies

Es(xl,XZ):ES(RX]_,RXZ). (A49)

c. Translation invariance

If translation invariance is unbroken, we can take the Fou-
rier transform. In contrast to charge and spin invariance,

whereS andp transform like spin densities and charge den-translation invariance is only discrete in our lattice model,

sities as concerns the spin dependence. For a gepe@l
andp will involve fields at different space-time points.

The renormalization group differential equatiGRGDE)
for ¢ takes the form

s)+7*’h(s)+

h( S) ’ (A42)

o(s)="1,

where, usingk=(X1,X5,X3,X4),

%p(sb_():_J' dyl! LR 1dy4L(ylvy31y21y4)

X @(S[X1,X2,Y1,Y2) @(S|Y3,Y4.,X3,Xg),
(A43)

Tgh(s|x):_J' dylv CEE !dy4L(ylvy21y41y3)

X[ =2¢(S[X2,Y2.X4,Y4) @(S|X1,Y3,X3,Y1)
+¢(S|X2,Y2,X4,Y4) ©(S|X1,Y3,Y1.,X3)

X (P(S|X21y2!y41X4)(P(S|X11y31X3!yl)]y

(A44)
—f dyq, ...

X @(SX2,Y3,Y2,X3) ©(S|X1,Y4,Y1.Xa),
(A45)

Ton(sx)= dya(y1.Y3.Y2.Y4)

and

and thus may also be broken at positive temperature in two
dimensions. Thus specializing to unbroken translation invari-
ance is a further assumption. It can be relaxed if one assumes
that invariance under a sufficiently large subgroup, e.g., that
of translations of a sublattice, still holds. The corresponding
Fourier transform is then defined on a smaller momentum
space.

We take the convention that momenta corresponding to
are counted outgoing and those correspondingytare
counted as incoming. Then translation invariance implies
that (s|p1,p2,P3,P4) = o(py+ P2~ pS_ApA)Vs(plva \P3),
and the equation fov readsVs= Ty, + 75+ with the
particle-particle term

Acr
ph»

Top(P1,P2,P3) = _f dkL_(p1+p2,K)Vs(p1,p2,K)

XV(K,p1+p2—K,p3), (A50)

the direct particle-hole term
?gh( pl ’ p2 ’ p3)

_f dk £, (p1—pPs.K)

X[_sz(plak1p3)vs(k+ pl_
+ V(P K k+py—

p31p21k)
pB)VS(k+ pl_ p31p2!k)

+Vs(p1,K,p3)Vs(P2,k+p1—ps,k)],  (A51)
and the crossed particle-hole term
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ATE'h(pl.pz,ps)= —f dk L, (p2—p3,k)

XVS(pllk+ p2_ p31k)VS(k!p2 1p3)'
(A52)

Here

L£.(9,0) =8 G(ax k) +S(q=k) G(K).
The symmetnfEq. (A48)] implies that

(A53)

Vs(P1,P2,P3)=Vs(R(p1+p2—P3),Rps,Rpy),
(A54)

PHYSICAL REVIEW B63 035109

YIs|X;(y1,01),(Y2,02)]

=1d8IX;(Y1,01,€),(y2,02,€)]  (A57)
and
YR TsIXi(y1,00).(Y2,0)]
=714 8X;(Y1,01,€),(Y2,02,—€)]. (A58)

By fermionic antisymmetry, y5 [s|x;(y1,01),(Y2,02)]

= — B [8|x:(¥2.07).(y1,01)] and similarly fory95~, so

it suffices to consider one of the quantities. We now also
assume spin rotation invariance; then the normal charge
(~5(,1,,2) and spin~(7-3,)01(,2 susceptibility (75 the Pauli
matrix) do not couple in the flow. The resulting equations are

with R(w,p)=(— ,p). oo
Y [sX:(y1,01),(Y2,02)]
6. Flow of the susceptibilities

As discussed in the text, the susceptibilities are ob- :f duy, ... dus L(ug,Uz,Us,Us)

tained by coupling external boson fields to the bilinears op—
in the fermions that represent charge, spin, Cooper pair, Xy [sIx;(uy,00),(uz,07)]
and other local densities, and by calculating the corres-

ponding RG flow for these functions. Since the calcu- ?<<p(slu2,u4,y1,y2)

lations are a straightforward adaptation of the onedor the Cooper pair vertex

presented apove, we only state the ma_in points. If the exter- ;)’12,chargés|X;y1ay2)

nal field is called a, the expansion ofI's now
reads ['g(a, ¢) =2 n=07™"(s|a, ¢), with y(™"(s[a,¢)

= (Lmin?) fd™X d"Y yma(s,X,Y)a"(X) #"(Y). The RGDE

is now derived in the same way as above. Becauseathe
fields are external fields only, the equations for the

(A59)

=f duq, ..., dusReL(uq,us,usz,uy)

X Y12,charghS|X; U, U1)[2¢(S]y1,Uz,Y2,U3)

a-independent partg,,, remain unchanged, so thg,= v, — @(S|y1,Us,U3,Y5)] (A60)
for all n, with vy, given as above. Thus the flow for the
susceptibilities is driven by the flow for the coupling func- for the charge vertex, and
::825; it takes the form of a linear integro-differential equa- :)’12,spir{3|X;yluy2)
Since onea field couples to a fermionic bilinear, the trun-
cation consistent with dropping the 1PI six-point function is =f duy, ...,dugReL(ug,us,us,uy)
to leave out allm and n with 2m+n=6. This gives the
equatlons X 712,spir(S|X;u4 vul)(p(s|ylau21u3 1y2) (A61)

Y1a(8IX;Y1,Y,) =3 J d*ZL(Zy, ..., Zy)v1AS|X,Z5,2Z5) then obtained from EqA56).

X v04(S|Z4,21;Y1,Y2) (A55) APPENDIX B: CALCULATION OF THE

UNIFORM SUSCEPTIBILITIES
and

for the spin vertex. The corresponding susceptibilities are

'7’20(S|X1:x2):%J' d'ZL(Zy, ... .Zy)

X y1(8|1X1,22,23) 18| X2:24,Z),
(A56)

with L given by Eq.(A28). The initial condition ony;, at

The uniform @—0) susceptibilities describing the re-
sponse to external charges and magnetic fields cannot be
calculated successively by lowering the IR cutoff, as they
only involve degrees of freedom very close to the (&
width of this region is given by the temperatur&herefore,
we determine these responses for the effective theory below
the cutoff A with the interactions at this scale as the effective
interactions renormalizing the coupling to the external fields

s=0 determines which susceptibility is considered; in par-via vertex corrections. More precisely, we calculate the ef-

ticular, it determi_nes the symmetry of th_e superconductinqective couplingsh; (k) (i=c for charge and=s for spin) of
order parameter in the case of the coupling to Cooper pairguasiparticles on the FS, occurring in the Hamiltonian as
In the presence of charge invariance, we obtain separate
equations for the particle-particle and particle-hole vertices, j dk h (k)(ct P )
defined as (2m)2 s kT = kL
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L Lo

FIG. 15. Diagrammatic expression for the renormalization of the ~ ®
couplingsh¢s(k) to external charge or magnetic fields. For uniform
external fields, we takg—0. 15 ° S ; :
-0.04
_ _ 0 1 0.5 1 15
Denoting the bare coupling d,,, we can express the ef- k/a Alt

fective coupling as
dK’ FIG. 16a <Le>ft: (i)ngisal (open cichleﬁ arfwld fineftl (rs]quarﬁ}s FS for
.0 , , . t’=0.% and(n)~0.88 per site. Right: flow of the self-energy on
hi(k)=h; (k)+f (2 )2h'(k)®(k WVilkkD, i=cs, the FS(solid line: point closest to the saddle points; dotted line:
(B1) point closest to BZ diagongrlThe flow was stopped when the larg-
where V(k,k")=[ =V, (k,k’ k") +2V,(k,k',k)] for the est coupling reached the bandwidth 8
charge and/y(k,k’")=—V, (k,k’,k") for the spin coupling.
Diagrammatically this equation is shown in Fig. 15. The ker-which have the strongest repulsive scatterings with momen-
nel ®(k) is w=0; thenq—0 is the limit of the Matsubara tum transfer close tdqw,7) develop positive self-energies,
sum of the product of two propagators, and is given by theand are therefore shifted inward during the RG flow. The
derivative of the Fermi function: reason for this becomes clear if one considers a model inter-
action which is sharply peaked and repulsiveQat (7, ).
(k)= Nele(k+a)]—nele(k)] _dne _ For the self-energ¥. (k) of a particle with wave vectdk on
joo elkta)—ek)] dE_. the FS, one primarily has to examine the Hartree téime
(B2) first term in Fig. 4, which is the main contribution for the
typical divergence of the couplings. This diagram contains a
propagator with a differentiated cutoff function, and gives a

The uniform susceptibilities are then given as

B 0 positive contribution if the state+ Q is occupied, and a zero
K= _j (2m)? he(k) @ (k)he(k), (B3) contribution otherwise. After subtraction of the FS average
&k of 2 (kg) (or more precisely a constant which keeps the par-
_ 0 ticle number fixed, this yields a positive self-energy(k)
x<(0)= j (2)? hs(k) P (k)hg(k). (B4) >0 for particles outside the U®ecause then in general the

In the absence of an instability the coupling functions forSt&tek+Q is occupied for a FS with the densities atid
zero momentum transfev, (k,k’,k)— %V, (k,k’,k’) and values we are interested)iand a negative Shlﬁ:(.k)<0 for
—1v,(kk’,k') would converge to the Landau interaction states inside the US. In our case th_e interaction onlylhas a
functlonsfs(k k') and f,(k,k'), respectively, and the ex- broad peak aroundm,); therefore, in general, FS points
pressions for the susceptibilities obtained with the abovdSide the BZ can also be pushed inward provided they are

scheme reduce to the results from Fermi-liquid theory. Eq;prgezri]fsfe:(r:\t?ﬁebg/vgr]ésopr)gzulsioln;hc?;s;h?rhivzgg%ﬁ?e

the self-energies with fixed FS close to the instability is
shown in Fig. 1) for different positions on the FS: for the
FS points near the saddle points,(k) flows to positive

Here is a short overview of the results for the RG flow of values, while forki in the BZ diagonal it becomes negative.
a Fermi surface with a fixed particle number. In order toThe resulting movement of the FS points if we include
obtain the FS flow we calculate in every RG step the change A (k) in the dispersion, i.e., allow the FS to move, can be
of the one-loop self-energy given by the contributions in Fig.seen in Fig. 16). It reveals the tendency of the FS to be-
4. Due to the approximations made for the couplings, thiscome flat, thus remaining in the vicinity of the umklapp
self-energy is constant over a single patch, and only yields aurface*! In both cases the density is kept fixed {at)
patch-dependent shift of the Fermi surface. In order to keep=0.88 per site. Our RG results are in qualitative agreement
the particle number fixed, we adjust the chemical potentialvith calculations using a model interaction due to AF spin
after each step. Quite generally we find that the FS part§uctuation? and theFLEx approximatiorf

APPENDIX C: ONE-LOOP SELF-ENERGY
AND FERMI-SURFACE SHIFT
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