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Breakdown of the Landau-Fermi liquid in two dimensions due to umklapp scattering
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We study the renormalization-group~RG! flow of interactions in the two-dimensionalt-t8 Hubbard model
near half-filling in anN-patch representation of the whole Fermi surface. Starting from weak to intermediate
couplings the flows are to strong coupling, with different characters depending on the choice of parameters. In
a large parameter region elastic umklapp scatterings drive an instability which on parts of the Fermi surface
exhibits the key signatures of an insulating spin liquid~ISL!, as proposed by Furukawa, Rice, and Salmhofer
@Phys. Rev. Lett.81, 3195~1998!# rather than a conventional symmetry-broken state. The ISL is characterized
by both strongd-wave pairing and antiferromagnetic correlations; however, it is insulating due to the vanishing
local charge compressibility and a spin liquid because of the spin gap arising from the pairing correlations. We
find that the unusual RG flow, which we interpret in terms of an ISL, is a consequence of a Fermi surface close
to the saddle points at the Brillouin-zone boundaries which provides an intrinsic and mutually reinforcing
coupling between pairing and umklapp channels.

DOI: 10.1103/PhysRevB.63.035109 PACS number~s!: 71.10.Hf, 71.27.1a, 74.72.2h
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I. INTRODUCTION

The Landau theory is widely used to describe Fermi l
uids even when the interactions are strong, but it canno
justifieda priori. The cuprate high-Tc superconductors show
clear deviations from Landau theory in the normal state,
it has long been argued that the key to understanding th
materials lies in the breakdown of Landau theory.1 One pos-
sible cause is a symmetry-breaking instability such as m
netic order. But in experiments on underdoped cuprates,2 the
marked deviations from Landau theory, such as the onse
the spin gap and gaps in the angle-resolved photoemis
spectra near the saddle points of the Fermi surface~FS!,
appear without an obvious symmetry breaking. This rai
the question of whether a breakdown of Landau theory w
out symmetry breaking is possible. Actually one example
well known and understood, the insulating spin liquid sta
of even-leg ladder systems at half-filling, which have only
short-range magnetic order and an unbroken translati
symmetry.3–6 The keys to this behavior are elastic umkla
scattering processes across the FS which open up a ch
gap at half-filling, in addition to a spin gap caused by t
pairing instability. In this paper the role of these processe
a two-dimensional system will be carefully examined.

Renormalization-group~RG! methods allow an analytica
treatment and, although the one-loop approximation is
principle applicable only at weak coupling, we can hope
learn about possible instabilities at the strong to intermed
couplings that apply in the cuprates. Such methods have
been successfully applied to one-dimensional models.
first attempts7–9 to extend this analysis to two dimension
were made shortly after the discovery of high-temperat
superconductivity. They focused on the dominant role
scattering processes involving Fermi-surface regions in
vicinity of van Hove singularities.

Limiting the two-dimensional FS to just two patches r
duces the problem to the flow of a small number of coupl
0163-1829/2001/63~3!/035109~18!/$15.00 63 0351
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constants which can be handled analytically. For repuls
interactions there are two possible fixed points involvi
flows either to weak coupling or to strong coupling. Th
possible relevance of the latter to the cuprates was em
sized by three of the present authors.10 They showed that
under certain conditions the local charge compressibi
flowed toward zero, indicating that here too umklapp scat
ing opened up a local charge gap.

A proper treatment requires that the flow of interactio
involving the whole two-dimensional Fermi surface be i
cluded. Already several RG investigations using a discret
tion of the Fermi surface intoN patches withN&32 have
been made. Zanchi and Schulz11 studied the RG flows of a
32-patch weak coupling Hubbard model with only neare
neighbor ~NN! hopping in the kinetic-energy term. The
found a crossover between an antiferromagnetic~AF! or-
dered ground state to adx22y2-paired superconducting~SC!
ground state as the electron density was lowered away f
half-filling. Recent, more extensive, results by Halboth a
Metzner12 largely confirmed the Zanchi-Schulz results, e
tending them to the case where there is a small next-nea
neighbor~NNN! hopping as well, and investigating possib
incommensurate AF orderings. Although in both these inv
tigations umklapp scattering was included, the possibility
a fixed point behavior which would be similar to that of th
two-leg ladder was not explicitly considered.

In this paper we will use a one-loop RG method with
discretization of the FS intoN patches (N532– 96) to ex-
amine the flow of the coupling constants and susceptibili
under various starting conditions. Throughout we take a s
stantial value for the NNN hopping amplitude,t8. On the
one hand this is a realistic value for the cuprates. Secon
moves the critical density, where the saddle points are at
FS, away from half-filling so that the saddle point effects a
not mixed with nesting effects on the zone diagonals,
occurs when one setst8[0. Whent8 is substantial, one can
distinguish three density regions. The simplest is the stron
©2001 The American Physical Society09-1
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doped region where the saddle points lie above the Fe
energy, and umklapp scattering is unimportant. Here
leading instability is to d-wave SC—a form of Kohn-
Luttinger instability, in agreement with previous studies. W
call this thed-wave-dominated regime. A second relatively
straightforward density regime is the weak doping regi
close to half-filling, where the approximate nesting of F
segments near the zone diagonals dominates, and an A
stability is favored—again in agreement with previous stu
ies. We call this region theapproximate nesting regime.

The intermediate regime is most interesting and will
the focus of this work. In this case the saddle points
slightly below the Fermi energy and umklapp processes
volving these FS regions are highly relevant. We call t
density region thesaddle-point regime. As in the case of the
half-filled two-leg ladder, these umklapp processes, wh
strongly drive the AF fluctuations, act to reinforced-wave
pairing so that this channel competes strongly with the
tendencies. If one looks only at these two instabilities in
one-loop RG, it is not possible to decide which dominates
the case of the two-leg ladder the uniform~Pauli! spin sus-
ceptibility flows to zero, indicating singlet pairing in the tru
ground state—a result confirmed when bosonization meth
are used to examine the strong coupling state below the c
cal scale in the one-loop scheme. Similarly in the pres
two-dimensional case we find that an examination of
uniform spin susceptibility favors an assignment of t
strong-coupling fixed point to the class of the two-leg ladd
Further, the local charge compressibility defined for these
segments also appears to scale to zero, just as in the
filled two-leg ladder. We also note that the unusual RG fl
in both the half-filled two-leg ladder and in the saddle po
regime of the two-dimensional~2D! model can be under
stood as arising from a mutual reinforcement ofd-wave and
umklapp processes~see Sec. III!, it is therefore not restricted
to quasi-1D systems. Below~Sec. VIII! we present a detailed
examination of this saddle-point regime. We argue t
rather than the simple crossover betweend-wave SC and AF
order as the density varies, found by previous authors
interpretation in terms of the formation of an insulating sp
liquid ~ISL!, which truncates the FS segments near
saddle points, is more appropriate. Although we do not h
a theory of the strong-coupling phase, and therefore alte
tive interpretations cannot be ruled out, all information e
tracted from the one-loop flow is consistent with our pr
posal. The ISL can be viewed as a form ofd-wave RVB
~resonance valence bond! state as in the case of the two-le
ladder. Such a state represents a clear violation of the Lan
theory which does not rely upon a translational symme
breaking mechanism.

Clearly an instability that partially truncates the Fer
surface with a charge gap can be seen as a forerunner o
Mott insulating state which occurs for intermediate to stro
interactions. Since our motivation is to understand better
phase diagram of the high-Tc cuprates, we are most inte
ested in such instabilities. However, we are aware that th
are other instabilities which appear in a weak coupl
theory driven by the diverging density of states~DOS! at the
van Hove points. These are the Stoner instability to fer
03510
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magnetism and, as remarked by Halboth and Metzner,12 the
Labbé-Friedel or Pomeranchuck instability from square
rectangular symmetry. These split the saddle points when
Fermi energy lies near the van Hove singularity. This is
drawback of using a weak-coupling approach to describe
intermediate to strong coupling problem. We will simply ig
nore these DOS-related instabilities in the forward scatter
channel, and concentrate on those which we believe are m
relevant as weak-coupling signatures of the intermediate
strong coupling problem.

Finally, a defect of our one-loop approximation is that
does not lead to a description of the strong-coupling phas
the system which it predicts. There are many approache
the literature which attempt to construct a theory of suc
state that we can loosely call a lightly dopedd-wave RVB
state.1,5,13–15Our aim here is rather different, and seeks
complement these strong-coupling theories by examining
approach from the strongly overdoped regime which beha
as a conventional Landau-Fermi liquid with an instabil
toward weak-couplingd-wave superconductivity. The ques
tion we seek to address is the form of the instability in
Landau-Fermi liquid which leads to this doped RVB sta
How does it differ from a simpled-wave superconducting
instability, and how does the proximity to the Mott insulatin
state at half-filling manifest itself?

II. MODEL AND ITS FERMI SURFACE

The kinetic energy of thet-t8 Hubbard model is given by
the tight-binding dispersion

e~k!522t~coskx1cosky!14t8 coskx cosky2m ~1!

with NN hoppingt, NNN hoppingt8, and chemical potentia
m. Typically we chooset850.3t, which yields a small con-
vex curvature of the FS around~p,p! at higher fillings. An-
other essential curve is the umklapp surface~US! which con-
nects the van Hove points with straight lines. If the F
crosses this line, two particles at the FS can be scattered
one side of the US to the opposite one in an elastic proc
As we will see, these additional scattering channels then
hance the scale of the transition to a strong-coupling regi

The initial interaction is taken to be a simple on-site r
pulsion

HU5U(
x

nx,↑nx,↓ , ~2!

which is constant ink space. The effective interaction wi
develop a pronouncedk-space structure in the RG flow.

In recent years there have been several RG approach
the 2D Hubbard model. Schulz8 and Lederer, Montambaux
and Poilblanc9 studied the RG flow of the processes conne
ing the saddle points emphasizing the divergence of both
and d-wave pairing correlations. Dzyaloshinkii7 discussed
the weak coupling non-Fermi-liquid fixed point of such
model. Similar studies were made by Alvarezet al.16 and
Gonzalezet al.17 Later on, in a related formalism based o
parquet equations, the authors of Ref. 18 examined the in
play between critical scales and effects of the FS curva
9-2
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BREAKDOWN OF THE LANDAU-FERMI LIQUID IN TWO . . . PHYSICAL REVIEW B63 035109
for a quasi-2D model restricted to approximately flat
faces close to half-filling. Another study of nesting effec
between flat FS segments was given by Vistulo de Abreu
Doucot.19 Zanchi and Schulz11 presented the first fully two-
dimensional treatment, based on Polchinski’s RG equat
They studied the 2D Hubbard model witht850, and found
two different regimes with dominant AF in the one an
d-wave pairing correlations in the other. A more detail
analysis of the leading instabilities was given by Halboth a
Metzner12 using RG equations for Wick ordered functions20

In this paper we study the RG flow for the one-particle ir
ducible ~1PI! vertex functions for the model given by Eq
~1! and~2!, to investigate the possibility of a strong-couplin
phase which is a precursor of the Mott insulating state,
suggested by the two-patch study of Ref. 10. A brief acco
of the RG technique we use here is given in Appendix A

III. TWO-PATCH MODEL REVISITED

We start with a brief discussion of the dominant mech
nisms for the case where the FS is at the saddle points. T
are most transparent in the two-patch model,10,8,9where only
small phase-space patches around the saddle points at~p,0!
and ~0,p! are kept. Neglecting a possible frequency dep
dence, we can approximately describe the scattering
cesses within and between the two patches by four coup
constants,g1 , . . . ,g4 , depicted in Fig. 1.

The main terms which drive the one-loop RG flow
these vertices are~a! the particle-particle loopd0 with zero
total incoming momentum, which diverges like log2(L0 /L)
with decreasing energy scaleL<L0 due to the van Hove
singularity in the density of states; and~b! the particle-hole
loop with momentum transfer~p,p! denoted byd1 , which,
in the presence of a small but nonzerot8, diverges like
log(L0 /L) with a large prefactor.21 Keeping only these two
contributions, and denotingy5 log(L0 /L), so that decreasing
L means increasingy, we obtain the RG flow equations

ġ152ḋ1g1~g22g1!, ~3!

ġ25ḋ1~g2
21g3

2!. ~4!

ġ3522ḋ0g3g412ḋ1g3~2g22g1!, ~5!

FIG. 1. The relevant scattering processes in the two-pa
model. The gray semicircles denote the phase-space patches a
the saddle points. The interactions are assumed to be spin inde
dent and constant over the patches. In this notation the spins o
initial and final particles connected by an arrow have to be
same.
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ġ452ḋ0~g3
21g4

2!. ~6!

where ġi5]gi /]y, and ḋ0 ,ḋ1>0. It is useful to briefly re-
view the analysis of the two-patch model of Ref. 10. T
second term on the right-hand side of Eq.~5! enhances the
basin of attraction of the strong-coupling fixed point. Starti
from the onsite repulsiong15g25g35g45U given by Eq.
~2!, the coupling constants diverge at a scaleLc : g3→
1`, g4→2`, andg2→1`; g1 diverges more slowly. Ini-
tially there is a competition between the two terms on
right-hand side of Eq.~5!, but the right-hand side of Eq.~6!
is always negative, and thus decreasesg4 . Eventually,g4
becomes negative; then both terms in Eq.~5! have the same
sign, which accelerates the flow to strong coupling.

For incoming and outgoing particles directly at the sad
pointsg3 processes correspond to both Cooper and umkl
processes. However, away from the saddle points we
distinguish between Cooper processes with approxima
zero total incoming momentum driven through the partic
particle channel and umklapp processes with momen
transfer '~p,p! driven by the corresponding particle-ho
channel. From this point of view, Eq.~5! states that for in-
coming and outgoing wave vectors near the saddle points
umklapp and thedx22y2-wave Cooper channel are couple
and mutually reinforce each other through theg3 and g4
processes which belong to both channels, thereby increa
the critical scaleLc . In fact the divergence of the umklap
scatterings processes implies a divergence of thed-wave
couplings, and vice versa.

An analysis of the susceptibilities shows a competiti
between divergences in thedx22y2 pairing and the AF chan-
nel controlled by the flow of the combinationsg32g4 and
g21g3 , respectively. In this case of competing singulariti
it is not clear cut which of them dominates. Furukawa, Ri
and Salmhofer proposed to resolve the issue by examin
the uniform spin susceptibility and the charge compressi
ity. For not-too-weak values ofU/t and t8/t they found that
both are driven to zero by the pairing and umklapp p
cesses, respectively. On this basis they assigned the
point to be in the same class as that of the repulsive two
ladder at half-filling. In that system, the one-loop RG al
exhibits competing and equally strong divergences in
d-wave pairing and AF channels, but the ground state
known to be an insulating spin liquid from a bosonizati
treatment of the strong-coupling regime.4,5 This form of
ground state is already signaled in the RG calculation by
suppression toward zero in the uniform spin susceptibi
and the charge compressibility. The ISL in the two-leg la
der at half-filling is a form of RVB state with an approxima
d-wave pairing symmetry, but without any explicit transl
tional or gauge symmetry breaking.

IV. TECHNIQUE

For theN-patch analysis we use a Wilson RG flow for 1
vertex functions. The full RG flow associates with every e
ergy scaleL below the bandwidthL0 an effective interaction
for the particles with energiese(k) below L, in a way that
the generating functional for the Green functions rema
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HONERKAMP, SALMHOFER, FURUKAWA, AND RICE PHYSICAL REVIEW B63 035109
independent of the scaleL. Because of this exact invarianc
the effective interaction is no longer just quartic but an in
nite power series in the fields. The full RG can be expres
as an infinite hierarchy of differential equations for the 1
m-point vertex functions. Here we study a truncation of th
infinite system in which only the two- and four-point fun
tions are kept. A derivation of the full flow equations
given in Appendix A. Here we just state the results, wh
are rather simple. Because our model is two dimensio
continuous symmetries cannot be broken by long-range o
at any positive temperature. Therefore, the effective ac
must be gauge invariant and invariant under spin rotatio
hence the four-point function is determined by the funct
VL(v1 ,k1 ,v2 ,k2 ,v3 ,k3) which describes the scattering o
two incoming particles (v1 ,k1 ,s1) and (v2 ,k2 ,s2) into
two outgoing particles (v3 ,k3 ,s3) and (v4 ,k4 ,s4), where
s15s3 , s25s4 , andv45v11v22v3 , andk4 is given by
momentum conservation ask45k11k22k3 modulo
reciprocal-lattice vectors. Because the spin of particle 1~first
incoming! is the same as that of particle 3~first outgoing!,
and similarly for particles 2 and 4, we may draw the vert
corresponding toVL as in Fig. 2, where the solid fermio
lines going through at the top and bottom of the vertex in
cate that spin is conserved along these lines.

The contributions to the right hand side ofV̇L

5(]/]L)VL can then be represented graphically as in Fig
In these graphs, one of the internal lines represents a
electron propagator

GL~k,ivn!5
xL~k!

ivn2e~k!2xL~k!SL~k,ivn!
, ~7!

where xL(k)512$exp@(ueu2L)/(0.05L)#11%21 cuts off
energies belowL. The other line stands for a single-sca
propagator

SL~k,ivn!5
ẋL~k!@ ivn2e~k!#

@ ivn2e~k!2xL~k!SL~k,ivn!#2 . ~8!

Because it contains the derivative of the cutoff function w
respect toL, SL is nonzero only at energies close toL. Since
there are two possibilities for assigningGL and SL to the
internal lines, each graph stands for two contributions. Ap
from that the usual diagrammatic rules hold: the graph w
the fermion loop receives a factor 2 from the spin trace an
minus sign.

The contributions to the self-energy have a graphical r
resentation shown in Fig. 4. Here the internal line stands
a single-scale propagatorSL .

FIG. 2. The vertex corresponding toVL(k1 ,k2 ,k3).
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In the main part of this paper we will neglect self-ener
corrections to the propagator. ThenG( ivn ,k)5xL(k)@ ivn
2e(k)#21, and the single scale propagator is simplySL

5]GL /]L. In Appendix A we show some results for a flo
with the real part of the self-energy on the FS taken in
account. A more complete study including self-energy
fects, in particular the effects of the wave-function renorm
ization, is underway.

We want to emphasize that our RG method does not
on any form of scale invariance or scalingAnsätze. The RG
we set up in Appendix A provides an exact rewriting of t
generating functional in terms of the effective action. T
approximations we make in the present paper are~i! we dis-
card the 1PIm-point functions withm>6, ~ii ! we project the
four-point function to the Fermi surface and frequency ze
~see Sec. VI!, and~iii ! we neglect the self-energy correction
We discussed the justification of~i! and~ii ! in detail in Ref.
22. The justification for~ii ! is a standard RG argument, an
the full momentum dependence can in principle be rec
structed by calculating susceptibilities and related quantit
The justification of~i! is less trivial, but possible for curved
Fermi surfaces and in a specific scale range.22 ~iii ! is an
approximation on which we shall improve in a further pap

In systems with a Cooper instability, the flow alway
tends toward strong coupling at a sufficiently low scale. T
happens even in repulsive systems because of the K
Luttinger effect. However, in repulsive systems, and initia
weakly coupled systems, the flow stays in the weak-coup

FIG. 3. The contributions to the right-hand side of the RGD
~a! The particle-particle term.~b! The crossed particle-hole term.~c!
The direct particle-hole terms. The first of these three graphs
ceives a factor22 because of the fermion loop.

FIG. 4. The contributions to the self-energy.
9-4
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BREAKDOWN OF THE LANDAU-FERMI LIQUID IN TWO . . . PHYSICAL REVIEW B63 035109
regime down to a very low scale which may never
reached because the temperature, which acts as a natur
frared cutoff, stops the flow before that~in the usual Kohn-
Luttinger effect, this scale is at most of ordere2const/U2

; see
Refs. 23 and 24!. In this case the system stays weak
coupled above a certain temperature, and components o
Fermi surface limits of the four-point function can be ide
tified with the Landau interaction functionf (k,k8).25,26

When the four-point function flows to strong couplin
the critical scaleLc where the coupling constants diverg
gives an estimate for the scale where the quasiparticles
be strongly modified or entirely destroyed~e.g., for the su-
perconducting transition, a gap opens up! ~see Fig. 5!. The
general picture we find in this model is that the flow alwa
tends to strong coupling, but that for fillings where umkla
scattering is favored by the geometry of the Fermi surfa
the critical scale is strongly enhanced.

We note that in our RG method the temperatureT is re-
tained as a physical parameter, and that the RG procedu
decreasing the scaleL is a priori not related to changing th
temperature. The four-point vertex at scaleL is the effective
interaction for the modes with energy belowL, and at the
same time it is the four-point function with infrared cutoffL.
For L!T, one should use the second interpretation. N
that because we do not impose a scale-dependent cuto
the frequencies, the flow does not stop exactly at the p
when L decreases below the smallest fermionic Matsub
frequency,v15pT.

V. NUMERICAL IMPLEMENTATION

Next we describe the practical implementation of this R
scheme for the 2D Hubbard model. First we define a ph
space discretization following Zanchi and Schulz.11 The idea
is to discretize the Brillouin zone~BZ! into N segments cen
tered aroundN lines. Each line with indexkP$1, . . . ,N%
starts from the origin~G point! in a certain angular direction
and from theY point ~6p,6p!, so that the lines meet at th

FIG. 5. The Brillouin zone, Fermi, and umklapp surfaces, a
the lines in the patch centers forN532.
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umklapp surface. All phase-space integrations with meas
d2k/(2p)2 are performed approximately as sums over
lines and integrations over the radial direction. These im
Jacobians for polar coordinates with respect to theG or Y
point, respectively. The interaction vertexVL(k1 ,k2 ,k3) de-
pends on two incoming wave vectorsk1 and k2 and one
outgoing wave vectork3 lying in segmentsk1 , k2 , andk3,
respectively~here we have already projected the frequenc
to zero!. The fourth wave vectork4 is fixed by momentum
conservation. In a next approximation we select a large
finite number of coupling constants representative for cer
regions in the space spanned byk1 , k2 , and k3 .27 We
choose to take these wave vectors as the crossing poin
the linesk1 , k2 , andk3 with the Fermi surface, i.e.,kF(k1),
kF(k2), and kF(k3), which lie at the centers of the corre
sponding FS patches. By Taylor expansion and power co
ing arguments,22 the leading part of the flow is given by th
coupling functions on the Fermi surface and at zero f
quency. Thus we approximate28 the functionVL(k1 ,k2 ,k3)
by VL@kF(k1),kF(k2),kF(k3)#5VL(k1 ,k2 ,k3) for all wave
vectorsk i in the same patchki , wherei 51, 2, and 3.

VI. PARAMETERS

The initial condition for the flow of the couplings is give
by Hubbard interactionsVL0

(k1 ,k2 ,k3)5U. For most re-

sults discussed here, we takeU53t. We choose this rathe
strong initial interaction because we are interested in
breakdown of the Landau-Fermi liquid due to interaction
fects, and do not aim at a classification of possible we
coupling instabilities. For all results shown here,t850.3t,
which is in the range of the values reported for the cupra

We will vary mainly the temperatureT and the particle
density near and below half-filling via the chemical potent
m. We considered values betweenm520.7t and m
521.35t which correspond to fillings between'99%
and '62% of half-filling. The van Hove filling, where the
FS exactly touches the saddle points, is given bym524t8
521.2t.

For a givenm the dependence of the average parti
number onT is weak, and irrelevant for the results. Bo
parametersm andT change the effective phase space for t
various scattering processes. In particular, increased t
perature provides a larger phase space for particle-hole
cesses with momentum transfer~p,p!, which play an impor-
tant role. This is similar to the quasi-1D organic conducto
where above a certain temperature the band curvature du
interchain hopping becomes irrelevant, and 1D nesting
fects determine the behavior of the system.29

We integrate the RG equations with decreasing ene
scaleL starting from an initial scaleL0'4t. Typically, we
observe a flow to strong coupling where at least some c
pling constants take large positive or negative values.
define the critical scaleLc as the scale where the first cou
pling reaches a high absolute value like 50t. Further we in-
troduce a critical temperatureTc above whichLc50 ~see
Fig. 13!.

The analysis of the divergence of the coupling functio
yields information on the true strong-coupling state as

d

9-5
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FIG. 6. Fermi surfaces and the 32 points f
the three different chemical potentials discuss
in the text.^n& denotes the average particle num
ber per site, i.e.,̂ n&51 corresponds to half-
filling. The dots on the FS~solid line! indicate the
patch centers, with patch indices given by th
numbers. The dashed line denotes the umkla
surface~US!.
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interaction processes growing most strongly in the RG fl
represent the dominant terms in the Hamiltonian which
termines the low-energy physics. We choose to analyze
flow to strong coupling at scaleLW where the coupling func-
tions just exceed the order of the bare bandwidth, i.e.
VLW ,max'(8–12)t. At these scales, and for typical temper
tures, the coupling functions have already developed a
nounced k-space structure and the dominant interact
terms at that scale will certainly be important for the stron
coupling state. On the other hand, the FS shift due to o
loop self-energy corrections is still small~see Appendix C!,
such that it does not qualitatively change the flow abo
LW . Similarly the scattering rate for particles at the FS~ob-
tained from an approximative RG calculation of the two-lo
self-energy30! remains smaller thanLW . Note, however, that
at LW and for initial interactionU53t the flow has not
reached an asymptotic form, and different classes of c
pling constants would evolve differently if we continued t
flow belowLW ~where our method breaks down!. Therefore,
the analysis of the flow to strong coupling remains qual
tive, and does not provide definitive conclusions about
true strong-coupling state.

VII. COUPLINGS AND SUSCEPTIBILITIES

We will discuss the results of our numerical RG sche
by analyzing the interaction on the FS and susceptibilities
the flow to strong coupling we will identify the most re
evant, i.e., divergent couplings. In the absence of scale
variance we cannot expect to obtain simple expressions
the form of their divergence; therefore, we use their num
cal values as a function of the scale to make a qualita
comparison.

Along with the interactions we calculate thed-wave pair-
ing susceptibilityxdw for zero pair momentum, and the sp
susceptibilityxs(q) aroundq5(p,p). The method we use
is again described in Appendix A. Typically bothxdw and
xs(q) grow strongly as the interactions flow to strong co
pling. In general the ratio of these susceptibilities is a co
plicated, nonmonotonic, function of the scale. Therefore,
do not attempt to draw sharp boundaries between diffe
cases.

As discussed earlier in Sec. I, it is often useful also
analyze the coupling to uniform external charge and s
fields given by

Hc/s5E dk

~2p!2 hc/s~k!~c
kW ,↑
†

ckW ,↑6c
kW ,↓
†

ckW ,↓!,
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where the subscriptsc and s stand for charge and spin, re
spectively. Thek-independent bare couplingshc/s

0 develop a
k dependence due to vertex renormalizations dependingk
leading to dressed vertex functionshc/s(k). We cannot di-
rectly incorporate these renormalizations of the uniform
ternal fields into our present RG scheme with an infra
~IR! cutoff, as they involve only excitations in a low-energ
region of width T around the FS. Therefore, we calcula
hc/s(k) using the random-phase approximations~RPA! for
the effective theory below the IR cutoffL. This means that
we use the scale-dependent interactionsVL(k1 ,k2 ,k3) in the
one-loop vertex corrections for the external couplings, wh
then can be summed up and solved forhc/s(k,L) ~see Ap-
pendix B!. Note, however, that due to the use of the ren
malized interactions this scheme goes beyond the nor
RPA. Although it implies a further approximation, it gives
qualitatively correct description of the uniform susceptibi
ties in one-dimensional examples, in agreement w
bosonization.30

VIII. RESULTS: THREE REGIMES

In the density range we examined, we always found
flow toward strong coupling at sufficiently low temperatur
This gives a clear indication that the low-energy sing
particle excitations of the noninteracting Hamiltonian will b
strongly modified or entirely destroyed by the interaction

The character of the flow to strong coupling varies co
tinuously with density and temperature. However, we c
identify three qualitatively different regimes, which we wi
call the d-wave-dominated regime, the saddle-point regime,
and theapproximate nesting regime, as illustrated in Fig. 13.
For reasons mentioned above, our analysis does not allo
to draw sharp boundaries between the different regio
Rather, the character of the strong-coupling flow change
a crossoverlike fashion as one moves from one region
the other.

In order to show the main features, we examine the fl
for three densities typical for each regime. The Fermi s
faces and locations of the patch centers that label our c
pling constants are displayed in Fig. 6. In Figs. 7 and 8
show snapshots of the couplings at the scale where the
est couplings have exceeded the order of the bandwidth
plot the dependence of the couplingVL(k1 ,k2 ,k3) with the
first outgoing wave vectork3 fixed at point 1 closest to the
saddle points or at point 3 closer to the BZ diagonal. In F
9 we compare the flow of several relevant couplings a
function the RG scale, and in Fig. 10 we plot the behavior
9-6
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FIG. 7. ~Color! Snapshot of the couplingsVL(k1 ,k2 ,k3) with the first outgoing wave vectork3 fixed at point 1~see Fig. 6! when the
largest couplings have exceeded the order of the bandwidth for the three different choices of chemical potential and temperature
in the text. The colorbars indicate the values of the couplings.

FIG. 8. ~Color! Snapshot of the couplingsVL(k1 ,k2 ,k3) with the first outgoing wave vectork3 fixed at point 3~see Fig. 6! when the
largest couplings have exceeded the order of the bandwidth for the three different choices of chemical potential and temperature
in the text. The colorbars indicate the values of the couplings. Fork2522, k22k3'(p,p) for k2 andk3 close to the US.

FIG. 9. ~Color! Flow of the couplings for 32-patch system:d-wave Cooper coupling~blue dashed lines!, g3 umklapp coupling@e.g.,
VL(24,24,1) andVL(23,23,2); solid red lines#, g2 forward coupling@e.g.,VL(24,1,24) andVL(23,2,23); black dashed dotted lines#, andg4

umklapp couplings@e.g.,VL(16,17,1); solid violet lines# and umklapp scatteringsVL(21,21,4) in the BZ diagonal~green! for the three
different choices of chemical potential and temperature discussed in the text.
035109-7
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HONERKAMP, SALMHOFER, FURUKAWA, AND RICE PHYSICAL REVIEW B63 035109
the d-wave pairing susceptibilityxdw and the AF suscepti
bility xs(p,p). In the following we describe the three re
gimes in detail.

(a) The d-wave-dominated regime: At band fillings
around the van Hove fillingm521.2t and low temperature
T50.01t ~see the right plots in Figs. 7, 8, and 9!, the diver-
gence of the coupling functions only occurs at a low sca
and thed-wave pair scatterings are by far the most stron
divergent couplings. In Fig. 7, they appear as red and b
features along the lines with patch numbersuk12k2u5N/2
~on these lines, the incoming pair momentum is zero!. Other
couplings like umklapp and forward scatterings~the red, vio-
let, and black lines in Fig. 9!, grow too, but are much smalle
than the Cooper couplings. This is the typical flow to stro
coupling in the lightly shaded regions in Fig. 13. At lo
temperatures this also extends to densities slightly hig
than the van Hove density.

A closer analysis shows that thed-wave component in the
pair scattering is generated at intermediate scales by
particle-hole processes with momentum transfer~p,p! corre-
sponding to the second term in Eq.~5!. This type of flow to
strong coupling can be considered as a Kohn-Luttinger-t
Cooper instability, where the repulsive scattering in t
particle-hole between the saddle points first generates a
able initial value for thed-wave pair scattering, and is the
gradually cut off at lower scales because the phase spac
the ~p,p! particle-hole processes decreases due to the s
of the FS. The dominance of thed-wave Cooper scattering i
also seen in the comparison of the susceptibilities:
d-wave pairing susceptibilityxdw grows much faster than th
AF susceptibilityxs(q) ~see Fig. 10!.

The uniform charge susceptibilityk is somewhat sup-
pressed at intermediate scales, but very close to the inst
ity the attractive Cooper scatterings in the forward-scatter
channel start to dominate the vertex corrections to the ch
coupling and cause a pole in the RPA-like expression@see
Eq. ~B1!# for hc(k) for k near the saddle points. This is the
the reason of a sharp upturn ink ~see Fig. 11!, as also ob-
served by Halboth and Metzner.12 At low scales the uniform
spin susceptibilityxs(0) is suppressed to zero by the stro
attractiveg4 couplings favoring singlet formation. Howeve
at higher scales, which are not related to the flow to stro
coupling, the naive Stoner criterion for ferromagnetism

FIG. 10. d-wave~heavy solid line! and AF susceptibility~heavy
dashed line! for the three different choices of chemical potential a
temperature discussed in the text. The thin lines denote the flo
the bare susceptibilities without vertex corrections. The mark at
L axis indicates the scale, where the largest coupling reachest.
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fulfilled due the large DOS around the van Hove filling. A
discussed in Sec. I we ignore this effect.

(b) The saddle-point regime: Next we increase the tem
perature toT50.04t, and choose a band filling slightly
above the van Hove filling such that the FS crosses the
~chemical potentialm52t!. Now the scale where the cou
plings reach the order of the bandwidth is strongly enhanc
In Fig. 7 we observe that next to thed-wave pair scatterings
additional features have developed. The strongly repuls
interactions, for instance (k1 ,k2)'(24,25)→(k3 ,k4)
'(1,17), correspond tog3-type umklapp scatterings whic
now diverge together with the repulsive Cooper couplin
Forward scatterings ofg2 type also show a strong increas
toward the divergence. In addition, there is a general incre
for couplings with momentum transfer~p,p! due to the en-
hanced influence of the particle-hole channel with this m
mentum transfer. On the other hand, we also obse
strongly attractive couplings emerging, e.g., (k1 ,k2)
'(16,17)→(k3 ,k4)'(1,18). These processes correspond
umklappg4 processes of pairs with both incoming particl
at the same saddle point, and outgoing particles on oppo
sides of the FS. Since these pairs have a small total mom
tum they couple into the Cooper channel, and are driven
strong attraction along with the attractive Cooper couplin
with zero pair momentum. This clearly demonstrates t
umklapp and Cooper channel are strongly coupled. For
choice of parameters the AF susceptibility grows consid
ably toward the divergence, and is as large as thed-wave
pairing susceptibility.

We call this thesaddle-point regimebecause the flow to
strong coupling is dominated by the saddle-point regio
Here, as we will show, we find the key signatures of the I
and the basic mechanism of the two-patch model descr
in Sec. III is at work: the divergingg3-type umklapp scatter-
ing between the saddle-point regions drives the forward s
tering of g2 type to strong repulsion; correspondingly th
coupling hc(k) of external charge fields to these FS par
and thus their contribution to the charge compressibilityk is
increasingly suppressed as we approach the instability. T

of
e

FIG. 11. ~a! Flow of the charge compressibilityk normalized to
their value at the initial scaleL054t for m521.2t ~dashed dotted
line!, m52t ~solid line!, andm520.8t ~dashed line!. ~b! Flow of
the uniform spin susceptibilities normalized to their initial valu
for m52t ~solid line!, m520.8t ~dashed line!, m520.6t
~dashed-dotted line!, and m520.4t ~dotted line!. For increasing
electron density,xs(0,L)/xs(0,L0) is less suppressed at low scale
For all curves,T50.04t.
9-8
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BREAKDOWN OF THE LANDAU-FERMI LIQUID IN TWO . . . PHYSICAL REVIEW B63 035109
can be seen in Figs. 11 and 12. In contrast to the FS nea
saddle-point regions, which tends toward compressible,
insulating behavior, fork in the BZ diagonal the charge cou
pling hc(k) is more or less unchanged. Therefore, t
is consistent with a picture where at wave vectors n
~p/2,p/2! gapless charge excitations remain, while near
saddle points the FS is truncated. We use this particular
havior of thek-space local charge compressibility to defi
the saddle-point regime~darker gray regions in Fig. 13!:
Here the charge couplings around the saddle points cont
to go to zero if we integrate the flow far out of the perturb
tive range without any indication of the upturn ink that we

FIG. 12. Change of the chargehc(k) @left plot ~a!# and spin
couplingshs(k) ~b! normalized to their initial values of quasipart
cles with wave vectork on the FS as the electronic interactions flo
to strong coupling from a 96-point calculation atm52t and T
50.04t. The different lines are for points close to the saddle poi
~solid lines!, and points closer to the BZ diagonal~dashed lines!.

FIG. 13. Dependence of the flow to strong coupling on
chemical potentialm and temperatureT for t850.3t and an initial
interactionU53t. Above the thick lineLc50, and we can inte-
grate the flow down to zero scale without reaching an instabil
Below the thin broken line thed-wave pairing susceptibilityxdw

exceeds the AF susceptibilityxs(p,p) when the largest coupling
have reached the order of the bandwidth. Above this line,xs(p,p)
is larger thanxdw . The darker gray region denotes thesaddle-point
regime, where the charge coupling of the saddle point regions g
to zero and the total charge compressibility is suppressed.
lightly shaded region represents thed-wave-dominated regime. Left
to the thick vertical line, the instability is increasingly dominated
couplings away from the saddle points; we refer to this region as
approximate nesting regime.
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found in thed-wave-dominated regime. However we repe
that in the flow ofVL(k1 ,k2 ,k3) the border between saddle
point andd-wave-dominated regimes is a continuous cro
over.

The uniform spin susceptibility exhibits a similar, albe
somewhat more isotropic, suppression~see Figs. 11 and 12!
when we approach the instability in this saddle-point regim
On the one hand, this is plausible because the rapid gro
of the d-wave susceptibility signals strong singlet pairin
tendencies. On the other hand, the AF susceptibi
xs(p,p) seems to diverge as well, from which one mig
expect long-range AF order, i.e., a strong-coupling state w
nonzeroxs(0).

Here we argue that for the saddle-point regime the m
likely candidate is a spin liquid state with a strong sho
range AF correlation but a nonzero spin gap. As explain
above, the flow to strong coupling in this regime is caused
the coupling and mutual reinforcement of thed-wave pairing
and the umklapp processes between the broad saddle-
regions. Therefore, the strong-coupling state should featu
singlet pairing of thed-wave channeland a strong enhance
ment of xs(q) for q'(p,p). This is exactly what we ob-
serve forxdw andxs(q). Moreover, due to the extension o
the saddle-point regions, the peak ofxs(q) is very broad
around~p,p!, and does not sharpen significantly in the flo
Therefore, we expect a rather short AF correlation length
2–3 lattice spacings. This is in contrast to thet850 case
very close to half-filling, where we find sharp peaks inxs(q)
developing aroundq5(p,p) and where one would expec
AF long-range order atT50.

(c) The approximate nesting regime: The plots on the left
in Figs. 7, 8, and 9 show the flow for a higher filling (m
520.7t). In this case the leading interactions are umkla
couplings between the BZ regions where the FS inters
the US and in the BZ diagonals~see the red features in Fig
8, and the green lines in the left plot in Fig. 9!, while the
importance of the vicinity of the saddle points decreases.
call this theapproximate nesting regime. Here, due to the
higher band filling, the dominating FS regions are now fu
ther away from the saddle points. As a consequence,
coupling between umklapp and pairing channels decrea
and thed-wave pairing processes become less relevant. T
can best be seen from the weaker flow of the attractive C
per couplings in Fig. 9. Now the AF susceptibility clear
exceeds thed-wave pairing susceptibility~Fig. 10!. This sig-
nals increasing AF ordering tendencies which are in acc
dance with sharper~p,p! features in the interactions~see Fig.
8!, decreasing suppression ofxs(0) relative to its initial
value ~see Fig. 11!, and a sharper peak ofxs(qW ) around
~p,p!. The charge susceptibility is also suppressed as in
saddle-point regime; however, the FS regions with smal
charge couplings stay fixed to the US, and therefore m
toward the BZ diagonal if we increase the filling.

We emphasize that in our RG treatment the next-near
neighbor hoppingt8 is important for the existence of a siz
able saddle-point regime. For zero or very smallt8, the FS is
closer to the US in the BZ diagonals, and the~p,p! scattering
between the rather flat FS faces dominates even m
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HONERKAMP, SALMHOFER, FURUKAWA, AND RICE PHYSICAL REVIEW B63 035109
strongly than in our approximate nesting regime with mo
FS curvature. If we now decrease the band filling, at so
point, as pointed out in Ref. 18, and explicitly shown for t
2D case in Ref. 11, these processes are cut off at low sc
and can only serve as generators of an attractived-wave
initial condition. Witht8 very small the system crosses rath
sharply from a nesting regime into ad-wave-dominated re-
gime, without going through a saddle-point regime in b
tween. In this sense, in the saddle-point regime substa
values oft8 frustrate antiferromagnetism in a twofold wa
first they destroy the nesting to a large degree; and sec
more interestingly, they lead to a RG flow with clear sp
gap tendencies, suggesting the formation of an ISL.

Further we repeat that the unusual flow in the saddle-p
regime with the spin- and charge-gap tendencies is prima
caused by the mutual reinforcement of Cooper and umkl
processes near the saddle points. The scattering of a Co
pair from one saddle-point region to the other involves
momentum transfer'~p,p!, and can therefore be driven b
umklapp processes with the same momentum transfer,
vice versa. This coupling does not rely on the precise lo
tion or existence of the van Hove singularities. The lat
merely serve to enhance the dominance of the saddle-p
regions over the FS parts near the BZ diagonal, which
already less important due to their distance to the US.

Apart from the suppression of the total charge compre
ibility described above, there are other potential instabilit
in the forward-scattering channel. For example, as poin
out by Halboth and Metzner,12 there appears to be a stron
tendency toward Labbe´-Friedel or Pomeranchuck FS defo
mations which break the square symmetry. These are ma
rectangular deformation modes which split the degenerac
the saddle points. However, we will ignore those tendenc
for the reasons discussed above. We have checked th
moderate deformation of the FS that breaks the square s
metry and leads to saddle point splittings of the order of
critical scale;0.1t does not invalidate the results describ
above.

A difference to the two-patch analysis of Sec. III is th
the saddle-point regime, where we observe the ISL sig
tures in ourN-patch calculation, is found at positive temper
tures and densities slightly higher than the van Hove den
assumed in the two-patch analysis. The reason for the la
is that in theN-patch flow the FS parts away from the sadd
points reinforce mainly the Cooper channel. Only if the
really crosses the US is there sufficient low-energy ph
space for the umklapp processes, which then act toge
with the Cooper processes, leading to an unusual strong
pling flow. For similar reasons nonzero temperature
needed for the saddle-point regime. A moderateT smears out
the FS, and provides additional phase space for both part
particle processes with small total momentum and parti
hole processes with momentum transfer~p,p!. Especially
due to the latter there is a certain temperature range w
this thermal phase space gain outweighs the ordinary
crease of the one-loop contributions for increasingT, and the
critical scaleLc is enhanced with respect to itsT50 value.
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IX. DISCUSSION AND CONCLUSIONS

We have presented anN-patch renormalization-group
analysis of the 2D Hubbard model, and found indicatio
that the path from a Fermi-liquid-like state to the Mott ins
lating state may pass through a spin liquid phase with p
tially truncated FS and incompressible regions around
saddle points. Certainly the above results have to be in
preted with care and are only qualitative as they are an
tempt to learn about possible strong-coupling states from
trapolating weak-coupling flows. However, they demonstr
that the breakdown of a Fermi liquid through an ISL sta
with a partially truncated FS seems to be a viable conc
because in the saddle-point regime the qualitative feature
the ISL, e.g., spin and charge gaps, are visible as tenden
in our weak-coupling approach. The essential phenome
which can be identified as the cause for the ISL in the tw
patch model, namely, the coupling of umklapp and pair
channel, is also found to exist in a sizable temperature
density range in our improved RG calculation, which i
cludes the entire Fermi surface. We believe that this beha
is robust because it only requires sufficiently large lo
energy phase space around the saddle points, but doe
rely on further details of the interaction or dispersion re
tion. What remains to be clarified is when this interplay b
tween pairing and umklapp processes, which frustra
symmetry-breaking tendencies and thus leads to an ISL
deed represents an energetically favorable situation for
system. Another interesting and related aspect is the ques
of the precise conditions for which the overlap between
channels becomes too small, such that atT50 the system
can still undergo a transition into a symmetry-broken st
with presumably renormalized properties. In our calculat
such symmetry-broken states are suggested on either sid
the saddle-point regime, e.g., in thed-wave-dominated phas
or closer to half-filling in the approximate nesting regime

Our approach certainly bears some appealing featu
when compared to the high-Tc cuprates. However, note tha
especially very close to half-filling, in the approximate ne
ing regime, our description will be much too simple, as
teraction effects which are not taken into account will b
come large. On the other hand further, away from half-filli
in the saddle-point regime, we can hope to give a reason
qualitative description of the driving forces for the brea
down of the Landau-Fermi liquid. Due to the mutual rei
forcement between Cooper and umklapp channeld-wave
pairing correlations appear in a natural way at an enhan
scale on the threshold to the Mott state. If the insulat
tendencies are strong enough they will lead to ISL format
around the saddle points.

The stabilization of the ISL in the vicinity of the sadd
points opens up a channel to enhance Cooper pairing on
remaining open parts of the FS. A similar mechanism w
recently proposed in Ref. 31, whose authors examine
model with infinite mass preformed pairs existing at high
temperatures in the vicinity of the saddle points. Let us
sume that an ISL has formed in a region~called theA region!
around the saddle points at an energy scaleL ISL . Then the
dominant coupling between the ISL and the open FS p
9-10
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BREAKDOWN OF THE LANDAU-FERMI LIQUID IN TWO . . . PHYSICAL REVIEW B63 035109
~called theB regions! will occur through the exchange o
zero-momentum hole pairs in the Cooper channel. Furth
will occur in thed-wave pairing channel. We denote byVAB
the pair scattering matrix element between the ISL in thA
regions and the openB regions of the FS at the scaleL ISL ,
and byeA the energy relative to the chemical potential to a
a hole pair to the ISL. Then, at energy scalesL,L ISL, an
additional attractionVBB is generated between pairs in th
openB regions, which has a pole at

Lc
B5L ISL expS 2

eA

NAB
D ,

~9!

NAB5nAE
B-FS

dk

~2p!2

VAB
2 ~k!

vF~k!
.

Here the integral is over the Fermi surface of theB regions,
and nA denotes the number of intermediate states with t
additional particles in theA regions per lattice site.

Although we do not have a full theory of the stron
coupling phase, it is plausible to assume that in theA regions
a charge gap spreads out along the US in analogy to la
systems which when lightly doped show simultaneou
channels with and without a charge gap.6,32 Then the openB
region of the FS will enclose an area measured from the
determined by the hole density, and so the superfluid den
will be given by the hole density in the saddle-point regim
There will also be two energy scales, a higher one determ
ing the onset of the ISL in theA regions, and a lower scal
setting the transition temperature to the superconductiv
Tc . These features are in nice qualitative agreement with
observations in the underdoped cuprates. However, a full
croscopic theory of the strong-coupling phase and also
crossover to the more conventionald-wave superconductiv
ity in the lower electron densityd-wave regime remains to b
worked out. Note that in the latter regime umklapp scatter
is irrelevant at low-energy scales, and the superfluid den
is determined by the electron density, not the hole densi

Finally we note that the ISL concept might provide a m
croscopic basis for understanding the angle-resolved ph
emission electron spectroscopy results on the cuprates w
clearly show the truncation of the FS around the sad
points,33 and also for phenomenological models34 which
have proven to be plausible descriptions of the transp
properties of the normal state of the underdoped highTc
cuprates.
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APPENDIX A: RG TECHNIQUE

In this appendix we derive and discuss the RG equa
for the 1PI functions. The RG equation for the 1PI functio
03510
it

o

er
y

S,
ity
.
n-

y,
e
i-
e

g
ty
.

o-
ich
le

rt

-

-

n
s

was first used by Wetterich35 in scalar field theory. In the
following, we give a largely simplified, self-contained der
vation of this equation for general fermion systems, and d
cuss the consequences of symmetries, as well as trunc
schemes. We first recall the definition and those propertie
the 1PI functions that we need in the derivation. In the f
lowing, we shall not need all the details of the specific se
in our model; we shall only use that the fermion propaga
Cs depends on a parameters. In our application,s is the scale
parameter, e.g.,s5 logL, where L is the flowing energy
scale.

1. Generating function of the 1PI vertices

In a general theory with fermionic fields, the fieldsc(X)
andc̄(X) are labeled by an indexX which comprises space
time, spin, flavor, and possible other indices. We collecc

and c̄ into a single vectorC5(c̄,c). We also use the no
tation (A,B)5*dX A(X)B(X), where*dX stands for sum-
mation over the discrete indices and integrals over the c
tinuous ones. In the Hubbard model, the standard functio
integral representation~see, e.g., Ref. 20, Sec. 4.2! gives X
5(t,x,s,c), wherex is the position,s56 the third com-
ponent of the spin,2b/2<t,b/2 the usual Euclidean time
used to convert the grand canonical trace to a functio
integral over the Grassmann fieldsC, and the charge index
c56 distinguishes between the componentsc and c̄ of C.

The generating function for the connected Green fu
tions is defined by

e2W~H !5E dmC~C!e2V ~C!1~H,C!. ~A1!

Here the Gaussian integral is given by an invertible opera
Q with integral kernelQ(X,X8). Because of the Grassman
nature of the fields,Q is antisymmetric, i.e.,Q(X8,X)
52Q(X,X8). The covarianceC is C5Q21, anddmC(C)
5(detQ)21 e21/2(C,QC)Dc̄ Dc, with ~A,B! as defined
above. A generalQ gives rise to non-charge-invariant term
of typec(X)c(X8); charge invariance corresponds to aQ of
the form

@Q~j,j8!#cc85S 0 Q~j,j8!

2Q~j8,j! 0 D . ~A2!

In the Hubbard model@with j5(t,x,s)#,

Q~j,j8!5dss8d~t2t8!@dxx8~]t1m!2Txx8#, ~A3!

where T denotes the hopping matrix.V is the interaction
written in terms of the fieldsC ~for details, see, e.g., Ref
20!. The source termH is another Grassmann vector; ifH
5( h̄

2h), then (H,C) is the usual combination (h̄,c)

1(c̄,h).
The action in the functional integral has all symmetries

the Hubbard Hamiltonian. The action and the integrat
measure are also invariant under the transformation

cs~t,x!→ i c̄s~2t,x!, c̄s~t,x!→ ics~2t,x!.
~A4!
9-11
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Observables transform accordingly~similarly as when taking
adjoints!.

If W has a nondegenerate quadratic part, the m
H°Fcl(H), with

Fcl~H !~X!5
d

dH~X!
W~H !, ~A5!

can be inverted~this is the case in our fermionic mode
because the Grassmann variables are nilpotent and the c
rianceC is nondegenerate at positive temperature. In boso
models, the map would not be invertible if symmetry brea
ing occurs. The Legendre transform is then defined b
variational equation; see, e.g., Ref. 36!. Denote the inverse
map by f°h(f) ~h is an odd element of the Grassma
algebra generated byf!, so that

Fcl@h~f!#5
dW

dH
@h~f!#5f. ~A6!

Taking a derivative with respect tof gives

E dZ
dh~f!~Z!

df~Y! S d2W

dH~Z!dH~X! D @h~f!#5d~X,Y!.

~A7!

The first Legendre transform ofW is

G~f!5W@h~f!#2@h~f!,f# ~A8!

~with the last term a bilinear form as above!; it generates the
1PI correlation functions. We havedG/df5h(f), and thus
by Eq. ~A7! ~as operators!,

S d2G

df2D ~f!5Fd2W

dH2 @h~f!#G21

. ~A9!

For free particles~V50!, W5 1
2 (H,CH), so dW/dH5CH;

henceh(f)5C21f and G(f)5 1
2 (f,Qf). In first order,

the four-fermion interaction term inG is just the original
interactionV.

2. RG differential equation for G

If W depends on a parameters, thenG andh also depend
on s. By Eq. ~A6!,

d

ds
Ws@hs~f!#5

]Ws

]s
@hs~f!#1@ ḣs~f!,f# ~A10!

~where the dot denotes the derivative with respect tos!, so
Eq. ~A8! implies

Ġs~f!5Ẇs@hs~f!#. ~A11!

We now assume that thes dependence ofWs is given as
follows. In Eq. ~A1!, V remains independent ofs, but C is
replaced byCs5Qs

21, whereQs now depends ons. Then the
derivative]/]s can act only ondmCs

, that is, on the normal-
ization factor or on the exponent. In the former case, it j
produces a constant term; in the latter case it brings do
(C,Q̇sC) in the integral. Using
03510
p

va-
ic
-
a

t
n

~C,Q̇sC!e~H,C!5S d

dH
,Q̇s

d

dH De~H,C!, ~A12!

we can reexpress everything in terms ofWs(H), and obtain

Ẇs~H !5
1

2
Tr~CsQ̇s!1

1

2 S dWs

dH
,Q̇s

dWs

dH D
1

1

2 S d

dH
,Q̇s

d

dH DWs~H !, ~A13!

with Tr(AB)5*dX dY A(X,Y)B(Y,X). This is an equation
similar to Polchinski’s equation,37 but with Qs instead ofCs
in the Laplacian because the Green functions generated bW
are not amputated. By Eqs.~A11!, ~A6!, and ~A9!, the dif-
ferential equation forG(s) is

Ġ~suf!5
1

2
Tr~CsQ̇s!1

1

2
~f,Q̇sf!

1
1

2
TrF Q̇sS d2G~suf!

df2 D 21G . ~A14!

This is a nonpolynomial equation forG, but the inverse con-
tains a second derivative, which produces a fie
independent term coming from the quadratic term inG. Thus
the equation makes sense in an expansion in the fields.

3. Expansion in the fields

In this section we derive the equation for the sca
dependent 1PIm-point functions gm(s), by expanding
G(suf) in the fields. Readers that only want to see the res
can skip to Appendix A 4.

The 1PIm-point vertex functionsgm(suX1 , . . . ,Xm) are
the coefficients in an expansion ofG as a power series in th
fields,

G~suf!5 (
m>0

g~m!~suf!, ~A15!

with

g~m!~suf!5
1

m! E dmXI gm~suXI !fm~XI !. ~A16!

Here we used the notationsXI 5(X1 , . . . ,Xm) and fm(XI )
5f(X1)¯f(Xm). Because the Grassmann variables an
commute, we choose the functiongm(suXI ) to be totally an-
tisymmetric with respect to permutations of theXi . This
allows us to compare coefficients.gm(suXI ) are the 1PI ver-
tex functions. Similarly, we have the expansion

d

df~X!

d

df~Y!
G~suf!5 (

m>0
g̃~m!~suX,Y;f!. ~A17!

By the antisymmetry ofgm , two derivatives applied to
g (m12) give a factor (m12)(m11), which combines with
the 1/(m12)! to 1/m! @this is the reason for the conventio
of putting the prefactor 1/m! in Eq. ~A16!#. Thus
9-12
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g̃~m!~suX,Y;f!5
1

m! E dmXI 8gm12~suX,Y,XI 8!fm~XI 8!.

~A18!

In particular,g̃ (0) is independent off:

g̃~0!~suX,Y;f!5g2~suX,Y!. ~A19!

Therefore,

d2G~suf!

df~X!df~Y!
5g2~suX,Y!1G̃~suX,Y;f!, ~A20!

with

G̃~suX,Y;f!5 (
m>2

g̃~m!~suX,Y;f!. ~A21!

It is natural to think ofg2(suX,Y) and of G̃(suX,Y;f) as
integral kernels of operatorsg2 and G̃(suf). By relation
~A9!, at f50,

Gs5g2~s!21 ~A22!

is the full two-point function. As an equation between ope
tors, we thus have

d2G

df2 ~suf!5g2@11GsG̃~suf!#, ~A23!

so the differential equation forG now reads

Ġ~suf!5 1
2 Tr~CsQ̇s!1 1

2 ~f,Q̇sf!

1 1
2 Tr$GsQ̇s@11GsG̃~suf!#21% ~A24!

To perform the expansion in the fields, we first use the g
metric series

Tr$GsQ̇s@11GsG̃~suf!#21%

5Tr~GsQ̇s!2Tr@GsQ̇sGsG̃~suf!#

1 (
p>2

~21!p Tr$GsQ̇s@GsG̃~suf!#p%. ~A25!

The first term is a constant, which corresponds to a vacu
energy, and is not interesting for our purposes becaus
drops out in all correlation functions. The term linear inG̃
generates contractions with single lines; its lowest order if
is quadratic inf, and therefore generates self-energy corr
tions. The graphical interpretation of the terms withp>2 is
also straightforward: Thepth order term@GsG̃(s,f)#pGs is a
linear tree withp vertices. Taking the trace withQ̇s forms a
loop. Thus only 1PI graphs contribute to the graphical
pansion forG.

We define the single-scale propagator as

Ss52GsQ̇sGs . ~A26!

g̃ (m) defined in Eq.~A18! are homogeneous of degreem in
f; inserting Eq.~A15! on the left-hand side and Eq.~A21! on
03510
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the right-hand side of Eq.~A24!, we obtain a system of equa
tions for g (m). For m<6 the equations are

ġ~2!~suf!5 1
2 ~f,Q̇sf!1 1

2 Tr@Ssg̃
~2!~suf!#

ġ~4!~suf!5 1
2 Tr@Ssg̃

~4!~suf!#

2 1
2 Tr@Ssg̃

~2!~suf!Gsg̃
~2!~suf!#

ġ~6!~suf!5 1
2 Tr@Ssg̃

~6!~suf!#2 1
2 Tr@Ss~ g̃~4!Gsg̃

~2!

1g̃~2!Gsg̃
~4!!#1 1

2 Tr@Ssg̃
~2!Gsg̃

~2!Gsg̃
~2!#.

~A27!

4. RGDE for two- and four-point vertexes

DenoteYI 5(Y1 , . . . ,Y4),

L ~YI !5Ss~Y1 ,Y2!Gs~Y3 ,Y4!11Ss~Y3 ,Y4!Gs~Y1 ,Y2!,
~A28!

with Ss as in Eq.~A26! andGs as in Eq.~A22! and

Bs~XI ,YI !5g4~suX1 ,X2 ,Y2 ,Y3!g4~suY4 ,Y1 ,X3 ,X4!

2g4~suX1 ,X3 ,Y2 ,Y3!g4~suY4 ,Y1 ,X2 ,X4!

1g4~suX1 ,X4 ,Y2 ,Y3!g4~suY4 ,Y1 ,X2 ,X3!.

~A29!

The differential equation for the 1PI four-point functiong4 is

ġ4~suXI !5 1
2 E dY1 dY2 g6~suXI ,Y1 ,Y2!Ss~Y2 ,Y1!

2 1
2 E d4YI L ~YI !Bs~XI ,YI !. ~A30!

From Eqs.~A18! and~A19!, the equation for the 1PI two
point functiong2 becomes

ġ2~suX1 ,X2!5Q̇s~X1 ,X2!1 1
2 E dX3 dX4 Ss~X4 ,X3!

3g4~suX1 ,X2 ,X3 ,X4!. ~A31!

Equations~A30! and~A31! are the first two equations in th
infinite system of RG equations~labeled bym!. Note that
they do not form a closed system becauseg6 enters into Eq.
~A30!. This behavior continues to allm: the right-hand side
of the equation forġm containsgm12 .

A way to close the system of equations for the 1PI fo
point functiong4 and the self-energy is to drop the 1PI si
point vertex from Eq.~A30!. This truncation is equivalent to
setting all 1PI functions withm>6 external legs to zero, so
that the connected~non-1PI! m-point functions withm>6
are given by tree graphs made of four-legged vertices,
the approximation to the full propagator provided by the s
lution of the differential equations. The four- and two-poi
differential equations are given in terms of one-loop d
grams.

Note, however, that even an untruncated system of dif
ential equations only contains one-loop terms in every eq
9-13
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tion. This is so because in the differential formulation, on
one differentiated propagator appears in the equation~and
there are no tree terms in an equation for 1PI functions!. Of
course, this does not imply that only one-loop graphs app
in the solution; the full RG produces, after all, the full Gre
functions. The perturbation expansion is obtained by in
grating the differential equation from 0 tos and then iterating
the thus-obtained integral equation until only bare verti
appear. Upon iteration, graphs with an arbitrary number
loops are generated; if one uses the untruncated equat
all graphs are generated. The truncated equations amou
a summation of part of the diagrams, but these diagrams
contain two-loop graphs, in particular two-loop graphs c
responding to the self-energy. The RG strategy does not
essarily aim at taking into account as many graphs as
sible but to single out the important ones by their scal
behavior.

The initial condition forg4 is the bare interaction. To
renormalize the Fermi surface correctly, one also need
take into account a Fermi-surface counterterm~see Refs. 38
and 39!. In the bulk of this paper, we neglect the self-ener

correction. ThenGs5Cs andSs5Ċs , and no Fermi-surface
counterterm is needed. However, in the general discus
given in this appendix, we keep the self-energy to give
more general formulas. Equations for the full Fermi surfa
flow that do not require counterterms but use a dynamic
changing propagator, appear in Ref. 40.

5. Consequences of symmetries

The derivation of Eqs.~A30! and ~A31! did not require
any symmetries, so these equations are also valid when s
metries are broken. In our systems, this means that they
hold in the presence of a superconducting gap or magn
ordering or translational symmetry breaking. In two dime
sions, continuous symmetry breaking is impossible at
positive temperature by the Mermin-Wagner theorem.
noninvariance of the effective action leads immediately
long-range order, and hence mean-field-type results. In o
to compare competing instabilities, we therefore first assu
that all continuous symmetries of the action remain unb
ken. This leads to further simplifications in the different
equations, which we now successively discuss.

a. Charge invariance

Recalling thatX5(j,c) wherej consists of space, time
and spin indices, and wherec56 is the charge index
charge invariance implies thatSs@(j,c),(j8,c8)# and
Gs@(j,c),(j8,c8)# are nonzero only ifcÞc8, and that
g4(suX1 , . . . ,X4)Þ0 only if two of the charge indices are1
and two are 2. Because g4 is antisymmetric in all
arguments, it is then determined byf (suj1 , . . . ,j4)
5g4@su(j1 ,1),(j2 ,1),(j3 ,2),(j4 ,2)#. Also, f inherits
the antisymmetry under exchange ofj1 andj2 and that un-
der exchange ofj3 andj4 .

Equation~A30! gives the following equation forf:
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ḟ ~suj1 ,j2 ,j3 ,j4!5Fpp~suj1 ,j2 ,j3 ,j4!

1Fph~suj1 ,j2 ,j3 ,j4!

2Fph~suj1 ,j2 ,j4 ,j3!, ~A32!

with

Fpp~suj1 , . . . ,j4!5 1
2 E dh1 , . . . ,dh4 L~h2 ,h1 ,h3 ,h4!

3 f ~suj1 ,j2 ,h2 ,h3! f ~suh4 ,h1 ,j3 ,j4!

~A33!

and

Fph~suj1 , . . . ,j4!52E dh1 , . . . ,dh4 L~h1 ,h2 ,h3 ,h4!

3 f ~suh4 ,j2 ,j3 ,h1! f ~suj1 ,h2 ,j4!,

~A34!

and where

L~h1 , . . . ,h4!5Ss~h1 ,h2!Gs~h3 ,h4!

1Gs~h1 ,h2!Ss~h3 ,h4!. ~A35!

There is no1
2 in Fph because there are twice as many ter

in the sum over intermediate charge indicesci in the Fph as
in Fpp. The functionFpp is antisymmetric under exchang
of (j1 ,j2) and (j3 ,j4), becausef has these properties. Th
function Fph is not, but the difference appearing in E
~A32! is antisymmetric.

Equation~A32! has the graphical representation shown
Fig. 14. The internal lines in these graphs correspond
‘‘full’’ propagators Gs , and to single scale propagato
Ss , respectively. The inverse ofGs is g2(suj1 ,j2)
5g2@su(j1 ,1),(j2 ,2)#, and satisfies

ġ2~suj1 ,j2!5Q̇s~j1 ,j2!

2E dj1 dj2 Ss~j4 ,j3! f ~suj1 ,j3 ,j4 ,j2!.

~A36!

b. Spin rotation invariance

We now derive the consequences of SU~2! invariance.
The initial interaction of important many-fermion mode

has the SU~2! spin invariance. For instance, the initial Hub
bard interaction, and interactions of the formSxSy , where
Sx5c̄(x)(s/2)c(x) is the spin atx, have this property.

Spin rotation invariance restricts the form off as follows.
If we define a spin tensor

FIG. 14. The RGDE forf.
9-14
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F~sux1 , . . . ,x4!s1 . . . s4
5 f @su~x1 ,s1!, . . . ,~x4 ,s4!#;

~A37!

then

F~sux1 , . . . ,x4!52w~sux1 ,x2 ,x3 ,x4!D

1w̃~sux1 ,x2 ,x3 ,x4!E, ~A38!

whereDs1, . . . ,s4
5ds1s3

ds2s4
andEs1 , . . . ,s4

5ds1s4
ds2s3

.

The equationEs2s1s3s4
5Ds1s2s3s4

and the antisymme

try of f under (x1 ,s1)↔(x2 ,s2) imply that

w̃~sux1 ,x2 ,x3 ,x4!5w~sux2 ,x1 ,x3 ,x4!

5w~sux1 ,x2 ,x4 ,x3!. ~A39!

Exchanging twice, we have@similarly to Eq.~A39!#

w~sux2 ,x1 ,x4 ,x3!5w~sux1 ,x2 ,x3 ,x4!. ~A40!

However there is no symmetry ofw under exchange of only
one pair of coordinates.

The Fierz identity

(
i 51

3

~s i !mn~s i !ab52dandbm2dmndab ~A41!

implies that interactions of the formSxSy can be written in
the form of Eq.~A38!. Using Eq.~A41!, one can also recon
struct the four-fermion interaction in the formS̃S̃1 r̃ r̃,
whereS̃ and r̃ transform like spin densities and charge de
sities as concerns the spin dependence. For a generalw, S̃
and r̃ will involve fields at different space-time points.

The renormalization group differential equation~RGDE!
for w takes the form

ẇ~s!5Tpp~s!1T ph
d ~s!1T ph

tr ~s!, ~A42!

where, usingxI 5(x1 ,x2 ,x3 ,x4),

Tpp~suxI !52E dy1 , . . . ,dy4 L~y1 ,y3 ,y2 ,y4!

3w~sux1 ,x2 ,y1 ,y2!w~suy3 ,y4 ,x3 ,x4!,

~A43!

T ph
d ~sux!52E dy1 , . . . ,dy4 L~y1 ,y2 ,y4 ,y3!

3@22w~sux2 ,y2 ,x4 ,y4!w~sux1 ,y3 ,x3 ,y1!

1w~sux2 ,y2 ,x4 ,y4!w~sux1 ,y3 ,y1 ,x3!

3w~sux2 ,y2 ,y4 ,x4!w~sux1 ,y3 ,x3 ,y1!#,

~A44!

T ph
cr ~suxI !52E dy1 , . . . ,dy4~y1 ,y3 ,y2 ,y4!

3w~sux2 ,y3 ,y2 ,x3!w~sux1 ,y4 ,y1 ,x4!,

~A45!

and
03510
-

L~y1 ,y2 ,y3 ,y4!5S~y1 ,y2!G~y3 ,y4!1G~y1 ,y2!S~y3 ,y4!.

Similarly, the equation for the full inverse two-point func
tion is

ġ2~sux1 ,x2!5q̇s~x1 ,x2!2Ṡs~x1 ,x2! ~A46!

with a scale-dependent self-energySs that satisfies

Ṡ s~x1 ,x2!5E dx3 dx4 Ss~x4 ,x3!@22w~sux1 ,x3 ,x2 ,x4!

1w~sux1 ,x3 ,x4 ,x2!#. ~A47!

The initial condition forSs depends on how the Fermi su
face is renormalized.

The graphical interpretation of the equations forw is
given in the bulk of the paper. The symmetry@Eq. ~A4!#
implies that

w~sux1 ,x2 ,x3 ,x4!5w~suRx4 ,Rx3 ,Rx2 ,Rx1!, ~A48!

whereR(t,x)5(2t,x). Similarly, the self-energy satisfies

Ss~x1 ,x2!5Ss~Rx1 ,Rx2!. ~A49!

c. Translation invariance

If translation invariance is unbroken, we can take the F
rier transform. In contrast to charge and spin invarian
translation invariance is only discrete in our lattice mod
and thus may also be broken at positive temperature in
dimensions. Thus specializing to unbroken translation inv
ance is a further assumption. It can be relaxed if one assu
that invariance under a sufficiently large subgroup, e.g.,
of translations of a sublattice, still holds. The correspond
Fourier transform is then defined on a smaller moment
space.

We take the convention that momenta corresponding tc̄
are counted outgoing and those corresponding toc are
counted as incoming. Then translation invariance impl
that ŵ(sup1 ,p2 ,p3 ,p4)5d(p11p22p32p4)Vs(p1 ,p2 ,p3),
and the equation forVs readsV̇s5T̂pp1T̂ ph

d 1T̂ ph
cr , with the

particle-particle term

Ṫpp~p1 ,p2 ,p3!52E dkL2~p11p2 ,k!Vs~p1 ,p2 ,k!

3Vs~k,p11p22k,p3!, ~A50!

the direct particle-hole term

T̂ ph
d ~p1 ,p2 ,p3!

52E dkL1~p12p3 ,k!

3@22Vs~p1 ,k,p3!Vs~k1p12p3 ,p2 ,k!

1Vs~p1 ,k,k1p12p3!Vs~k1p12p3 ,p2 ,k!

1Vs~p1 ,k,p3!Vs~p2 ,k1p12p3 ,k!#, ~A51!

and the crossed particle-hole term
9-15
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T̂ ph
cr ~p1 ,p2 ,p3!52E dkL1~p22p3 ,k!

3Vs~p1 ,k1p22p3 ,k!Vs~k,p2 ,p3!.

~A52!

Here

L6~q,k!5Ŝ~k!Ĝ~q6k!1Ŝ~q6k!Ĝ~k!. ~A53!

The symmetry@Eq. ~A48!# implies that

Vs~p1 ,p2 ,p3!5Vs„R~p11p22p3!,Rp3 ,Rp2…,
~A54!

with R(v,p)5(2v,p).

6. Flow of the susceptibilities

As discussed in the text, the susceptibilities are
tained by coupling external boson fields to the biline
in the fermions that represent charge, spin, Cooper p
and other local densities, and by calculating the corr
ponding RG flow for these functions. Since the calc
lations are a straightforward adaptation of the on
presented above, we only state the main points. If the ex
nal field is called a, the expansion of Gs now
reads Gs(a,f)5(m,n>0g (m,n)(sua,f), with g (m,n)(sua,f)
5(1/m!n!)*dmXI dnYI gmn(s,XI ,YI )am(XI )fn(YI ). The RGDE
is now derived in the same way as above. Because tha
fields are external fields only, the equations for t
a-independent partsg0n remain unchanged, so thatg0n5gn
for all n, with gn given as above. Thus the flow for th
susceptibilities is driven by the flow for the coupling fun
tions; it takes the form of a linear integro-differential equ
tion.

Since onea field couples to a fermionic bilinear, the trun
cation consistent with dropping the 1PI six-point function
to leave out allm and n with 2m1n>6. This gives the
equations

ġ12~suX;Y1 ,Y2!5 1
2 E d4ZI L ~Z1 , . . . ,Z4!g12~suX,Z2 ,Z3!

3g04~suZ4 ,Z1 ;Y1 ,Y2! ~A55!

and

ġ20~suX1 ,X2!5 1
2 E d4ZI L ~Z1 , . . . ,Z4!

3g12~suX1 ,Z2 ,Z3!g12~suX2 ;Z4 ,Z1!,

~A56!

with L given by Eq.~A28!. The initial condition ong12 at
s50 determines which susceptibility is considered; in p
ticular, it determines the symmetry of the superconduct
order parameter in the case of the coupling to Cooper pa

In the presence of charge invariance, we obtain sepa
equations for the particle-particle and particle-hole vertic
defined as
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g12
pp,e@sux;~y1 ,s1!,~y2 ,s2!#

5g12@sux;~y1 ,s1 ,e!,~y2 ,s2 ,e!# ~A57!

and

g12
ph,e@sux;~y1 ,s1!,~y2 ,s2!#

5g12@sux;~y1 ,s1 ,e!,~y2 ,s2 ,2e!#. ~A58!

By fermionic antisymmetry,g12
pp,2@sux;(y1 ,s1),(y2 ,s2)#

52g12
pp,1@sux;(y2 ,s2),(y1 ,s1)# and similarly forg12

ph,6 , so
it suffices to consider one of the6 quantities. We now also
assume spin rotation invariance; then the normal cha
(;ds1s2

) and spin;(t3)s1s2
susceptibility ~t3 the Pauli

matrix! do not couple in the flow. The resulting equations a

ġ12
pp,2@sux;~y1 ,s1!,~y2 ,s2!#

5E du1 , . . . ,du4 L~u1 ,u2 ,u3 ,u4!

3g12
pp,2@sux;~u1 ,s1!,~u3 ,s2!#

3w~suu2 ,u4 ,y1 ,y2! ~A59!

for the Cooper pair vertex

ġ12,charge~sux;y1 ,y2!

5E du1 , . . . ,du4 ReL~u1 ,u2 ,u3 ,u4!

3g12,charge~sux;u4 ,u1!@2w~suy1 ,u2 ,y2 ,u3!

2w~suy1 ,u2 ,u3 ,y2!# ~A60!

for the charge vertex, and

ġ12,spin~sux;y1 ,y2!

5E du1 , . . . ,du4 ReL~u1 ,u2 ,u3 ,u4!

3g12,spin~sux;u4 ,u1!w~suy1 ,u2 ,u3 ,y2! ~A61!

for the spin vertex. The corresponding susceptibilities
then obtained from Eq.~A56!.

APPENDIX B: CALCULATION OF THE
UNIFORM SUSCEPTIBILITIES

The uniform (q→0) susceptibilities describing the re
sponse to external charges and magnetic fields canno
calculated successively by lowering the IR cutoff, as th
only involve degrees of freedom very close to the FS~the
width of this region is given by the temperature!. Therefore,
we determine these responses for the effective theory be
the cutoffL with the interactions at this scale as the effecti
interactions renormalizing the coupling to the external fie
via vertex corrections. More precisely, we calculate the
fective couplingshi(k) ~i 5c for charge andi 5s for spin! of
quasiparticles on the FS, occurring in the Hamiltonian as

E dk

~2p!2 hc/s~k!~c
kW ,↑
†

ckW ,↑6c
kW ,↓
†

ckW ,↓!.
9-16
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Denoting the bare coupling ashc/s
0 , we can express the ef

fective coupling as

hi~k!5hi
0~k!1E dk8

~2p!2 hi~k!F~k8!Vi~k,k8!, i 5c,s,

~B1!

where Vc(k,k8)5@2VL(k,k8,k8)12VL(k,k8,k)# for the
charge andVs(k,k8)52VL(k,k8,k8) for the spin coupling.
Diagrammatically this equation is shown in Fig. 15. The k
nel F(k! is v50; thenq→0 is the limit of the Matsubara
sum of the product of two propagators, and is given by
derivative of the Fermi function:

F~k!5 lim
qW→0

nF@e~k1q!#2nF@e~k!#

e@~k1q!2e~k!#
5

dnF

dEU
E5e~k!

.

~B2!

The uniform susceptibilities are then given as

k52E d2k

~2p!2 hc
0~k!F~k!hc~k!, ~B3!

xs~0!52E d2k

~2p!2 hs
0~k!F~k!hs~k!. ~B4!

In the absence of an instability the coupling functions
zero momentum transferVL(k,k8,k)2 1

2 VL(k,k8,k8) and
2 1

2 VL(k,k8,k8) would converge to the Landau interactio
functions f s(k,k8) and f a(k,k8), respectively, and the ex
pressions for the susceptibilities obtained with the ab
scheme reduce to the results from Fermi-liquid theory.

APPENDIX C: ONE-LOOP SELF-ENERGY
AND FERMI-SURFACE SHIFT

Here is a short overview of the results for the RG flow
a Fermi surface with a fixed particle number. In order
obtain the FS flow we calculate in every RG step the cha
of the one-loop self-energy given by the contributions in F
4. Due to the approximations made for the couplings, t
self-energy is constant over a single patch, and only yield
patch-dependent shift of the Fermi surface. In order to k
the particle number fixed, we adjust the chemical poten
after each step. Quite generally we find that the FS p

FIG. 15. Diagrammatic expression for the renormalization of
couplingshc/s(k) to external charge or magnetic fields. For unifor
external fields, we takeq→0.
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which have the strongest repulsive scatterings with mom
tum transfer close to~p,p! develop positive self-energies
and are therefore shifted inward during the RG flow. T
reason for this becomes clear if one considers a model in
action which is sharply peaked and repulsive atQ5(p,p).
For the self-energyS(k) of a particle with wave vectork on
the FS, one primarily has to examine the Hartree term~the
first term in Fig. 4!, which is the main contribution for the
typical divergence of the couplings. This diagram contain
propagator with a differentiated cutoff function, and gives
positive contribution if the statek1Q is occupied, and a zero
contribution otherwise. After subtraction of the FS avera
of S(kF) ~or more precisely a constant which keeps the p
ticle number fixed!, this yields a positive self-energyS(k)
.0 for particles outside the US~because then in general th
statek1QW is occupied for a FS with the densities andt8
values we are interested in! and a negative shiftS(k),0 for
states inside the US. In our case the interaction only ha
broad peak around~p,p!; therefore, in general, FS point
inside the BZ can also be pushed inward provided they
more affected by this repulsion than the average FS~this
happens in the overdopedm521.3t case!. The flow of the
the self-energies with fixed FS close to the instability
shown in Fig. 16~b! for different positions on the FS: for th
FS points near the saddle pointsSL(k) flows to positive
values, while forkF in the BZ diagonal it becomes negativ
The resulting movement of the FS points if we inclu
SL(k) in the dispersion, i.e., allow the FS to move, can
seen in Fig. 16~a!. It reveals the tendency of the FS to b
come flat, thus remaining in the vicinity of the umklap
surface.41 In both cases the density is kept fixed at^n&
'0.88 per site. Our RG results are in qualitative agreem
with calculations using a model interaction due to AF sp
fluctuations42 and theFLEX approximation.43

FIG. 16. Left: initial ~open circles! and final ~squares! FS for
t850.3t and ^n&'0.88 per site. Right: flow of the self-energy o
the FS~solid line: point closest to the saddle points; dotted lin
point closest to BZ diagonal!. The flow was stopped when the larg
est coupling reached the bandwidth 8t.
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