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Perturbation expansion for the two-dimensional Hubbard model
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We develop an efficient method to calculate the third-order corrections to the self-energy of the hole-doped
two-dimensional Hubbard model in space-time representation. Using the Dyson equation we evaluate the
renormalized spectral function in various parts of the Brillouin zone and find significant modifications with
respect to the second-order theory even for rather small values of the coupling cdsstéiné spectral
function becomes unphysical for=W, whereW is the half-width of the conduction band. Close to the Fermi
surface and fod <W, the single-particle spectral weight is reduced in a finite energy interval around the Fermi
energy. The increase &f opens a gap between the occupied and unoccupied parts of the spectral function.
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INTRODUCTION able for large values of) because they overemphasize the
spectral weight of quasiparticle peaks and do not produce the
The hole-doped two-dimension&2D) Hubbard model Hubbard sidebands, which are typical of strong local corre-
continues to attract considerable attention as it is believed tations. Thus, the perturbational results obtained so far give
capture the essential features of “underdoped cupratds.” some insights into the properties of the Hubbard model but
particular, the spectral properties of the model at small dopdo not allow a consistent description of correlated electrons
ing and the coupling strengtd=2W, whereW is the half-  at intermediate or large values bfwhich one needs to dis-
width of the conduction band, are thought to be relevant forcuss the cuprates or make a comparison withttenodel.
the angular-resolved photoemission spectrosc@PES The weak-coupling approach to the Hubbard model poses
experiments. The ARPES data are used to study the frea number of questions that should be considered if the results
guency and momentum dependence of the single-particle exre to be extrapolated into the largeregime. What is the
citations of 2D electrons in CuQOayer$™ but the interpre-  range of validity of the asymptotid expansion? What is the
tation of the experimental results is quite difficult and oftenimportance of the terms that are neglected in the self-energy
controversial. On the one hand, the observed spectral fe@xpansion? Is it possible to use a finite-order perturbation
tures do not fit any simple conceptual framework; on thetheory for the values ob) such that the low-energy excita-
other hand, reliable theoretical results are not at hand. Thusipns of the Hubbard model and thhel model look similar?
it is of interest to study in some detail the effect of correla-Are the weak-coupling results obtained by perturbative
tion on the spectral function of the hole-doped 2D Hubbardmethods representative of the strong-coupling limit? And fi-
model. nally, does the low-energy physics of the 2D Hubbard
The weak-coupling analysis of renormalized single-model, as defined by some weak-coupling scheme, produce
particle excitations has been presented in a number dhe right phenomenology for underdoped cuprates?
papers,~3which treatU as an expansion parameter and con-  To answer these questions one would have to examine the
sider the effects of correlation, doping, and temperature igeneral structure of the perturbation expansion or compare
various parts of the Brillouin zone. These papers show thathe weak-coupling solution with the exact one, which is not
correlation changes significantly the single-particle spectrapossible at present. Some insight, however, can be obtained
properties even for relatively small valuesdf and the re- by extending the perturbation expansion beyond the second
sults exhibit a number of interesting features which are als@rder and studying the stability of a truncated series with
seen in cuprates. However, a quantitative comparison withespect to higher-order corrections. Here, we calculate the
the experimental data is difficult since most weak-couplingmomentum-dependent single-particle self-energy up to the
theories become unreliable far=W. third order, and show that the individual third-order diagrams
The breakdown of the weak-coupling schemes based oare large but that the total third-order contribution is much
truncated perturbation expansions is not immediately dissmaller than the second-order one. This approximate mutual
cernible from the spectral function, but is signaled fér cancellation of third-order diagrams holds for any doping
=W by the negative compressibiliy/and the rapid devia- and not just for zero doping, where it is a consequence of
tion of the Fermi volume ¢ from the values required by the electron-hole symmetry.
Luttinger theorent? The theories based on an infinite sum-  Once the third-order contribution becomes comparable to
mation of selected classes of diagram&’ are also unreli- the second-order one, which happens hereUetrW, the
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truncated perturbation series leads to unphysical results. In -k,

the “physical” range,U<W, we find a number of interest-

ing features that offer additional insight into the anomalies of
the 2D hole-doped Hubbard model. However, the error of
neglecting the higher-order terms might become significant

for larger values ofU even within the physical randé.lt

would be interesting to see whether the fourth-order contri-
bution improves the perturbation theory and extends it to
experimentally relevant values bf, or whether it renders the
weak-coupling approach useless. The technical problems in-
volved with such calculations are not much different from
the problems encountered in the third-order calculatins.

@_ k4 k-k ;K

v

The Matsubara summations for the fourth-order diagrams are
straightforward, if tedious, and the fourth-order momentum

summations follow from the same numerical strategies
which solve the third order. Thus, the third-order calcula-
tions can be considered as a small but necessary step in ou
efforts to clarify the properties of the Hubbard model up to

intermediate values of the coupling strength.

We should also remark that the accurate characterization
of the weak-coupling regime might be of some interest for
the approximate schemes which interpolate between the
smalllU and the largdd limit of the model. In the case of
the infinite-dimensional Hubbard model and the single-

impurity Anderson model, interpolations like tA&t?come

very close to the exact solution. However, on a 2D lattice < () _ k 2 : §' ;
one deals with the anisotropicspace, and the interpolation

schemes might be difficult to construct.

N
Y

PH

The present paper is organized as follows. First the re-
tarded second- and third-order self-energies are expressed il -(k-k,)

terms of multiple momentum integrals. Then we introduce
the space-time representation and use the fast fourier trans
form (FFT) algorithm to evaluate the self-energy as a func-
tion of energy for all points in the Brillouin zone. The rela-
tive importance of the second- and third-order terms
obtained by FFT is analyzed and the stability of the weak-
coupling solution is discussed. Next, the spectral properties
of the model are calculated for low temperatures, for a given
value of the chemical potential, and for various points in the
Brillouin zone. Finally, the spectral features and their rel-
evance for the experimental data are briefly discussed. The Y,

calculations are explained in detail in the Appendix.

CALCULATIONS

To start with, the Hubbard Hamiltonian is written as
Ng
H=”2 t”cit,c,-g—ﬂ'iE ni,,+u;1 (i = {(nip)))

X(ni = ((ni)), @

wheret;; is the nearest-neighbor hopping integi@|, (ciT,,)
destroys(createy an electron at siteR; with spin o, n;,
=ciT,,ci(, is the electron number operatdd is the local
electron-electron interaction, and---)) denotes the en-
semble average over the eigenstates offtileHamiltonian
(1). The parametern’=pu—{(n_,»U is the “effective

@_ ki Kk
PP — " g

FIG. 1. Diagrammatic representation of second- and third-order
self-energy contributions.

propagating with wave vectok, counted from the Fermi
level, is wl=e—pu', where e=—2[t,coska,)
+t,coska,)]. The Fermi momentum is denoted ky. We
consider the fluctuations above a mean-field-like paramag-
netic state, in which the number of particles coincides with
the exact particle numbet(n;;))=((n;;))=n/2, and as-
sumet,=t,= t, the half-bandwidth beinyv=4t.

The self-energy diagrams are generated by the usual Mat-
subara imaginary-time perturbation expansion with respect
to the last term in Eq(1). All the second- and third-order
diagrams are shown in Fig. 1, where the dashed line repre-
sents the local interaction<(U) and the full line stands for

chemical potential,”« being the chemical potential proper. the unperturbed propagat6(i w,) = (i w,— »?) *, defined
The energy of an unrenormalized single-particle excitatiorwith the first two terms in Eq(1). Note that there are no
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self-energy diagrams that akeand o independent, the so- *
called one-legged diagrams. Because of the separation of the ne:zf_xd“’ f(w)p(w,T). ©)
Hamiltonian as in Eq(1), all one-legged diagrams of all

orders add up to zero. Equivale_ntly one (_:ould say t_hat they Equation(9), together with Eqs(8) and (7), establishes
have been hidden in the “effective chemical potential”  {he functional dependence of the renormalized particle num-
=u—((n_o)U. bern, on the “effective chemical potential.’, with U and

The self-energy calculations for a finite lattice with peri- T 55 parameters, everything scaled in unita\bf
odic boundary conditions and a discretized time axis sim-

plify considerably in the space-time representafiofihe Ne=Mu'IW;U/W,kgT/W). (10
second- and the third-ordeetardedproper self-energy con- _ S
tributions are given by the expressions On the other hand, the pure chemical potentias given by
(2) —_i1]12 2 * + 2 * U U
2R iu“o(t)[a(R,t)b*(R,t)+b*(R,t)a (R,t)](,z) ,U«:M"l'ine:;“,'l'EMIU”/W;U/W-I(BT/W)- (11)
s =ue(t){[a(R,Hwy(R,t)—b(R,tw} (R,1)] Equations10) and(11) establish the dependencergfon

_[a* * or vice versa, with both quantities given parametrically as
[a" (ROW2(RO+TD*(ROW(RT} - (3) functions ofu’. In this way one does not have to readiglve
where a(R,t) and b(R,t) are the standafdi double-time Eq.(9) as a self-consistenaquationfor no(u), it suffices to
Green’s functions of, just evaluateEgs.(10) and(11) for a number of close-lying
values ofu’. One should note that theconsistency is here

a(R,t)=(cl(0)c (t)>:£ S @ik R-0f(0), (4 forced upon the approximate proper self-ener§y?(w)
’ 0 R N n k/ 1 (3) . .
+2,*(w), and can therefore be attained only approximately.
1 . The peaks ofA, (w) give the dispersion of quasiparticle
b(R,t)E<CR(t)Cg(o)>= — 2 el (k-R=o g — w‘k)), (5) excitationsw, ; the renormalized Fermi surface is defined by
N & the set of points in the momentum space at whigk- 0. [At

while the functionsw;(R,t) are space-time convolutions of the Fermi surfacei(w) has a singularity at the Fermi en-
functions composed of products afR,t)’s and b(R,t)’s, ergy_EF .] According to the Luttmgertheorem, the number of
given by expressiofA12) in the Appendix. Instead of evalu- K Points enclosed by the Fermi surfaGe., the Fermi vol-
ating these convolutions directly, we decouple them by a paifM€vr) should coincide witm. In our approximate treat-
of Fourier transforms, as shown in EGA13). (The time ment, which is based. on the third-order self-energy and the
variablet should not be confused with the hopping amplitudePYSon equation, we findg>n., but the relative difference
t) betweenv(U,u) andng(U, ) for UsW is very small.

The retardedself-energy in the energy-momentum repre- I what follows, we first discus&(w,T) and then the

sentation  (w) =3, (w+i0"), is then given by the inverse ©nsuing spectral function, the density of states, the renormal-
Fourier transform ized dispersion, and the Fermi surface of the model for the

temperaturekg T=1/250, U=3.5t, andu’ = 0.2t, which cor-
_ T iotrs (2) (3) responds tan.=0.96. The same numerical program, avail-
2u(@) ER: © jo dte”2g (O +2R7(0]. 6 able from the authors upon request, returns the self-energy in

o the irreducible wedge of the Brillouin zone for any other
The self-energy calculation is thus reduced to a sequence Qe of T. U andu.

Fourier transforms, which can be evaluated very efficiently
by the FFT technique. In this paper we consider a lattice with

Ng=256X 256 sites and define discretized momenta in the RESULTS AND DISCUSSION

quadratic Brillouin  zone ask=(ky,ky), where Kk, In Figs. 2 and 3 we show the real and the imaginary part
=Ak(lyy—1) with Ak=2m/\Ng and l,,=1,..., of 3(3(w), respectively, plotted versus for several mo-
VNg. TheT pointis atk=(0,0), theX point atk=(,0), the  menta along th&-X-Z-M-T" cuts through the Brillouin zone.
M point atk=(7/2,7/2), and theZ point atk= (). The dashed and the dashed-dotted lines show the two third-
Having foundX (o, T), we ca]culate the spectral function grder contributions,Efﬁ,}(w) and zgg(w)' respectively,

Ax(w,T) from the Dyson equation, while the full line is their sum¥{*(w). The magnitudes of

1 1 the individual third-order contributions are about the same as

Ao, T)=—=Im — , (7 the magnitude oB({?(w) (see below and in Ref.)%ut the
T 0ti0t - wp—3(,T) total third-order contribution is relatively small, except in a

narrow frequency range where the approximate cancellation

and obtain the renormalized density of states,
of electron-electron and electron-hole terms does not occur.

1 This behavior indicates that the correct solution of the hole-
plw,T)= N ; Ar(o,T), ) doped model requires all third-order diagrams, and cannot be
obtained by the partial summation of electron-electron or
and the renormalized particle number, electron-hole diagrams.
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FIG. 2. Real part ofS{?(w) along theTl

—X, X—Z, andZ—T" cuts through the Brillouin
zone. R&S), —Rexd), and R&®=Re3x )

- +ReX ) are represented by dashed, dashed-

\3 dotted, and full lines, respectively.
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The functional form ofS{2)(w) is very muchk depen-  somek,. For U<U, the curvature of Int () at Er is
dent. Far off the Fermi surface IB{>)(w) does not show negative for allk and the ensuing spectral weight is always
much structure in the low-energy region and its slope aroungositive. However, fotJ > U, the curvature of Ink, () at
Er is always smallsee Figs. 3 and 5 for data correspondingE. becomes positive at some points in the Brillouin zone,
to I' and Z pointg. On the other hand, fokk=kg, and the corresponding spectral weight becomes negative.
Im%{*(w) acquires a pronounced minimum (see Figs.  This behavior indicates that the third-order expansion
3 and 5 for data corresponding ¥0and M points. In the  preaks down fotJ=W, and thats(?)(w) provides an accu-
low-energy region, Ik {*(w) and IM2{?(w) have the op-  rate renormalization for small values ofonly.
posite sign, and both vanish & (Ref. 25 with a zero For U close to but less tharJ., the curvature of
slope. Im 3 (w) atEg is found to be the smallest fée=k . Thus,

The properties of the “full” self-energy,3(*(w) in the presence of correlations the Fermi-surface properties
+33)(w), are summarized in Fig. 4, where BR(w) is  assume qualitatively new features due to @veand higher-
plotted versusw for the samek’s as in Fig. 3. The low- order self-energy terms. Unfortunately, these non-Fermi-
energy behavior df, X, Z, andM is displayed in Fig. 5. For liquid (NFL) features require large valuesdfand cannot be
comparison, the individual second- and third-order contribuproperly discussed without the higher-order terms in the ex-
tions are shown as well. The low-energy features ofpansion. Leaving the fourth-order renormalization for future
Re3,(w) are not changed much by the third-order renormal-studies:® we consider here the third-order renormalization
ization, regardless dt. On the other hand, the low-energy and discuss spectral properties for U =W.
properties of In% () are strongly influenced by the third- The variation ofAi(w) alongI' =X, X—Z, andZ—T
order corrections. For example, closeX@andM points, the cuts in the Brillouin zone is shown in Fig. 6. The third-order
second- and third-order terms nearly cancel and make thgpectral function, like the second-order dnassumes at all
low-energy part of In®,(w) rather flat in an extended inter- wave vectors a typical shape with a low-energy quasiparticle
val aroundEg . The relative contribution of the second- and peak and a high-energy incoherent background. The correla-
third-order terms depends on the coupling strength and for tion reduces the quasiparticle spectral weight and enhances
given u there is always a critical correlatidd.(u,k.) such  the incoherent background & (w). However, forU =3.5t
that the coefficient of th@? term in ImEkc(w) vanishes at andng=0.96 the transfer of spectral weight out of the low-
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Im S w) / t

Im Syw) / t

FIG. 3. Imaginary part of ?)(w) along the
I'-X, X—2Z, andZ—T cuts through the Bril-
louin zone. IME®), —Im3E), and IM3®
=Im3I+Im3) are represented by dashed,
dashed-dotted, and full lines, respectively.

Im Sp(w) / t

Im Tpw) / t

energy region is small, and the quasiparticle peak is not fullytained by solving the secular equation
separated from the incoherent background, exceptkfer ,
which are far off the Fermi surface. At the Fermi surface, the o (T)— (= p") =2 [ wy(T),T]=0. (12)

singular quasiparticle peak can be representem@$w) The inspection of Figs. 6 or 7 shows that fkepoint quasi-

=2 6(w—Eg), whereZ, describes the reduction of the particle peak is somewhat abolg , while theX-point peak
quasiparticle weight due to self-energy corrections. Kor is right atEr. Thus, the renormalized Fermi surface, defined
#Kkg the quasiparticle peak broadens, becomes asymmetriby the set ofk points such that the quasiparticle peak is at
and attains a maximum at some finite frequency. The asymE, has a different topology than the noninteracting Fermi
metry of Ay(w) is caused by an incoherent background,surface with the same number of holes. The renormalized
which slows down the higle decay, and the NFL behavior Fermi surface resembles the tight-binding result which adds
at smallw. A novel feature due to the third order, which to t;; the next-nearest-neighbor hoppitjg.
begins to emerge fod=W, is the suppression of spectral  The renormalized density of stategw) calculated for
weight in a finite energy interval arourtgl- . Fork=Kkg, the ~ U=3.5t andn,=0.96 is plotted in Fig. 8 as a function af.
singular quasiparticle peak at the Fermi energy is separatethe transfer of the low-energy spectral weight out of the
from the occupied and unoccupied incoherent states by mw-w region is clearly seen bui <W is not sufficient to
pseudogap. Fdk<kg a real gap appears between tbecu-  generate the incoherent Hubbard sidebands. The density of
pied quasiparticle peak and th@noccupied incoherent states atEq is not much enhanced from the unperturbed
states(The small background seen in the numerical data is/alue despite the reduced dispersion, because the quasiparti-
due to the damping factor used for the real-axis propagatorsele weight is reduced by, . One has a metal but a strange
The renormalized quasiparticle dispersiop is obtained one.
by tracing the maximum of,(w) across several cuts in the  In summary, we developed an efficient method to perform
momentum space and is shown in Fig. 7. Circles shgw the momentum summations in the self-energy expansion for
and full line gives the unrenormalized dispersioi;\ for the  the hole-doped 2D Hubbard model and evaluated the coeffi-
same number of particles. Correlation reduces the overatlients of theU? and theU® terms. The third-order correc-
width of the quasiparticle band and extends the flat dispertions lead to additional anisotropy and asymmetry of the
sion around {,0). Essentially the same dispersion is ob-spectral function and give rise to new features with respect to
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FIG. 4. Imaginary parts of3(?(w) and
3®)(w) along thel —X, X—Z, andZ—T cuts
through the Brillouin zone. IL®), Im3®), and
the sum Im3@+1m,3® are represented by

= dashed, dashed-dotted, and full lines, respec-
3 tively.
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the second-order renormalization. For large enoujwve  ich 166 Duisburg/Bochum, and the National Science Foun-
find a strong reduction of the single-particle spectral weigh ation under Grant No. DMR-9973225.

aroundEg . The quasiparticle dispersion is also reduced an

the saddle-point singularities are extended. The Fermi sur-

face obtained by the third-order renormalization for a hole-

doped system is closed around tHepoint. At the Fermi

surface, the quasiparticle peak and the incoherent back- APPENDIX

ground are separated by a pseudogap. Off the Fermi surface

we find a finite region of negligible spectral weight between  Carrying out the Matsubara summations over Fermi fre-
the quasiparticle peak and the Fermi energy. This behavigjuencies and continuing analytically the result from the dis-

hints to a possible scenario in which the system is metalliGyete points on the imaginary axis onto the complex plane,
with a narrow Kondo-like resonance at the Fermi energy, . fing

and a pseudogap for incoherent excitations. However, the

anomalous spectral features that we obtain here are due to

the cancellation of the second- and the third-order self- 5
energy terms, and the stability of this result with respect to (2)

the fourth-order renormalization remains to be seen. The 2 (Z)_(N)
third-order perturbation expansion shows that the solution of

the hole-doped model cannot be obtained by partial summa-

tion of diagrams, and that the properties inferred from the ) (3) . :
second-order theory seem to be qualitatively correctUfor 1Ne third-order self-energ}”'(z) comprises two diagrams,
<W only. a particle-hole one and a particle-particle one,

0 0 0
P(wk—klawkl—kszkz)

0 0 0
kike Z— (g, T gk, wkz)

. (A1)
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u\3 P(0_k,» ~ @k i, OF,) Q(— wy, i, 0p)
(3)(k Z) 2 e 1 1 2 2 1 3 3 (A3)
N/ Gk z— (0 ) — o +0?) (w0 —0?)—(w? — )’
1:K2:K3 k—k, @k, —k, T @k, ki—ky~ @ky ki—k, ” @k,
|
while the analogous expression far&)(k,z) is obtained For the second-order self-energy we start from expression

from 2(3)(k 2) by changing the sign of threeQ's out of (A1) for 3((w=i0") and first evaluate the—t Fourier
five, viz., wg_y , g _, andwg ., everything else being transform. Using the relation
the same as in EQA3). The functlonsP and Q are defined

as Fot =Fi@(xt)e 7N,

wFid—e

P(e1,€2,€65) = (1) () T(€) +T(— ) T(—€ex)T(~€3), which holds for anys>0, we factorize the denominator in
Eqg. (A1) into a product of three exponentials and find
Q(e1,€6)=F(e)f(€ex) —f(—€))f(—€r),
SRRH=FIU?O(=) F_rSP(D],  (A4)

f(e)=(e5€+ 1)~ is the Fermi function, withB= 1/kgT, and 2iia

wE— e—p'. WhereSkz)(t) denotes the double convolution in momentum
The above equations are not suitable for numerical evaluspace,

ation of 3(*(w+i0") and 3(?(w*i0") because of two

reasons. First, one would have to deal with four-dimensional

and six-dimensional integrations ik space, respectively. SOE 2 [A(k—ka,t)ACk; — ko, 1) B* (K3, t)
Also, the denominators in expressiaisl) and (A3) vanish
along various closed contours lnspace. The multiple inte- +B(k—ky,1)B(k;— Ky, 1) A* (K5, 1)],

grals are therefore defined by their principal values and their
evaluation requires a dense gridkirspace, which makes the with functionsA(k,t) andB(k,t) defined as
numerical procedures very time consuming. .

The second- and third-order self-energies, given by Egs. Ak, t)=e (0D, (A5)
(A1)—(A3), are therefore transformed here from the energy-
momentum to the space-time representation, which allows an C—io 0
accurate and efficiepnt evaluatior? by the FFT algorithm. Blk,)=e " (—wp). (A6)

In order to establish transparent shorthand notation, Weecalling that the Fourier transform of a convolution can be
first define the Fourier transforms as the operators expressed as a product of Fourier transforms of the inte-

grands, we writéA(k,t) andB(k,t) as

1
= — k R .. —
Fierl 1= 2 € AkD=Fi L a(RD)], (A7)
 de B(k,t)=F, *r[b(R,1)], (A8)
fwﬂt["']z 2—e_|“"t - ) ) )
—w T and disentangle the double convolutlsfr (t) as

as well as the inverse transforms S(t)=F, Lrl@?(R,t)b* (R, ) +b3(R,t)a* (R,1)].

_ Inserted in expressiofA4) this gives
Folal---]=> e kR
k=R R (2) _ =12 2 *
SHAR)=FiUO(=t)[a%(R,1)b*(R,t)
F1 [“_]sz dtdet. .. +b%(R,t)a* (R,1)]. (A9)
w—t - .
o In short, F,,_; yields a convolution irk space, whileF,_ 5

We also introduce shorthand for four-dimensional transformglisentangles this convolution into a product. ,
As regards the third-order self-energy, we proceed in the

Fer F o andFl=Fol r- same way, starting from expressiéA3) for 3&)(k,z). As
KoRT ot RF ot before, the w—t Fourier transform factorizes the
The retarded advanced self-energy in space-time represen#édependent term in the denominator, but kleummations

tion is then defined as still do not represent a convolution due to the presence of the
unfactorized singular term ]d;(ﬁl_k3 wk3 “’kl—kz “’kz)
S a(RO=HAZ(wxi0")]. To factorize this term as well, we make use of the identity
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FIG. 6. Single-particle spectral functiof,(w) along thel’
—X, X—Z, andZ—T cuts through the Brillouin zone.

s(t)=sgnt)e "I,
It is clear that Eq(A10) factorizes the above awkward term

into a product of four exponentials. Altogether we obtain

ﬁ%Rn=t®uMUﬂigvanpﬂéﬂmmvm

where the upperlower) sign refers to the retardethd-
vanced quantity, respectively, anSQH’(k,t,t’) denotes the
triple k-space convolution

FIG. 5. Imaginary parts of (?(w) and3{®(w) atT’, X, Z, and

M points close taw=Eg. Im2®@, Im3®, and the sum Iz
+Im X ® are represented by dashed, dashed-dotted, and full lines,

respectively.

which holds for anye+ 0, and

- _ _}thdtei(eiiﬁ)t,
I'Jo

exis

which holds for anys>0, to represent ¥/ as

l_lfwd i et
<o) AEuen

o/t
[}

»°°°

4

0.0 (m,0) (m,m) 0.0
FIG. 7. Quasiparticle dispersiofcircles derived from the
(A10) maxima of the spectral functiofy (w) and the unrenormalized dis-

persion(full line).
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where the functionsv;(R,t) are now given in the form of

(A12)

T I T T T I T T T T T L} I T T L l L . .
: space-tlme convolutions
03 ] wi(R)=2 | dt'gi(R—R' t—t")h(R"t"),
- - R/ — 00
% oz L E with g;(R,t) andh,(R,t) defined as
S (R, =a(R,H)b* (R,1),
01 . g2(R,D=Db*R,1),
i ] gs(R,t)=a%(R,t),
0.0 1 1 I L *
8 h1(R,t)=s(t)[97 (R,1) = g1(R,1)],
wit ha(R,) =S(D)[ga(R,1) —gs(R,1)],
FIG. 8. Renormalizedfull line) and unrenormalizeddashed ha(R,t) =hy(R,t).

line) density of states.

For the third order we thus need two more Fourier trans-

forms than for the second order, to decouple these additional

1 _ti .
S(pﬂ(k,t,t')= E 2 [A(K—ky,t)B* (k;— Ky, t—t) space-time convolutions as well,
kq K2 kg

X A(Ky,t—t") +B(k—ky,t)

wi(RO=HF gi(RO]-F '[h(R DI} (AL3)

. So, in order to obtain thath-order self-energ;E,ﬂ”)(w
XA* (ky—kz,t—t")B(ky,t—t")] +i0") via its space-time representatidn)(R,t) using the
X[A* (ky—ks,t')B(Kg,t') FFT technique, we first calculate the quantities

—B*(ky—ks,t")A(ks,t")].

The particle-particle third-order ter&)(k,z) is obtained

aR0=F Ak S €T,

from —3&)(k,z) by changing the sign of three’s out of (Al4)
five, viz., o)_, , o) _, , andwy _, . Since it is obvious 1

L g L b(R,t)= B(k,D)]== >, el R-af(— 0
from the above definitiongA5) and (A6) of A(k,t) and (RUO=Z-rB(kD]=55 e (= wy),
B(k,t) that w0— —w implies A(k,t)<B* (k,t), one ob- (A15)

tains S&)(k,t,t") from —S&)(k,t,t') by the appropriate re-

placements of thosA’s and B’s that havek—k,, k;—k,,  Which requires performing the Fourier transforff_g.
. . n)
andk;—ks as their arguments: Then we proceed to evaluaié/a(R,t). For the second order
this amounts just to forming products @&f(R,t)’s and

b(R,t)’s, according to expressiofA9). For the third order

1
SER(k, b)) =— — Y [B*(k—kg,t) we first form functionsy;(R,t) andh;(R,t), again given by

SO(R)=+U%O(+t){[a(R,HWi(R,1)

N™ky kz ks products ofa(R,t)’s andb(R,t)’s, then we perform a pair of

XA(K;— Ko, t—t")A(Ky,t—t") Fourier transforms £ 1, 7), to calculate functionsv;(R,t)
. , , according to Eq(A13), and finally form= 3)(R,t) according
+A*(k—kq,1)B(ky—ka, t=t")B(kz,t=t")]  to expressionA11). Having thus found the self-energy in

. . _l .
X [B(k;—Ka t")B(kg,t') space-time representation, we apgly * once again to get
—A(k;—k3,t')A(kg,t)]. 3 (exi0")=F HERRD].
ExpressingA(k,t) andB(k,t) in terms of their Fourier trans- The numerical problem involving space-time to
forms, Eqs(A7) and(A8), as before, we decouple the above momentum-frequency transformatiottand vice versp is
momentum-space convolutions and get solved by considering a finite lattice with periodic boundary

conditions and discretizing the time axis. Here we take 256
X 256 lattice sites and 1024 time points. As regards the

—b(R,HW! (R,1)]—[a* (R,1),Wx(R,1) k<R transformation_, th_e FFT is an exgct procedure, v_vhile
thet« w transformation involves approximating the continu-
+b* (R, t)wg(R, 1)1}, (A11) ous Laplace transform with the corresponding discrete FFT.
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It would be much more time consuming to evaluate the Egs.(A14) and(A15). This relates them to the unperturbed

space-time convolutions directly. Green'’s functions in space-time representation, viz., the re-
The fourth-order self-energ}(*(z) comprises 12 topo- tarded advanced one,

logically nonequivalent diagrams, nine of which are numeri-

cally different. However, only four out of these nine can be GY.(R,)= Ii@)(tt)([cg(O),cR(t)]Jr)
treated entirely along the same lines as those of the second .
and third order, i.e., completely decoupled and evaluated by =Fi0(=y[b(R,1)+a(R,1)],

a series of Fourier transforms alone. The remaining five do dth |
not yield multiple space-time convolutions, but double inte-2Nd the causal one,
grals instead, which can be only partly decoupled by Fourier 0 , t
transforms. The fourth order thus introduces new numerical GY(R,t)=—I(T{cr(t)Co(0)})
difficulties, but tractable ones. The FFT cannot do the whole .

’ =— -0(- :
job, but it does all steps but one. [OMDRH=O(-DaRY]

(n1)'he functionsa(R,t) andb(R1), the building blocks of |t is clear thatb(R,t) is the probability amplitude for an
21a(R), have a clear physical interpretation as double-gjectron to be created &=0 andt=0, to propagate to the

time correlation functions site R which is reached at a later tinteand to be destructed
ot at (R,t). This newly created electron is “composed of” the
a(R,t)=(co(0)cr(1), unoccupiedi.e., still available k states, as indicated by the

B N amplitudes f(—wd)=1—f(w?) in the defining relation

b(R,t)={cr(t)c(0)), (A15). In the same waya(R,t) effectively describes the
which can be shown by a straightforward evaluation of thesg@ropagation of a hole created a,(<0) and destructed at
thermal averages over the eigenstatesHgf which gives (R=0,t=0).
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