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Perturbation expansion for the two-dimensional Hubbard model
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We develop an efficient method to calculate the third-order corrections to the self-energy of the hole-doped
two-dimensional Hubbard model in space-time representation. Using the Dyson equation we evaluate the
renormalized spectral function in various parts of the Brillouin zone and find significant modifications with
respect to the second-order theory even for rather small values of the coupling constantU. The spectral
function becomes unphysical forU.W, whereW is the half-width of the conduction band. Close to the Fermi
surface and forU,W, the single-particle spectral weight is reduced in a finite energy interval around the Fermi
energy. The increase ofU opens a gap between the occupied and unoccupied parts of the spectral function.
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INTRODUCTION

The hole-doped two-dimensional~2D! Hubbard model
continues to attract considerable attention as it is believe
capture the essential features of ‘‘underdoped cuprates.’1 In
particular, the spectral properties of the model at small d
ing and the coupling strengthU>2W, whereW is the half-
width of the conduction band, are thought to be relevant
the angular-resolved photoemission spectroscopy~ARPES!
experiments. The ARPES data are used to study the
quency and momentum dependence of the single-particle
citations of 2D electrons in CuO2 layers2,3 but the interpre-
tation of the experimental results is quite difficult and oft
controversial. On the one hand, the observed spectral
tures do not fit any simple conceptual framework; on
other hand, reliable theoretical results are not at hand. T
it is of interest to study in some detail the effect of corre
tion on the spectral function of the hole-doped 2D Hubb
model.

The weak-coupling analysis of renormalized sing
particle excitations has been presented in a number
papers,4–13which treatU as an expansion parameter and co
sider the effects of correlation, doping, and temperature
various parts of the Brillouin zone. These papers show
correlation changes significantly the single-particle spec
properties even for relatively small values ofU, and the re-
sults exhibit a number of interesting features which are a
seen in cuprates. However, a quantitative comparison w
the experimental data is difficult since most weak-coupl
theories become unreliable forU>W.

The breakdown of the weak-coupling schemes based
truncated perturbation expansions is not immediately
cernible from the spectral function, but is signaled forU
.W by the negative compressibility12 and the rapid devia-
tion of the Fermi volumevF from the values required by th
Luttinger theorem.14 The theories based on an infinite sum
mation of selected classes of diagrams15–17 are also unreli-
0163-1829/2000/63~3!/035104~10!/$15.00 63 0351
to

-

r

e-
x-

a-
e
s,

-
d

-
of
-
in
at
al

o
th
g

n
-

able for large values ofU because they overemphasize t
spectral weight of quasiparticle peaks and do not produce
Hubbard sidebands, which are typical of strong local cor
lations. Thus, the perturbational results obtained so far g
some insights into the properties of the Hubbard model
do not allow a consistent description of correlated electr
at intermediate or large values ofU which one needs to dis
cuss the cuprates or make a comparison with thet-J model.

The weak-coupling approach to the Hubbard model po
a number of questions that should be considered if the res
are to be extrapolated into the large-U regime. What is the
range of validity of the asymptoticU expansion? What is the
importance of the terms that are neglected in the self-ene
expansion? Is it possible to use a finite-order perturba
theory for the values ofU such that the low-energy excita
tions of the Hubbard model and thet-J model look similar?
Are the weak-coupling results obtained by perturbat
methods representative of the strong-coupling limit? And
nally, does the low-energy physics of the 2D Hubba
model, as defined by some weak-coupling scheme, prod
the right phenomenology for underdoped cuprates?

To answer these questions one would have to examine
general structure of the perturbation expansion or comp
the weak-coupling solution with the exact one, which is n
possible at present. Some insight, however, can be obta
by extending the perturbation expansion beyond the sec
order and studying the stability of a truncated series w
respect to higher-order corrections. Here, we calculate
momentum-dependent single-particle self-energy up to
third order, and show that the individual third-order diagra
are large but that the total third-order contribution is mu
smaller than the second-order one. This approximate mu
cancellation of third-order diagrams holds for any dopi
and not just for zero doping, where it is a consequence
electron-hole symmetry.

Once the third-order contribution becomes comparable
the second-order one, which happens here forU.W, the
©2000 The American Physical Society04-1
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truncated perturbation series leads to unphysical results
the ‘‘physical’’ range,U,W, we find a number of interest
ing features that offer additional insight into the anomalies
the 2D hole-doped Hubbard model. However, the error
neglecting the higher-order terms might become signific
for larger values ofU even within the physical range.18 It
would be interesting to see whether the fourth-order con
bution improves the perturbation theory and extends it
experimentally relevant values ofU, or whether it renders the
weak-coupling approach useless. The technical problem
volved with such calculations are not much different fro
the problems encountered in the third-order calculation19

The Matsubara summations for the fourth-order diagrams
straightforward, if tedious, and the fourth-order moment
summations follow from the same numerical strateg
which solve the third order. Thus, the third-order calcu
tions can be considered as a small but necessary step in
efforts to clarify the properties of the Hubbard model up
intermediate values of the coupling strength.

We should also remark that the accurate characteriza
of the weak-coupling regime might be of some interest
the approximate schemes which interpolate between
small-U and the large-U limit of the model. In the case o
the infinite-dimensional Hubbard model and the sing
impurity Anderson model, interpolations like that20–23 come
very close to the exact solution. However, on a 2D latt
one deals with the anisotropick space, and the interpolatio
schemes might be difficult to construct.

The present paper is organized as follows. First the
tarded second- and third-order self-energies are express
terms of multiple momentum integrals. Then we introdu
the space-time representation and use the fast fourier tr
form ~FFT! algorithm to evaluate the self-energy as a fun
tion of energy for all points in the Brillouin zone. The rela
tive importance of the second- and third-order ter
obtained by FFT is analyzed and the stability of the we
coupling solution is discussed. Next, the spectral proper
of the model are calculated for low temperatures, for a giv
value of the chemical potential, and for various points in
Brillouin zone. Finally, the spectral features and their r
evance for the experimental data are briefly discussed.
calculations are explained in detail in the Appendix.

CALCULATIONS

To start with, the Hubbard Hamiltonian is written as

H5 (
i , j ,s

t i j cis
† cj s2m8(

i ,s
nis1U(

i 51

Ng

~ni↑2^^ni↑&&!

3~ni↓2^^ni↓&&!, ~1!

wheret i j is the nearest-neighbor hopping integral,cis (cis
† )

destroys~creates! an electron at siteRi with spin s, nis

5cis
† cis is the electron number operator,U is the local

electron-electron interaction, and̂̂•••&& denotes the en
semble average over the eigenstates of thefull Hamiltonian
~1!. The parameterm85m2^^n2s&&U is the ‘‘effective
chemical potential,’’m being the chemical potential prope
The energy of an unrenormalized single-particle excitat
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propagating with wave vectork, counted from the Ferm
level, is vk

05ek2m8, where ek522@ tx cos(kxax)
1ty cos(kyay)#. The Fermi momentum is denoted bykF . We
consider the fluctuations above a mean-field-like param
netic state, in which the number of particles coincides w
the exact particle number,̂̂ ni↑&&5^^ni↓&&5ne/2, and as-
sumetx5ty5 t, the half-bandwidth beingW54t.

The self-energy diagrams are generated by the usual M
subara imaginary-time perturbation expansion with resp
to the last term in Eq.~1!. All the second- and third-orde
diagrams are shown in Fig. 1, where the dashed line re
sents the local interaction (2U) and the full line stands for
the unperturbed propagatorGk

0( ivn)5( ivn2vk
0)21, defined

with the first two terms in Eq.~1!. Note that there are no

FIG. 1. Diagrammatic representation of second- and third-or
self-energy contributions.
4-2
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PERTURBATION EXPANSION FOR THE TWO- . . . PHYSICAL REVIEW B 63 035104
self-energy diagrams that arek and v independent, the so
called one-legged diagrams. Because of the separation o
Hamiltonian as in Eq.~1!, all one-legged diagrams of a
orders add up to zero. Equivalently one could say that t
have been hidden in the ‘‘effective chemical potential’’m8
5m2^^n2s&&U.

The self-energy calculations for a finite lattice with pe
odic boundary conditions and a discretized time axis s
plify considerably in the space-time representation.5 The
second- and the third-orderretardedproper self-energy con
tributions are given by the expressions

SR
(2)~ t !52 iU 2Q~ t !@a2~R,t !b* ~R,t !1b2~R,t !a* ~R,t !#,

~2!

SR
(3)~ t !5U3Q~ t !$@a~R,t !w1~R,t !2b~R,t !w1* ~R,t !#

2@a* ~R,t !w2~R,t !1b* ~R,t !w3~R,t !#%, ~3!

where a(R,t) and b(R,t) are the standard24 double-time
Green’s functions ofH0,

a~R,t ![^c0
†~0!cR~ t !&5

1

N (
k

ei (k•R2vk
0t)f~vk

0!, ~4!

b~R,t ![^cR~ t !c0
†~0!&5

1

N (
k

ei (k•R2vk
0t)f~2vk

0!, ~5!

while the functionswi(R,t) are space-time convolutions o
functions composed of products ofa(R,t)’s and b(R,t)’s,
given by expression~A12! in the Appendix. Instead of evalu
ating these convolutions directly, we decouple them by a p
of Fourier transforms, as shown in Eq.~A13!. ~The time
variablet should not be confused with the hopping amplitu
t.!

The retardedself-energy in the energy-momentum repr
sentation,Sk(v)[Sk(v1 i01), is then given by the inverse
Fourier transform

Sk~v!5(
R

e2 ik•RE
0

`

dt eivt@SR
(2)~ t !1SR

(3)~ t !#. ~6!

The self-energy calculation is thus reduced to a sequenc
Fourier transforms, which can be evaluated very efficien
by the FFT technique. In this paper we consider a lattice w
Ng52563256 sites and define discretized momenta in
quadratic Brillouin zone ask5(kx ,ky), where kx,y

5Dk( l x,y21) with Dk52p/ANg and l x,y51, . . . ,
ANg. TheG point is atk5(0,0), theX point atk5(p,0), the
M point atk5(p/2,p/2), and theZ point atk5(p,p).

Having foundSk(v,T), we calculate the spectral functio
Ak(v,T) from the Dyson equation,

Ak~v,T!52
1

p
Im

1

v1 i012vk
02Sk~v,T!

, ~7!

and obtain the renormalized density of states,

r~v,T!5
1

N (
k

Ak~v,T!, ~8!

and the renormalized particle number,
03510
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ne52E
2`

`

dv f ~v!r~v,T!. ~9!

Equation~9!, together with Eqs.~8! and ~7!, establishes
the functional dependence of the renormalized particle nu
berne on the ‘‘effective chemical potential’’m8, with U and
T as parameters, everything scaled in units ofW:

ne5N~m8/W;U/W,kBT/W!. ~10!

On the other hand, the pure chemical potentialm is given by

m5m81
U

2
ne5m81

U

2
N~m8/W;U/W,kBT/W!. ~11!

Equations~10! and~11! establish the dependence ofne on m
or vice versa, with both quantities given parametrically
functions ofm8. In this way one does not have to reallysolve
Eq. ~9! as a self-consistencyequationfor ne(m), it suffices to
just evaluateEqs.~10! and ~11! for a number of close-lying
values ofm8. One should note that then consistency is here
forced upon the approximate proper self-energy,Sk

(2)(v)
1Sk

(3)(v), and can therefore be attained only approximate
The peaks ofAk(v) give the dispersion of quasiparticl

excitationsvk ; the renormalized Fermi surface is defined
the set of points in the momentum space at whichvk50. @At
the Fermi surface,Ak(v) has a singularity at the Fermi en
ergyEF .# According to the Luttinger theorem, the number
k points enclosed by the Fermi surface~i.e., the Fermi vol-
umevF) should coincide withne . In our approximate treat-
ment, which is based on the third-order self-energy and
Dyson equation, we findvF.ne , but the relative difference
betweenvF(U,m) andne(U,m) for U<W is very small.

In what follows, we first discussSk(v,T) and then the
ensuing spectral function, the density of states, the renorm
ized dispersion, and the Fermi surface of the model for
temperaturekBT5t/250, U53.5t, andm850.2t, which cor-
responds tone50.96. The same numerical program, ava
able from the authors upon request, returns the self-energ
the irreducible wedge of the Brillouin zone for any oth
value ofT, U, andm.

RESULTS AND DISCUSSION

In Figs. 2 and 3 we show the real and the imaginary p
of Sk

(3)(v), respectively, plotted versusv for several mo-
menta along theG-X-Z-M -G cuts through the Brillouin zone
The dashed and the dashed-dotted lines show the two th
order contributions,SPH

(3)(v) and SPP
(3)(v), respectively,

while the full line is their sum,Sk
(3)(v). The magnitudes of

the individual third-order contributions are about the same
the magnitude ofSk

(2)(v) ~see below and in Ref. 9! but the
total third-order contribution is relatively small, except in
narrow frequency range where the approximate cancella
of electron-electron and electron-hole terms does not oc
This behavior indicates that the correct solution of the ho
doped model requires all third-order diagrams, and canno
obtained by the partial summation of electron-electron
electron-hole diagrams.
4-3
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FIG. 2. Real part ofSk
(3)(v) along the G

→X, X→Z, andZ→G cuts through the Brillouin
zone. ReSPH

(3) , 2ReSPP
(3) , and ReS (3)5ReSPH

(3)

1ReSPP
(3) are represented by dashed, dashe

dotted, and full lines, respectively.
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The functional form ofSk
(3)(v) is very muchk depen-

dent. Far off the Fermi surface ImSk
(3)(v) does not show

much structure in the low-energy region and its slope aro
EF is always small~see Figs. 3 and 5 for data correspondi
to G and Z points!. On the other hand, fork.kF ,
Im Sk

(3)(v) acquires a pronounced minimum atEF ~see Figs.
3 and 5 for data corresponding toX and M points!. In the
low-energy region, ImSk

(3)(v) and ImSk
(2)(v) have the op-

posite sign, and both vanish atEF ~Ref. 25! with a zero
slope.

The properties of the ‘‘full’’ self-energy,Sk
(2)(v)

1Sk
(3)(v), are summarized in Fig. 4, where ImSk(v) is

plotted versusv for the samek’s as in Fig. 3. The low-
energy behavior atG, X, Z, andM is displayed in Fig. 5. For
comparison, the individual second- and third-order contri
tions are shown as well. The low-energy features
ReSk(v) are not changed much by the third-order renorm
ization, regardless ofk. On the other hand, the low-energ
properties of ImSk(v) are strongly influenced by the third
order corrections. For example, close toX andM points, the
second- and third-order terms nearly cancel and make
low-energy part of ImSk(v) rather flat in an extended inter
val aroundEF . The relative contribution of the second- an
third-order terms depends on the coupling strength and f
given m there is always a critical correlationUc(m,kc) such
that the coefficient of thev2 term in ImSkc

(v) vanishes at
03510
d

-
f
l-
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somekc . For U,Uc the curvature of ImSk(v) at EF is
negative for allk and the ensuing spectral weight is alwa
positive. However, forU.Uc the curvature of ImSk(v) at
EF becomes positive at some points in the Brillouin zon
and the corresponding spectral weight becomes nega
This behavior indicates that the third-orderU expansion
breaks down forU.W, and thatSk

(2)(v) provides an accu-
rate renormalization for small values ofU only.

For U close to but less thanUc , the curvature of
Im Sk(v) at EF is found to be the smallest fork.kF . Thus,
in the presence of correlations the Fermi-surface proper
assume qualitatively new features due to thev3 and higher-
order self-energy terms. Unfortunately, these non-Fer
liquid ~NFL! features require large values ofU and cannot be
properly discussed without the higher-order terms in the
pansion. Leaving the fourth-order renormalization for futu
studies,19 we consider here the third-order renormalizati
and discuss spectral properties forU,Uc.W.

The variation ofAk(v) along G→X, X→Z, and Z→G
cuts in the Brillouin zone is shown in Fig. 6. The third-ord
spectral function, like the second-order one,9 assumes at al
wave vectors a typical shape with a low-energy quasipart
peak and a high-energy incoherent background. The corr
tion reduces the quasiparticle spectral weight and enha
the incoherent background ofAk(v). However, forU53.5t
andne50.96 the transfer of spectral weight out of the low
4-4
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FIG. 3. Imaginary part ofSk
(3)(v) along the

G→X, X→Z, and Z→G cuts through the Bril-
louin zone. ImSPH

(3) , 2Im SPP
(3) , and ImS (3)

5Im SPH
(3)1Im SPP

(3) are represented by dashe
dashed-dotted, and full lines, respectively.
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energy region is small, and the quasiparticle peak is not f
separated from the incoherent background, except fork’s
which are far off the Fermi surface. At the Fermi surface,
singular quasiparticle peak can be represented asAkF

(v)

5ZkF
d(v2EF), where Zk describes the reduction of th

quasiparticle weight due to self-energy corrections. Fok
ÞkF the quasiparticle peak broadens, becomes asymme
and attains a maximum at some finite frequency. The as
metry of Ak(v) is caused by an incoherent backgroun
which slows down the high-v decay, and the NFL behavio
at small v. A novel feature due to the third order, whic
begins to emerge forU.W, is the suppression of spectr
weight in a finite energy interval aroundEF . For k.kF , the
singular quasiparticle peak at the Fermi energy is separ
from the occupied and unoccupied incoherent states b
pseudogap. Fork,kF a real gap appears between the~occu-
pied! quasiparticle peak and the~unoccupied! incoherent
states.~The small background seen in the numerical data
due to the damping factor used for the real-axis propagato!

The renormalized quasiparticle dispersionvk is obtained
by tracing the maximum ofAk(v) across several cuts in th
momentum space and is shown in Fig. 7. Circles showvk
and full line gives the unrenormalized dispersionvk

0 for the
same number of particles. Correlation reduces the ove
width of the quasiparticle band and extends the flat disp
sion around (p,0). Essentially the same dispersion is o
03510
ly
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-

,
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tained by solving the secular equation

vk~T!2~ek2m8!2Sk@vk~T!,T#50. ~12!

The inspection of Figs. 6 or 7 shows that theM-point quasi-
particle peak is somewhat aboveEF , while theX-point peak
is right atEF . Thus, the renormalized Fermi surface, defin
by the set ofk points such that the quasiparticle peak is
EF , has a different topology than the noninteracting Fer
surface with the same number of holes. The renormali
Fermi surface resembles the tight-binding result which a
to t i j the next-nearest-neighbor hoppingt i j8 .

The renormalized density of statesr(v) calculated for
U53.5t andne50.96 is plotted in Fig. 8 as a function ofv.
The transfer of the low-energy spectral weight out of t
low-v region is clearly seen butU<W is not sufficient to
generate the incoherent Hubbard sidebands. The densi
states atEF is not much enhanced from the unperturb
value despite the reduced dispersion, because the quasi
cle weight is reduced byZk . One has a metal but a strang
one.

In summary, we developed an efficient method to perfo
the momentum summations in the self-energy expansion
the hole-doped 2D Hubbard model and evaluated the co
cients of theU2 and theU3 terms. The third-order correc
tions lead to additional anisotropy and asymmetry of
spectral function and give rise to new features with respec
4-5
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FIG. 4. Imaginary parts ofSk
(2)(v) and

Sk
(3)(v) along theG→X, X→Z, andZ→G cuts

through the Brillouin zone. ImS (2), Im S (3), and
the sum ImS (2)1Im,S (3) are represented by
dashed, dashed-dotted, and full lines, resp
tively.
un-

re-
is-
ne,

,

the second-order renormalization. For large enoughU we
find a strong reduction of the single-particle spectral we
aroundEF . The quasiparticle dispersion is also reduced
the saddle-point singularities are extended. The Fermi
face obtained by the third-order renormalization for a h
doped system is closed around theZ point. At the Ferm
surface, the quasiparticle peak and the incoherent b
ground are separated by a pseudogap. Off the Fermi su
we find a finite region of negligible spectral weight betwe
the quasiparticle peak and the Fermi energy. This beha
hints to a possible scenario in which the system is met
with a narrow Kondo-like resonance at the Fermi ene
and a pseudogap for incoherent excitations. However
anomalous spectral features that we obtain here are d
the cancellation of the second- and the third-order s
energy terms, and the stability of this result with respec
the fourth-order renormalization remains to be seen.
third-order perturbation expansion shows that the solutio
the hole-doped model cannot be obtained by partial sum
tion of diagrams, and that the properties inferred from
second-order theory seem to be qualitatively correct foU
<W only.
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APPENDIX

Carrying out the Matsubara summations over Fermi f
quencies and continuing analytically the result from the d
crete points on the imaginary axis onto the complex pla
we find

Sk
(2)~z!5S U

ND 2

(
k1 ,k2

P~vk2k1

0 ,vk12k2

0 ,vk2

0 !

z2~vk2k1

0 1vk12k2

0 2vk2

0 !
. ~A1!

The third-order self-energySk
(3)(z) comprises two diagrams

a particle-hole one and a particle-particle one,

Sk
(3)~z!5SPH

(3)~k,z!1SPP
(3)~k,z!, ~A2!

where
5104-6
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SPH
(3)~k,z!52S U

ND 3

(
k1 ,k2 ,k3

P~vk2k1

0 ,2vk12k2

0 ,vk2

0 !

z2~vk2k1

0 2vk12k2

0 1vk2

0 !

Q~2vk12k3

0 ,vk3

0 !

~vk12k3

0 2vk3

0 !2~vk12k2

0 2vk2

0 !
, ~A3!
al

n
.
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while the analogous expression forSPP
(3)(k,z) is obtained

from 2SPH
(3)(k,z) by changing the sign of threevk

0’s out of
five, viz., vk2k1

0 , vk12k2

0 , andvk12k3

0 , everything else being

the same as in Eq.~A3!. The functionsP andQ are defined
as

P~e1 ,e2 ,e3!5 f ~e1! f ~e2! f ~e3!1 f ~2e1! f ~2e2! f ~2e3!,

Q~e1 ,e2!5 f ~e1! f ~e2!2 f ~2e1! f ~2e2!,

f(e)5(ebe11)21 is the Fermi function, withb51/kBT, and
vk

05ek2m8.
The above equations are not suitable for numerical ev

ation of Sk
(2)(v6 i01) and Sk

(3)(v6 i01) because of two
reasons. First, one would have to deal with four-dimensio
and six-dimensional integrations ink space, respectively
Also, the denominators in expressions~A1! and~A3! vanish
along various closed contours ink space. The multiple inte
grals are therefore defined by their principal values and t
evaluation requires a dense grid ink space, which makes th
numerical procedures very time consuming.

The second- and third-order self-energies, given by E
~A1!–~A3!, are therefore transformed here from the ener
momentum to the space-time representation, which allow
accurate and efficient evaluation by the FFT algorithm.

In order to establish transparent shorthand notation,
first define the Fourier transforms as the operators

Fk→R@•••#[
1

N (
k

eik•R
•••,

Fv→t@•••#[E
2`

` dv

2p
e2 ivt

•••,

as well as the inverse transforms

F k→R
21 @•••#[(

R
e2 ik•R

•••,

F v→t
21 @•••#[E

2`

`

dt eivt
•••.

We also introduce shorthand for four-dimensional transfor

F[Fk→RFv→t andF 21[F k→R
21 F v→t

21 .

The retarded advanced self-energy in space-time repres
tion is then defined as

S r /a~R,t !5F@Sk~v6 i01!#.
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For the second-order self-energy we start from express
~A1! for Sk

(2)(v6 i01) and first evaluate thev→t Fourier
transform. Using the relation

Fv→tF 1

v6 id2eG57 iQ~6t !e2 i (e7 id)t,

which holds for anyd.0, we factorize the denominator i
Eq. ~A1! into a product of three exponentials and find

S r /a
(2)~R,t !57 iU 2Q~6t !Fk→R@Sk

(2)~ t !#, ~A4!

whereSk
(2)(t) denotes the double convolution in momentu

space,

Sk
(2)~ t !5

1

N2 (
k1 ,k2

@A~k2k1 ,t !A~k12k2 ,t !B* ~k2 ,t !

1B~k2k1 ,t !B~k12k2 ,t !A* ~k2 ,t !#,

with functionsA(k,t) andB(k,t) defined as

A~k,t !5e2 ivk
0t f ~vk

0!, ~A5!

B~k,t !5e2 ivk
0t f ~2vk

0!. ~A6!

Recalling that the Fourier transform of a convolution can
expressed as a product of Fourier transforms of the in
grands, we writeA(k,t) andB(k,t) as

A~k,t !5F k→R
21 @a~R,t !#, ~A7!

B~k,t !5F k→R
21 @b~R,t !#, ~A8!

and disentangle the double convolutionSk
(2)(t) as

Sk
(2)~ t !5F k→R

21 @a2~R,t !b* ~R,t !1b2~R,t !a* ~R,t !#.

Inserted in expression~A4! this gives

S r /a
(2)~R,t !57 iU 2Q~6t !@a2~R,t !b* ~R,t !

1b2~R,t !a* ~R,t !#. ~A9!

In short,Fv→t yields a convolution ink space, whileFk→R
disentangles this convolution into a product.

As regards the third-order self-energy, we proceed in
same way, starting from expression~A3! for SPH

(3)(k,z). As
before, the v→t Fourier transform factorizes th
z-dependent term in the denominator, but thek summations
still do not represent a convolution due to the presence of
unfactorized singular term 1/(vk12k3

0 2vk3

0 2vk12k2

0 1vk2

0 ).

To factorize this term as well, we make use of the identi
4-7
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1

e
5

1

2
lim

d→01

S 1

e1 id
1

1

e2 id D ,

which holds for anyeÞ0, and

1

e6 id
5

1

i E0

6`

dt ei (e6 id)t,

which holds for anyd.0, to represent 1/e as

1

e
5

1

2i E2`

`

dt s~ t ! ei et, ~A10!

FIG. 5. Imaginary parts ofSk
(2)(v) andSk

(3)(v) at G, X, Z, and
M points close tov5EF . Im S (2), Im S (3), and the sum ImS (2)

1Im S (3) are represented by dashed, dashed-dotted, and full l
respectively.
03510
s~ t ![sgn~ t !e201utu.

It is clear that Eq.~A10! factorizes the above awkward term
into a product of four exponentials. Altogether we obtain

SPH
(3)~R,t !56Q~6t !U3E

2`

`

dt8 s~ t8!Fk→R@SPH
(3)~k,t,t8!#,

where the upper~lower! sign refers to the retarded~ad-
vanced! quantity, respectively, andSPH

(3)(k,t,t8) denotes the
triple k-space convolution

s,

FIG. 6. Single-particle spectral functionAk(v) along theG
→X, X→Z, andZ→G cuts through the Brillouin zone.

FIG. 7. Quasiparticle dispersion~circles! derived from the
maxima of the spectral functionAk(v) and the unrenormalized dis
persion~full line!.
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SPH
(3)~k,t,t8!5

1

N3 (
k1 ,k2 ,k3

@A~k2k1 ,t !B* ~k12k2 ,t2t8!

3A~k2 ,t2t8!1B~k2k1 ,t !

3A* ~k12k2 ,t2t8!B~k2 ,t2t8!#

3@A* ~k12k3 ,t8!B~k3 ,t8!

2B* ~k12k3 ,t8!A~k3 ,t8!#.

The particle-particle third-order termSPP
(3)(k,z) is obtained

from 2SPH
(3)(k,z) by changing the sign of threevk

0’s out of
five, viz., vk2k1

0 , vk12k2

0 , and vk12k3

0 . Since it is obvious

from the above definitions~A5! and ~A6! of A(k,t) and
B(k,t) that vk

0→2vk
0 implies A(k,t)↔B* (k,t), one ob-

tainsSPP
(3)(k,t,t8) from 2SPH

(3)(k,t,t8) by the appropriate re
placements of thoseA’s and B’s that havek2k1 , k12k2,
andk12k3 as their arguments:

SPP
(3)~k,t,t8!52

1

N3 (
k1 ,k2 ,k3

@B* ~k2k1 ,t !

3A~k12k2 ,t2t8!A~k2 ,t2t8!

1A* ~k2k1 ,t !B~k12k2 ,t2t8!B~k2 ,t2t8!#

3@B~k12k3 ,t8!B~k3 ,t8!

2A~k12k3 ,t8!A~k3 ,t8!#.

ExpressingA(k,t) andB(k,t) in terms of their Fourier trans
forms, Eqs.~A7! and~A8!, as before, we decouple the abo
momentum-space convolutions and get

S r /a
(3)~R,t !56U3Q~6t !$@a~R,t !w1~R,t !

2b~R,t !w1* ~R,t !#2@a* ~R,t !,w2~R,t !

1b* ~R,t !w3~R,t !#%, ~A11!

FIG. 8. Renormalized~full line! and unrenormalized~dashed
line! density of states.
03510
where the functionswi(R,t) are now given in the form of
space-time convolutions

wi~R,t !5(
R8

E
2`

`

dt8gi~R2R8,t2t8!hi~R8,t8!,

~A12!

with gi(R,t) andhi(R,t) defined as

g1~R,t !5a~R,t !b* ~R,t !,

g2~R,t !5b2~R,t !,

g3~R,t !5a2~R,t !,

h1~R,t !5s~ t !@g1* ~R,t !2g1~R,t !#,

h2~R,t !5s~ t !@g2~R,t !2g3~R,t !#,

h3~R,t !5h2~R,t !.

For the third order we thus need two more Fourier tra
forms than for the second order, to decouple these additio
space-time convolutions as well,

wi~R,t !5F$F 21@gi~R,t !#•F 21@hi~R,t !#%. ~A13!

So, in order to obtain thenth-order self-energySk
(n)(v

6 i01) via its space-time representationS r /a
(n)(R,t) using the

FFT technique, we first calculate the quantities

a~R,t !5Fk→R@A~k,t !#5
1

N (
k

ei (k•R2vk
0t) f ~vk

0!,

~A14!

b~R,t !5Fk→R@B~k,t !#5
1

N (
k

ei (k•R2vk
0t) f ~2vk

0!,

~A15!

which requires performing the Fourier transformFk→R .
Then we proceed to evaluateS r /a

(n)(R,t). For the second orde
this amounts just to forming products ofa(R,t)’s and
b(R,t)’s, according to expression~A9!. For the third order
we first form functionsgi(R,t) andhi(R,t), again given by
products ofa(R,t)’s andb(R,t)’s, then we perform a pair of
Fourier transforms (F 21,F), to calculate functionswi(R,t)
according to Eq.~A13!, and finally formS r /a

(3)(R,t) according
to expression~A11!. Having thus found the self-energy i
space-time representation, we applyF 21 once again to get

Sk
(n)~v6 i01!5F 21@S r /a

(n)~R,t !#.

The numerical problem involving space-time
momentum-frequency transformations~and vice versa! is
solved by considering a finite lattice with periodic bounda
conditions and discretizing the time axis. Here we take 2
3256 lattice sites and 1024 time points. As regards
k↔R transformation, the FFT is an exact procedure, wh
the t↔v transformation involves approximating the contin
ous Laplace transform with the corresponding discrete F
4-9
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It would be much more time consuming to evaluate th
space-time convolutions directly.

The fourth-order self-energySk
(4)(z) comprises 12 topo-

logically nonequivalent diagrams, nine of which are nume
cally different. However, only four out of these nine can
treated entirely along the same lines as those of the se
and third order, i.e., completely decoupled and evaluated
a series of Fourier transforms alone. The remaining five
not yield multiple space-time convolutions, but double in
grals instead, which can be only partly decoupled by Fou
transforms. The fourth order thus introduces new numer
difficulties, but tractable ones. The FFT cannot do the wh
job, but it does all steps but one.

The functionsa(R,t) andb(R,t), the building blocks of
S r /a

(n)(R,t), have a clear physical interpretation as doub
time correlation functions

a~R,t !5^c0
†~0!cR~ t !&,

b~R,t !5^cR~ t !c0
†~0!&,

which can be shown by a straightforward evaluation of th
thermal averages over the eigenstates ofH0, which gives
l-

R.
o

s.
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Eqs. ~A14! and ~A15!. This relates them to the unperturbe
Green’s functions in space-time representation, viz., the
tarded advanced one,

Gr /a
0 ~R,t !57 iQ~6t !^@c0

†~0!,cR~ t !#1&

57 iQ~6t !@b~R,t !1a~R,t !#,

and the causal one,

G0~R,t !52 i ^T$cR~ t !c0
†~0!%&

52 i @Q~ t !b~R,t !2Q~2t !a~R,t !#.

It is clear thatb(R,t) is the probability amplitude for an
electron to be created atR50 and t50, to propagate to the
siteR which is reached at a later timet, and to be destructed
at (R,t). This newly created electron is ‘‘composed of’’ th
unoccupied~i.e., still available! k states, as indicated by th
amplitudes f (2vk

0)512 f (vk
0) in the defining relation

~A15!. In the same waya(R,t) effectively describes the
propagation of a hole created at (R,t,0) and destructed a
(R50,t50).
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