
l

PHYSICAL REVIEW B, VOLUME 63, 033105
Semiclassical theory of magnetic quantum oscillations in a two-dimensional multiband canonica
Fermi liquid
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The semiclassical Lifshitz-Kosevich description of quantum oscillations is extended to a multiband two-
dimensional Fermi liquid with a constant number of electrons. The amplitudes of oscillations with combination
frequencies, recently predicted and observed experimentally, are analytically derived and compared with the
single-band amplitudes. The combination amplitudes decay with temperature exponentially faster than the
standard harmonics, and this provides a valuable tool for their experimental identification.
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It has been shown1 that the magnetic quantum oscillation
in a multiband two-dimensional metal with a fixed electr
density@canonical ensemble~CE!# are qualitatively different
from those in an open system where the chemical potenti
fixed @grand canonical ensemble~GCE!#. There is a mecha
nism for different bands to ‘‘talk’’ to each other in CE pro
ducing a de Haas–van Alphen~dHvA! signal with the com-
bination frequencies,f 5 f 11 f 2 ~Ref. 1! and f 5 f 12 f 2
~Refs. 2 and 3! in addition to the ordinary dHvA frequencies
f 1,2, of the individual bands in GCE. Numerical studies
oscillations showed that their amplitudes are compara
with the standard components, and they are robust with
spect to abackground~nonquantized! density of states.2

The frequencies have been recently observed4 in quantum
well structures. These additional components in the dH
frequency spectrum of low-dimensional metals may prov
a unique information on the Fermi surface and carrier den
if detailed analytical theory is available. In this paper w
develop such a theory in the framework of the semiclass
Lifshitz-Kosevich ~LK ! approach.5 The Eqs.~12! and ~13!
are the main results of the present paper.

We first derive a convenient expression for a multiba
two-dimensional thermodynamic potential in an exter
magnetic fieldH,

V52TE de N~e,B!lnF11expS m2e

T D G , ~1!

where

N~e,B!5(
a

(
n50

`

ravad~e2ean! ~2!

is the quantized density-of-states,ra is the zero-field
density-of-states in the banda, ean5Da01va(n11/2)
1gasmBB, va5eB/ma the cyclotron frequency with the
cyclotron massma , B5H14pM the magnetic field,Da0
the band edge in zero magnetic field,m the chemical poten-
tial, ga the electrong factor,s561/2, mB the Bohr magne-
ton, and\5c5kB51. The band indexa includes the elec-
tron spin. In actual experiments on 2DEG,B'H and
magnetic coupling between subbands was negligible.4
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By applying the Poisson formula6 to the sum overn in the
thermodynamic potential

V52T(
a

rava (
n50

`

lnF11expS ma2va~n11/2!

T D G
~3!

with ma5m2Da andDa5Da01gasmBB, we obtain

V5V01Ṽ, ~4!

where

V052TE
0

`

de(
a

ra lnF11expS ma2e

T D G ~5!

is the ‘‘classical’’ part. In GCE it does not oscillate as
function of 1/B, and contains the contribution due to sp
susceptibility~Pauli paramagnetism!. The second part is

Ṽ5
1

24 (
a

rava
212(

a
(
r 51

`

Aa
r cosS r f a

B
1fa

r D , ~6!

where the first term produces the Landau diamagnetism
the second oscillatory term is responsible for the de Ha
van Alphen effect. It is small compared with the ‘‘classica
part as Ṽ/V0;(v/m)2. The Fourier components appe
with frequenciesr f a[rSa /e, where Sa52pma(m2Da0)
is the Fermi surface zero-field cross section. The amplitu
of the Fourier harmonics are

Aa
r 5

Trava

2r sinh~2p2rT/va!
, ~7!

and the phasefa
r 5rp(11gas).

Differently from GCE, the chemical potential oscillates
CE. Hence, the classical part ofV contributes to oscillations
as well. The relevant thermodynamic potential of CE is t
free energyF5V1mN, with a fixed number of electrons
N52]V/]m. At low temperatures we find

V052(
a

rama
2/2, ~8!
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so that

m5
1

r S N1(
a

raDa1
]Ṽ

]m D , ~9!

where r5(ara is the total density-of-states. Substitutin
this expression intoV0, Eq. ~8!, we obtain

F5F01F̃, ~10!

where the smooth nonoscillatory part of the free energy
given by

F05
1

2r S N1(
a

raDaD 2

2
1

2 (
a

raDa
2 , ~11!

while the most essential oscillatory part is

F̃5Ṽ2
1

2r
S ]Ṽ

]m
D 2

. ~12!

In a more explicit form we obtain

F̃5
1

24 (
a

rava
212(

a,r
Aa

r cosS r f a

B
1fa

r D
24 (

a,a8,r ,r 8
Caa8

rr 8 sinS r f a

B
1fa

r D sinS r 8 f a8
B

1fa8
r 8 D .

~13!

It is the last term, which yields combination Fourier harmo
ics with the combination frequenciesf 5r f a6r 8 f a8 . Their
amplitudes,

Caa8
rr 8 52p2

rr 8Aa
r Aa8

r 8

rvava8
~14!

are comparable with the standard single-band harmonic
low temperatures,T,va/2p2r , as also found in the numeri
cal analysis1,2 and in the experiment.4 For example, the ratio
of the combination amplitude to a single-band one forr
5r 851 andT50 in a metal with two parabolic bands (ra
5ma/2p) is

2Caa8
11

Aa
1 5

ma

ma1ma8
. ~15!

DifferentiatingṼ in GCE andF̃ in CE with respect toH, one
obtains the ratio of the combination and single-band am
tudes of magnetization as

Maa8
11

Ma
1 5

2Caa8
11

Aa
1

f

f a
5

ma

ma1ma8

f

f a
, ~16!

Differentiating twice the ratio in susceptibility is (T50)
03310
is

-

at

i-

xaa8
11

xa
1 5

2Caa8
11

Aa
1 S f

f a
D 2

5
ma

ma1ma8
S f

f a
D 2

. ~17!

The last two ratios may be even larger than unity for t
‘‘plus’’ combination harmonic (f 5 f a81 f a) while the ‘‘mi-
nus’’ one (f 5 f a82 f a) is suppressed in magnetization an
susceptibility, Fig. 1. At higher temperatures the combin
tion harmonics are exponentially small compared with
single-band ones, as shown in Fig. 1.

We note that according to Eq.~13! the difference between
the Fourier harmonics for open and closed systems shoul
seen even in a simplest single-band metal due to splitting
the band. On the other hand, in three-~and higher! band
metals, a mixture of more than two different frequenc
can be observed due to nonparabolic band dispersion gi
rise to cubic and higher powers of the chemical potentia
the expression forV0, Eq. ~8!. In very high magnetic fields
the usual magnetic breakdown and the nonlinear field dep
dence of magnetic subbands due to nonparabolicity of
band dispersion could also lead to combination frequenci7

In conclusion we have developed the analytical semic
sical theory of magnetic quantum oscillations in multiba
two-dimensional metals. We have found the amplitudes
the combination Fourier harmonics, which are compara
with the single-band harmonics at low temperatures and
ponentially small at higher temperatures. Their frequenc
and the temperature dependence of amplitudes provide a
tional information on the band structure and carrier densi
of a multiband canonical Fermi liquid. Essentially differe
temperature dependence of the combination amplitudes c
pared with the standard harmonics, Fig. 1, should allow
distinguish them experimentally.

We thank A. P. Levanyuk for enlightening comments
the relationship between different statistical ensembles.

FIG. 1. The relative values off a81 f a and f a82 f a combination
Fourier components of magnetization forma851.5ma and f a8
51.5f a . The ratio for the parabolic bands isMaa8

11 /Ma
1

52p2Tma8( f a86 f a)/@ f a(ma1ma8)va sinh(2p2T/va8)#.
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