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Exact solution for a disordered correlated electron model
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The first exact solution for a disordered ensemble of embedded magnetic impurities in a correlated electron
chain is presented. We have studied nonlinear equations that exactly determine the thermodynamics of that
disordered correlated electron system for arbitrary ranges of the temperature, external magnetic field, and
number of electrons. We have shown how strong disorder divergences of the low-temperature susceptibility
and specific heat appear, which drastically differ from the homogeneous case. Low-energy asymptotics for the
behavior of several characteristics of the disordered correlated electron chain are calculated analytically; they
reveal universal properties.
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Recently there has been a great interest in the Iow—energy[ejz+1]*1, [.,.] denotes the commutator, and the index
behavior of some heavy-fermion compouhdsnd low-  imp denotes the position of an impurity. It is clear that the
dimensional organic salfsThere strong correlations be- impurity-host part of the local Hamiltonian has the same
tween electrons probably preclude a standard Fermi-liquidorm as for the host, with the different overall multiplier
(FL) behavior. The low-energy non-FL features of these sys3) . i.e., the coupling of each impurity to the host is deter-
tems are logarithmidor weak power law divergences of mined by a single constam . The casef;=0 pertains just
their magnetic susceptibility and low temperatureT)), spe-  to the adding of a one-host site to the system. ferx, an
cific heat(Sommerfeld coefficient y, nonuniform distribu-  impurity site is totally decoupled from the host. We have
tion of the Knight shifts, and linear ifi resistivity. Several showr that namely this constant determines the effective
scenarios were proposed to explain those r_10n-FL_ dala: Kondo scale of a single impurity Via{(ocexp(_ﬂ 6). For
The enhancement of quantum fluctuations in  10W-gnergies higher than this crossover scale, an asymptotically
dimensional systems at loW causes itself the non-FL be- a0 jmpurity spin results, whereas for lower energies, the
havior of low-energy characteristic) single magnetic im- iy of 5 single impurity is screened, and FL-like behavior

purity drastically renormalizes the behavior of eIeCtronpersists with the finite magnetic susceptibility and linear

systems, especially f_or a mglnchannel Kondo S"“aﬁ.‘“’!‘d temperature dependence of the specific heat atTidwgimi-
(c) the non-FL behavior of dilute systems of magnetic impu- . Lo
lar to the theory of a Kondo impurity in a host of free

rities was explained by presence of a disortfet However, lectrong A ber of such i i be i
the mentioned theories used approximations that can pg ectrons. Any num ger of such Impurities can be incorpo-
rated in our modet® They will be characterized by their

hardly applied to some non-FL compoun@sg., to concen- ) . . 10 .
trated alloys or to systems without large clusters of ordere@Wn CoUplings to the host, i.e., by their ovliy = The dis-

phases To explain some properties of disordered correlated®’d€r IS quenched in our model. Previous studies of more

electron systems the use of exact results is highly desirabl@€neric one-dimensional correlated electron systems with

Here we propose the first exactly solvable model of cordisorder are valid only for relatively weak couplings in the

related electrons with disorder: The supersymmetriz ~ ON€-loop approximation of the renormalization group and
chain (STJQ with the finite concentration of disordered Within the replica approach for a quenched disordef our

magnetic impurities. The Hamiltonian of the system has thémpurities are situated not at the nearest-neighbor links of the
form H=3.H, 11+ Himot Himo where we denote host, they do not interact with each other. But if the neigh-
n''n,n imp imp,imp’ »

_ + CHCIP+I(ES — boring impurities are S|tgated at.the nelg.hborlng links of
cHTI'mcreaiepézg(;rréztrrnc\iv?ti tljei)srlo?gctiglnng:“ls);;imve\:th fhr: the 20'5 t, they can interactdirectly via Himpvi.m."’

Lo “17 A : =Ej0ijm Himp.imp’ - It do_es_not dt_astroy thg integrability of
sitel, §=¢ S, 4/Cl o1 M=Z,N 5, N =Cf ,C , and the  the modeﬁ2 These impurity-impurity couplings can model,
multipliers P=(1-n; _,)(1—ny -,) exclude the double e.g., a Ruderman-Kittel-Kasuya-Yosida interactitreing
occupation at each site. In the supersymmetric point the exshort range thoughbetween impurities in concentrated me-
change constant is equalde- 2t =2 (we equate the hopping tallic alloys.
integral to unity.® By impurities we mean the electrons’  We describe the termodynamics of an ensemble of mag-
sites, the values of hopping integrals and exchange couplingsetic impurities randomly coupled to the one-dimensional
of which differ from the host'sunity). Suppose the impurity (1D) STJC by the quantum transfer matrixQTM)
numberj is situated at the link between tivath and (m  technique'® It is based on the mapping of a 1D quantum
+1)th site of the host. Then the integrable impurity-hostsystem to a statistical 2D modéhe second coordinate de-
Hamiltonian can be written &s Himp=2jJ{mp(Hm,imp termines thel behavioy by means of Trotter-Suzuki decom-
+Himpm+ 1~ Hmm+ 11 6[Hmimp,Himpm+1]), wheredl,, . position. The width of that statistical 2D vertex lattice coin-
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cides with the lengthL of the quantum chain, while the 0.9 T
height N is the Trotter number. Taking the trace over the
auxiliary space of the product of standdrdw-to-row from \
the viewpoint of the vertex modeR matrices® we con- \
struct the transfer matrix of the inhomogeneous quantum
1D STJC.R matrices satisfy the Yang-Baxter relations,
hence the transfer matrices with different spectral parameters
commute. The Hamiltonian of our disordered STJC has been
constructed as usual, as the logarithmic derivative of the
transfer matrix; it commutes with the lattére., it is inte-
grable by construction The only difference from the homo-
geneous case is that for the matrices of impurities their ~ F------m-mmmmmmmmom oo e

Magnetic susceptibility
e

spectral parametar is shifted by6; . Rotating the initialR 10° 10° 0"
matrices in the clockwise and anticlockwise directions we n(M
construct the transfer matrix from those newR matrices in FIG. 1. The magnetic susceptibility versus the logarithrit &dr

a way similar tor. Then we substitute=—1/NT, whereN the STJC with the electron density per site 0.9 &nd0 for the

. : — _ - homogeneous casélashed ling Lorentzian distribution of6;

is the Trotter number. We finfir(u) 7(u) V2= exp(—HIT) 198! h L : !
+O(1N). Hence, the partition functio of the quantum (solid line), and log-normal distributioidashed-dotted line

1D disordered STJC is identical to the partition functionfor the homogeneous STJ€It turns out that the parameters
of an inhomogeneous classical vertex model with alternatingf impurities ¢; do not enter those nonlinear equations,
rows on a square lattice of sizeLXN, Z  which read®

= limy_..Tr[ 7(u) r(u) V2, Interactions of the vertex model - a(x) =27 (x+i€)+ u+ (h2)

are (alternating homogeneous in each column, but can vary

along the row. It permits us to study exactly the termody- —Tv* |n(1+§)|x+2i€_-rqf;|n(1+c)|x+ie,
namics of the disordered electron ch&i® Then we con-

struct the(column-to-columi QTM as an alternating prod- Tinc(x)=27V +2u—T¥ZIn(1+c)

uct of R(x+u) and their rotated partnerR(x—u). It . — *
describes thél behavior of the disordered STJC. The free —TWEIN(1+a) | e~ TWLIN(I+a) e,

energy per sitd is given by only the largest eigenvalue of (1)
the QTM A as f= _”m'ﬁ“’T/LE:_:l”mN*""In AQ.,U) where * means convolution, 2¥,(x)=[x(x—i)]"*
taken atx=0. The free energy of the total STJC with impu- 27V (x) =[X(x+i)] L, 7 (X)'Z[Xzfl]fl O<e<1 M
rities is F=L"13;f(6,/2), where the sum is taken over all 2 1A, ’ '
the sites[for sites without impurities we get(0)].1® The

random distribution of the valueg; can be described by a
distribution functionP(#;). An advantage of our model has
to be emphasized. Contrasting to the models of disordere§
dilute Kondo impurities in free-electron hosts used béfbre
we can studyfinite concentrations of impurities in the ther-
modynamic limit unlike thesingle impurity nature of the

is the chemical potential, ardis an external magnetic field.
The equation fola(x) is obtained from the one fa by the

replacements$— —i, h— —h anda«<a. However the free
nergy per site of the STJC with impuritideesdepend on

; and is given byf(6;)=2u—TInc(6) (cf. Ref. 13. The
numerical solution of Eq91) shows that for narrow distri-
butions (weak disorderthe disordered STJC is in a singlet
2 . state, i.e., the Kondo screening persists. For broad distribu-
St_Ud'esl" In this context, our model shares such a featur&;ons (strong disorder non-Fermi-liquid behavior is mani-
with the Griffiths’ phase theor§{.0n the other hand, our tegted — lowT characteristics like the magnetic susceptibil-
approach does not demand neither formation of large clusﬂy diverge, i.e., there is no Kondo quenchifege Fig. 1
ters, nor magnetic anisotropy, in contrast to the Griffiths'The |ow-T divergences disappear upon applying a finite
phase approachimpurities are coupled to thiateracting  magnetic field, which restores the screening of impurities.
lattice host(and to the neighboring |mpur|t|EsaII the inter- We can ana|ytica||y solve Eq$1) in several important
actions are exactly taken into account. Hence, our moddlmiting cases. First, for lowT the free energy per site is
provides thenonperturbativedescription of theandom en-  given by f(gj)%eo(gj)_(WT2/6)[U(;1(9])+US—1(91.)]
sembleof impurities in the correlated electron hdéinstead 4+ ... , whereeo(ﬁj)fe{) is the ground-state energy per site
of solving Bethe ansatz equations for the STJC, the QTMcf, Ref. 7 andu, «(§;) are velocities of the charge and spin
method suggests to study analytic properties of the eigenpw.-lying excitations of the STJC taken at the associated
value of the QTM: From those properties the finite set of Fermi points shifted by, . For §;=0, it is the known lowT
nonlinear integral equations for the “energy density” func- conformal limit of the homogeneous hogtf. Ref. 13. It
tions, which at lowT are closely related to Gibbs’ exponents s out that the central charges of the semidirect product of
of “dressed energies” of spina(x) anda(x), and charge, charge and spin conformal algebras are equal to one and do
c(x), excitations of the STJZ (x is the spectral paramejer not depend on the parameters of impuritigs i.e., univer-

is constructed absolutely similar to the analogous procedursal. The only low-energy parameters that get renormalized
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by the disorder are theffective velocitiesof low-lying  distribution beginning with the ternP(Tk)oG ™ (Ti)* 1
charge and spin excitations. For low densities of electrongx<1) valid until some energy scal®.! Then averaging,
(Where u<T) for h=0 we obtain the free energy per site e.g., the lowT parts ofy andy we obtain(y)o(y)~T*"1.

(we put e=1/2) f(gj)%e{)_T |n(1+2e‘1”(912+1)). For the They are divergent, in a drastic contrast to the homogeneous
high_density reg|mqu>'|' one can use the approximation STJC(Cf Ref. 13 The ground'state average magnetization
Inc~In(1+c). This vyields TIna=(m/coshmx)+(h/2)  Of the disordered dense STJC revedis~ (h/G)* behavior,
+Tk(X)*In(1 +8)~ Tk(x+i)*In(1 +a) and similar fora, with ~ 1S° different from the homogeneous case. The average com-
the kernelk(x)=(Zw)‘lfdweiwx[lJre""‘]‘l. The free en- p_re55|bll|ty for the high-density limit also reve_als the Id’yv-
ergy per site becomes(x)=eq(x)+ u— T dyln(1+a)(l divergence. We calculate the average dynamic magnetic sus-

/cosh o e in th i ceptibility (x")(w,T). The standard ansatz for the relax-
+2) cos w();—y). n? Rcafn 1r8ecf?ognr|]zedm tdescz l:qn 'net?rational form of that susceptibility of a single magnetic
equations the ones of Ref. or the disordered Heisen eri%purityA ¥'(@0,T)= (T (T)o[w?+T4T)] ! can be

spin 3 chain. It is clear because in the limit of largethe

. o . used, in which one supposed that the relaxation Fatioes
electron density per site is equal to oftkee largest possible

19 ; not depend on the frequenay. (That ansatz satisfies the
value for the STJE™ In the low-T (conforma) regime the Kramers-Kronig relationg.At low T, the use of the Shiba

s st o sl e s o s e -5 o 1 e

: . . of I'(T) via lim,_.x"(®,0)/mw=2x“(0). That yields the
g;]z;%rtr:r?;?gssot? ;hg Iot\r/;v:; ﬁggg;%técrz g;it:i%qn;;):gg?rg'c low-T dependence of the relaxation rate per site for the dis-
single magnetic impurify’ manifest logarithmic behavior Orde,r?d ch?Lan(T)~T{<.. Henge, we g_et()( >(w’T).
(singularities. Its origin can be traced back to the marginal ~G _ (G/T) g(O(Cu/T) ;’V_'tlh % be|2ng the Unl\_/ersal s_cahng
operators existing for models with $2) spin symmetry [unction g(x)=x/ydy/y* *(x"+y"). It drastically differs
(present in the STJ)CTo know how logarithmic singularities from the .homogeneou's casg. Similar calculations, e.g:, for
in the low-T susceptibility and specific heat get renormalizedt® variation of the Knlghfsglft and for the NMR relaxation
for the disordered STJC in the high-density regimaich is  'ate yieldoK/Ka 5x/x~T %= (where 5A denotes tjhe mean
most important because it pertains to the Kondo magneti¢942® deviation oA due to the distribution offy) and
behavior for impuritie§, we perform an analytic lol. 11 ~G Y(G/T)*"?g(«/T). Consider the importaniar-
study of Egs.(1). We introduce scaling functiohsa.(x)  ginal casex=1. Here, one has the distribution wit(T}
=a(=x=Ln), whereLn=In(aTk/T) (a is some constapt ~=0)=G~*#0. Then, averaging the lo@-part of the sus-
etc. Equation(1) are transformed, so that for the new set of ceptibility and Sommerfeld coefficient, we obtaig)>(y)
the scaling functions the only known asymptotic behavior of~ — (1/27G)[In(G/T) +In\In(aG/T)+ ...]. Here we see the

“energy density” functions ¥ a. and 1+a. at large spec- logarithmic (more weak divergencies of x) and(y). The
tral parameter enters. Then, following Ref. 13 we obtain low-field average ground-state magnetization (is1%)~
h=0) the free energy of the dense limit of the STJC per site~ (W/G)In(VG). The weak power-law or logarithmic depen-
f(TL)=eh+u— (#T26TL)[1+3(2Ln) 3]+ . ... Fornon- dences pertain to the Griffiths’ singularities in the proximity
zero fieldh<T we calculate the logarithmiE corrections for  to the critical pointT=0 (cf. Refs. 5 and 1b The dynamic
the free energy per sitd(Tk)=el(h)+u—(#T%6T})  magnetic susceptibility reveals the scaling behavior
_(h2/4,n.-|'{<)[1+(ZLn)—l_(ZLn)—Z In(2Ln)]+O(T2) The <X”>.((1.),T)NGifI'[(W/Z)—tanﬁl(ZGT/OA-l’ﬂw)] (WhICh' IS
groundstate magnetization per site in a weak external field i€92in in a drastic contrast to the homogeneous $NGice
M~h/T{< for h<T. . cf. Ref. 7. Notice that for the dense that for these distributions afl , the Wilson ratio aT=0 is
a constant, like in a FL case.

In conclusion, in this work we have introduced the first
exactly solvable model of disordered strongly correlated
electrons. We have studied the finite set of nonlinear integral

quations, which totally determine the thermodynamics of

e system. Analytic expressions for low-temperature,
magnetic-field and frequency dependences of several impor-
iate | tion t Ty inale im- tant characteristics of our model were calculated. We found
appropnaje n cqnnec Ion o experiments-or a SiNgle IM- — ype yniversal features for the low-energy behavior of the
purity P(Ty) = ) 1, we recover the logarithmic Kondo be- 1, 4| The only parameters that get renormalized due to the
havior of an asymtotically free spifwhich is characteristic disorder are effective velocities of low-lying excitations
both to a Kondo impurity in a free electron hdsind to a  (crossover scales connected with each site of the motet
single magnetic impurity in the STJC For the case of the finite-size corrections to the ground-state behavior of the dis-
homogeneous STJC, we pgjt=0. It meansTk—vs, where  ordered STJC can be obtained by replaciGg{)—L. Our
vs is the (Ferm) velocity of low-lying spin excitations results for the low-energy behavior of the integrable 1D su-
(spinong of the STJC. persymmetrict-J model with disordered impurities surpris-

Let us show how lowF divergences can result from wide ingly coincide with theoretical results for a single multichan-
distributions of Tx . Suppose one has thetrong disorder  nel Kondo impurity? dilute disordered Kondo impurities, the

limit of the low-T behavior of the STJC, the dependence on
0; enters only ag] , i.e., as the distributions of the charac-
teristic velocities of spin excitationgor crossover scales,
which pertain to each impurijy(It is not the case for higher
energies and for lower densities, but those are not importa
for low-T disorder-driven divergencigstHence for low en-
ergies we can use distributions ©f , which are also more

033101-3



BRIEF REPORTS PHYSICAL REVIEW B 63 033101
Griffiths’ phase theory! and qualitatively agree with the tallic alloys?? This probably manifests generic features of
previous approximate approaches for more generic mddels.concentrated disordered electron systems above critical
They also agree to the data of experiments on the disorderqubints in our 1D exact solution for the disordered correlated

1D organic conductors and, surprisingly, on 3D heavy meelectron modef?
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