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Exact solution for a disordered correlated electron model
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The first exact solution for a disordered ensemble of embedded magnetic impurities in a correlated electron
chain is presented. We have studied nonlinear equations that exactly determine the thermodynamics of that
disordered correlated electron system for arbitrary ranges of the temperature, external magnetic field, and
number of electrons. We have shown how strong disorder divergences of the low-temperature susceptibility
and specific heat appear, which drastically differ from the homogeneous case. Low-energy asymptotics for the
behavior of several characteristics of the disordered correlated electron chain are calculated analytically; they
reveal universal properties.
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Recently there has been a great interest in the low-en
behavior of some heavy-fermion compounds1 and low-
dimensional organic salts.2 There strong correlations be
tween electrons probably preclude a standard Fermi-liq
~FL! behavior. The low-energy non-FL features of these s
tems are logarithmic~or weak power law! divergences of
their magnetic susceptibilityx and low temperature (T), spe-
cific heat ~Sommerfeld! coefficientg, nonuniform distribu-
tion of the Knight shifts, and linear inT resistivity. Several
scenarios were proposed to explain those non-FL data~a!
The enhancement of quantum fluctuations in lo
dimensional systems at lowT causes itself the non-FL be
havior of low-energy characteristics;~b! single magnetic im-
purity drastically renormalizes the behavior of electr
systems, especially for a multichannel Kondo situation;3 and
~c! the non-FL behavior of dilute systems of magnetic imp
rities was explained by presence of a disorder.4,1,5 However,
the mentioned theories used approximations that can
hardly applied to some non-FL compounds~e.g., to concen-
trated alloys or to systems without large clusters of orde
phases!. To explain some properties of disordered correla
electron systems the use of exact results is highly desira

Here we propose the first exactly solvable model of c
related electrons with disorder: The supersymmetrict-J
chain ~STJC! with the finite concentration of disordere
magnetic impurities. The Hamiltonian of the system has
form H5(nHn,n111Himp1Himp,imp8 , where we denote
Hl ,m52tP(cl ,s

† cm,s1H.C.)P1J(SW lSW m2nlnm/4), where
cl ,s

† creates an electron with thez projection of spins at the

site l, SW l5cl ,s
† Ŝs,s8cl ,s8 , nl5(snl ,s , nl ,s5cl ,s

† cl ,s and the
multipliers P5(12nl ,2s)(12nm,2s) exclude the double
occupation at each site. In the supersymmetric point the
change constant is equal toJ52t52 ~we equate the hopping
integral to unity!.6 By impurities we mean the electrons
sites, the values of hopping integrals and exchange coupl
of which differ from the host’s~unity!. Suppose the impurity
number j is situated at the link between themth and (m
11)th site of the host. Then the integrable impurity-ho
Hamiltonian can be written as7 Himp5( j Jimp

j (Hm,imp

1Himp,m112Hm,m112 iu j@Hm,imp ,Himp,m11#), whereJimp
j
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211#21, @ .,.# denotes the commutator, and the ind

imp denotes the position of an impurity. It is clear that t
impurity-host part of the local Hamiltonian has the sam
form as for the host, with the different overall multiplie
Jimp

j , i.e., the coupling of each impurity to the host is dete
mined by a single constantu j . The caseu j50 pertains just
to the adding of a one-host site to the system. Foru j→`, an
impurity site is totally decoupled from the host. We ha
shown7 that namely this constant determines the effect
Kondo scale of a single impurity viaTK

j }exp(2puuju). For
energies higher than this crossover scale, an asymptotic
free impurity spin results, whereas for lower energies,
spin of a single impurity is screened, and FL-like behav
persists with the finite magnetic susceptibility and line
temperature dependence of the specific heat at lowT,7 simi-
lar to the theory of a Kondo impurity in a host of fre
electrons.3 Any number of such impurities can be incorp
rated in our model.8,9 They will be characterized by thei
own couplings to the host, i.e., by their ownTK

j .10 The dis-
order is quenched in our model. Previous studies of m
generic one-dimensional correlated electron systems w
disorder are valid only for relatively weak couplings in th
one-loop approximation of the renormalization group a
within the replica approach for a quenched disorder.11 If our
impurities are situated not at the nearest-neighbor links of
host, they do not interact with each other. But if the neig
boring impurities are situated at the neighboring links
the host, they can interactdirectly via Himp,imp8
5( ju j

2Jimp
j Himp,imp8 . It does not destroy the integrability o

the model.12 These impurity-impurity couplings can mode
e.g., a Ruderman-Kittel-Kasuya-Yosida interaction~being
short range though! between impurities in concentrated m
tallic alloys.

We describe the termodynamics of an ensemble of m
netic impurities randomly coupled to the one-dimensio
~1D! STJC by the quantum transfer matrix~QTM!
technique.13 It is based on the mapping of a 1D quantu
system to a statistical 2D model~the second coordinate de
termines theT behavior! by means of Trotter-Suzuki decom
position. The width of that statistical 2D vertex lattice coi
©2000 The American Physical Society01-1
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cides with the lengthL of the quantum chain, while the
height N is the Trotter number. Taking the trace over t
auxiliary space of the product of standard~row-to-row from
the viewpoint of the vertex model! R matrices,13 we con-
struct the transfer matrixt of the inhomogeneous quantu
1D STJC. R matrices satisfy the Yang-Baxter relation
hence the transfer matrices with different spectral parame
commute. The Hamiltonian of our disordered STJC has b
constructed as usual, as the logarithmic derivative of
transfer matrix; it commutes with the latter~i.e., it is inte-
grable by construction!. The only difference from the homo
geneous case is that for theR matrices of impurities their
spectral parameteru is shifted byu j . Rotating the initialR
matrices in the clockwise and anticlockwise directions

construct the transfer matrixt̄ from those newR̃ matrices in
a way similar tot. Then we substituteu521/NT, whereN

is the Trotter number. We find@t(u) t̄(u)#N/25exp(2H/T)
1O(1/N). Hence, the partition functionZ of the quantum
1D disordered STJC is identical to the partition functi
of an inhomogeneous classical vertex model with alterna
rows on a square lattice of sizeL3N, Z

5 limN→`Tr@t(u) t̄(u)#N/2. Interactions of the vertex mode
are~alternating! homogeneous in each column, but can va
along the row. It permits us to study exactly the termod
namics of the disordered electron chain.14,15 Then we con-
struct the~column-to-column! QTM as an alternating prod

uct of R(x1u) and their rotated partnersR̃(x2u). It
describes theT behavior of the disordered STJC. The fr
energy per sitef is given by only the largest eigenvalue
the QTM L as f 52 limL→`T/L( i 51

L limN→`ln L(x,ui ,u)
taken atx50. The free energy of the total STJC with imp
rities is F5L21( j f (u j /2), where the sum is taken over a
the sites@for sites without impurities we getf (0)].16 The
random distribution of the valuesu j can be described by
distribution functionP(u j ). An advantage of our model ha
to be emphasized. Contrasting to the models of disorde
dilute Kondo impurities in free-electron hosts used befor1,4

we can studyfinite concentrations of impurities in the the
modynamic limit unlike thesingle impurity nature of the
studies.1,4 In this context, our model shares such a feat
with the Griffiths’ phase theory.5 On the other hand, ou
approach does not demand neither formation of large c
ters, nor magnetic anisotropy, in contrast to the Griffith
phase approach.5 Impurities are coupled to theinteracting
lattice host~and to the neighboring impurities!; all the inter-
actions are exactly taken into account. Hence, our mo
provides thenonperturbativedescription of therandom en-
sembleof impurities in the correlated electron host.17 Instead
of solving Bethe ansatz equations for the STJC, the Q
method suggests to study analytic properties of the eig
value of the QTM.13 From those properties the finite set
nonlinear integral equations for the ‘‘energy density’’ fun
tions, which at lowT are closely related to Gibbs’ exponen
of ‘‘dressed energies’’ of spin,a(x) and ā(x), and charge,
c(x), excitations of the STJC6,13 (x is the spectral paramete!
is constructed absolutely similar to the analogous proced
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for the homogeneous STJC.13 It turns out that the parameter
of impurities u j do not enter those nonlinear equation
which read13

T ln a~x!52pCa~x1 i e!1m1~h/2!

2TCa* ln~11ā!ux12i e2TCa* ln~11c!ux1 i e ,

T ln c~x!52pCc12m2TCc* ln~11c!

2TCa* ln~11ā!ux1 i e2TC ā
* ln~11a!ux2 i e ,

~1!

where * means convolution, 2pCa(x)5@x(x2 i )#21,
2pC ā(x)5@x(x1 i )#21, pCc(x)5@x211#21, 0,e,1, m
is the chemical potential, andh is an external magnetic field
The equation forā(x) is obtained from the one fora by the
replacementsi→2 i , h→2h and a↔ā. However the free
energy per site of the STJC with impuritiesdoesdepend on
u j and is given byf (u j )52m2T ln c(uj) ~cf. Ref. 13!. The
numerical solution of Eqs.~1! shows that for narrow distri-
butions~weak disorder! the disordered STJC is in a single
state, i.e., the Kondo screening persists. For broad distr
tions ~strong disorder! non-Fermi-liquid behavior is mani
fested — low-T characteristics like the magnetic susceptib
ity diverge, i.e., there is no Kondo quenching~see Fig. 1!.
The low-T divergences disappear upon applying a fin
magnetic field, which restores the screening of impurities

We can analytically solve Eqs.~1! in several important
limiting cases. First, for lowT the free energy per site i
given by f (u j )'e0(u j )2(pT2/6)@vc

21(u j )1vs
21(u j )#

1 ¯ , wheree0(u j )[e0
j is the ground-state energy per si

~cf. Ref. 7! andvc,s(u j ) are velocities of the charge and sp
low-lying excitations of the STJC taken at the associa
Fermi points shifted byu j . Foru j50, it is the known low-T
conformal limit of the homogeneous host~cf. Ref. 13!. It
turns out that the central charges of the semidirect produc
charge and spin conformal algebras are equal to one an
not depend on the parameters of impuritiesu j , i.e., univer-
sal. The only low-energy parameters that get renormaliz

FIG. 1. The magnetic susceptibility versus the logarithm ofT for
the STJC with the electron density per site 0.9 andh50 for the
homogeneous case~dashed line!, Lorentzian distribution ofu j

~solid line!, and log-normal distribution~dashed-dotted line!.
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 033101
by the disorder are theeffective velocitiesof low-lying
charge and spin excitations. For low densities of electr
~wherem!T) for h50 we obtain the free energy per si

~we put e51/2) f (u j )'e0
j 2T ln(112e21/T(u j

2
11)). For the

high-density regimem@T one can use the approximatio
ln c'ln(11c). This yields T ln a5(p/coshpx)1(h/2)

1Tk(x)*ln(11a)2Tk(x1i)*ln(11ā) and similar forā, with
the kernelk(x)5(2p)21*dveivx@11euvu#21. The free en-
ergy per site becomesf (x)5e0(x)1m2T*dyln(11a)(1

1ā)/coshp(x2y). One can recognize in these nonline
equations the ones of Ref. 18 for the disordered Heisenb
spin 1

2 chain. It is clear because in the limit of largem the
electron density per site is equal to one~the largest possible
value for the STJC!.19 In the low-T ~conformal! regime the
lattice effects are non-essential and the couplings of imp
ties to the host can be considered as contact ones.7 Typically
the corrections to the low-T asymptotics of thermodynami
characteristics of, e.g., the Heisenberg spin chain20 and of a
single magnetic impurity3,7 manifest logarithmic behavio
~singularities!. Its origin can be traced back to the margin
operators existing for models with SU~2! spin symmetry
~present in the STJC!. To know how logarithmic singularities
in the low-T susceptibility and specific heat get renormaliz
for the disordered STJC in the high-density regime~which is
most important because it pertains to the Kondo magn
behavior for impurities7!, we perform an analytic low-T
study of Eqs.~1!. We introduce scaling functions3 a6(x)
[a(6x6Ln), whereLn5 ln(aTK

j /T) (a is some constant!7

etc. Equation~1! are transformed, so that for the new set
the scaling functions the only known asymptotic behavior
‘‘energy density’’ functions 11a6 and 11ā6 at large spec-
tral parameter enters. Then, following Ref. 13 we obtain~at
h50) the free energy of the dense limit of the STJC per s
f (TK

j )5e0
j 1m2(pT2/6TK

j )@113(2Ln)23#1 . . . . Fornon-
zero fieldh!T we calculate the logarithmicT corrections for
the free energy per sitef (TK

j )5e0
j (h)1m2(pT2/6TK

j )
2(h2/4pTK

j )@11(2Ln)212(2Ln)22 ln(2Ln)#1O(T2). The
groundstate magnetization per site in a weak external fie
M;h/TK

j for h!TK
j , cf. Ref. 7. Notice that for the dens

limit of the low-T behavior of the STJC, the dependence
u j enters only asTK

j , i.e., as the distributions of the chara
teristic velocities of spin excitations~or crossover scales
which pertain to each impurity!. ~It is not the case for highe
energies and for lower densities, but those are not impor
for low-T disorder-driven divergencies.! Hence for low en-
ergies we can use distributions ofTK

j , which are also more
appropriate in connection to experiments.1,2 For a single im-
purity P(TK

j )5dT
K
j ,TK

we recover the logarithmic Kondo be

havior of an asymtotically free spin~which is characteristic
both to a Kondo impurity in a free electron host3 and to a
single magnetic impurity in the STJC!.7 For the case of the
homogeneous STJC, we putu j50. It meansTK

j →vs , where
vs is the ~Fermi! velocity of low-lying spin excitations
~spinons! of the STJC.

Let us show how low-T divergences can result from wid
distributions ofTK . Suppose one has the~strong disorder!
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distribution beginning with the termP(TK
j )}G2l(TK

j )l21

(l,1) valid until some energy scaleG.1 Then averaging,
e.g., the low-T parts ofx andg we obtain^x&}^g&;Tl21.
They are divergent, in a drastic contrast to the homogene
STJC~cf. Ref. 13!. The ground-state average magnetizati
of the disordered dense STJC revealsMz;(h/G)l behavior,
also different from the homogeneous case. The average c
pressibility for the high-density limit also reveals the low-T
divergence. We calculate the average dynamic magnetic
ceptibility ^x9&(v,T). The standard ansatz for the rela
ational form of that susceptibility of a single magnet
impurity4 x9(v,T)5x(T)G(T)v@v21G2(T)#21 can be
used, in which one supposed that the relaxation rateG does
not depend on the frequencyv. ~That ansatz satisfies th
Kramers-Kronig relations.! At low T, the use of the Shiba
approximation4 determines the first (T50) term in the series
of G(T) via limv→`x9(v,0)/pv52x2(0). That yields the
low-T dependence of the relaxation rate per site for the d
ordered chain G(T);TK

j . Hence, we get ^x9&(v,T)
;G21(G/T)l21g(v/T) with g being the universal scaling
function g(x)5x*1

`dy/yl21(x21y2). It drastically differs
from the homogeneous case. Similar calculations, e.g.,
the variation of the Knight shift and for the NMR relaxatio
rate yielddK/K}dx/x;T2l/2 ~wheredA denotes the mean
square deviation ofA due to the distribution ofTK

j ) and
T1

21;G21(G/T)l22g(v/T). Consider the importantmar-
ginal casel51. Here, one has the distribution withP(TK

j

50)5G21Þ0. Then, averaging the low-T part of the sus-
ceptibility and Sommerfeld coefficient, we obtain^x&}^g&
;2(1/2pG)@ ln(G/T)1lnAln(aG/T)1 . . .#. Here we see the
logarithmic ~more weak! divergencies of̂ x& and ^g&. The
low-field average ground-state magnetization is^Mz&;
2(h/G)ln(h/G). The weak power-law or logarithmic depen
dences pertain to the Griffiths’ singularities in the proxim
to the critical pointT50 ~cf. Refs. 5 and 15!. The dynamic
magnetic susceptibility reveals the scaling behav
^x9&(v,T);G21@(p/2)2tan21(2GT/0.41pv)# ~which is
again in a drastic contrast to the homogeneous STJC!. Notice
that for these distributions ofTK

j , the Wilson ratio atT50 is
a constant, like in a FL case.

In conclusion, in this work we have introduced the fir
exactly solvable model of disordered strongly correla
electrons. We have studied the finite set of nonlinear integ
equations, which totally determine the thermodynamics
the system. Analytic expressions for low-temperatu
magnetic-field and frequency dependences of several im
tant characteristics of our model were calculated. We fou
the universal features for the low-energy behavior of
model: The only parameters that get renormalized due to
disorder are effective velocities of low-lying excitation
~crossover scales connected with each site of the model!. The
finite-size corrections to the ground-state behavior of the
ordered STJC can be obtained by replacing (G/T)→L. Our
results for the low-energy behavior of the integrable 1D
persymmetrict-J model with disordered impurities surpris
ingly coincide with theoretical results for a single multicha
nel Kondo impurity,3 dilute disordered Kondo impurities, th
1-3
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Griffiths’ phase theory,21 and qualitatively agree with the
previous approximate approaches for more generic mode11

They also agree to the data of experiments on the disord
1D organic conductors and, surprisingly, on 3D heavy m
ys
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tallic alloys.22 This probably manifests generic features
concentrated disordered electron systems above cri
points in our 1D exact solution for the disordered correla
electron model.23
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