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Formation and decay of vorticity in coupled helium-II flow
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The kinematic viscosity of helium II below the transition temperature can be defined with the total density
of the liquid or the normal-fluid density alone. These two definitions have very different temperature depen-
dences. In this work we considered the decay of Gaussian distributions of vorticity in helium II using the two
fluid Hall-Vinen-Bekharevich-Khalatnikov equations. Our calculation shows that in these two-dimensional
axisymmetric flows both fluids decay together with a viscous time scale set by the total fluid density and not
by the normal-fluid density alone. We also considered the spin-up of each fluid and observed that for all initial
conditions considered both fluids tend towards a matched vorticity state.
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I. INTRODUCTION

Helium II at temperatures below thel transition (Tl

'2.178 K! can be described macroscopically by Landa
two-fluid model1 as a superposition of a normal fluid wit
velocity vn and a superfluid with velocityvs . The circula-
tion in the superfluid is quantized with a fixed value ofk
'1023 cm2/s. The normal-fluid component has a very sm
but nonzero viscositymn and the superfluid has no viscosit
Each fluid has its own density,rn andrs for the normal fluid
and superfluid respectively. The kinematic viscosity of h
lium II may be defined reasonably in two different way
nn5mn /rn or n5mn /r, wherer5rn1rs is the total den-
sity. The density of both fluids varies strongly wit
temperature,2 hence these two definitions have different te
perature dependences~Fig. 1!. Since the normal-fluid and
superfluid flows are coupled through mutual friction, it is n
clear whethernn , n, or another choice will best describe th
coupled helium II flow.

One of the most generally accepted equations for mo
ling the macroscopic flow of helium II is the Hall-Vinen
Bekharevich-Khalatnikov ~HVBK ! equations.3–7 These
equations generalize Landau’s two-fluid equations1 by taking
into account the presence of quantized vortex lines in
flow. The derivation of the equations is based on a c
tinuum approximation, assuming a high density of vort
lines locally aligned roughly in the same direction. T
HVBK equations introduce two new physical effects whi
are absent from Landau’s theory. First the mutual fricti
force which describes the scattering of rotons by the vor
lines and secondly the vortex tension force which res
from the fact that the vortex lines have energy per u
length. Steady solutions of the HVBK equations have be
found for a number of flows, for example solid body rotati
inside a rotating cylinder,4 Couette flow between two infi
nitely long, concentric, rotating cylinders,8 and flow in a
Couette annulus.9 In this paper, we used the HVBK equa
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tions to study the evolution of vorticity in helium II from
various initial conditions in a cylindrical geometry.

We calculated the vorticity generated in both fluids usi
Gaussian distributions of vorticity as initial conditions. Th
Gaussian distribution of vorticity is a natural choice of initi
condition since it is a simple solution for both the Navie
Stokes equation and the Euler equation. We have exam
the development of strongly coupled two-fluid flows fro
various different initial conditions, and we have compar
the decay rate for the vorticity distribution in this couple
helium II flow to the decay of vorticity in classical hydrody
namics.

Numerical calculations by Fiszdon, Peradzynski, a
Poppe10 used a simplified HVBK model to consider the ev
lution of axisymmetric vortex systems in helium II takin
Gaussian and top-hat profiles as initial vorticity distribution
They concluded that the evolution of the vorticity distrib
tions varies primarily with the initial conditions, howeve
their results are of limited practical interest since they n
glected the viscosity of the normal-fluid in their calculation

FIG. 1. Kinematic viscosity of liquid helium II using the T-9
values~Ref. 2!.
©2000 The American Physical Society13-1
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IDOWU, HENDERSON, AND SAMUELS PHYSICAL REVIEW B63 024513
Peradzynski, Filipkowski, and Fiszdon11 considered the
spin-up of helium II in both a finite and infinite axisymmetr
cylinder by numerically time stepping another simplifie
HVBK model. They assumed that the flow within a spin-
cylinder has two regions; a region where the velocities of
two fluids are equal, and a region where the superfluid v
ticity is zero. The implication of these two assumptions
that the mutual friction force is zero in both regions. We c
gain a better understanding of evolution of vortices by so
ing the full HVBK equations including the viscous and m
tual friction terms.

II. THE MODEL FLOW

We considered helium II contained within an infinite
long cylinder of radiusR. We nondimensionalize the HVBK
equations usingR as the unit of length andR2/nn , the
normal-fluid viscous time scale, as the unit of time. Althou
R2/nn is the natural choice for the time scale based on
form of the HVBK equations, we will show that the couple
flow actually scales with the viscous time scale set byR2/n.
We considered flow configurations for both the normal flu
and superfluid such that the velocities are entirely in the
muthal direction and depend on the dimensionless radial
tancer only. Thus in cylindrical coordinates the comput
tional domain is 0<r<1 and the nondimensional velocit
profiles may be expressed asvn5vn(r ,t)f̂ and vs

5vs(r ,t)f̂. This leads to purely axial vorticity profiles fo
both fluids which may be written asvs5vs(r ,t) ẑ and vn

5vn(r ,t) ẑ.
Given these geometrical restrictions, we can write

nondimensional form of the HVBK equations as

]vn

]t
5

]2vn

]r 2
1

1

r

]vn

]r
2

vn

r 2
2

Brs

2r
uvsu~vn2vs!, ~1!

]vs

]t
5

Brn

2r
uvsu~vn2vs!, ~2!

where B is a temperature dependent mutual fricti
parameter.2 Due to our choice of symmetry, the vortex te
sion term8,9 does not appear in this problem. In order to so
the above equations we need to impose boundary conditi
Both fluids must satisfy a regularity condition at the axis
the cylinderr 50 which will be incorporated into the solu
tion method. Since the normal fluid is viscous it must sati
the no-slip boundary condition at the wall of the cylinder,
we require that

vn50 at r 51. ~3!

For the inviscid superfluid no such restriction is require
and the no-penetration boundary condition is automatic
satisfied by the symmetry assumption forvs .

III. NUMERICAL METHOD OF SOLUTION

We solve Eqs.~1! and ~2! together with the boundary
condition, Eq.~3!, using a spectral method.8,12 We expandvn
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andvs over a truncated series of Chebychev polynomials

vn~r ,t !5 (
k51

N

ak
n~ t !T2k21~r !,

vs~r ,t !5 (
k51

N

ak
s~ t !T2k21~r !.

We have expanded over odd Chebychev polynomials onl
order to satisfy the regularity condition at the axis of t
cylinder. To solve for the normal-fluid spectral coefficien
ak

n , Eq. ~1! is evaluated onr k for k51, . . . ,N21, wherer k

are the positive zeroes of the 2N22 Chebychev polynomia
of the second kind. To solve for the superfluid spectral co
ficients ak

s , Eq. ~2! is evaluated onr k for k51, . . . ,N21
and also at the boundary pointr 51. Crank-Nicholson is
used on the linear terms while Adams-Bashforth is used
the nonlinear terms. Numerically, the problem reduces
solving the equation

Aa[n11]5Ba[n]1f [n,n21], ~4!

where matricesA and B can be precomputed,a[n] contains
the spectral coefficients for the normal fluid and superfluid
the nth time step andf contains the nonlinear terms. Give
an initial profile we can time step the solution using

a[n11]5A21Ba[n]1A21f [n,n21]. ~5!

IV. INITIAL CONDITIONS

Using Eq.~5! we calculated the decay of Gaussian dist
butions of vorticity in both fluids. The Gaussian vorticit
distribution is an exact solution of the Navier-Stokes eq
tion and has a dimensionless vorticity distribution given
v(r ,t) ẑ with

v~r ,t !5
G

pr c
2~ t !

exp@2r 2/r c
2~ t !#, ~6!

whereG is the total circulation andr c(t) is the core radius.
The corresponding velocity distribution isv(r ,t)f̂ with

v~r ,t !5
G

2pr
$12exp@2r 2/r c

2~ t !#%. ~7!

We begin each simulation with a Gaussian distribution
both the normal fluid and the superfluid vorticities. The in
tial circulationsGn andGs and the initial core radiir c,n and
r c,s may be equal in the two fluids, or may be differen
depending on the specific case that we wish to examine

With this definition, the vorticity is concentrated near th
axis or the core of the cylinder and decreases with the rad
Assuming a Gaussian vortex as an initial velocity profile
the superfluid vorticity is equivalent to assuming that there
a high density of vortex lines all aligned axially and conce
trated close to the axis of the cylinder. Previous numeri
3-2
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FIG. 2. Evolution of the normal-fluid and superfluid flows atT51.9 K. Starting withGs5Gn5200 andr c,s5r c,n50.1. ~a! Normal-fluid
velocity, ~b! superfluid velocity,~c! normal-fluid vorticity,~d! superfluid vorticity.
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work by Samuels13 shows that in helium II, vorticity in the
superfluid is concentrated in the core of the normal-fl
Gaussian vortex.

The core radius of a classical decaying Gaussian vorte
a viscous fluid expands at the rate

r c
2~ t* !5r c

2~0!14t* , ~8!

wheret* is the viscous time scaled with the fluid densityr.
The inverse peak vorticity for a decaying Gaussian vortex
a viscous fluid can be written as

v21~0,t* !5v21~0,0!1
4pt*

G
. ~9!

We will use these classical results as tests of the effec
viscosity for the decay of the coupled superfluid–norm
fluid system.

The viscous normal-fluid must satisfy the no-slip boun
ary condition, Eq.~3!. To satisfy this condition we have
taken an initial profile for the normal-fluid of the form

vn5 f ~r !v, ~10!

wherev is as in Eq.~7! and f (r ) is the weighting function

f ~r !5
0.5@12tanh~4r 23.4!#2A1

A2
, ~11!
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in

n

e
-

-

where A150.5@12tanh(0.6)#, ensuring thatf (1)50 and
thus the no-slip condition is satisfied andA2
50.5@ tanh(0.6)1tanh(3.4)#, ensuring thatf (0)51. Thus
taking an initial normal-fluid velocity profile of this form we
have a Gaussian profile for the normal fluid vorticity close
the origin and yet the normal fluid satisfies the no-s
boundary condition atr 51. The effect of the weighting
function f (r ) is only strong in the region 0.9,r<1.0

V. DECAY OF MATCHED GAUSSIAN VORTICES

Starting with initially matched Gaussian vorticity distribu
tions ~except near the boundary! for both fluids, the velocity
distributions in both fluids decay@Figs. 2~a!–2~b!#. The ve-
locity profile in the normal fluid decays differently from tha
of the superfluid profile. The superfluid velocity profile,
the radius interval 0.4,r ,0.7 decays much slower tha
does the normal-fluid profile@Fig. 2~b!#.

The normal-fluid velocity maintained the no-slip boun
ary condition at the boundary for all time while the sl
boundary condition in the superfluid velocity was quick
driven towards effectively a no-slip boundary condition v
the mutual friction force. The initial velocity difference i
both fluids at the boundary causes a large mutual frict
force on the superfluid which generates a local concentra
of negative vorticity~in comparison to the positive vorticity
at r 50). The magnitude of the negative vorticity grows un
vs→0 at r 51. Then the mutual friction force is zero and th
3-3
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IDOWU, HENDERSON, AND SAMUELS PHYSICAL REVIEW B63 024513
growth of the negative vorticity ends. Note that we nev
imposed a no-slip boundary condition on the superfluid,
the superfluid velocity was driven very nearly to zero at
boundary by the mutual friction force.

The effect of the mutual friction force varies at differe
radial positions. Equations~1! and ~2! show that the mutua
friction force is small whenvn'vs or whenvs'0. There is
a strong mutual friction effect at the boundary because of
velocity difference, and very little mutual friction effect i
the radius interval 0.4,r ,0.7 becausevs'0 at all times in
this interval@Fig. 2~d!#.

The peak vorticities in the normal fluidvn(r 50) and
superfluid vs(r 50) decay exponentially in time~Fig. 3!.
The decay of the normal fluid is always ahead of the deca
the superfluid. The close similarity in the decay rate
counter intuitive because the decay mechanisms in Eqs~1!
and ~2! represent different physical processes of decay.
normal-fluid flow decays through the usual viscous dissi
tion of energy. The superfluid flow, on the other hand, d
cays by transferring energy to the normal fluid through
mutual friction force. These different physical process
came to a balance so that both vorticity fields decay w
similar rates.

The core radiir c,n and r c,s were defined at the radiu
where v(r c ,t)5v(0,t)/e, and were defined separately fo
each fluid. The core radii of both fluids expand in time
slightly different rates. However, when the core radii a
plotted against the viscous time scaled with the total dens
the radii are approximately equal@Fig. 4~a!#, though clearly
not identical. Similarly, the inverse peak vorticities in bo
fluids vn

21(0,t) andvs
21(0,t) scaled well with the time scale

set by the total density of the fluid@Fig. 4~b!#. This shows
that both fluids decay in a similar fashion with a time sc
defined by total density of the fluidr. Recent experimenta
observations by Stalpet al.14 on the decay of superfluid tur
bulence also see this behavior, but it must be rememb
that our model geometry is very simple in comparison to a
turbulent flow.

The time dependence of the core radius of the class
decaying Gaussian vortex@Eq. 8#, is very similar to that of
the core radii of both the normal fluid and the superflu

FIG. 3. Decay of peak vorticity in the normal-fluid and supe
fluid at T51.9 K. Starting withGs5Gn5200 andr c,s5r c,n50.1.
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@Fig. 4~a!#. Similarly, the inverse peak vorticity of the clas
sical Gaussian vortex@Eq. ~9!#, compares well with the in-
verse peak vorticity in both fluids@Fig. 4~b!#. From this we
can conclude that although the flows in the two fluids mig
decay due to different physical effects, the combined evo
tion of the two fluids behaves very much like a single cla
sical fluid with one densityr.

Although the peak vorticity in both fluids are clos
to each other, the ratio of the two peak vorticitie
vn(0,t)/vs(0,t), and the peak velocities
vn(r c,n ,t)/vs(r c,s ,t) remain constant after the initial tran
sient @Figs. 5~a! and 5~b!, respectively# with values slightly
less than 1. We chose these particular radii as measure
points because the peak vorticities occurred atr 50 and the
peak velocities occurred at approximatelyr 5r c . As the
coupled flow viscously decays the peak vorticity and pe
velocity in the superfluid are always greater than those of
normal fluid and a constant ratio is maintained through
the decay. We do not have a theoretical understanding
this steady behavior. The slight temperature dependenc
the steady velocity ratio is plotted in Fig. 6~a!. The steady
vorticity ratio is plotted in Fig. 6~b!. Both steady values hav
a minimum ratio at a temperature of approximately 1.9 K.
this temperature the densities of both fluids are appro
mately equal.

FIG. 4. ~a! Expansion of the superfluid and normal-fluid co
radius at T51.9 K. Starting with Gs5Gn5200 and r c,s5r c,n

50.1.~b! Inverse vorticity atr 50, for different temperatures. Star
ing with Gs5Gn5200 andr c,s5r c,n50.1.
3-4
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FORMATION AND DECAY OF VORTICITY IN COUPLED . . . PHYSICAL REVIEW B 63 024513
VI. THE SPIN-UP PROBLEM

We considered the spin-up of a seed of normal-fluid v
ticity in the presence of a Gaussian distribution of vortic
in the superfluid. The small seed used in the normal fl
has a small Gaussian distribution of vorticity with a pe
vorticity of approximately 1% compared to the initial pea
vorticity in the superfluid. The superfluid decays initial
by transferring energy to the normal fluid@Fig. 7~a!#. The
normal fluid then starts to decay after its initial growth, b
fore a matched vorticity state can be achieved. The vorti
in the superfluid is always slightly higher than the vortic
in the normal fluid throughout the decay process. Simu
tions starting with a small negative seed of vorticity~of op-
posite sign tovs) developed to a matched vorticity state
almost exactly the same manner as the positive seed sim
tions. This is expected from the form of Eq.~1!, confirming
that the development of the matched vorticity state by
spin-up of the normal fluid is independent of the initial sta
of the normal fluid, as long asuvsu@uvnu in the initial state.

The initial growth in the normal-fluid vorticity can b
roughly estimated from Eqs.~1! and ~2!. Taking the curl of

FIG. 5. ~a! The development of the ratio of normal-fluid vortic
ity to superfluid vorticity atr 50 for different temperatures. Startin
with Gs5Gn5200 andr c,s5r c,n50.1. ~b! Ratio of normal-fluid
velocity and superfluid velocity atr 5r c for different temperatures
for the same initial conditions as in~a!. After a scaled time of 0.03
the vorticities and velocities in both fluids become small enou
that significant noise develops in both the vorticity and veloc
ratios.
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FIG. 6. ~a! Steady velocity ratio atr 5r c . ~b! Steady vorticity
ratio at r 50.

FIG. 7. Spin-up of the normal-fluid atT51.9 K, starting with
Gs5200 andGn52. ~a! Evolution of the peak normal fluid and
superfluid vorticity.~b! Initial growth of the peak normal-fluid vor-
ticity.
3-5
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]vn /]t and]vs /]t, from Eqs.~1! and ~2!, respectively, we
have

]vn

]t
5S ]2vn

]r 2
1

1

r

]vn

]r D
2

Brs

2r S uvsu~vn2vs!1~vn2vs!
]uvsu

]r D , ~12!

]vs

]t
5

Brn

2r S uvsu~vn2vs!1~vn2vs!
]uvsu

]r D . ~13!

Suppose that the initial growth in the normal fluid occu
while vs(0,t) is approximately constant. Then the initi
growth for the normal fluid@for vs(0,t)@vn(0,t)] from Eq.
~12! can be written as

vn5vn~0,t !expS 2
Brs

2r
vs~0,t !t D

1vs~0,t !F12expS 2
Brs

2r
vs~0,t !t D G

'vn~0,t !1
Brs

2r
vs

2~0,t !t. ~14!

This linear approximation is only valid for t
!2r/Brsvs(0,t). The linear growth is compared to th
simulation in Fig. 7~b!.

Similarly we computed the spin-up of a small seed
superfluid vorticity in the coupled flow. The small seed us
is a Gaussian vorticity distribution with a peak vorticity
approximately 1% of the normal-fluid peak vorticity. Th
spin-up process for the superfluid is different from that of
normal fluid discussed in the previous paragraph@Fig. 8~a!#.
The superfluid gains vorticity from the normal fluid throug
the mutual friction coupling until it grows past the norma
fluid vorticity. Thenvs starts to decay by transferring vo
ticity back to the normal fluid which then loses the vortici
through viscous dissipation.

The initial growth of the superfluid vorticity can be ca
culated from Eq.~13! if we assume thatvn(0,t) is approxi-
mately constant during the initial growth andvn(0,t)
@vs(0,t). Then the superfluid vorticity is

vs5

vn~0,t !vs~0,t !expFBrn

2r
vn~0,t !t G

vn~0,t !2vs~0,t !H 12expFBrn

2r
vn~0,t !t G J

'vs~0,t !expS Brn

2r
vn~0,t !t D . ~15!

The comparison of this growth with the simulation is show
in Fig. 8~b!.

For both the spin-up of the superfluid by the normal flu
and the reverse, the vorticity always goes towards a ma
ing state, and then the nearly matched vorticity distributio
decay together. During the decay of the nearly matched fl
02451
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we always find that the superfluid vorticity has a higher ma
nitude than the normal-fluid vorticity.

We also considered the evolution of a small negative s
of vorticity in the superfluid together with a positive Gaus
ian distribution of vorticity in the normal fluid. The sma
negative seed of vorticity in the superfluid was driven to ze
everywhere in a very short time and we never observe
large scale superfluid vorticity structure developing in th
case.

The generation of superfluid vorticity is of particular fun
damental interest. We must remember that the superfl
vorticity field in the HVBK equations is a continuum ap
proximation and that superfluid vorticity can actually on
exist in the form of quantized vortex filaments. Thus a
increase in the superfluid vorticity fieldvs must correspond
to either the creation of new vortex filaments~known as the
nucleation problem! or the movement of existing vortex fila
ments. One of the considerations taken into account in de
ing the HVBK equations is that the superfluid circulatio
must be conserved,7 and the spin-up of the superfluid in thes
simulations represents the generation of new superfluid
tex filaments at the boundary, which are then transported
mutual friction through the interior.

VII. DISCUSSION

These calculations show that axisymmetric vorticity co
centrations in helium II naturally prefer tolock. That is, they
tend toward a matched vorticity state for a wide range
initial conditions. As long as there is at least a small seed

FIG. 8. Spin-up of the superfluid atT51.9 K, starting withGs

52 andGn5200. ~a! Evolution of the peak superfluid and norma
fluid vorticity. ~b! Initial growth of the peak superfluid vorticity.
3-6
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FORMATION AND DECAY OF VORTICITY IN COUPLED . . . PHYSICAL REVIEW B 63 024513
superfluid vorticity aligned with the normal-fluid vorticity
then the normal-fluid vorticity will spin-up the superfluid
Conversely, a concentration of superfluid vorticity w
spin-up the normal fluid to a matching rotation, without t
need of any particular sign of seed vorticity in the norm
fluid. Figure 9 shows the evolution of both the superfluid a
the normal fluid vorticity atr 50 in both fluids starting from
different initial conditions. The coupled flow system nat
rally develops to a state where the superfluid and norm
fluid vorticities are very close in magnitude, but not exac
equal. We typically see that the coupled flow develops
that the superfluid vorticity is slightly higher than the norm
fluid vorticity.

The spin-up of the superfluid by the normal fluid has be
seen before in simulations of superfluid vortex filame
dynamics13,15 but these simulations treated the normal-flu
flow as fixed and thus were not calculations of the tru

FIG. 9. Evolution of the normal-fluid and superfluid vorticit
starting from different initial conditions.
y

ch
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coupled flow. These earlier simulations could not determ
the flow that develops in the normal fluid, or deal with th
viscous decay of the coupled flow. We find that the dec
scale for the coupled motion of the two fluids is set by t
total density of the fluid and not by the normal-fluid dens
alone. This behavior is observed for the flow of helium
throughout the temperature range examined 1.3 K<T
<2.15 K. We find that the locking together of the vortici
fields of the two fluids is not strongly dependent on the re
tive densities of the two fluids, since these densities
strongly temperature dependent in this range. Though
tainly the final values of vorticity reached in the locked sta
are strongly temperature dependent just due to energy l
tations, the process of vorticity locking occurs througho
this temperature range.

The results presented here are for a specific geom
with high symmetry. Certainly the coupled turbulent flo
will be much more complicated than that presented here,
may include behaviors that cannot occur in this geometry
which may depend on the motion and instabilities of in
vidual superfluid vortex filaments. But the basic process
vorticity matching described here is likely, in our opinion,
play an important role in any coupled flow of the norm
fluid and superfluid. With this in mind, we believe the resu
presented in this paper further clarify and extend our und
standing of experiments on turbulence in helium II.
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