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Formation and decay of vorticity in coupled helium-II flow
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The kinematic viscosity of helium Il below the transition temperature can be defined with the total density
of the liquid or the normal-fluid density alone. These two definitions have very different temperature depen-
dences. In this work we considered the decay of Gaussian distributions of vorticity in helium Il using the two
fluid Hall-Vinen-Bekharevich-Khalatnikov equations. Our calculation shows that in these two-dimensional
axisymmetric flows both fluids decay together with a viscous time scale set by the total fluid density and not
by the normal-fluid density alone. We also considered the spin-up of each fluid and observed that for all initial
conditions considered both fluids tend towards a matched vorticity state.

DOI: 10.1103/PhysRevB.63.024513 PACS nuntber67.57.De, 47.3%:q
[. INTRODUCTION tions to study the evolution of vorticity in helium Il from
various initial conditions in a cylindrical geometry.
Helium Il at temperatures below the transition (T, We calculated the vorticity generated in both fluids using

~2.178 K) can be described macroscopically by Landau’sGaussian distributions of vorticity as initial conditions. The
two-fluid modet as a superposition of a normal fluid with Gaussian distribution of vorticity is a natural choice of initial
velocity v,, and a superfluid with velocitp. The circula- condition sinc_e it is a simple solutior) for both the Navigr—
tion in the superfluid is quantized with a fixed value of ~Stokes equation and the Euler equation. We have examined
~10"3 cné/s. The normal-fluid component has a very smallthe development of strongly coupled two-fluid flows from
but nonzero viscosity:,, and the superfluid has no viscosity. Various different initial conditions, and we have compared
Each fluid has its own density,, andp for the normal fluid the decay rate for the vorticity distribution in this coupled
and superfluid respectively. The kinematic viscosity of he-helium 1l flow to the decay of vorticity in classical hydrody-

lium 11 may be defined reasonably in two different ways, Namics. . , _
vo=pnlpn OF v=p,/p, Wherep=p,+ ps is the total den- Numerical calculations by Fiszdon, Peradzynski, and

sity. The density of both fluids varies strongly with Pqppéo used a simplified HVBK model to consider the evo-
temperaturé,hence these two definitions have different tem-ution of axisymmetric vortex systems in helium Il taking
perature dependencéBig. 1). Since the normal-fluid and Gaussian and top-hat profiles as initial vorticity distributions.
superfluid flows are coupled through mutual friction, it is not They concluded that the evolution of the vorticity distribu-
clear whethew,, v, or another choice will best describe the tions varies primarily with the initial conditions, however
coupled helium 11 flow. their results are of limited practical interest since they ne-

One of the most generally accepted equations for modeflected the viscosity of the normal-fluid in their calculations.
ling the macroscopic flow of helium Il is the Hall-Vinen-

Bekharevich-Khalatnikov (HVBK) equations™’ These w10 . L — L .
equations generalize Landau’s two-fluid equattdnstaking e

into account the presence of quantized vortex lines in the +© g

flow. The derivation of the equations is based on a con- 2

tinuum approximation, assuming a high density of vortex :;; 6

lines locally aligned roughly in the same direction. The 'g

HVBK equations introduce two new physical effects which @ |

are absent from Landau’'s theory. First the mutual friction >

force which describes the scattering of rotons by the vortex .2

lines and secondly the vortex tension force which results g 21

from the fact that the vortex lines have energy per unit @

length. Steady solutions of the HVBK equations have b_een g O 09 12 15 18 o1 T
found for a number of flows, for example solid body rotation T(K) A
inside a rotating cylindet,Couette flow between two infi-

nitely long, concentric, rotating cylindefsand flow in a FIG. 1. Kinematic viscosity of liquid helium Il using the T-90

Couette annulu$.In this paper, we used the HVBK equa- values(Ref. 2.
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Peradzynski, Filipkowski, and Fiszddn considered the andug over a truncated series of Chebychev polynomials

spin-up of helium Il in both a finite and infinite axisymmetric

cylinder by numerically time stepping another simplified

HVBK model. They assumed that the flow within a spin-up vn(r,) =2, ag(t)Ta1(r),

cylinder has two regions; a region where the velocities of the k=t

two fluids are equal, and a region where the superfluid vor-

ticity is zero. The implication of these two assumptions is

that the mutual friction force is zero in both regions. We can vs(f-t):gl AV Tak-a(r).

gain a better understanding of evolution of vortices by solv-

ing the full HVBK equations including the viscous and mu- We have expanded over odd Chebychev polynomials only in

tual friction terms. order to satisfy the regularity condition at the axis of the

cylinder. To solve for the normal-fluid spectral coefficients

Il. THE MODEL FLOW ay, Eq. (1) is evaluated om, for k=1, ... N—1, wherer

are the positive zeroes of théN2-2 Chebychev polynomial

of the second kind. To solve for the superfluid spectral coef-

ficientsay, Eq. (2) is evaluated om for k=1,... N—1

and also at the boundary point=1. Crank-Nicholson is

used on the linear terms while Adams-Bashforth is used on

%he nonlinear terms. Numerically, the problem reduces to

solving the equation

N

N

We considered helium Il contained within an infinitely
long cylinder of radiufk. We nondimensionalize the HVBK
equations usingR as the unit of length andR?®/v,, the
normal-fluid viscous time scale, as the unit of time. Although
R?/v, is the natural choice for the time scale based on th
form of the HVBK equations, we will show that the coupled
flow actually scales with the viscous time scale seR8yv.
We considered flow configurations for both the normal fluid Agln+ 11— galn 4 f [nn—1] 4)
and superfluid such that the velocities are entirely in the azi- '
muthal direction and depend on the dimensionless radial disyhere matricesA andB can be precomputed!™ contains
tancer only. Thus in cylindrical coordinates the computa- the spectral coefficients for the normal fluid and superfluid at
tional domain is G<r=1 and the nondimensional velocity the nth time step and contains the nonlinear terms. Given
profiles may be expressed as,=v,(r,t)¢p and vgs an initial profile we can time step the solution using

=vs(r,t)<}5. This leads to purely axial vorticity profiles for

. : . : [n+11= A~1BalM + A~ 1f [n—1]
both fluids which may be written a&.= w4(r,t)z and w, a A TBat AT : ®)
= wp(r,t)z

Given these geometrical restrictions, we can write the IV. INITIAL CONDITIONS

nondimensional form of the HVBK equations as Using Eq.(5) we calculated the decay of Gaussian distri-

19vn_¢9zvn 1av, v, Bpe butions of vorticity in both fluids. The Gaussian vorticity

L +- - e (vy—vs), (1) distribution is an exact solution of the Navier-Stokes equa-
g g2 r a2 2p tion and has a dimensionless vorticity distribution given by
w(r,t)z with
aUS_BPn >
at 2p |ws|(vn Us)s ) I
. - o(rt)=—5—exg —r?rit)], (6)
where B is a temperature dependent mutual friction 7rg(t)

parametef. Due to our choice of symmetry, the vortex ten-
sion tern¥*® does not appear in this problem. In order to solvewherelI is the total circulation and.(t) is the core radius.

the above equations we need to impose boundary conditionshe corresponding velocity distribution igr,t) ¢ with
Both fluids must satisfy a regularity condition at the axis of

the cylinderr=0 which will be incorporated into the solu- r )

tion method. Since the normal fluid is viscous it must satisfy v(r,t)= ﬁ{l—exﬁ—fz/%(t)]}- (7)

the no-slip boundary condition at the wall of the cylinder, so

we require that We begin each simulation with a Gaussian distribution in

—0atr=1 3 both the normal fluid and the superfluid vorticities. The ini-
vp=0atr=2=. ) tial circulationsI', andI's and the initial core radif , and

For the inviscid superfluid no such restriction is required,fc,s May be equal in the two fluids, or may be different,
and the no-penetration boundary condition is automaticallydepending on the specific case that we wish to examine.
satisfied by the symmetry assumption fay. With this definition, the vorticity is concentrated near the
axis or the core of the cylinder and decreases with the radius.
Assuming a Gaussian vortex as an initial velocity profile for
the superfluid vorticity is equivalent to assuming that there is
We solve Eqgs.(1) and (2) together with the boundary a high density of vortex lines all aligned axially and concen-
condition, Eq.(3), using a spectral methdd?We expand),  trated close to the axis of the cylinder. Previous numerical

IIl. NUMERICAL METHOD OF SOLUTION
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FIG. 2. Evolution of the normal-fluid and superfluid flowsTat 1.9 K. Starting withl's=T",=200 andr s=r. ,=0.1. (a) Normal-fluid
velocity, (b) superfluid velocity(c) normal-fluid vorticity, (d) superfluid vorticity.

work by Samuel€ shows that in helium Il, vorticity in the where A;=0.§1—tanh(0.6), ensuring thatf(1)=0 and
superfluid is concentrated in the core of the normal-fluidthus the no-slip condition is satisfied andA,

Gaussian vortex. =0.5tanh(0.6}+tanh(3.4), ensuring thatf(0)=1. Thus
The core radius of a classical decaying Gaussian vortex itaking an initial normal-fluid velocity profile of this form we
a viscous fluid expands at the rate have a Gaussian profile for the normal fluid vorticity close to
the origin and yet the normal fluid satisfies the no-slip
r2(t*)=r2(0)+4t*, (8  boundary condition ar=1. The effect of the weighting

) ] ] ) ) ) function f(r) is only strong in the region 09r<1.0
wheret* is the viscous time scaled with the fluid density

The inverse peak vorticity for a decaying Gaussian vortex in
a viscous fluid can be written as V. DECAY OF MATCHED GAUSSIAN VORTICES

Starting with initially matched Gaussian vorticity distribu-
9 tions (except near the boundarfor both fluids, the velocity
distributions in both fluids decalFigs. 2a)—2(b)]. The ve-
_ _ _ locity profile in the normal fluid decays differently from that
We will use these classical results as tests of the eﬁeCUng the Superﬂuid prof”e_ The Superﬂuid Ve|0city prof“ey in
viscosity for the decay of the coupled superfluid—normalthe radius interval 04r<0.7 decays much slower than
fluid system. _ _ _ does the normal-fluid profilFig. 2(b)].
The viscous normal-fluid must satisfy the no-slip bound-  The normal-fluid velocity maintained the no-slip bound-
ary condition, Eq.(3). To satisfy this condition we have ary condition at the boundary for all time while the slip

*

47t
o Y0t*)=w 10,0+ T

taken an initial profile for the normal-fluid of the form boundary condition in the superfluid velocity was quickly
driven towards effectively a no-slip boundary condition via
vp=f(rv, (100 the mutual friction force. The initial velocity difference in

both fluids at the boundary causes a large mutual friction

force on the superfluid which generates a local concentration

of negative vorticity(in comparison to the positive vorticity

_ 0 1-tanft4r _3'4)]_'6‘1, (11)  atr=0). The magnitude of the negative vorticity grows until
Az vs— 0 atr=1. Then the mutual friction force is zero and the

wherev is as in Eq.(7) andf(r) is the weighting function

f(r)
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FIG. 3. Decay of peak vorticity in the normal-fluid and super- . .
fluid at T=1.9 K. Starting withl's=I",=200 andr. ;=r;,=0.1. — 25 4 B .
(=} o (0,t) =w, (0,0) + 4nt/T"
Z 20 -
growth of the negative vorticity ends. Note that we never *E
imposed a no-slip boundary condition on the superfluid, but "g 151 "
the superfluid velocity was driven very nearly to zero at the > s o 13K
boundary by the mutual friction force. ® 10- e o 17K [
The effect of the mutual friction force varies at different & 4 A 19K
radial positions. Equationd) and(2) show that the mutual L 5 vV 21K
friction force is small whew ,~v g or whenws~0. There is o ¢ ¢ 2K
a strong mutual friction effect at the boundary because of the £ ] , . , T SlopemamtIT
velocity difference, and very little mutual friction effect in 0.00 0.01 0.02 0.03
the radius interval 04r <0.7 becausa~0 at all times in (b) Viscous time scaled with p
this interval[Fig. 2(d)]. ) ) )
The peak vorticities in the normal fluid,(r=0) and FIG. 4. (a) Expansion of the superfluid and normal-fluid core

superfluid wg(r =0) decay exponentially in timéFig. 3.  'adius atT=1.9 K. Starting withI';=I',=200 andrcs=rn
The decay of the normal fluid is always ahead of the decay Oro 1.(b) Inverse vorticity atr =0, for dn‘ferent temperatures. Start-
the superfluid. The close similarity in the decay rate is' ng with I's=1",=200 andre ;=1 =0.1.

counter intuitive because the decay mechanisms in &gs.

and (2) represent different physical processes of decay. TheFig. 4(a)]. Similarly, the inverse peak vorticity of the clas-
normal-fluid flow decays through the usual viscous dissipasical Gaussian vorte)eq. (9)], compares well with the in-
tion of energy. The superfluid flow, on the other hand, deverse peak vorticity in both fluidgFig. 4b)]. From this we
cays by transferring energy to the normal fluid through thecan conclude that although the flows in the two fluids might
mutual friction force. These different physical processesiecay due to different physical effects, the combined evolu-
came to a balance so that both vorticity fields decay withtion of the two fluids behaves very much like a single clas-
similar rates. sical fluid with one density.

The core radiir., andr. s were defined at the radius  Although the peak vorticity in both fluids are close
where o(r,t)=w(0t)/e, and were defined separately for to each other, the ratio of the two peak vorticities
each fluid. The core radii of both fluids expand in time ate,(0t)/w(0}), and the peak velocities
slightly different rates. However, when the core radii arey (r. . ,t)/vg(rcs,t) remain constant after the initial tran-
plotted against the viscous time scaled with the total densitysient[Figs. 5a) and 5b), respectively with values slightly
the radii are approximately equiig. 4], though clearly  |ess than 1. We chose these particular radii as measurement
not |dent|cal S|m|IarIy the inverse peak vorticities in both points because the peak vorticities occurred-ad and the
fluids »,, *(0}t) andw_ *(0) scaled well with the time scale peak velocities occurred at approximately=r.. As the
set by the total density of the fluidFig. 4(b)]. This shows coupled flow viscously decays the peak vorticity and peak
that both fluids decay in a similar fashion with a time scalevelocity in the superfluid are always greater than those of the
defined by total density of the fluig. Recent experimental normal fluid and a constant ratio is maintained throughout
observations by Stalpt al'* on the decay of superfluid tur- the decay. We do not have a theoretical understanding for
bulence also see this behavior, but it must be rememberetlis steady behavior. The slight temperature dependence of
that our model geometry is very simple in comparison to anythe steady velocity ratio is plotted in Fig(e. The steady
turbulent flow. vorticity ratio is plotted in Fig. @). Both steady values have

The time dependence of the core radius of the classica minimum ratio at a temperature of approximately 1.9 K. At
decaying Gaussian vortd¥q. 8|, is very similar to that of this temperature the densities of both fluids are approxi-
the core radii of both the normal fluid and the superfluidmately equal.
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FIG. 5. (a) The development of the ratio of normal-fluid vortic- ratio atr=0.

ity to superfluid vorticity ar =0 for different temperatures. Starting
with I's=T",=200 andr.s=r.,=0.1. (b) Ratio of normal-fluid
velocity and superfluid velocity at=r for different temperatures .
for the same initial conditions as (). After a scaled time of 0.03, 61 (a)
the vorticities and velocities in both fluids become small enough
that significant noise develops in both the vorticity and velocity

1

1

1
1
]

ratios. "’g 4- \\Superfluid L
S \
S AN
VI. THE SPIN-UP PROBLEM g L]~ I
P

We considered the spin-up of a seed of normal-fluid vor-

ticity in the presence of a Gaussian distribution of vorticity ol Normal fluid .

in the superfluid. The small seed used in the normal fluid 0.000 0.005 0.010
has a small Gaussian distribution of vorticity with a peak Viscous time scaled with p
vorticity of approximately 1% compared to the initial peak 1000 - . . . .
vorticity in the superfluid. The superfluid decays initially {b)

by transferring energy to the normal flujéFig. 7(a)]. The -(=>; 800 Linear model
normal fluid then starts to decay after its initial growth, be- £ —
fore a matched vorticity state can be achieved. The vorticity 2 %% /_/'/. .
in the superfluid is always slightly higher than the vorticity 2 400l Simulation
in the normal fluid throughout the decay process. Simula- T

tions starting with a small negative seed of vortidibf op- § 200

posite sign towg) developed to a matched vorticity state in =

almost exactly the same manner as the positive seed simula- 04

0.0 0.2 0.4 0.6 0.8 1.0

tions. This is expected from the form of E@.), confirming Viscous time scaled with p (10°)

that the development of the matched vorticity state by the

spin-up of the normal fluid is independent of the initial state  FIG. 7. Spin-up of the normal-fluid &=1.9 K, starting with

of the normal fluid, as long gds»|>|w,| in the initial state. T ;=200 andI',=2. (a) Evolution of the peak normal fluid and
The initial growth in the normal-fluid vorticity can be superfluid vorticity.(b) Initial growth of the peak normal-fluid vor-

roughly estimated from Eqg$1) and (2). Taking the curl of ticity.
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dv,ldt anddvg/at, from Egs.(1) and (2), respectively, we 6 @)
have
— N I flui
don 192wn+ 1 do, o 4 ormal fluid
ot \ g2 r oor =
2,
T 4
Bps ‘9|ws| 4 P
- 2 (lws|(wn_ws)+(vn_vs) a |’ (12) > //" ______________
p _.~” Superfluid -
0+= T
dws Bp, | wg 0.000 0.005 0.010
i 25 |og(w,—wg) +(vy,—vy) o ) (13 Viscous time scaled with p
I . . 600 . . . .
Suppose that the initial growth in the normal fluid occurs (b)
while w¢(0t) is approximately constant. Then the initial
growth for the normal fluidfor wg(0,t)> w,(0t)] from Eq. *g 400, |
(12) can be written as g
Bp _-E Exponential model
wnzwn(ol)exl{ - Z—SwS(O,t)t) £ 200- . -
P g
Bps @ Simulation
+ wg(0t) 1—ex;{ — —wS(O,t)t”
2p 0 T T T T
0 2 4 5 8 10
Bps Viscous time scaled with p (10™)
~wn(01)+ w0t (14)
p FIG. 8. Spin-up of the superfluid 8=1.9 K, starting withl"g
This linear approximation is only valid fort =2 andI’,,=200.(a) Evolution of the peak superfluid and normal-

<2p/Bpswg(0t). The linear growth is compared to the
simulation in Fig. Tb).

Similarly we computed the spin-up of a small seed Oz;we always find that the superfluid vorticity has a higher mag-

superfluid vorticity in the coupled flow. The small seed use
is a Gaussian vorticity distribution with a peak vorticity of
approximately 1% of the normal-fluid peak vorticity. The

spin-up process for the superfluid is different from that of the

normal fluid discussed in the previous paragrélpiy. 8@)].
The superfluid gains vorticity from the normal fluid through
the mutual friction coupling until it grows past the normal-
fluid vorticity. Then wg starts to decay by transferring vor-
ticity back to the normal fluid which then loses the vorticity
through viscous dissipation.

The initial growth of the superfluid vorticity can be cal-
culated from Eq(13) if we assume thaw,(0) is approxi-
mately constant during the initial growth anad,(0t)
> w4(0,t). Then the superfluid vorticity is

Bpn
) wn(0) wg(0t)ex ﬁwn(o,t)t

Wg=

Bpon
wn(0t) —wg(0t) 1—ex an(o,t)t

Bpn
wws(O,t)ex4$wn(O,t)t). (15)

The comparison of this growth with the simulation is shown

in Fig. 8b).
For both the spin-up of the superfluid by the normal fluid,

fluid vorticity. (b) Initial growth of the peak superfluid vorticity.

nitude than the normal-fluid vorticity.

We also considered the evolution of a small negative seed
of vorticity in the superfluid together with a positive Gauss-
ian distribution of vorticity in the normal fluid. The small
negative seed of vorticity in the superfluid was driven to zero
everywhere in a very short time and we never observed a
large scale superfluid vorticity structure developing in this
case.

The generation of superfluid vorticity is of particular fun-
damental interest. We must remember that the superfluid
vorticity field in the HVBK equations is a continuum ap-
proximation and that superfluid vorticity can actually only
exist in the form of quantized vortex filaments. Thus any
increase in the superfluid vorticity fields must correspond
to either the creation of new vortex filamerikhown as the
nucleation problemor the movement of existing vortex fila-
ments. One of the considerations taken into account in deriv-
ing the HVBK equations is that the superfluid circulation
must be conservedand the spin-up of the superfluid in these
simulations represents the generation of new superfluid vor-
tex filaments at the boundary, which are then transported by
mutual friction through the interior.

VIl. DISCUSSION

These calculations show that axisymmetric vorticity con-

and the reverse, the vorticity always goes towards a matcteentrations in helium Il naturally prefer tock That is, they

ing state, and then the nearly matched vorticity distributiongend toward a matched vorticity state for a wide range of
decay together. During the decay of the nearly matched flovinitial conditions. As long as there is at least a small seed of
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o . . . coupled flow. These earlier simulations could not determine
Z sd —— Spin-up of normal fiuld AL the flow that develops in the normal fluid, or deal with the
N N DTTiohmupofsuperid viscous decay of the coupled flow. We find that the decay
— [ LR ecay of matched vorticity ) ) . R

= \\\ / scale for the coupled motion of the two fluids is set by the
2 41 . - total density of the fluid and not by the normal-fluid density
'% alone. This behavior is observed for the flow of helium Il
g throughout the temperature range examined 1.8TK

B 2 - =<2.15 K. We find that the locking together of the vorticity
% fields of the two fluids is not strongly dependent on the rela-
£ tive densities of the two fluids, since these densities are
2 7 z T strongly temperature dependent in this range. Though cer-

6
Superfluid vorticity at r=0 (10%) tainly the final values of vorticity reached in the locked state
. . . ~ are strongly temperature dependent just due to energy limi-
FIG. 9. Evolution of the normal-fluid and superfluid vorticity tations, the process of vorticity locking occurs throughout
starting from different initial conditions. this temperature range.
The results presented here are for a specific geometry

superfluid vorticity aligned with the normal-fluid vorticity, With high symmetry. Certainly the coupled turbulent flow
then the normal-fluid vorticity will spin-up the superfluid. Will be much more complicated than that presented here, and
Conversely, a concentration of superfluid vorticity will may include behaviors that cannot occur in this geometry, or
spin-up the normal fluid to a matching rotation, without theWhich may depend on the motion and instabilities of indi-
need of any particular sign of seed vorticity in the normalvidual superfluid vortex filaments. But the basic process of
fluid. Figure 9 shows the evolution of both the superfluid andvorticity matching described here is likely, in our opinion, to
the normal fluid vorticity at =0 in both fluids starting from Play an important role in any coupled flow of the normal
different initial conditions. The coupled flow system natu- fluid and superfluid. With this in mind, we believe the results
rally develops to a state where the superfluid and normalPresented in this paper further clarify and extend our under-
fluid vorticities are very close in magnitude, but not exactlyStanding of experiments on turbulence in helium II.

equal. We typically see that the coupled flow develops so
that the superfluid vorticity is slightly higher than the normal
fluid vorticity.

The spin-up of the superfluid by the normal fluid has been This research was supported by University of Newcastle
seen before in simulations of superfluid vortex filamentupon Tyne and the University of the West of England.
dynamic$®*® but these simulations treated the normal-fluid K.L.H. gratefully acknowledges the support of Nuffield
flow as fixed and thus were not calculations of the trulyFoundation.

ACKNOWLEDGMENTS

1 L.D. Landau and E.M. LifshitzFluid Mechanics(Pergamon, 283 329(1995.

New York, 1987. 9K.L. Henderson and C.F. Barenghi, J. Fluid Mectd6, 199
2R.J. Donnelly and C.F. Barenghi, J. Phys. Chem. Ref. Rita (2000.

1217(1998. 10w . Fiszdon, Z. Peradzynski, and W. Poppe, Phys. FI&I8525
3H.E. Hall and W.F. Vinen, Proc. R. Soc. London, Ser22§ 215 1 (1985. ) - . .

(1956. Z. Peradzynski, S. Filipkowski, and W. Fiszdon, Eur. J. Mech.

B/Fluids 9, 259 (1990.

4 .
5H'E' Hall, Phl.los. Mag. Suppb, _89 (1960. - 12k L. Henderson and C.F. Barenghi, J. Low Temp. Pi98.351
I.M. Khalatnikov, An Introduction to the Theory Superfluidity (1995

(Benjamin, New York, 1956 13p.C. Samuels, Phys. Rev. &7, 2107(1993.
6 RJ. Donnelly, Quantized Vortices in Helium I[Cambridge 145 R. Stalp, L. Skrbek, and R.J. Donnelly, Phys. Rev. L&%.
University Press, Cambridge, 1991 4831 (1998; S.R. Stalp, J.J. Niemela, and R.J. Donnelly,
"R.N. Hills and P.H. Roberts, Arch. Ration. Mech. An&B, 43 Physica B284, 75 (2000.
(1977. 15C.F. Barenghi, D.C. Samuels, G.H. Bauer, and R.J. Donnelly,

8K.L. Henderson, C.F. Barenghi, and C.A. Jones, J. Fluid Mech. Phys. Fluids9, 2631(1997.

024513-7



