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Superconducting alloys with weak and strong scattering: Anderson’s theorem
and a superconductor-insulator transition
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We have studied the effects of strong impurity scattering on disordered superconductors beyond the low-
impurity concentration limit. By applying the full coherent potential approximation to a superconductiong A-B
binary alloy, we calculated the fluctuations of the local order parametersDA ,DB and charge densitiesnA ,nB

for weak and strong on-site disorder. We find that for narrow band alloys-wave superconductors the conditions
for Anderson’s theorem are satisfied in general only for the case of particle-hole symmetry. In this case it is
satisfied regardless of whether we are in the weak or strong scattering regimes. Interestingly, we find that
strong scattering leads to band splitting, and in this regime for any band filling we have a critical concentration
where a superconductor-insulator quantum phase transition occurs atT50.
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I. INTRODUCTION

As is well known,s-wave superconductivity is possibl
even in highly disordered systems. Examples are super
ducting intermetalic alloys@such as AucSi12c , NbcSi12c
~Ref. 1! and Mo12cRhc ~Ref. 2!#, heavily doped cubic per
ovskites~such as Ba12cKcBiO3 with x'0.4)3 and chevrel
phases~such as Cs0.3MoS2).4 What lies beyond these ini
tially surprising facts is Anderson’s theorem,5 according to
which pairing of time-reversed states leads to a finite gapD
in the density of states. Namely, the one-particle states
volved in the pairing need not be eigenstates of any tran
tion operators and hence bothD and Tc are only weakly
influenced by the disorder.

The key assumptions required for Anderson’s theorem
~i! non-magnetic scattering only~time reversal symmetry!
~ii ! the self-consistent order parameterD does not fluctuate
from configuration to configuration. Previously Gyo¨rffy et
al.6 examined the conditions for~ii ! to hold, and found that
spatial fluctuations inD could be neglected provided tha
coherence length

j5
\vF

pD
~1!

is much greater than the lattice spacinga. Anderson’s theo-
rem also follows from the classic theory of Abrikosov a
Gorkov.7,8 Their argument is based on perturbation theo
and the proof requires that the real part of the self-ene
S(E) varies slowly near the Fermi energyEF .9,10 It turns
out that this is equivalent to the conditionj@a in Eq. ~1!.

The purpose of this paper is to examine disordereds-wave
superconductors for which the spatial fluctuations ofD can-
not be neglected. The results of such an inquiry will be i
portant for narrow band or short coherence length superc
ductors whereD<EF or j;a, such as some of thos
mentioned above. In the work of Gyo¨rffy et al.6 the order
parameter fluctuations due to impurities were studied usin
0163-1829/2000/63~2!/024501~10!/$15.00 63 0245
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perturbative technique. Zhitomirsky and Walker11 also calcu-
lated corrections toTc beyond Anderson’s theorem due
order parameter fluctuations evaluated perturbatively. In
present paper the goal is to treat the spatially varyingD and
charge density fully self-consistently within the coherent p
tential approximation~CPA!, and hence allow for the case o
arbitrarily strongD or charge fluctuations.

In this regime a number of interesting new issues ar
For example Ghosalet al.12 showed that strong disorder sca
tering leads to strong spatial variations inD, with the forma-
tion of superconducting ‘‘islands’’ whereD is large and
other regions whereD is small. Moreover, they found tha
the spectral gap persists even whenD is very small in large
regions of the sample. By contrast it was argued
Opperman13 and Ziegler14 that order parameter fluctuation
lead to a finite density of states within the gap. Similarly,
the calculations of the non-self-consistent density of sta
by Annett and Goldenfeld15 an impurity band tail develops
due to spatial fluctuations inD, and eventually this leads to
gaplesss-wave superconductivity. Obviously the fluctuation
in D can arise either due to randomness in the single par
site energy« i at each atomic site, as in an alloy, or due
randomness in the attractive interaction potentialUi , as con-
sidered by Litak and Gyo¨rffy.16 Here we consider only the
former case of alloy type disorder.

In this paper we calculate the spatially random, se
consistent order parameter and charge due to A-B bin
alloy type disorder. The on-site energy is«A on a fraction c
of lattice sites and«B on the fraction 12c. The Green func-
tions are calculated using the~CPA!.17–20 This has been
shown to be exact in the limit of infinite dimensions20 and to
reproduce the results of the self-consistent Born approxi
tion for weak scattering («A2«B!W, whereW is the band-
with! and the self-consistentT-matrix approximation in the
limit of low impurity concentration (c!1). We calculate the
self-consistent A or B site order parameter (DA ,DB) and
charge density (nA ,nB). Interestingly, we find that particle
©2000 The American Physical Society01-1
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hole symmetry leads toDA5DB , and we show that Ander
son’s theorem applies exactly in this case, even thougj
;a or D;W. A similar result was obtained previously fo
weak (uUu!W)22 and strong (uUu@W)23 interactions, but
only for the weak disorder limit. By contrast the result he
is exact for both weak and strong scattering. Evidently, t
latter result implies thatj@a is not a necessary condition fo
Anderson’s theorem. Furthermore in the extreme disor
limit ( «A2«B.W) we have a disorder induced band spl
ting in the normal state. Remarkably, if the chemical pot
tial lies in the band gap there is a superconductor to insul
quantum phase transition atT50. If the chemical potentia
lies inside one of the split bands, the normal state is met
but there are impurity states inside the superconducting

In Sec. II we describe the model and our CPA formalis
and report our numerical results for the cases of weak«A
2«B!W) and intermediate («A2«B,W) scattering. In Sec
III we show that the gap fluctuation vanishes in the case
particle-hole symmetry, while in Sec. IV we argue th
within CPA Anderson’s theorem is exact in this case. S
tion V contains our results for the strong scattering («A
2«B.W) case where we find a superconductor-insula
transition.
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II. THE MODEL AND CPA FOR s-WAVE
SUPERCONDUCTING ALLOYS

We use an attractive-U single-band Hubbard model
fined by the Hamiltonian

H52(
i j s

t i j cis
† cj s1

1

2 (
is

Uin̂isn̂i 2s1(
is

~« i2mbare!n̂is ,

~2!

wherecis
† , cis are, respectively, the creation and annihi

tion operators of electrons with spins on the lattice sitei,
n̂is5cis

† cis is the local occupation number operator,mbare is
the chemical potential, andt i j is the hopping integral from
site i to site j. Ui is the attractive pairing interaction at site
In all of the numerical calculations shown below the intera
tion potential isUi523.2t. For other interaction strength
we found similar results.« i is the site diagonal random dis
order potential which takes on values«A with probablity c
and«B with probablity 12c.

After applying the Hartree-Fock-Gorkov~HFG! approxi-
mation to Eq.~2! our task becomes a study of the Gorko
equation
(
l

S t i l 1~ ıvn1mbare2« i2Uini↓!d i l D id i l

D i* d i l 2t l i 1~ ıvn2mbare1« i1ni↑Ui !d i l
D Ĝ~ l , j ,ıvn!5d i j S 1 0

0 1D , ~3!
e
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where Ĝ( i , j ,ıvn) is the Fourier transform, with respect t
the complex-time variablet, of the Green function
Ĝ( i , j ,t)5(1/b)(vn

eıvntĜ( i , j ,ıvn). The self-consistency
conditions for the local order parameter and charge den
are

D i5
Ui

b (
vn

eıvnhG12~ i ,i ,ıvn! ~4!

and

ni5
1

b (
vn

eıvnhG11~ i ,i ,ıvn! ~5!

where h is a positive infinitesimal. The task at hand is
solve the above equations for each configuration$« i% of the
site energy and pairing interaction, to obtain the local or
ty

r

parameter and charge$D i ,,ni% and hence to calculate th
configurationally averaged Green functionGC ( i ,i ;ıvn)
5^Ĝ( i ,i ;ıvn ;$« i%)&.

Whilst most of the salient features of disordered sup
conductors are well described by the Abrikosov and Gork
~AG!7,8 theory, recently the CPA has also been brought
bear on the problem.17–20 Within the CPA one replaces th
on-site random potential with a site independent self-ene
matrix

Ŝ~ ıvn!5S S11~ ıvn! S12~ ıvn!

S21~ ıvn! S22~ ıvn!
D ~6!

which is determined by the condition that an A or B imp
rity, corresponding to«A and«B , respectively, does not sca
ter on the average. Thus the average Green function is g
by
(
l

S t i l 1~ ıvn1m2S11~ ıvn!!d i l 2S12~ ıvn!d i l

2S21~ ıvn!d i l 2t l i 1~ ıvn2m2S22~ ıvn!!d i l
D Ĝc~ l , j ,ıvn!5d i j S 1 0

0 1D . ~7!
1-2



ve

l
e

sa
e
he

n

ie

ix

is
io

or
s

d
on
et

ns
or
y

-
the

FG

nd
he
eory
sly
cy

te
to-

nc-
.

es,

le-

e

SUPERCONDUCTING ALLOYS WITH WEAK AND STRONG . . . PHYSICAL REVIEW B63 024501
In the previous application of the CPA to the abo
model18,19,24 the condition which determinedŜ was imple-
mented under the assumption that the pairing potentiaD i
does not fluctuate with the site energies. Therefore the s
consistency conditions@Eqs.~4! and~5!# were satisfied only
on average. However, this presumption is not a neces
part of the CPA and, as will be seen presently, is undu
restrictive. Here, we consider the more general case w
on an A or B site, with site energy«A or «B , the pairing
potential is allowed to beDA or DB , respectively, and the
two local gapsDA and DB are determined by the conditio
that the corresponding local gap equations@Eq. ~4!# are sepa-
rately satisfied. Thus if the probability that a site is occup
by an A atom is c and that for a B atom is 12c, the gener-
alized CPA condition is

cT̂A~ ıvn!1~12c!T̂B~ ıvn!50, ~8!

where the single siteT-matrices,T̂A and T̂B , are given by

T̂i~ ıvn!5V̂i„ıvn)~ 1̂2Ĝc~ l , j ,ıvn!V̂i~ ıvn!…21 ~9!

in terms of the local, single site, scattering potential matr

V̂i5S « i2S112m i 2D i2S12

2D i* 2S21 2« i2S221m i
D ~10!

for i 5A,B.
Note that in the above expression not only« i andD i are

allowed to fluctuate but the localm i also take on different
values on A and B sites. Evidently, such variations ar
from charge fluctuations. In the present HFG approximat
this is described by

m is5mbare2nisUi . ~11!

Clearly, once the above CPA problem has been solved f
set of «A ,«B ,DA ,DB ,nA and nB self-consistency require
that they are recalculated using the relations

DA,B5
UA,B

b (
vn

eıvnhG12
A,B~ i ,i ;ıvn!, ~12!

nA,B5
1

b (
vn

eıvnhG11
A,B~ i ,i ;ıvn!, ~13!

whereĜA,B( i ,i ;ıvn) is the Green function matrix average
over all configurations with an A or B atom, respectively,
the site i. In our calculation we assume, the non-magn
case, thatni↑5ni↓5 1

2 ni , and hence

mA,B5mbare2
1
2 UA,BnA,B . ~14!

Moreover, the patially averaged Green functio
ĜA,B( i ,i ;ıvn) are approximated by the Green functions f
A or B impurities in the CPA effective lattice described b
the self-energyŜ. They are given by

ĜA,B~ i ,i ;ıvn!5Ĝc~ i ,i ;ıvn!1Ĝc~ i ,i ;ıvn!T̂A,BĜc~ i ,i ;ıvn!.
~15!
02450
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In short, Eqs.~6!–~15! fully specify a self-consistent pro
cedure, which when carried to convergence, constitutes
complete CPA for disordered superconductors, in the H
approximation, for the model Hamiltonian in Eq.~2!. Note
that since the CPA is the mean field theory of disorder a
the HFG approximation is that for superconductivity, t
above theory should be regarded as the mean field th
which treats disorder and electron interaction simultaneou
and on an equal footing. By treating the self-consisten
only on average, earlier works18,19,24did not include the ef-
fects of fluctuations inD andn. Previously the full CPA was
only implemented to determine the influence ofD i fluctua-
tion on Tc .17 In the remainder of this paper we investiga
the full consequences of treating interaction and disorder
gether on the basis of Eqs.~6!–~15!.

Our results for the gap and charge fluctuations as fu
tions of the average band fillingn̄ are shown in Figs. 1 and 2
To simplify matters we used a 2d square lattice with lattice
constanta51 and band energy

ek522t~coskx1cosky! ~16!

FIG. 1. Self-consistent order parameters at A or B sit

DA , DB and the averageD̄ as a function of band filling. HereT
50.008625t, c50.5 andd52t. Note that at half band fillingDA

5DB5D̄ showing the fluctuation vanishes when there is partic
hole symmetry.

FIG. 2. Charge densitynA andnB as a function of the averag

band filling n̄ for c50.5, d52t and temperature isT

50.008625t. Note that thenA , nB are never equal, except atn̄
50 or 2.
1-3
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wheret is the nearest neighbor hopping amplitude. In the
calculations we have taken the energy differenced5«A
2«B to be a significant fraction of the bandwidthW
58t (d50.5t,d52t) and hence we are in the fairly stron
scattering regime~for d52t). As Fig. 1 showsDAÞDB ex-
cept at the pointn̄51, namely a half filled band. Clearl
from Fig. 2nAÞnB at any filling except 0 or 2. Thus, unlik
in previous calculations19 theD andn fluctuations are centra
features of our results. For emphasis we show in Fig. 3
standard deviations of the order parameter

MD5^~ udD i !
2u&5^uD i

2u&2^uD i u&2>c~12c!~DA2DB!2

~17!

and charge density

Mn5^~dni !
2&5^ni

2&2^ni&
2>c~12c!~nA2nB!2 ~18!

as predicted by our CPA calculations.
Remarkably, at half filling the fluctuations in the pairin

potential go to zero, while the charge density fluctuations
at their strongest. To investigate the origin of this interest
phenomenon we studied the case wherec50.75Þ0.5 but the
band is still half filled atn̄51. For this caseDA ,DB and D̄
are shown in Fig. 4 as a function of temperature. Eviden
for all T,Tc , DAÞDB and henceMDÞ0. In what follows
we unravel the root cause of this behavior.

III. PARTICLE-HOLE SYMMETRY

Recall that in Figs. 1–3 the order parameter fluctuatio
vanish, DA5DB , for the casen̄51 and c50.5, namely
equal concentrations of A and B atoms. This special cas
one where the Fermi energy is at the center of the band
the density of states is symmetric, and hence particle-h
symmetry occurs. For this case and only this casem
50, mbare5

1
2 U and mB52mA . Furthermore, since the

FIG. 3. Fluctuation inD, MD5^uD i
2u&2uDcu2, and fluctuation

of charge density,Mn5^uni
2u&2uncu2, as a function of band filling

for c50.5 andT50.008625t. Note that theD fluctuation is zero at
half band filling, while the charge density fluctuation is maximu

Therefore n̄51 obeys the conditions for Anderson’s theore
particle-hole symmetry and as a consequence of this there is
sence of fluctuation inD. For other fillings this condition is no
true.
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self-energy always obeys the same symmetries as the G
functions

S11~ ıvn!52S22* ~ ıvn!,

S12~ ıvn!5S21* ~ ıvn!, ~19!

for particle-hole symmetry there is also the property that

S11~ ıvn!52S11* ~ ıvn!. ~20!

Namely,

R S11~ ıvn!50 ~21!

and consequently

R G11
c ~ ıvn!50. ~22!

Noting that the CPA respects these symmetries we
rewrite the CPA condition in Eq.~8!, as

cV̂B
211~12c!V̂A

215Ĝc~ i ,i ;ıvn!. ~23!

Combining this with particle-hole symmetry as described
Eqs.~19!–~22! implies that

~DA2DB!Xd
2

S121
d

2
S211S mA2

d

2DDA

1S mA2
d

2DDBC50. ~24!

and hence, since the second bracket is non-zero, that

DA5DB . ~25!

Therefore particle-hole symmetry implies the absence of
order parameter fluctuations.

.

b-

FIG. 4. DA , DB and the averageD̄ as a function of temperature

in the particle-hole asymmetric case forn̄51, c50.75 and d

52t. Note that in this caseDA , DB and the averageD̄ go to zero
at Tc.0.525t.
1-4
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IV. PROOF OF ANDERSON’S THEOREM IN THE
PARTICLE-HOLE SYMMETRIC DENSITY OF STATE

CASE

In non-magnetic disordered locals-wave superconductor
the traditional argument leading to Anderson’s theorem
sumes that the fluctuations of the order parameter are n
gible, D i'D̄. Anderson’s theorem shows that in this ca
there are no bound states between quasi-particles and im
rity sites and therefore the quasi-particle energy gap is a
lute. Namely, there are no impurity states inside of the ga5

FurthermoreTc is found simply by replacing, the clean sy
tem density of statesN(E), with its disordered system ave
ageN̄(E) in the gap equation.

In an alternative route to the same result Abrikosov a
Gorkov7,8 use perturbation theory which implies that the se
energy can be approximated by

S11~ ıvn!52
ı

t
sign~vn!, ~26!

wheret is a wave vector and frequency-independent qu
particle lifetime. This is justified in the case of the non-se
consistent Born approximation by the assumption that
relevant energy scale isuvnu<vD (vD is Debeye frequncy!
and hence only states near the Fermi surface are rele
More implicitly it is assumed that near the Fermi surface
density of states is a constant and hence there is effecti
particle-hole symmetry.

However, in general, we cannot assume thatS11(ıvn) is
of this form. In the case of narrow band superconducto
there is no Debeye cutoff and so one cannot assume that
states near the Fermi level are significant. In particu
I S11(ıvn) will not be a constant, andR S11(ıvn) need not
be zero. Nevertheless, if for some reason particle-hole s
metry is obeyed, Anderson’s theorem will obtain in fu
CPA, self-consistent Born, andT-matrix approximations.

In Figs. 5 and 6 we illustrate using our explicit calculatio
the energy dependence ofR S11(E), I S11(E), R(R(E))
andI(R(E)) for the cases of particle-hole symetric or no
symmetric cases. Note that functionR(E) is defined by

R~E!5 1
2 „S11~E1ı01!1S11~2E2ı01!…, ~27!

andR(E) is the analytical continuation ofR S11(ıvn) to the
real axis. Figures 5 and 6 show that for particle-hole symm
try, n̄51 and c50.5, R(E) is equal to zero but in othe
casesR(E)Þ0. We shall now analyze the consequences
the particle-hole symmetryE→2E.

The Green function for CPA, self-consistent Born
T-matrix approximations can be written in the form

GC ~ i ,i ;ıvn!5
1

N (
k

S ıṽn2ek1m̃ D̃

D̃* ıṽn1ek2m̃
D 21

,

~28!

where the renormalized parametersD̃, ṽn andm̃ andhv are
given by
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ṽn5vnS 12
I S11~ ıvn!

vn
D ,

D̃5DS 12
I S11~ ıvn!

vn
D ,

m̃5m2R S11~ ıvn!

hv5S 12
I S11~ ıvn!

vn
D . ~29!

Note that these renormalized parameters are the same
the original paper of Abrikosov and Gorkov8, whereŜ was
computed in the non-self-consistent Born approximati
They found thatR S11 near the Fermi surface is independe
of v, and therefore eventually it can be absorbed into
chemical potential. The same procedure was followed Ma
et al.19

However, we proceed without these simplifications a
retain the full energy dependence ofR S11(E) and
I S11(E). Now, particle-hole symmetry implies tha
R S11(ıvn)50, and thereforem̃5m. Using the above rela-
tions the gap equation becomes

FIG. 5. R S11(E) andI S11(E) as a function of energy E. The

casec50.5,n̄51 has a particle-hole symmetry and others are n
particle-hole symmetric. As it is obvious that for such narrow ba
superconductors neitherR S11(E) nor I S11(E) are constant, un-
like the weak scattering Born approximation limit.
1-5
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15
uUu
b (

n
E

2`

` N~ ẽ,ıvn!

vn
21 ẽ21uDu2

dẽ, ~30!

where

N~ ẽ,ıvn!5
1

N (
k

1

hv
d~ ẽ2 ẽk! ~31!

and, ẽk5ek /hv is the renormalized band energy.
Surprisingly in the case of particle-hole symmetry t

quantityN( ẽ,ıvn) in Eq. ~30! becomes equal to the disord
average normal state density of states, namely,N̄( ẽ) and
hence, without further assumptions, Anderson’s theorem
tains. To be quick and explicit we note that this last s
follows from the property of a delta function thatd(x/a)
5ad(x), and hence

N~ ẽ,ıvn!5
1

N (
k

1

hv
d~ ẽ2 ẽk!5N~hvẽ !5N̄~ ẽ !.

~32!

In short, we again have Anderson’s theorem thatTc is given
by the usual gap equation, but with the disorder aver

FIG. 6. R(E) is the analytical continuation ofR S11(ıvn) to the
real axis. Here we show the real and imaginary part
R(E), R(R(E)), I(R(E)) for three different cases: the casesc

50.5, n̄50.576, d52t and c50.25, n̄51, d52t are particle-

hole asymmetric, and the casec50.5, n̄51, d52t is particle-
hole symmetric. The temperature here isT50.008625t. Clearly
only in the particle-hole symmetric case isR(E)50.
02450
b-
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e

normal density of states. However, unlike other proofs, o
does not neglect the energy dependence ofR S11(E) or
I S11(E).

V. SUPERCONDUCTORS IN THE SPLIT BAND REGIME

One of the main virtues of the CPA in the normal state
the fact that it describes band splitting correctly.21 Namely,
for «A2«B less than the bandwidth, 8t in our case, it pre-
dicts an effective band somewhere in between the band
pure A or pure B metal, while for«A2«B bigger than the
half bandwidth CPA predicts two, smeared, but neverthe
well defined, bands seperated by a gap. The two bands a

f

FIG. 7. Band splitting of the normal system at half band fillin

n̄51 andT50.008625t in the three cases:~a! c50.25, d58t. In
this case conduction is in the B band.~b! c50.5, d510.1t in this
case Fermi energy lies outside of both bands, therefore the sta
an insulator.~c! c50.75, d58t. In this case the Fermi energy lie
in the A band, so hopping occurs primarily in this band.
1-6
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SUPERCONDUCTING ALLOYS WITH WEAK AND STRONG . . . PHYSICAL REVIEW B63 024501
energies where there would have been an A or B band in
of the pure systems. In this latter case the wave func
corresponding to the A band is large mainly on the A si
and that in the B band is significant only on the B sites.
what follows we shall investigate superconductivity in th
split band regime of CPA.

To investigate the consequences for superconductivit
the above split band regime we have solved Eqs.~6!–~15!
using a strong scattering potential («A2«B;W). From these
solutions two interesting points emerged. First, we found t
for the particle-hole symmetric case, reported in Fig. 8,DA
5DB and hence even in this strong scattering state there
no fluctuations inD. Nevertheless, scattering has a large
fect on the superconductivity through the configurationa
average density of statesN̄(E) in Eq. ~32!. Namely, as
shown in Fig. 8,D→0 for the critical strength of scatterin
d.4.5t.

The other interesting phenomenon is a superconducto
insulator transition. Recently Scalettar, Trivedi a
Huscroft25 discovered a superconductor-insulator transit
in the disordered attractive U Hubbard model, using Mo
Corlo simulations. They found that for strong disorder t
superconducting gap is replaced by an insulating gap, b
for weak and strong interaction U. Clearly the superco

FIG. 8. The superconductor-insulator phase transition in
strong scattering limit for two different alloy concentrations a
average band filling atT50.008625t. ~a! A particle-hole symmetric

density of states atn̄51, c50.5. ~b! An asymmetric particle-hole

density of states forc50.25, n̄51.5. Note that in both cases th
superconducting gap closes and is replaced by an insulating ga
larged.
02450
ne
n
s

in

t

re
-

to

n
e

th
-

ductor to insulator transition in our CPA calculaton has
similar origin, although our model of disorder is different.

In general the band fillingn̄ is given by

n̄5~12c!nB1cnA , ~33!

wherenA and nB are the partial averaged occupation nu
bers on A or B sites, respectively. We shall discuss th
different cases of Eq.~33!: case~i! (nA50,nB,2), case~ii !
(nA50,nB52) and case~iii ! (nAÞ0,nB52). In the first case
the A band is empty and the filling of the B band (nB) is

nB5
n̄

12c
. ~34!

For the second case the B band is completely, doubly, oc
pied and the A band completely empty. In the third case
A band is partially occupied with

nA5
n̄22~12c!

c
~35!

and the B band is fully occupied. The second case is a s
cial case of Eq.~35!. Figure 7 shows the A, B and averag
normal density of states for these three different concen
tions. In Fig. 7~a! the A sites are approximately empty (nA

e

for

FIG. 9. The fluctuation ofD, MD5^uD i
2u&2uDcu2, and the av-

erageD̄ as a function of disorder strength.~a! The particle-hole

symmetric casec50.5 andn̄51. ~b! A particle-hole asymmetric

bandc50.25 andn̄51.5 atT50.008625t. Note that theD fluctua-
tion in the particle-hole symmetric band is zero for all of disord
strengths.
1-7
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'0) but there is more than one electron on the B sites.
graph plotted was for the casen̄51 andc50.25, and there-
fore from Eq. ~34! we havenB5 4

3 . Figure 7~a! is a band
metal with hopping of electrons from the B sites to the
sites. In Fig. 7~b! the A sites are almost completely empt
nA50, and the B sites are doubly occupied,nB52. There-
fore there is a gap at the Fermi energy and the system
band insulator. In Fig. 7~c! the B band is fully occupied
while the A band is partially filled. For this case we hadn̄
51 andc50.75 and so by Eq.~35!, the band filling of the A
sites isnA5 2

3 . Similarly Fig. 7~c! is a metal band with hop
ping from the A sites to the A sites. In Fig. 7~b! there is no
hopping and we can regard this state as a band insulato

As illustrated in Fig. 8~a!, in the split band regime the
superconductor gap closes,D̄→0 asd→4.5t but is replaced
by an insulating gap ford.4.5t. Evidently, this can also
happen in the non particle-hole symmetric case as show
Fig. 8~b!. The general condition for the superconducto
insulator transition is saturation of the B sites with 2 ele
trons of opposite spin while the A sites are empty. This h
pens when

n̄52~12c!. ~36!

FIG. 10. Density of states at A and B sitesNA , NB and the

averageN̄ at half band filling,n̄51 andT50.008625t, for the two
cases:~a! c50.25, d59t and~b! c50.75, d59t. In the ~a! case,
the A band is an empty normal band and superconductivity is o
in the B band. In the case~b!, the B band is a normal doubly
occupied band and the A band is a partially occupied supercond
ing band.
02450
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In this case the Fermi level lies in the gap and all the B sta
are filled and the A states are empty. For completeness
show the suppression ofD̄ by disorder for particle-hole sym
metric and non-particle-hole symmetric cases in Fig.
obeying the condition from Eq.~36!.

Now numerically we shall test our prediction, in Eq
~35!, ~34!, for the two non-particle-hole symmetric cases:c

50.25,n̄51 and c50.75,n̄51, as discussed at the begin
ning of this section. In these cases there is
superconductor-insulator transition. For a greater und
standing of the details of the band splitting mechanism
plot the density of states, the order parameter and the ch
density on A and B sites. In the first case the concentratio
A sites is less than B sites, but in the second case the
centration of A sites is more than of B sites. As expected
Fig. 10~a! we see that there are two split bands, a norm
empty band on the A sites and a superconducting band o
sites. Conversely in Fig. 10~b! the B band is a normal doubly
occupied band and the A band is the superconducting b

The effect of disorder on the average order parameter
the A and B sites local order parameters (D̄,DA ,DB) and
charge densities (nA ,nB) are shown in Figs. 11 and 12. On
can see that, for weak scattering, the local order parame
and charge densities of A and B sites are approximatly
same but with increasing disorder the difference betw

ly

ct-

FIG. 11. Order parametersDA , DB and D̄ at half band filling

n̄51 in terms of disorder strength for the cases of:~a! c50.25 and
~b! c50.75. For the case~a! and very strong scattering the orde
parameter on the A sites goes to zero. In case~b! the order param-
eter of the B sites goes to zero while that of the A sites goes
constant.
1-8
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them will increase, with one ofDA or DB going to zero
~depending on the relative concentrations!. In Fig. 11~a! and
12~a! the concentration of A sites is less than that of B si
thereforeDA→0, DB→constant whilenA→0, nB→ 4

3 . In
contrast to this, in Fig. 11~b! and 12~b! the concentration of
A sites is more than that of B sites, consequentlyDA
→constant, DB→0 andnA→ 2

3 , nB→2.
Schematically Fig. 13 shows the physical mechanism

the band splitting in terms of A and B lattice sites. Clea
when all B sites become doubly occupied and all the A s
become empty there is no hopping and the system beco
insulating. Therefore as a function of the disorderd or band
filling n̄ there is aT50 superconductor-insulator quantu
phase transition. This transition corroborates the sugges
of Scalettar, Trivedi, and Huscroft25 that disorder in super
conductors can lead to a superconductor-insulator transi
However, it should be noted that they used a uniform rand
distribution of site energies« i , wheras we used a binar
alloy model.

FIG. 12. Charge densitiesnA and nB at half band fillingn̄51
andT50.008625t in terms of the disorder strength for the case
~a! c50.25, ~b! c50.75. In case~a! all of the electrons are in the B
sites and the A sites are empty in the strong disorder limit. The b
filling of the B sites isnB5

4
3 . But in case~b! the B band becomes

fully occupied while the A band remains partially occupied.
02450
s

f

s
es

on

n.
m

VI. CONCLUSION

In this paper, we applied the full CPA for disorder supe
conductors. In our calculations the self-consistency equat
were solved fully within CPA so that self-consitency w
properly satisfied on each type of CPA impurity sites, a
not just on the average. It is in this form that the CPA-HF
is the only ‘‘controlled’’ mean field theory of disordere
superconductors.20

We plotted the local order parameter and charge den
of A or B atoms of a binary alloy for both weak and stron
scattering limits. We found that only for one special case
the order parameters of A and B sites equal, and con
quently the fluctuations ofD are zero. For this point we hav
shown analytically that the condition for Anderson’s theore
is fulfilled not only for weak scattering but also for stron
scattering in a particle-hole symmetric band. By contra
neither the density of states norTc is exactly constant, al-
though in the gap equation, the quasi-particle energy ga
absolute. In the gap equation the normal clean system d
sity of states in the gap equation is replaced by the nor
disorder average density of states, and therefore the
changes of the superconducting density of states andTc
come from the latter.

In narrow band binary alloys-wave superconductors, w
showed that strong disorder leads to two different interes
phenomena: ~i! band splitting with a quantum
superconductor-insulator phase transition atT50, ~ii ! band
splitting without a phase transition. In this last case in ter
of concentration and average band filling, one band is nor
~doubly occupied or empty! and superconductivity is only
present in the other band that is partially occupied.
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FIG. 13. The physical mechanism of the band splitting in t

particle-hole symmetric case ofc50.5, n̄51 for T50.008625t.
The band splitting happens at approximately 4.5t. In this case all of
the A sites become empty while the B sites become doubly oc
pied. Clearly this represents a band insulator.
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