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Superconducting alloys with weak and strong scattering: Anderson’s theorem
and a superconductor-insulator transition
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We have studied the effects of strong impurity scattering on disordered superconductors beyond the low-
impurity concentration limit. By applying the full coherent potential approximation to a superconductiong A-B
binary alloy, we calculated the fluctuations of the local order paramatgrdg and charge densitias, ,ng
for weak and strong on-site disorder. We find that for narrow band aliegtve superconductors the conditions
for Anderson’s theorem are satisfied in general only for the case of particle-hole symmetry. In this case it is
satisfied regardless of whether we are in the weak or strong scattering regimes. Interestingly, we find that
strong scattering leads to band splitting, and in this regime for any band filling we have a critical concentration
where a superconductor-insulator quantum phase transition occlirs Gt
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[. INTRODUCTION perturbative technique. Zhitomirsky and WalKealso calcu-
lated corrections td'. beyond Anderson’s theorem due to
As is well known,s-wave superconductivity is possible order parameter fluctuations evaluated perturbatively. In the
even in highly disordered systems. Examples are supercofpresent paper the goal is to treat the spatially varyingnd
ducting intermetalic alloygsuch as AgSi; ., Nb.Si; .  charge density fully self-consistently within the coherent po-
(Ref. ) and Ma _(Rh. (Ref. 2], heavily doped cubic per- tential approximatiofCPA), and hence allow for the case of
ovskites(such as Ba K BiO; with x~0.4)> and chevrel  arpjtrarily strongA or charge fluctuations.
phases(such as GgMoS;).* What lies beyond these ini- | this regime a number of interesting new issues arise.
tially surprising facts is Anderson’s theoremaccording to o example Ghosat al1? showed that strong disorder scat-
which pairing of time-reversed states leads to a finite gap 2 tering leads to strong spatial variationsAin with the forma-
in the density of states. Namely, the one-particle states i“ﬁon of superconducting “islands” wheré is large and

v_olved in the pairing need not be eigenstates of any trans'%ther regions wheré is small. Moreover, they found that
tion operators and hence both and T¢ are only weakly the spectral gap persists even whens very small in large

influenced by the disorder. %egions of the sample. By contrast it was argued by

The key assumptions required for Anderson’s theorem ar 1 and ZiealeH that ord ter fluctuati
(i) non-magnetic scattering onltime reversal symmetyy ppermarr and ZIegie at order parameter fluctuations
lead to a finite density of states within the gap. Similarly, in

(i) the self-consistent order parameterdoes not fluctuate ) . :
the calculations of the non-self-consistent density of states

from configuration to configuration. Previously Gffy et . X ;
al.5 examined the conditions fdii) to hold, and found that Y Annett and Goldenfefd an impurity band tail develops

spatial fluctuations i\ could be neglected provided that due to spatial fluctuations i, and eventually this leads to

coherence length gaplesss-wave superconductivity. Obviously the fluctuations
in A can arise either due to randomness in the single particle
hug site energye; at each atomic site, as in an alloy, or due to
&= A (1) randomness in the attractive interaction potential as con-

sidered by Litak and Gyrfy.® Here we consider only the

is much greater than the lattice spacegAnderson’s theo- former case of alloy type disorder.
rem also follows from the classic theory of Abrikosov and In this paper we calculate the spatially random, self-
Gorkov.® Their argument is based on perturbation theoryconsistent order parameter and charge due to A-B binary
and the proof requires that the real part of the self-energglloy type disorder. The on-site energysig on a fraction c
S(E) varies slowly near the Fermi enerdst.°>° It turns  of lattice sites andg on the fraction +c. The Green func-
out that this is equivalent to the conditigaa in Eq. (1). tions are calculated using th€€PA).2~?° This has been

The purpose of this paper is to examine disorderadve  shown to be exact in the limit of infinite dimensidAsnd to
superconductors for which the spatial fluctuationg\ofan-  reproduce the results of the self-consistent Born approxima-
not be neglected. The results of such an inquiry will be im-tion for weak scatterings(,— eg<W, whereW is the band-
portant for narrow band or short coherence length supercorwith) and the self-consisterit-matrix approximation in the
ductors whereA<Eg or é~a, such as some of those limit of low impurity concentration ¢<1). We calculate the
mentioned above. In the work of Gify et al® the order self-consistent A or B site order parametex,(Ag) and
parameter fluctuations due to impurities were studied using eharge densityr{,,ng). Interestingly, we find that particle-
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hole symmetry leads td ,=Ag, and we show that Ander- Il. THE MODEL AND CPA FOR sWAVE
son’s theorem applies exactly in this case, even thofigh SUPERCONDUCTING ALLOYS
~a or A~W. A similar result was obtained previously for
weak (U|<W)?? and strong [U|>W)?? interactions, but
only for the weak disorder limit. By contrast the result here
is exact for both weak and strong scattering. Evidently, this 1
latter resu1lt implies thag>a is not a necessary condition for y— _ 2 tijC;rngg+— E Uin N+ 2 (&i— ipare)Nig s
Anderson’s theorem. Furthermore in the extreme disorder ijo 295 o
limit (es—eg>W) we have a disorder induced band split- 2
ting in the normal state. Remarkably, if the chemical poten- + ) . -
tial lies in the band gap there is a superconductor to insulatofN€reci,. i, are, respectively, the creation and annihila-
quantum phase transition @=0. If the chemical potential tion operators of electrons with spin on the lattice site,
lies inside one of the split bands, the normal state is metaliﬁir,zcit,ci(, is the local occupation number operatag,, e iS
but there are impurity states inside the superconducting gaphe chemical potential, ang; is the hopping integral from
In Sec. Il we describe the model and our CPA formalismsitei to sitej. U; is the attractive pairing interaction at site i.
and report our numerical results for the cases of wegk ( In all of the numerical calculations shown below the interac-
—eg<<W) and intermediated, — eg<<W) scattering. In Sec. tion potential isU;=—3.2. For other interaction strengths
[l we show that the gap fluctuation vanishes in the case ofve found similar resultse; is the site diagonal random dis-
particle-hole symmetry, while in Sec. IV we argue thatorder potential which takes on valueg with probablity c
within CPA Anderson’s theorem is exact in this case. Secandeg with probablity 1—c.
tion V contains our results for the strong scattering, ( After applying the Hartree-Fock-GorkdHFG) approxi-
—eg>W) case where we find a superconductor-insulatoration to Eq.(2) our task becomes a study of the Gorkov

We use an attractive-U single-band Hubbard model de-
fined by the Hamiltonian

transition. equation
tii + (lon+ mpare= &= Uin; ) & Ai Gy )G(I o= (1 0) .
’ ,l(l) = Ojj ’
' At &y —ti+(lon— mpare™ €T Ni1U;) & Blon =2l g 4

whereG(i,j,1w,) is the Fourier transform, with respect to parameter and chargg;,,n;} and hence to calculate the
the complex-time variabler, of the Green function configurationally averaged Green functio®(i,i;lwy)
é(i,j,r)=(1/ﬁ)2wne"”nfé(i,j,|wn). The self-consistency =(G(i,i;lw,;{&i})).

conditions for the local order parameter and charge density Whilst most of the salient features of disordered super-
conductors are well described by the Abrikosov and Gorkov

are
(AG)"® theory, recently the CPA has also been brought to
U bear on the problert~?° Within the CPA one replaces the
Ai:_i > TG (i ,i1w,) (4)  on-site random potential with a site independent self-energy
o matrix
and
N Su(lew,) Zflwp)
1 o=y (mn) s z(lwn) ©
ni:E elwn”Gll(i,ian) (5) 21 n 2 n

which is determined by the condition that an A or B impu-
where 7 is a positive infinitesimal. The task at hand is to rity, corresponding t@, andeg, respectively, does not scat-
solve the above equations for each configurafion of the  ter on the average. Thus the average Green function is given
site energy and pairing interaction, to obtain the local ordeby

ti+ (ot u—211(1w,)) 8 —2(1wp) &) >AC| , s (1 0) .
1 —2o1(1wp) &) —tit(loy—p—2(1wy)) & Gl ton) =2, 0 1) @)
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In the previous application of the CPA to the above , !

model®19%4the condition which determineBl was imple- A" *°
mented under the assumption that the pairing potentjal o3
does not fluctuate with the site energies. Therefore the self-— 07
consistency conditiongEgs. (4) and(5)] were satisfied only 0.6

on average. However, this presumption is not a necessary os
part of the CPA and, as will be seen presently, is unduely o4
restrictive. Here, we consider the more general case where o3
on an A or B site, with site energy, or g, the pairing o2 H.
potential is allowed to be\, or Ag, respectively, and the o1l -
two local gapsA, and Ag are determined by the condition ol
that the corresponding local gap equatipag. (4)] are sepa-
rately satisfied. Thus if the probability that a site is occupied
by an A atom is ¢ and that fa B atom is -c, the gener- FIG. 1. Self-consistent order parameters at A or B sites,
alized CPA condition is An, Ag and the averagd as a function of band filling. Her@
=0.008625, c=0.5 ands=2t. Note that at half band filling 5

=Ag=A showing the fluctuation vanishes when there is particle-
hole symmetry.

cTallwn) +(1—c)Ta(1wy) =0, )
where the single sit&-matrices, T, andTg, are given by

A e 2 oAcs ~ 1 In short, Eqs(6)—(15) fully specify a self-consistent pro-
Tillwn) =ViQlwn) (1 =G(1.j.1en)Vi(1on)) ©) cedure, which when carried to convergence, constitutes the
in terms of the local, single site, scattering potential matrix complete CPA for disordered superconductors, in the HFG
approximation, for the model Hamiltonian in E(). Note
R ei— 211~ M —Ai—3q that since the CPA is the mean field theory of disorder and
Vi= CAFSS. S i (100 the HFG approximation is that for superconductivity, the
! 21 T2 above theory should be regarded as the mean field theory
for i=A,B. which treats disorder and electron interaction simultaneously
Note that in the above expression not oalyandA; are  and on an equal footing. By treating the self-consistency
allowed to fluctuate but the local; also take on different only on average, earlier works'®?*did not include the ef-
values on A and B sites. Evidently, such variations arisgects of fluctuations i\ andn. Previously the full CPA was
from charge fluctuations. In the present HFG approximatioronly implemented to determine the influence Xf fluctua-

this is described by tion on T,.1" In the remainder of this paper we investigate
the full consequences of treating interaction and disorder to-
Mioc™= Mbare™ NigUj - (11)  gether on the basis of Eq&)—(15).

Clearly, once the above CPA problem has been solved for a Our results for the gap arﬁ charge fluctuations as func-
set of ex,eg,A4,A5,n, and ng self-consistency requires tions of the average band fillingare shown in Figs. 1 and 2.

that they are recalculated using the relations To simplify matters we used ad?square lattice with lattice
constanta=1 and band energy

UA B .o
AA‘B:T > eenGRE(iiTwy), (12) €= — 2t(cosk, + cosk,) (16)
@n
2 T T T T T T T T T
Nas=7 > €“n7GH%(,ij1wp), (13 Maer D .
T B ng T n, = .
2 - . . . 14 F -
whereG*8(ii;1w,) is the Green function matrix averaged Ll |
over all configurations with an A or B atom, respectively, on '1 | 1
the site i. In our calculation we assume, the non-magnetic
case, thah;;=n;, =3n;, and hence o8 1
0.6 [ B
MAB= Mpare™ %UA,BnA,B . (14 04r T
02 i
Moreover, the patially averaged Green functions ol . . . . ! . .
GAB(i,i;1w,) are approximated by the Green functions for ¢ 02 04 06 08 ln t2o1a e 182
A or B impurities in the CPA effective lattice described by
the self-energﬁ. They are given by FIG. 2. Chirge densitp, andng as a function of the average
band filling n for c¢=0.5, §=2t and temperature isT
GAB(i,i100) =GC(i,i;10,) + G(i,i;10,) Ta gG(i,i; 1), =0.008625. Note that then,, ng are never equal, except at

(15 =0 or 2.
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FIG. 3. Fluctuation in4, MA:<|A‘2|>_|AC|2’ and fluctuation FIG. 4.A,, Agand the averaga as a function of temperature
of charge densityM ,=(|n?|)—|n°|?, as a function of band filing . TToA 7B a9 — P
for c=0.5 andT=0.008625. Note that theA fluctuation is zero at " the particle-hole asymmetric case for=1, C:_0'75 and§
half band filling, while the charge density fluctuation is maximum. = 2t. Note that in this casé,, Ag and the averaga go to zero
Therefore n=1 obeys the conditions for Anderson’'s theorem: atTe=0.524.

particle-hole symmetry and as a consequence of this there is ab- )
sence of fluctuation in\. For other fillings this condition is not Self-energy always obeys the same symmetries as the Green

true. functions

wheret is the nearest neighbor hopping amplitude. In these S(lwy) = =23(10,),

calculations we have taken the energy differentecy,

—eg to be a significant fraction of the bandwidtW S (e =35(1w,), (19)

=8t (6=0.%,6=2t) and hence we are in the fairly strong
scattering regiméfor 6=2t). As Fig. 1 showsAa#Ag ex-  for particle-hole symmetry there is also the property that
cept at the poinn=1, namely a half filled band. Clearly
from Fig. 2n,# ng at any filling except 0 or 2. Thus, unlike S(lwy)=—32T(lo,). (20
in previous calculatiot$ the A andn fluctuations are central
features of our results. For emphasis we show in Fig. 3 thé&amely,
standard deviations of the order parameter

R 1(1wy)=0 (21

My =((1640%)=(|AF) =(lAi)?=c(1-c)(Aa—Ap)?
(17 and consequently

dch densit
and charge density R GS,(1wy)=0. (22)

M,=((8n)? =(n?)—(n;)>=c(1—c)(ny,—ng)? (18
n={(on)%) =) =(n) ( J(na—ng)” (19 Noting that the CPA respects these symmetries we can

as predicted by our CPA calculations. rewrite the CPA condition in Eq(8), as
Remarkably, at half filling the fluctuations in the pairing
potential go to zero, while the charge density fluctuations are chl+ (1_0)\7;1:(300 dlwp). (23

at their strongest. To investigate the origin of this interesting

phenomenon we studied the case where.75# 0.5 but the  Combining this with particle-hole symmetry as described by
band is still half filled alm=1. For this casé\,,Agz andA Egs.(19—(22) implies that

are shown in Fig. 4 as a function of temperature. Evidently

forall T<T,, Apx#Ag and henceM#0. In what follows o 6 o
we unravel the root cause of this behavior. (Ap—Ap) 521# 5221+ pa~ 5 |Aa
o
I1l. PARTICLE-HOLE SYMMETRY +| pa— E) AB):O- (24)

Recall that in Figs. 1-3 the order parameter fluctuations

vanish, A=Az, for the casen=1 and c=0.5, namely and hence, since the second bracket is non-zero, that
equal concentrations of A and B atoms. This special case is

one where the Fermi energy is at the center of the band and Ap=Ag. (25)

the density of states is symmetric, and hence patrticle-hole

symmetry occurs. For this case and only this case Therefore particle-hole symmetry implies the absence of the
=0, upare=3U and ug=—u,. Furthermore, since the order parameter fluctuations.
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IV. PROOF OF ANDERSON’S THEOREM IN THE 45 T T T T T

PARTICLE-HOLE SYMMETRIC DENSITY OF STATE A gfg-gfgf(l’;%ﬁzt? =2t

CASE 35| c=O:2’5;f1=’1;8= 2t ---- .

In non-magnetic disordered localWwave superconductors 3r T
the traditional argument leading to Anderson’s theorem as- 325 - .
sumes that the fluctuations of the order parameter are negli ——, | i
gible, Aj=A. Anderson’s theorem shows that in this case E sk 4
there are no bound states between quasi-particles and impt= | ]
rity sites and therefore the quasi-particle energy gap is abso
lute. Namely, there are no impurity states inside of thegap.  **[ )l
FurthermoreT . is found simply by replacing, the clean sys- 05 o 10 15
tem density of statell(E), with its disordered system aver-
ageN(E) in the gap equation. 25 . . . — —

In an alternative route to the same result Abrikosov and 2F g:g'g zg:(l)'s;m 35:2?; .
GorkoV' 8 use perturbation theory which implies that the self- 5| 020255521 © §22t -1
energy can be approximated by L o ’ _

o OSE e b

3 s 2 Smof —— O N ]

1u(log)= TS'gffwn), (26) [’dﬁ"” i i

& oar i

where 7 is a wave vector and frequency-independent quasi- | 4

particle lifetime. This is justified in the case of the non-self-
consistent Born approximation by the assumption that the
relevant energy scale j&,|<wp (wp is Debeye frequngy 15 -10 = ‘E 5 10 15
and hence only states near the Fermi surface are relevant.
More implicitly it is assumed that near the Fermi surface the FIG. 5. R34;(E) andJ X 14(E) as a function of energy E. The
density of states is a constant and hence there is effectivebasec=0.5n=1 has a particle-hole symmetry and others are non-
particle-hole symmetry. particle-hole symmetric. As it is obvious that for such narrow band
However, in general, we cannot assume thaf(iw,) is  superconductors neithék 3 ,,(E) nor 3> ,(E) are constant, un-

of this form. In the case of narrow band superconductorslike the weak scattering Born approximation limit.
there is no Debeye cutoff and so one cannot assume that only
states near the Fermi level are significant. In particular . ( B jzll(lwn))

n ’

73 1,(1wy) will not be a constant, antk > 1;(1w,) need not 0=

be zero. Nevertheless, if for some reason particle-hole sym-

metry is obeyed, Anderson’s theorem will obtain in full

CPA, self-consistent Born, anttmatrix approximations. A( 3211(”%))
-

Wn

In Figs. 5 and 6 we illustrate using our explicit calculation =
the energy dependence 83 1,(E), T3.1(E), R(R(E))
andJ(R(E)) for the cases of particle-hole symetric or non-
symmetric cases. Note that functi®{E) is defined by

Wn

p=p—RE;(1o,)
R(E)=3(E1(E+10")+34,(—E-107)), (27
I3 (1wp)

andR(E) is the analytical continuation ok 2 (1w, to the no=|1- T e I (29
real axis. Figures 5 and 6 show that for particle-hole symme- "
try, n=1 andc=0.5, R(E) is equal to zero but in other
casesR(E)#0. We shall now analyze the consequences
the particle-hole symmetrif— — E.

The Green function for CPA, self-consistent Born or
T-matrix approximations can be written in the form

O{\Iote that these renormalized parameters are the same as in

the original paper of Abrikosov and GorkwhereS was
computed in the non-self-consistent Born approximation.
They found thafR 3 1, near the Fermi surface is independent
of w, and therefore eventually it can be absorbed into the
~ ~ ~ 1 chemical potential. The same procedure was followed Martin
lw,— €t p A et all?

' However, we proceed without these simplifications and
(2g) retain the full energy dependence oRXq4(E) and
J33,4(E). Now, particle-hole symmetry implies that

where the renormalized parametérs w, andu and, are R 31,(1w,)=0, and thereforg.= u. Using the above rela-
given by tions the gap equation becomes

. 1
Gi,ijlwy)=— > _ - -
YON% A* lwpt+ €— 1
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2 ' ' T c=0.3.0=0.567.021 normal density of states. However, unlike other proofs, ours
c=057=1, 8=t —— does not neglect the energy dependenceRd,,(E) or

15 A s 1 ~

AR 0=0258=1,8=2 oo J214(E).

Vb e - < ‘ N i
= v V. SUPERCONDUCTORS IN THE SPLIT BAND REGIME
Hos - J
05 . . .
& One of the main virtues of the CPA in the normal state is
&) OF eeeeen T 4 the fact that it describes band splitting correéfiyNamely,

for eo—eg less than the bandwidth,t8n our case, it pre-
05 - . dicts an effective band somewhere in between the bands of
pure A or pure B metal, while foe,—eg bigger than the
15 o S o 5 0 5 half bandwidth CPA predicts two, smeared, but nevertheless
E/t well defined, bands seperated by a gap. The two bands are at
08 T T L T T
v ¢=0.5,n=0.576,6=2t----" 035 T T T T T
o6 be=05p=l, 32t —— 1 N,(E) NL(E) -
{1 e=025n=1, 8=2t - o3t (a) S — 1
l P N(E) i NE) —
= 025 - F . Ng(E) ---- 1
e o2r ST T I N (E P
& ol ! [ : i B c).z- P I .
= R ! : : S
ﬁ 02 ".: "‘ . ’ 4 0.15 | 4
04 '.fl ¥ m o1l E
-06 [ E.:: = 0.05 [ 1
08 1 1 ! 1 1 1 ° |
-15 -10 -5 0 5 10 15 .15 10 15
Ei

FIG. 6. R(E) is the analytical continuation & X 1,(1 w,,) to the E33 . T T T T

real axis. Here we show the real and imaginary part of NA( Ny (E) ----
R(E), R(R(E)), J(R(E)) for three different cases: the cases — ot (b) o NEBE) — 1
=0.5, n=0.576, §=2t andc=0.25, n=1, §=2t are particle- N(E)oz_ i Ng(E) |
hole asymmetric, and the case=0.5, n=1, §=2t is particle- N E) H
hole symmetric. The temperature hereTis-0.008625. Clearly 01s | i J
only in the particle-hole symmetric caseR$E)=0. ! / k
01 1
U = N(elw,) -~
— u f 2(~7n , (30) 0.05 |
B N J-xwite?+]|A|? !
-15 10 15
where
_ 1 1 . 0.35 T T T T T
N(E 1wy = — 2 —8(e—¢) 3y  Nu(E) NgB) -
N T 7, st NE) — A ]
- _ _ N(E}s| Ng®E - , i |
and, e,= €,/ n,, is the renormalized band energy. .

Surprisingly in the case of particle-hole symmetry the N{Ey2 % A 1
quantityN(e,1w,,) in Eq. (30) becomes equal to the disorder s (g) oo 1
average normal state density of states, namile) and o1 b ]
hence, without further assumptions, Anderson’s theorem ob-
tains. To be quick and explicit we note that this last step 0.05 - T
follows from the property of a delta function th@(x/a) 0 !
=ad(x), and hence B 0 »

~ 1 1 - - ~ — FIG. 7. Band splitting of the normal system at half band filling
N(e,1wn)= N Ek %5(6_ €) =N(7,€)=N(e). n=1 andT=0.008625 in the three casesa) c=0.25, §=8t. In

(32 this case conduction is in the B ban@) c=0.5, §=10.1 in this
case Fermi energy lies outside of both bands, therefore the state is
In short, we again have Anderson’s theorem fhats given  an insulator(c) c=0.75, §=8t. In this case the Fermi energy lies
by the usual gap equation, but with the disorder averagé the A band, so hopping occurs primarily in this band.
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0.6 T T T T T 1 T T T T T T T T
(a) &=4.5t — X o 3 — -
05 - | i 06=3.5t - B 08 M + B
o =2t ---- L . _
i | | M
E i 0.6 - (a) b
o3 no 7 i |
= " 04 .
| Zoz - ! . 03 4
02 T
01 =
01 1
L M L 1 LU 2 o i 2 i i i i i e i i ok i i e e 2 e
03 o 5 o 5 10 s 0 05 1 '1.58/ 2 25 3 35 4 45
E/t t
045 T T T T T
b L 8=0.1t - —
usk  (® s3s5t—— | My | N_ My _
M o3| i
= 4
| ZO.ZS r =
02 [ 1 i
0.15 B 7
01 = .
005 - N
0 1 : 1 1 6
-15 -10 -5 5 10 15

0
E/t
_ o FIG. 9. The fluctuation of\, M,=(|A?|)—|AC?, and the av-
FIG. 8. The superconductor-insulator phase transition in the,.a4e X" a5 a function of disorder strengtte) The particle-hole
strong scattering limit for two different alloy concentrations andS mmetric case=0.5 andn=1. (b) A particle-hole asymmetric
average band filling aE=0.008625. (a) A particle-hole symmetric y — ) P y
. - B . . bandc=0.25 andh=1.5 atT=0.008625. Note that theA fluctua-
density of states ati=1, ¢c=0.5. (b) An asymmetric particle-hole .~ " ) ) . )
. — i tion in the particle-hole symmetric band is zero for all of disorder
density of states foc=0.25, n=1.5. Note that in both cases the strengths.
superconducting gap closes and is replaced by an insulating gap for

large . ductor to insulator transition in our CPA calculaton has a

energies where there would have been an A or B band in on%aImllar origin, although ggr Ef)de! of disorder is different
In general the band filling is given by

of the pure systems. In this latter case the wave function

corresponding to the A band is large mainly on the A sites —

and that in the B band is significant only on the B sites. In n=(1-c)ng+cn, (33

whgt follows we shall investigate superconductivity in this wheren, andng are the partial averaged occupation num-

split band regime of CPA. ~ _bers on A or B sites, respectively. We shall discuss three
To investigate the consequences for superconductivity iRjifferent cases of Eq33): case(i) (na=0ng<2), caselii)

the above split band regime we have solved E5-(15) (na=0,ng=2) and casiii) (ny#0ng=2). In the first case

using a strong scattering potentialy(—sg~W). From these  he A hand is empty and the filling of the B bandg] is
solutions two interesting points emerged. First, we found that

for the particle-hole symmetric case, reported in FigAg, n

=Apg and hence even in this strong scattering state there are Ng=—. (34
. ; - 1-c

no fluctuations iM. Nevertheless, scattering has a large ef-

fect on the superconductivity through the configurationallyror the second case the B band is completely, doubly, occu-
average density of stateN(E) in EqQ. (32). Namely, as pied and the A band completely empty. In the third case the
shown in Fig. 8 A—0 for the critical strength of scattering A band is partially occupied with
5=4.5.

The other interesting phenomenon is a superconductor to n—2(1-c)
insulator  transition. Recently Scalettar, Trivedi and A== (35
Huscroft® discovered a superconductor-insulator transition
in the disordered attractive U Hubbard model, using Monteand the B band is fully occupied. The second case is a spe-
Corlo simulations. They found that for strong disorder thecial case of Eq(35). Figure 7 shows the A, B and average
superconducting gap is replaced by an insulating gap, bothormal density of states for these three different concentra-
for weak and strong interaction U. Clearly the supercon4ions. In Fig. 1a) the A sites are approximately empty
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FIG. 10. Density of states at A and B sitbs,, Ng and the
averageN at half band filling,n=1 andT=0.00862%, for the two
casesia) c=0.25, §=9t and(b) c=0.75, §=9t. In the(a) case, ;
the A band is an empty normal band and superconductivity is only?) ¢=0.75. For the casés) and very strong scattering the order
in the B band. In the casé), the B band is a normal doubly parameter on the A sites goes to zero. In ddsehe order param-

occupied band and the A band is a partially occupied superconducgter of the B sites goes to zero while that of the A sites goes to a

ing band.
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FIG. 11. Order parameters,, Ag and A at half band filling
n=1 in terms of disorder strength for the cases(af.c=0.25 and

constant.

In this case the Fermi level lies in the gap and all the B states

~0) but there is more than one electron on the B sites. There filled and the A states are empty. For completeness we
graph plotted was for the case=1 andc=0.25, and there- show the suppression &f by disorder for particle-hole sym-

fore from Eq.(34) we haveng=3. Figure 7a) is a band
metal with hopping of electrons from the B sites to the Bobeying the condition from Eq36).

sites. In Fig. Tb) the A sites are almost completely empty,

n,=0, and the B sites are doubly occupieg,=2. There-

fore there is a gap at the Fermi energy and the system is 2ag.25n=1 andc=0.75n=1, as discussed at the begin-
band insulator. In Fig. (¢) the B band is fully occupied
while the A band is partially filled. For this case we had
=1 andc=0.75 and so by Eq35), the band filling of the A
sites isny,=%. Similarly Fig. 7c) is a metal band with hop-
ping from the A sites to the A sites. In Fig(kj there is no
hopping and we can regard this state as a band insulator. A sites is less than B sites, but in the second case the con-

As illustrated in Fig. 8a), in the split band regime the

superconductor gap closes,—0 asé— 4.5 but is replaced
by an insulating gap fo>4.%. Evidently, this can also
happen in the non particle-hole symmetric case as shown ifites. Conversely in Fig. 10) the B band is a normal doubly

Fig. 8b). The general condition for the superconductor-occupied band and the A band is the superconducting band.

insulator transition is saturation of the B sites with 2 elec-

metric and non-particle-hole symmetric cases in Fig. 9,

Now numerically we shall test our prediction, in EQs.
(35), (34), for the two non-particle-hole symmetric cases:

ning of this section. In these cases there is no
superconductor-insulator transition. For a greater under-
standing of the details of the band splitting mechanism we
plot the density of states, the order parameter and the charge
density on A and B sites. In the first case the concentration of

centration of A sites is more than of B sites. As expected, in

Fig. 10/@ we see that there are two split bands, a normal
empty band on the A sites and a superconducting band on B

The effect of disorder on the average order parameter and

trons of opposite spin while the A sites are empty. This hapthe A and B sites local order parameteE,AA,AB) and

pens when

n=2(1-c).

(36)

charge densitiesn(y ,ng) are shown in Figs. 11 and 12. One

can see that, for weak scattering, the local order parameters
and charge densities of A and B sites are approximatly the
same but with increasing disorder the difference between

024501-8
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FIG. 13. The physical mechanism of the band splitting in the
particle-hole symmetric case @f=0.5, n=1 for T=0.00862%.
0 . L , — P The band splitting happens at approximatelyt 415 this case all of
Sit the A sites become empty while the B sites become doubly occu-
pied. Clearly this represents a band insulator.

02 4

VI. CONCLUSION

In this paper, we applied the full CPA for disorder super-
conductors. In our calculations the self-consistency equations
were solved fully within CPA so that self-consitency was
properly satisfied on each type of CPA impurity sites, and
not just on the average. It is in this form that the CPA-HFG
is the only “controlled” mean field theory of disordered
superconductor®

We plotted the local order parameter and charge density
of A or B atoms of a binary alloy for both weak and strong
scattering limits. We found that only for one special case are
the order parameters of A and B sites equal, and conse-
andT=0.008625% in terms of the disorder strength for the case of: quently the ﬂl_JCtuat'OnS of are Z€ro. For this point we have
(8) c=0.25, (b) c=0.75. In casea) all of the electrons are in the B SNOWn analytically that the condition for Anderson’s theorem
sites and the A sites are empty in the strong disorder limit. The banéf fulfilled not only for weak scattering but also for strong
filing of the B sites isng=14. But in case(b) the B band becomes Scattering in a particle-hole symmetric band. By contrast,
fully occupied while the A band remains partially occupied. neither the density of states nd is exactly constant, al-
though in the gap equation, the quasi-particle energy gap is
them will increase, with one oA, or Ag going to zero a_bsolute. In the gap equation Fhe .normal clean system den-

sity of states in the gap equation is replaced by the normal

(depending on the relative concentratipria Fig. 11(a) and . X
12(a) the concentration of A sites is less than that of B si'[esd's’ord(':‘r average density of states, and therefore the only

thereforeA ,—0, Ag—constant whilen,—0, ng—2. In changes of the superconducting density of states Bnd

contrast to this, in Fig. 4b) and 12b) the concentration of Conenf;cr)gvxt/ht?alr?ét%rihar allog-wave superconductors. we
A sites is more than that of B sites, consequenily y ¥ P '

. constant, Ag—0 andny—2, ng—2. showed that strong disorder leads to two different interesting

. . . . henomena: (i) band spliting with a quantum
Schematically Fig. 13 shows the physical mechanism of : o .
the band splitting in terms of A and B lattice sites. Clearlysuperconductor-lnsulator phase transitio at0, (i) band

when all B sites become doubly occupied and all the Asi,{ege,plitting without a phase transition. In this last case in terms

become empty there is no hopping and the system becom% concentration and average band filling, one band is normal
insulating. Therefore as a function of the disordeor band oubly occupied or empjyand superconductivity is only

= . . present in the other band that is partially occupied.

filling n there is aT=0 superconductor-insulator quantum

phase transition. This transition corroborates the suggestion

of Scalettar, Trivedi, and Huscréftthat dls'order in super- ACKNOWLEDGMENT

conductors can lead to a superconductor-insulator transition.

However, it should be noted that they used a uniform random This work has been supported by the Ministry of Science,
distribution of site energies;, wheras we used a binary Research and Technology of Iran under Grant No. GR/
alloy model. 752066.

FIG. 12. Charge densities, andng at half band fiIIingﬁzl
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