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Quantum statistical metastability for a finite spin
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We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finit&sdi@s
(such as MpAc and Fg) and S=100 by a direct numerical approach. At second-order transitions the level
making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas
at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between
first- and second-order transitions are shifted, favoring a second-order transition: g~or #&¥o field the
transition should be first order according to a theory vth o, but we show that there are no skipped levels
at the transitionApplying a field along the hard axis in Fenakes transition the strongest first ord&or the
same model witt5=100 we confirmed the existence of a region where a second-order transition is followed
by a first-order transitiofiX. Martines Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Mb2et243
(20001
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I. INTRODUCTION which is convenient to parametrize in terms of the reduced
hard-axis anisotropyo=B/D and the reduced field$,
Recent experimental discovery of spin tunneling in large=H, /(2SD), etc. In Ref. 2 it was shown that in the uniaxial
spin compounds such as MAc and Fg (S=10) also model B=0) transverse field controls the order of transition
stimulated theoretical investigation of spin models w&h \which is first order for small transverse fields. In Ref. 3 the
>1 which show different kinds of transition between the exact quasiclassical value of the critical transverse freld
classical mechanism of thermal activation over the potential h_—1/4 has been obtained. In Ref. 4 the whole phase dia-

barrier AU at temperatured,<T<AU and the quantum  gram of escape-rate transitions for the uniaxial model in the

regimes involvi_ng tunnel_ir?g under the barrierfat Ty. The planeh, ,h, was drawn, the boundary lirfe,.(h,) going to
quantum-classical transition temperatufg becomes well  .o.5 4ith =1
=1

defined in the quasiclassical limé—c and is of orderT, For the biaxial modelB+0, in zero field the transition
~AU/S, whereAU is the barrier height. Possible types of was shown to be first order far<b,=1 and second order

the quantum-classical transition for a general model hav<]3Or b>1.° Longitudinal field suppresses the valuelgf, so

been classified in Ref. 1, the two main scenarios being th . = . :
so-called first-order transition and the second-order transiﬁqat be(h,) vanishes ath,=1 together with the potential

tion. At the second-order transition the energy with bargierf3 The guslgiclassical result in this case rebds (1
which the system is crossing the barrier begins to move- h2)/(1+2h3)."

down from the valueE, corresponding to the top of the  Field along the medium axisi,, in Eq. (1) also favors
barrier, ancE* (T) approaches the bottom of the wEl,,,at  the second-order transition. Some points of the boundary be-
T=0. That s, forT<T, there is a thermally assisted tunnel- tween the first- and second-order transitions have been ob-
ing: Thermal activation up to the ener§y=E* is followed tained in Ref. 9 numerically, whereas the analytical expres-
by the tunneling at this energy level. At the first-order tran-sion for the boundary was obtained later in Ref. 8. Recently,
sition E* abruptly changes frorf, to some lower value and the phase diagram of the biaxial model with the fields along
then, againE* (T) approaches the bottom of the well &t medium H,) and easy Ki,) directions has been considered
=0. In this situation some interval of energy is skipped andn Ref. 10. The qualitative results are a combination of those
it does not contibute to the escape from the metastable wedif Ref. 4 for the uniaxial model and those of Refs. 7 and 8
at any temperature. There are more exotic cases such agat the biaxial model with the fieldH,: Increasing of allb,
second-order transition followed by a first-order transition. hy, andh, favors the second-order transition.

Whereas for quantum particles in the well it is difficult to ~ The most interesting model is the biaxial model with the
realize transitions other than the second order, it has bedield along the hard directioH, , in which oscillations of the
recently shown that there are all the types of quantumtunneling probability as function df, have been established
classical transitions in the spin model with the Hamiltonian theoretically* and experimentally? The phase diagram of

escape-rate transitions for this model has been recently con-
5 sidered in Refs. 13 and 14. Unlike all other models, there is
H=-DS.+BS~H,S~H,S,~H,S,, (1) a first-order transition foh,~b, even for the large enough
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values ofh, andb which would alone cause a second-order
transition. That is, the order of transition can change as |-
-1 with increasingh, or b. Moreover, in Ref. 14 ranges of
parameters have been found where the second-order trangihere for the barriers parabolic near the top the imaginary-
tion is followed by a first-order transition or a first-order time actionS(E) goes linearly through zero fdE crossing
transition is followed by another first-order transition with the barrier top leveE=E, and it is analytically continued
lowering temperature. into the energy region above the barrier. In the latter case
Thus, the theoretical investigation of the escape-rate trarformula (3) describes quantum reflections for a particle go-
sitions in the spin system described by Ef). in the quasi- ing over the barrier, withwW(E) slightly lower than 1,
classical approximatiors>1 is nearly completed. Experi- whereas for the energies below the top of the baWi€E) is
mentally studied materials, however, have the moderate spigxponentially small in the quasiclassical case. The action
value S= 10, which can result in deviations from the predic- S(E) can be calculated for spin systems with a number of
tions of the quasiclassical theory. Indeed, in Mt in zero  different methods such as the instanton apprd&ch‘map-
applied field one can expect a strong first-order transition buping on a particle with the Wentzel-Kramers—Brillouin
experiments of Kenet al*® show only one skipped energy (WKB) approximatior?®2-348and the discrete spin WKB
level, m=—9. For Fg (b=0.47) in zero field one expects a method??
first-order transition but recent measurements of At higher temperatures the integral in E@) is domi-
Wernsdorfet® suggest that each energy level becomes dominated byE~ E. which results in the Arrhenius temperature
nant in the escape at some temperature, i.e., the transition dependence of the escape rdie=T",exp@AU/T), where
second order. AU=E.—E,;,. At lower temperatures the relevant region
Since it is very difficult to find 13 corrections to the of energies goes down, which is the regime of thermally
quasiclassical results, one has to look for alternative apassisted tunneling. Since for quasiclassical systems the cross-
proaches. For finite spins, the problem can be solved in @ver between the two regimes occurs at a temperafure
purely numerical way, and the calculations can be performee&k AU, the integrand in Eq(2) is a product of two very
on a modern PC within a reasonable time $s¢100. Thisis  rapidly increasing and decreasing functions of energy and
the aim of the present article—to find out which energy lev-thus can be approximated by
els make the dominant contribution to the escape rate at dif-
ferent temperatures for different particular cases of the spin - —(E=Emin)/ T
model with the Hamiltonian of Eq(l). We show that, in Fmax[W(E)e I @

accordance with predictions of quasiclassical model, th§uiihin this approximation, the crossover between the classi-
dominant level does not necessarily change continuouslya 5nq quantum regimes becomes a transition at a well-
from the t.OF: to the dbottom of the metastable well when tem<efineq temperature,. The mathematical description of this
perature is lowered. S . transition is analogous to the well known phenomenological
The rest of the article is organized as follows. In Sec. Il| ;,4au model of phase transitiofthe Landau theoby as
we reformulate the theory of thermally assisted tunneling in, 55 pointed out in Ref. 3. The transition can be second or
terms of quantities which can be d"e.C“Y computed_ for finiteg ot order. It should be stressed, however, that it is only a
spins. In Sec. Ill we consider the uniaxial model with rans-gq 5| analogy and there are certainly no many-body effects
verse and longitudinal fields and make a comparison of exagf, {,q problem of the escape rates we are studying. Integra-
numerical results for the temperature dependence of the tuRe 4 -1oss the maximum of the integrand in E2). smears
nelllngl level with ear::er pedrtL;rbat;]ve br_esgltls. In dS<|ec. 'IX tnethe transition and transformes it into a crossover. In the case
calculations are performed for the biaxial model With the ¢ 4 sacond-order transition the width of the crossover region

field along the hard direction. We confirm the existence OfaroundTO is AToc1/\/S (Ref. 4 and disappears in the quasi-

tmh_ore cc()jmlpllcated scenarios of the escape-rate transitions f%fassical limit. In the case of a first-order transition there are

IS model. two competing maxima of the integrand in EE), and the
transition is from one maximum to the other. In this case the
width of the crossover region is even small&ff«1/S.* We
should stress that in spite of the smearing of the escape-rate

Quasiclassical approach to the quantum statistical metdransition, there is always a fundamental difference between
stability considers the spectrum of quantum states as corthe two situations: one shifting with temperature maximum
tinuous and uses the following expression for the escape ratf W(E)exp(—E/T) or two competing maxima of
(see, e.g., Refs. 17 and 4 W(E)exp(—E/T). We will illustrate this difference for vari-

ous models below.
It is convenient to express the tunneling probability

W(E)= ()

1
1+exgS(E)]’

Il. BASIC FORMALISM

_ —(E-Emi)/T through the quantities which can be directly computed using
r f dEWE)e ’ @ ihe quasiclassical formula for the tunnel splitfihg
whereW(E) is the probability of tunneling at an energy AE=“Exg — S(E) 5)

The latter can be written as T 20
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m_[S 2
/ ' ' : ' r~ (ABn)"SEy e (En—Emin)/T, 7
-0.44 — n (5En/7T)2+(AEn)2
§=100 ,
05 A =7 For large spins and low temperatures one has
] ‘# $=10 Kerturbative I'~max, expl —F(En)/T], ®)
where
07 sD=7K [ 5
h =0.125 ex;{— FEY|___(AE)7oR, e~ EnEmn)/T " (9)
-0.8- b -0 T (8E,/7)%+ (AE,)?
0.0 1 i We will call the energy level minimizing the effective free
energyF (Ref. 3 and thus maximizing the combined prob-
A5 J ability of escape théunneling levebr the level of thermally
0.0 0.5 1.0 15 2.0 T(k) 25  assisted tunneling. .
For the energy levels below the top of the barrier, one has
05 m,/S , . , . . . , ) AE<E,, whereas above the top of the barrier the levels
- are not grouped in pairs, i.e., formallxE~ SE,,. Since for
large spins the transition between the two ranges of energy is
0.6 rather sharp and below the top of the barrdeE changes
§=100 much faster thaE, one can look for the maximum of the
; 7 I functior?
-0.7- —'
i s=10 V (AE,)2%e (En~Emn/T, (10
§ Perturbative ) )
0.8 S| L Although above the barrier one cannot strictly speak of tun-
| neling, the formula above gives correct results sidde,
' ‘ SD=T7TK | becomes weakly dependent on energy and this region is sup-
-0.0- f h,=025 | pressed by the fast decreasing Boltzmann exponential. In this
3 h=0 paper, we will use Eq(9) instead of Eq(10) since we are
’ | going to make a comparison between the exact mumerical
-1.% — L solution and the solution that uses the perturbative formula

Tk) 2°  for the level splitings* Since the latter gives\E> SE,,
above the barrier, Eq(9) is more appropriate because it
FIG. 1. Perturbative and exact results for the temperature depemgives physically correct results in this energy range.
dence of the tunneling leveh; for the uniaxial spin model with
transverse field. One can see that the perturbation theory holds for
small h, and that finite values of the spBifavor the second-order
transition. This model is the first of spin models for which the first-
order escape-rate transition has been found theorefidally
wherewg is the frequency of the oscillation in the well at the the region of small transverse fieltts, using the perturba-

I1l. UNIAXIAL MODEL WITH EXTERNAL FIELD

energyE. Using this formula one obtains tive formula for the level splittings®*=°
W E— ®) P
(wg/m)2+(AE)? o —m— 1)1
Since, againAE given by Eq.(5) becomes formally much \/(S+ m’)!(S— m)!/ H,\™—m
- o 5 My 11
larger thanwg for the energies above the top of the barrier if (S—m)1(S+m)! \ 2D (11

S(E) is analytically continued into that region, E®) gives

W(E) fast approaching 1. . _ Here the longitudinal field enters through the resonance con-
Equation(6) is the starting point for the numerical solu- {ition

tion of the problem for finite spins. We consider the situation

where there are pairs of quasidegenerate levels in different En=E,, m<0, m=-m-k
potential wells and we compute the tunnel splittings for these
pairs numerically. The oscillation frequenayg is nothing H,=H,=kD, k=0,+1*2, ..., (12)

else than the difference of the energy of the adjacent levels in
one of the wells:w(E,)=6E,=E, .;—E,. The discrete with E,,=—Dm?—H,m, see Fig. 1 of Ref. 2. Recently, cor-
analog of Eq(2) is rections to this formula have been obtained in Ref. 26. The
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mT/S " 1 . 1 " 1 " 10 h = H/(2SP) L 1 1 1 ! 1
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-0.81 ——— -
§=100
h.=04 L
0.91 - I L
§=10
1.0 - . ; T : . - 10 12 14 16 18 20
0.0 0.5 1.0 15 g 20 b=B/D

_ FIG. 3. For the modeH=—DS?+BS—H,S, phase diagram
FIG. 2. Temperature dependence of the tunneling levefor ¢ qes regions of firstél) and second-ordeil) escape-rate tran-
the uniaxial spin model with transverse and longitudinal field.  jtions, as well as the regions where a second-order transition is
followed by a first-order on€ll-I) or the regions of the transitions
use of the perturbative formula for the splittings cannot,of the I-I type!*
however, give an acccurate value of the boundary
=H,./(2SD) between the first- and second-order transitionslence on the spin value is even more clearly seenhfor
since the transition occurs bt =h,.=1/4 (Ref. 3 whichis ~ =0.25 which is the exact boundary between first- and
not small. second-order transitions in the lin®t—.® For S=10 there
Our next task is to perform a purely numerical calculationare no skipped levels and the dependemg€T) is far from
illustrating first- and second-order transitions for finite spinsa jump. ForS=100 there are no skipped levels, too, but the
in the transverse field of arbitrary strength. Foy=0, spin  dependenceny(T) has a rather high slope ne&p. In the
projections on thez axis, m, are no longer good quantum limit S—c, the low-slope part of the dependente(T) at
numbers. We will continue, however, to enumerate the exact>T, becomes horizontal, and the derivatiden;/dT be-
levels in terms oin to keep a link to the previous work. At comes infinite atT=T,—0. For S=100, there are no
the kth resonance, the lowetlevels are not splitted and skipped levels even fdn,=0.2.
localized in the right well. We will formally ascribe the®, On Fig. 2 we show exact numerical results fof(T) for
valuesm=S,S—1, ... S—k+1. Higher levels are grouped the S=10 andS=100 models withh,=0.125 and two val-
in tunnel-splitted pairs which we denote &sn,m’} ues of the longitudinal fieldh,=0 andh,=0.4. These re-
={-S,S—k},{—S+1,S—-k—1}, etc. sults confirm that increasing &f, drives the system into the
For the diagonalization of the spin Hamiltonian we usedregion of the second-order transitichs.
Wolfram Mathematica which allows one to perform calcula-
tions with any desired precision. We used the parameter seg o mlS ! . . . -
of Mn;,Ac and ignored the anisotropy of the tyms;‘ for
simplicity. Our numerical results for the level splittings re-

produce those of Ref. 27, where a quantum dimer problem § =100
which is mathematically identical to the spin-in-field prob- 4] "_'_Fe-_s—lo-
lem, has been studied. g O

The perturbative and exact results for the temperature de -l
pendence of the tunneling level; which maximizes Eq(9) 0.6
are shown in Fig. 1 foH,=0. For the fielch,=0.125 which J
can be considered as small, the perturbation theory well de SD=234K
scribes the transition temperatuFg and the order of transi- l b=0.470

tion. The only noticeable disagreement with the exact results0-8] h =0
is that regarding the hight of the barrier which is visualized h=0
here through the value afi; in the classical regime. This is )
not a surprize since the PT breaks down near the top of the,

barrier for whatever smalh,.??® For h,=0.125 andS 0.0 05 10 15 'T(K) 2.0
=100, many levels are skipped at the transition temperature,
thus this transition is first order. Fér,=0.125 andS=10, FIG. 4. Temperature dependence of the tunneling levefor

the skipped range is smaller, and the situation is closer to the biaxial spin model withh=B/D=0.470 in zero field. Note the
second-order transition than that f&=100. The depen- second-order transition f@=10.
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FIG. 6. Temperature dependence of the tunneling levefor
the biaxial spin model witth=0.470 andS=100 in different hard-
axis fields.

In zero field one expects a first-order transition fier 1 in
the quasiclassical limit.This is confirmed by our results for
S=100 in Fig. 4. However, fo6=10 there are no skipped
levels, althoughm{(T) goes rather steep. This is in accord
with recent experiments by Wernsdorfer or; Hezero field,
which suggest a second-order transitfn.

The behavior changes strikingly if a sufficiently strong
field h, is applied. One can see from the Fig. 5 that IiQr
=0.5 for bothS=100 andS= 10 the transition is the stron-
gest first order. This effect should be observable og. Fe
Further increasing the field makes the potential wells so shal-
low that there are only few levels left. This makes it difficult
to make a judgment about the order of the transitionSor
=10. Forh,=0.75 there are no skipped levels for tige

FIG. 5. Temperature dependence of the tunneling levefor
the biaxial spin model witth=0.470 in hard-axis field$,=0.5
and 0.75.

IV. BIAXIAL MODEL

We will concentrate here on the most interesting model
with the field along the hard directiGh#

H=-DS?+BS—H,S,. (13

The phase diagram for the model above, which has beerg g/

obtained in Ref. 14 is shown in Fig. 3. The boundaries
markeda and b have also been obtained in Ref. 13. Apart
from regions of the first- and second-order transitions

marked by | and Il, this phase diagram contains the region |
where a second-order transition is followed by the first-order

one (lI-1) and a rather narrow region where a first-order
transition is followed by another first-order transitidn-1).
The possibility of such multiple transitions has been pre-

dicted in Ref. 1 and here is their first realization in a spin ' 1g

model.

Let us now draw the plots ofm(T) for S=10 andS
=100 for different transverse fields, for the value of the
transverse anisotropy=0.47 which is appropriate for ke

-0.44

m/S .

=10 model and one could speak about a second-order tran-
sition. ForS=100 one can clearly see a second-order transi-

S =100

SD=234K
b=0.015

h =0.1
h=0

0.20

0.22

0.I24 TK)

FIG. 7. Temperature dependence of the tunneling levefor
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1 2 3 l/T 4

FIG. 8. Effective free energy of Eq. (8) for S=100, b
=0.015, anch,=0.1 and different temperatures. Here a first-order FIG. 9. The escape rafe in Fe, vs 17T for different transverse
transition is followed by another first-order transition with lowering fields. Forh,=0.457 tunneling is almost quenched.
temperature. X

>1 the role of the prefactor is difficult to see because the
exponential terms dominate. The rate of thermally assisted
tunneling(in the log scalg and thus the transition tempera-
ture Ty, which depends logarithmically on the prefactor, are
significantly reduced only in very close vicinities of quench-
ing points. For moderate spins such&s 10, the quenching
gffect may be quite substantial. In Fig. 9 the tunneling rate
hd the value ofTy are suppressed near=0.457 which
corresponds tm=5 in Eq.(14).

tion followed by a first-order transition, in accordance with
the phase diagram on Fig. 3. DependenoegT) for S
=100 and many different values bf are shown in Fig. 6.
The different types of transition in Fig. 6 are in accord with
the phase diagram of Fig. 3.

The most exotic behavior oh¢(T) takes place for small
values of transverse anisotropy and field, where one expec
two first-order transitions(see Fig. 3 The behavior of
my(T) for S=100, b=0.015, andh,=0.1 in Fig. 7 con-
firms the prediction of Ref. 14 and shows two jumps. Note
that with lowering temperature;(T) for S=100 begins to V. DISCUSSION

go down continuously and then makes the first jump. Thus - 5, girect numerical investigations of quantum-classical

one could speak about the succession O.f _traqsitions of thgscape—rate transitions in spin models with fil8teonfirmed
type ll-1-I, where the second-order transition is solely due, ¢ jctions of quasiclassical approaches in the case of &rge

to the finite value of the spin and vanishes in the quasiclas;g revealed deviations to the favor of a second-order tran-
sical limit. The same effect also takes place in a simple

o ) ; sition for moderate spins. In particular, in @ zero field
uniaxial model with a transverse field<h,.. For S=10 g P &

. ) . the moderate spin valug=10 makes the transition second
the jump at higher tgmperature d|sappeqrs and one thu;_ha fer. On the other hand, applying a field along the hard
secqnd—order transmon_followed by a flrst-order tr"’ms"t'on'anisotropy axis makes the transition ingfke strongest first
We illustrate the behavior of the effective free enefgyf

- DS ) order, which can be probably observed in experiment. For
Eq.(8) for b=0.015 andh,=0.1n Fig. 8.(For convenience, g, mq yalues of the field tunneling is quenched and the rate of
we use the valussD=2.34 K of Fg.) Since the depen-

. thermally assisted tunneling drops down.
denceF(T) on the energy level is extremely flat near For the biaxial model with the field along the hard axis,
=0.21 K, the approach using E(B) instead of Eq(7) IS \ve numerically confirmed the existence of the regions where
valid for rather high values o& . (i) a second-order transition is followed by a first-order tran-
_As we have mentioned in Sec. |, for the biaxial modelgjsion andii) a first-order transition is followed by another
with the field along the hard axis and the integer spin, tUnsist.order transition with lowering temperatufe. This

neling is quenched whenevér model seems to be the only model up to date which demon-

H.=(1+2n)VB(B+ D), strates such a complicated behavior.
n=—S,—-S+2,...S-1. (14) ACKNOWLEDGMENT
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