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Quantum statistical metastability for a finite spin
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We study quantum-classical escape-rate transitions for uniaxial and biaxial models with finite spinsS510
~such as Mn12Ac and Fe8) andS5100 by a direct numerical approach. At second-order transitions the level
making a dominant contribution into thermally assisted tunneling changes gradually with temperature whereas
at first-order transitions a group of levels is skipped. For finite spins, the quasiclassical boundaries between
first- and second-order transitions are shifted, favoring a second-order transition: For Fe8 in zero field the
transition should be first order according to a theory withS→`, but we show that there are no skipped levels
at the transition.Applying a field along the hard axis in Fe8 makes transition the strongest first order.For the
same model withS5100 we confirmed the existence of a region where a second-order transition is followed
by a first-order transition@X. Martı́nes Hidalgo and E. M. Chudnovsky, J. Phys.: Condensed Matter12, 4243
~2000!#.
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I. INTRODUCTION

Recent experimental discovery of spin tunneling in larg
spin compounds such as Mn12Ac and Fe8 (S510) also
stimulated theoretical investigation of spin models withS
@1 which show different kinds of transition between t
classical mechanism of thermal activation over the poten
barrier DU at temperaturesT0,T!DU and the quantum
regimes involving tunneling under the barrier atT,T0. The
quantum-classical transition temperatureT0 becomes well
defined in the quasiclassical limitS→` and is of orderT0
;DU/S, whereDU is the barrier height. Possible types
the quantum-classical transition for a general model h
been classified in Ref. 1, the two main scenarios being
so-called first-order transition and the second-order tra
tion. At the second-order transition the energyE* with
which the system is crossing the barrier begins to m
down from the valueEc corresponding to the top of th
barrier, andE* (T) approaches the bottom of the wellEmin at
T50. That is, forT,T0 there is a thermally assisted tunne
ing: Thermal activation up to the energyE5E* is followed
by the tunneling at this energy level. At the first-order tra
sition E* abruptly changes fromEc to some lower value and
then, again,E* (T) approaches the bottom of the well atT
50. In this situation some interval of energy is skipped a
it does not contibute to the escape from the metastable
at any temperature. There are more exotic cases such
second-order transition followed by a first-order transition

Whereas for quantum particles in the well it is difficult
realize transitions other than the second order, it has b
recently shown that there are all the types of quantu
classical transitions in the spin model with the Hamiltonia

H52DSz
21BSx

22HxSx2HySy2HzSz , ~1!
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which is convenient to parametrize in terms of the reduc
hard-axis anisotropyb[B/D and the reduced fieldshx

[Hx /(2SD), etc. In Ref. 2 it was shown that in the uniaxi
model (B50) transverse field controls the order of transiti
which is first order for small transverse fields. In Ref. 3 t
exact quasiclassical value of the critical transverse fieldh
5hc51/4 has been obtained. In Ref. 4 the whole phase
gram of escape-rate transitions for the uniaxial model in
planehx ,hz was drawn, the boundary linehxc(hz) going to
zero athz51.

For the biaxial model,BÞ0, in zero field the transition
was shown to be first order forb,bc51 and second orde
for b.1.5 Longitudinal field suppresses the value ofbc , so
that bc(hz) vanishes athz51 together with the potentia
barrier.6 The quasiclassical result in this case readsbc5(1
2hz

2)/(112hz
2).7,8

Field along the medium axis,Hy , in Eq. ~1! also favors
the second-order transition. Some points of the boundary
tween the first- and second-order transitions have been
tained in Ref. 9 numerically, whereas the analytical expr
sion for the boundary was obtained later in Ref. 8. Recen
the phase diagram of the biaxial model with the fields alo
medium (Hy) and easy (Hz) directions has been considere
in Ref. 10. The qualitative results are a combination of tho
of Ref. 4 for the uniaxial model and those of Refs. 7 and
for the biaxial model with the fieldHz : Increasing of allb,
hy , andhz favors the second-order transition.

The most interesting model is the biaxial model with t
field along the hard directionHx , in which oscillations of the
tunneling probability as function ofhx have been establishe
theoretically11 and experimentally.12 The phase diagram o
escape-rate transitions for this model has been recently
sidered in Refs. 13 and 14. Unlike all other models, there
a first-order transition forhx;b, even for the large enough
©2000 The American Physical Society18-1
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D. A. GARANIN AND E. M. CHUDNOVSKY PHYSICAL REVIEW B 63 024418
values ofhx andb which would alone cause a second-ord
transition. That is, the order of transition can change as
I–II with increasinghx or b. Moreover, in Ref. 14 ranges o
parameters have been found where the second-order tr
tion is followed by a first-order transition or a first-ord
transition is followed by another first-order transition wi
lowering temperature.

Thus, the theoretical investigation of the escape-rate t
sitions in the spin system described by Eq.~1! in the quasi-
classical approximationS@1 is nearly completed. Experi
mentally studied materials, however, have the moderate
valueS510, which can result in deviations from the predi
tions of the quasiclassical theory. Indeed, in Mn12Ac in zero
applied field one can expect a strong first-order transition
experiments of Kentet al.15 show only one skipped energ
level,m529. For Fe8 (b50.47) in zero field one expects
first-order transition but recent measurements
Wernsdorfer16 suggest that each energy level becomes do
nant in the escape at some temperature, i.e., the transiti
second order.

Since it is very difficult to find 1/S corrections to the
quasiclassical results, one has to look for alternative
proaches. For finite spins, the problem can be solved
purely numerical way, and the calculations can be perform
on a modern PC within a reasonable time forS<100. This is
the aim of the present article—to find out which energy le
els make the dominant contribution to the escape rate at
ferent temperatures for different particular cases of the s
model with the Hamiltonian of Eq.~1!. We show that, in
accordance with predictions of quasiclassical model,
dominant level does not necessarily change continuo
from the top to the bottom of the metastable well when te
perature is lowered.

The rest of the article is organized as follows. In Sec
we reformulate the theory of thermally assisted tunneling
terms of quantities which can be directly computed for fin
spins. In Sec. III we consider the uniaxial model with tran
verse and longitudinal fields and make a comparison of e
numerical results for the temperature dependence of the
neling level with earlier perturbative results. In Sec. IV t
calculations are performed for the biaxial model with t
field along the hard direction. We confirm the existence
more complicated scenarios of the escape-rate transition
this model.

II. BASIC FORMALISM

Quasiclassical approach to the quantum statistical m
stability considers the spectrum of quantum states as
tinuous and uses the following expression for the escape
~see, e.g., Refs. 17 and 4!

G;E dEW~E!e2(E2Emin)/T, ~2!

whereW(E) is the probability of tunneling at an energyE.
The latter can be written as
02441
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W~E!5
1

11exp@S~E!#
, ~3!

where for the barriers parabolic near the top the imagina
time actionS(E) goes linearly through zero forE crossing
the barrier top levelE5Ec and it is analytically continued
into the energy region above the barrier. In the latter c
formula ~3! describes quantum reflections for a particle g
ing over the barrier, withW(E) slightly lower than 1,
whereas for the energies below the top of the barrierW(E) is
exponentially small in the quasiclassical case. The ac
S(E) can be calculated for spin systems with a number
different methods such as the instanton approach,18,19,14map-
ping on a particle with the Wentzel–Kramers–Brillou
~WKB! approximation,20,21,3,4,8and the discrete spin WKB
method.22

At higher temperatures the integral in Eq.~2! is domi-
nated byE;Ec which results in the Arrhenius temperatu
dependence of the escape rateG5G0 exp(DU/T), where
DU[Ec2Emin . At lower temperatures the relevant regio
of energies goes down, which is the regime of therma
assisted tunneling. Since for quasiclassical systems the c
over between the two regimes occurs at a temperaturT
!DU, the integrand in Eq.~2! is a product of two very
rapidly increasing and decreasing functions of energy
thus can be approximated by

G;maxE@W~E!e2(E2Emin)/T#. ~4!

Within this approximation, the crossover between the cla
cal and quantum regimes becomes a transition at a w
defined temperatureT0. The mathematical description of thi
transition is analogous to the well known phenomenologi
Landau model of phase transitions~the Landau theory!, as
was pointed out in Ref. 3. The transition can be second
first order. It should be stressed, however, that it is onl
formal analogy and there are certainly no many-body effe
in the problem of the escape rates we are studying. Inte
tion across the maximum of the integrand in Eq.~2! smears
the transition and transformes it into a crossover. In the c
of a second-order transition the width of the crossover reg
aroundT0 is DT}1/AS ~Ref. 4! and disappears in the quas
classical limit. In the case of a first-order transition there
two competing maxima of the integrand in Eq.~2!, and the
transition is from one maximum to the other. In this case
width of the crossover region is even smaller:DT}1/S.4 We
should stress that in spite of the smearing of the escape
transition, there is always a fundamental difference betw
the two situations: one shifting with temperature maximu
of W(E)exp(2E/T) or two competing maxima of
W(E)exp(2E/T). We will illustrate this difference for vari-
ous models below.

It is convenient to express the tunneling probabil
through the quantities which can be directly computed us
the quasiclassical formula for the tunnel splitting23

DE5
vE

p
expF2

S~E!

2 G , ~5!
8-2
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QUANTUM STATISTICAL METASTABILITY FOR A . . . PHYSICAL REVIEW B 63 024418
wherevE is the frequency of the oscillation in the well at th
energyE. Using this formula one obtains

W~E!5
~DE!2

~vE /p!21~DE!2
. ~6!

Since, again,DE given by Eq.~5! becomes formally much
larger thanvE for the energies above the top of the barrier
S(E) is analytically continued into that region, Eq.~6! gives
W(E) fast approaching 1.

Equation~6! is the starting point for the numerical solu
tion of the problem for finite spins. We consider the situati
where there are pairs of quasidegenerate levels in diffe
potential wells and we compute the tunnel splittings for th
pairs numerically. The oscillation frequencyvE is nothing
else than the difference of the energy of the adjacent leve
one of the wells:v(En)5dEn5En112En . The discrete
analog of Eq.~2! is

FIG. 1. Perturbative and exact results for the temperature de
dence of the tunneling levelmT for the uniaxial spin model with
transverse field. One can see that the perturbation theory hold
small hx and that finite values of the spinS favor the second-orde
transition.
02441
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~DEn!2dEn

~dEn /p!21~DEn!2
e2(En2Emin)/T. ~7!

For large spins and low temperatures one has

G;maxn exp@2F~En!/T#, ~8!

where

expF2
F~En!

T G[ ~DEn!2dEn

~dEn /p!21~DEn!2
e2(En2Emin)/T. ~9!

We will call the energy level minimizing the effective fre
energyF ~Ref. 3! and thus maximizing the combined prob
ability of escape thetunneling levelor the level of thermally
assisted tunneling.

For the energy levels below the top of the barrier, one
DE!dEn , whereas above the top of the barrier the lev
are not grouped in pairs, i.e., formally,DE;dEn . Since for
large spins the transition between the two ranges of energ
rather sharp and below the top of the barrierDE changes
much faster thandE, one can look for the maximum of th
function2

~DEn!2e2(En2Emin)/T. ~10!

Although above the barrier one cannot strictly speak of t
neling, the formula above gives correct results sinceDEn
becomes weakly dependent on energy and this region is
pressed by the fast decreasing Boltzmann exponential. In
paper, we will use Eq.~9! instead of Eq.~10! since we are
going to make a comparison between the exact mumer
solution and the solution that uses the perturbative form
for the level splitings.24 Since the latter givesDE@dEn
above the barrier, Eq.~9! is more appropriate because
gives physically correct results in this energy range.

III. UNIAXIAL MODEL WITH EXTERNAL FIELD

This model is the first of spin models for which the firs
order escape-rate transition has been found theoretically2 in
the region of small transverse fieldsHx using the perturba-
tive formula for the level splittings2,24,25

D«mm85
2D

@~m82m21!! #2

3A~S1m8!! ~S2m!!

~S2m8!! ~S1m!!
S Hx

2D D m82m

. ~11!

Here the longitudinal field enters through the resonance c
dition

Em5Em8 , m,0, m852m2k

Hz5Hzk5kD, k50,61,62, . . . , ~12!

with Em52Dm22Hzm, see Fig. 1 of Ref. 2. Recently, cor
rections to this formula have been obtained in Ref. 26. T
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D. A. GARANIN AND E. M. CHUDNOVSKY PHYSICAL REVIEW B 63 024418
use of the perturbative formula for the splittings cann
however, give an acccurate value of the boundaryhxc
[Hxc /(2SD) between the first- and second-order transitio
since the transition occurs athx5hxc51/4 ~Ref. 3! which is
not small.

Our next task is to perform a purely numerical calculati
illustrating first- and second-order transitions for finite sp
in the transverse field of arbitrary strength. ForHxÞ0, spin
projections on thez axis, m, are no longer good quantum
numbers. We will continue, however, to enumerate the ex
levels in terms ofm to keep a link to the previous work. A
the kth resonance, the lowestk levels are not splitted and
localized in the right well. We will formally ascribe themSz
valuesm5S,S21, . . . ,S2k11. Higher levels are groupe
in tunnel-splitted pairs which we denote as$m,m8%
5$2S,S2k%,$2S11,S2k21%, etc.

For the diagonalization of the spin Hamiltonian we us
Wolfram Mathematica which allows one to perform calcu
tions with any desired precision. We used the parameter
of Mn12Ac and ignored the anisotropy of the typeD4Sz

4 for
simplicity. Our numerical results for the level splittings r
produce those of Ref. 27, where a quantum dimer probl
which is mathematically identical to the spin-in-field pro
lem, has been studied.

The perturbative and exact results for the temperature
pendence of the tunneling levelmT which maximizes Eq.~9!
are shown in Fig. 1 forHz50. For the fieldhx50.125 which
can be considered as small, the perturbation theory well
scribes the transition temperatureT0 and the order of transi
tion. The only noticeable disagreement with the exact res
is that regarding the hight of the barrier which is visualiz
here through the value ofmT in the classical regime. This i
not a surprize since the PT breaks down near the top of
barrier for whatever smallhx .2,28 For hx50.125 andS
5100, many levels are skipped at the transition temperat
thus this transition is first order. Forhx50.125 andS510,
the skipped range is smaller, and the situation is closer
second-order transition than that forS5100. The depen-

FIG. 2. Temperature dependence of the tunneling levelmT for
the uniaxial spin model with transverse and longitudinal field.
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dence on the spin value is even more clearly seen forhx
50.25 which is the exact boundary between first- a
second-order transitions in the limitS→`.3 For S510 there
are no skipped levels and the dependencemT(T) is far from
a jump. ForS5100 there are no skipped levels, too, but t
dependencemT(T) has a rather high slope nearT0. In the
limit S→`, the low-slope part of the dependencemT(T) at
T.T0 becomes horizontal, and the derivativedmT /dT be-
comes infinite atT5T020. For S5100, there are no
skipped levels even forhx50.2.

On Fig. 2 we show exact numerical results formT(T) for
the S510 andS5100 models withhx50.125 and two val-
ues of the longitudinal field,hz50 andhz50.4. These re-
sults confirm that increasing ofhz drives the system into the
region of the second-order transitions.4

FIG. 3. For the modelH52DSz
21BSx

22HxSx phase diagram
includes regions of first-~I! and second-order~II ! escape-rate tran
sitions, as well as the regions where a second-order transitio
followed by a first-order one~II–I ! or the regions of the transition
of the I–I type.14

FIG. 4. Temperature dependence of the tunneling levelmT for
the biaxial spin model withb[B/D50.470 in zero field. Note the
second-order transition forS510.
8-4
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IV. BIAXIAL MODEL

We will concentrate here on the most interesting mo
with the field along the hard direction11–14

H52DSz
21BSx

22HxSx . ~13!

The phase diagram for the model above, which has b
obtained in Ref. 14 is shown in Fig. 3. The boundar
markeda and b have also been obtained in Ref. 13. Apa
from regions of the first- and second-order transitio
marked by I and II, this phase diagram contains the reg
where a second-order transition is followed by the first-or
one ~II–I ! and a rather narrow region where a first-ord
transition is followed by another first-order transition~I–I!.
The possibility of such multiple transitions has been p
dicted in Ref. 1 and here is their first realization in a sp
model.

Let us now draw the plots ofmT(T) for S510 andS
5100 for different transverse fieldshx for the value of the
transverse anisotropyb50.47 which is appropriate for Fe8.

FIG. 5. Temperature dependence of the tunneling levelmT for
the biaxial spin model withb50.470 in hard-axis fieldshx50.5
and 0.75.
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In zero field one expects a first-order transition forb,1 in
the quasiclassical limit.5 This is confirmed by our results fo
S5100 in Fig. 4. However, forS510 there are no skipped
levels, althoughmT(T) goes rather steep. This is in acco
with recent experiments by Wernsdorfer on Fe8 in zero field,
which suggest a second-order transition.16

The behavior changes strikingly if a sufficiently stron
field hx is applied. One can see from the Fig. 5 that forhx
50.5 for bothS5100 andS510 the transition is the stron
gest first order. This effect should be observable on F8.
Further increasing the field makes the potential wells so s
low that there are only few levels left. This makes it difficu
to make a judgment about the order of the transition foS
510. For hx50.75 there are no skipped levels for theS
510 model and one could speak about a second-order t
sition. ForS5100 one can clearly see a second-order tran

FIG. 6. Temperature dependence of the tunneling levelmT for
the biaxial spin model withb50.470 andS5100 in different hard-
axis fields.

FIG. 7. Temperature dependence of the tunneling levelmT for
the biaxial spin model withb50.015 andhx50.1 showing two
first-order transitions forS5100.
8-5
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D. A. GARANIN AND E. M. CHUDNOVSKY PHYSICAL REVIEW B 63 024418
tion followed by a first-order transition, in accordance w
the phase diagram on Fig. 3. DependencesmT(T) for S
5100 and many different values ofhx are shown in Fig. 6.
The different types of transition in Fig. 6 are in accord w
the phase diagram of Fig. 3.

The most exotic behavior ofmT(T) takes place for smal
values of transverse anisotropy and field, where one exp
two first-order transitions~see Fig. 3!. The behavior of
mT(T) for S5100, b50.015, andhx50.1 in Fig. 7 con-
firms the prediction of Ref. 14 and shows two jumps. No
that with lowering temperaturemT(T) for S5100 begins to
go down continuously and then makes the first jump. Th
one could speak about the succession of transitions of
type II–I–I, where the second-order transition is solely d
to the finite value of the spin and vanishes in the quasic
sical limit. The same effect also takes place in a simp
uniaxial model with a transverse fieldhx,hxc . For S510
the jump at higher temperature disappears and one thus
second-order transition followed by a first-order transitio
We illustrate the behavior of the effective free energyF of
Eq. ~8! for b50.015 andhx50.1 in Fig. 8.~For convenience,
we use the valueSD52.34 K of Fe8.) Since the depen
denceF(T) on the energy level is extremely flat nearT
50.21 K, the approach using Eq.~8! instead of Eq.~7! is
valid for rather high values ofS.

As we have mentioned in Sec. I, for the biaxial mod
with the field along the hard axis and the integer spin, t
neling is quenched whenever11

Hx5~112n!AB~B1D !,

n52S,2S12, . . . ,S21. ~14!

In the quasiclassical formalism it manifests itself in the va
ishing of the prefactor in the tunneling probability. ForS

FIG. 8. Effective free energyF of Eq. ~8! for S5100, b
50.015, andhx50.1 and different temperatures. Here a first-ord
transition is followed by another first-order transition with lowerin
temperature.
02441
cts

s
he
e
s-
r

s a
.

l
-

-

@1 the role of the prefactor is difficult to see because
exponential terms dominate. The rate of thermally assis
tunneling~in the log scale! and thus the transition tempera
ture T0, which depends logarithmically on the prefactor, a
significantly reduced only in very close vicinities of quenc
ing points. For moderate spins such asS510, the quenching
effect may be quite substantial. In Fig. 9 the tunneling r
and the value ofT0 are suppressed nearhx50.457 which
corresponds ton55 in Eq. ~14!.

V. DISCUSSION

Our direct numerical investigations of quantum-classi
escape-rate transitions in spin models with finiteSconfirmed
predictions of quasiclassical approaches in the case of larS
and revealed deviations to the favor of a second-order t
sition for moderate spins. In particular, in Fe8 in zero field
the moderate spin valueS510 makes the transition secon
order. On the other hand, applying a field along the h
anisotropy axis makes the transition in Fe8 the strongest first
order, which can be probably observed in experiment.
some values of the field tunneling is quenched and the rat
thermally assisted tunneling drops down.

For the biaxial model with the field along the hard ax
we numerically confirmed the existence of the regions wh
~i! a second-order transition is followed by a first-order tra
sition and~ii ! a first-order transition is followed by anothe
first-order transition with lowering temperature.14 This
model seems to be the only model up to date which dem
strates such a complicated behavior.
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r FIG. 9. The escape rateG in Fe8 vs 1/T for different transverse
fields. Forhx50.457 tunneling is almost quenched.
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