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Magnetoresistance in quasi-one-dimensional metals due to Fermi surface cold spots
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In a number of quasi-one-dimensional organic metals the dependence of the magnetoresistance on the
direction of the magnetic field is quite different from the predictions of the Boltzmann transport theory for a
Fermi liquid with a scattering rate that is independent of momentum. We consider a model in which there are
large variations in the scattering rate over the Fermi surface. The model is the quasi-one-dimensional version
of the “cold spots” model introduced by loffe and Millis to explain anomalous transport properties of the
metallic phase of the cuprate superconductors. The dependence of the resistance, in the most- and least-
conducting directions, on the direction and magnitude of the magnetic field is calculated. The calculated
magnetoresistance has a number of properties that are quite distinct from conventional transport theory, such as
magic angle effects and a significant magnetoresistance when the field and current are both in the least-
conducting direction. However, the model cannot give a complete description of the unusual properties of
(TMTSF),PF; at pressures of 8—11 kbar.
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[. INTRODUCTION the distinct advantage that it is analytically tractable, allow-
ing the calculation of a wide range of properties of the mag-
Many of the electronic transport properties of strongly netoresistance that can be compared to experimental results.
correlated metals such as cuprate superconduttdnsavy We now briefly summarize the observed properties of the
fermions® and organic superconduct®t8 are significantly magnetoresistance of (TMTSH that cannot be explained
different from elemental metals. The transport properties oby the Boltzmann transport theory with a simple dispersion
the latter are adequately described by the Boltzmann transelation and a scattering rate that is constant over the Fermi
port theory, which is based on a Fermi liquid picture, insurface. The most puzzling data are those of (TMTLBR)
which there is one-to-one correspondence between the ekt pressures of about 10 kiF&rWe also note that the mag-
ementary excitations and those of a noninteracting Fermnetoresistance of the quasi-two-dimensional metal
gas! An important and controversial question is whether, ina-(BEDT-TTF),MHg(SCN), [M = K,Rb,TI] also exhibits
order to describe strongly correlated metals, one must cominusual temperature and angular dependéhtk.
pletely abandon Fermi liquid theory or whether one can just (1) The magic angle effectWhen the magnetic field is
make modest modifications to the Fermi liquid theory, suchrotated in the plane perpendicular to the most conducting
as allowing the scattering rate to vary significantly over dif-direction (i.e., in theb-c plane, one observes dips in the
ferent parts of the Fermi surface. An example of the formeresistance versus angle curve at anggsere 6 is the angle
point of view for the cuprates is that of Andersand of the  between the field direction and theaxis such that tam
latter is that of Pine8,Zheleznyak, Yakovenko, Drew, and =nb/c, where b and c are lattice constants anch
Mazin? and loffe and Millis!® For heavy fermions near a =12, ... . Thefeatures ah=1 and 2 are most prominent.
quantum critical point} the former point of view has been (2) Angular dependencélhe simplest Boltzmann trans-
advocated by Colemahand Smith and Si and the latter  port models predict no magnetoresistance when the magnetic
by Rosch:* The only way to resolve this issue is to perform field and current are parallel and the magnetoresistance is a
calculations for specific models in order to produce predicmaximum when the field and current are perpendicular. This
tions that can be used to falsify that model. is observed in (TMTSFR)XCIO, at ambient and 6-kbar
The theoretical description of the magnetoresistance ofressuré®>?® However, the opposite is observed in
the metallic phase of the Bechgaard salts, (TMTSF) (TMTSF),PFR, at 10 kbar: the magnetoresistance is much
[where TMTSF is the tetramethyl-tetraselenafulvane molHarger when the field and current are parallel than when they
ecule andX is an anior represents a considerable challenge.are perpendicul&® Specifically, the background magnetore-
The experimental data are briefly summarized below. Strongsistance(i.e., after the magic angle effect is subtracted) out
Clarke, and Andersdn and Zheleznyak and YakoverKo only depends on the component of the field perpendicular to
have argued that the data imply a non-Fermi liquid descripthe layers. Furthermore, for moderate fields the resistivity in
tion, whereas many othéfs2*have tried to explain the data the most-conducting directiomy,~ (B cos6)®° and the re-
within a Fermi liquid description. None of these theoriessistivity in the least-conducting directiop,,~ (B cosé)*>.
gives a complete description of the experimental data. Th&imple Fermi liquid theory would generally not produce
purpose of this paper is to calculate the properties of theuch a noninteger exponent. Note that this means that there is
magnetoresistance within a “cold spots” modethere the  no magnetoresistance for fields parallel to thaxis.
scattering rate varies over the Fermi surfadéhis model is (3) Kohler’s rule. In a conventional metal with a single
the quasi-one-dimensional version of a model originally pro-scattering rate this provides a simple way to relate the field
posed for the cuprates by loffe and Mili& The model has and temperature dependence of the resistance. In
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TABLE |. Comparison of the observed properties of the magnetoresistance of (TMXSH}h the
theoretical cold spot model.

X=CIO, X=PFK Cold spot
Effect (ambienf  (9-11 kbay model
Magic angle effect inp, yes yes no
Magic angle effect irp,, yes yes yes: but too weak
Peaks rather than dips for odd integers no no yes
Background magnetoresistance only depends orfcos  no yes YES:pyy, NO: pyy
Violations of Kohler’s rule no yes yes

(TMTSF),CIlO, at ambient pressuféand at 6 kbaP this is  largest when the field is in the least-conducting direction.
satisfied. However, in (TMTSEPR, at 10 kbar there are Furthermore, it only depends on the component of the field
large violations. parallel to the least-conducting directiofiii) Magic angle

In order to explain the magic angle effect Chaikin first effects do occur in the interlayer resistance.
proposed a “hot spots” model, where the scattering rate is However, there are a number of properties that are incon-
significantly larger than elsewhere on the Fermi surface. sistent with experiment{a) The magnetoresistance saturates
Zheleznyak and Yakovenko did find that the scattering ratevith increasing field when the magnetic field and current are
due to electron-electron scattering exhibited hot spots. Howparallel to the least-conducting directidh) No magic angle
ever, these were not of sufficient strength to produce a larggffects occur in the resistivity in the most-conducting direc-
magnetoresistance or the magic angle efféct. tion. (c) For reasonable strengths of the magnetic field the

In order to explain the anomalous transport properties osize of the features in the interlayer resistance at the magic
cuprates several authors have considered the effects of bo@ifigles is much smaller than observed. Further, peaks rather
hot spotd®=3! and cold spot&1°3233 Zheleznyak, Yak- than dips are predicted at the odd-integer magic angi®s.
ovenko, Drew, and Mazfhconsidered a cold spot model that When the magnetic field is parallel to theaxis the inter-
was consistent with ac magnetotransport data. loffe antfyer magnetoresistance increases quadratically with field,
Millis ° then considered a similar model where the scatteringvhereas in (TMTSFE)PF; at 10 kbar, it saturates with in-
rate variation had the same symmetdywave as the super- creasing field. Table | gives a brief summary of the successes
conducting order parameter, i.e., the cold spots are associatédd failures of the cold spot model.
with nodes in the energy gdpr pseudogaythat exists in the The outline of the paper is as follows. In Sec. Il the
superconducting phase. Although it is not clear what specifi®oltzmann equation is solved in the relaxation-time approxi-
microscopic mechanism produces the cold spots, loffe angation for the general case of a scattering rate that varies
Millis suggest that they might arise from strong supercon-over the Fermi surface. We introduce the specific model for
ducting pairing fluctuations. The model provides a simplethe momentum dependence of the scattering rate that we use.
explanation of photoemission experiments which show thaltt is shown that in zero field the resistivity is proportional to
in the cuprates the electron spectral function varies signifithe inverse of the average of the scattering time over the
cantly over the Fermi surface. Along the zone diagonals thé&ermi surface. In the high-field limit the resistivity is propor-
spectral function has a well-defined quasiparticle peak, sugional to the average of the scattering rate over the Fermi
gesting weak scattering; in other regions the spectral funcsurface. We then show by the use of the Cauchy-Schwarz
tion is broad, suggesting strong scattering. Using this simpléhequality that the resistance at high fields will always be
model and a Boltzmann equation analysis, loffe and Millislarger than the resistance at zero field. In Sec. Il the inter-
reproduced quantitatively the frequency and temperature déayer conductivity in zero field is explicitly evaluated and
pendence of the observed dc and ac, longitudinal, and HaWe consider different models for its temperature dependence.
conductivities in the cuprates. However, the calculated magln Sec. IV the interlayer conductivity is calculated for vari-
netoresistance is much larger in magnitude and has a strofus directions of the magnetic field. Section V contains a
ger temperature dependence than is observed. similar calculation for the conductivity in the most-

In this paper we investigate to what extent such a coldconducting direction.
spot model can explain the anomalous magnetoresistance in
the quasi-one-dimensional metals, (TMTgK) We find that Il. BOLTZMANN TRANSPORT THEORY WITH A
the calculated magnetoresistance does have a number of un- MOMENTUM-DEPENDENT SCATTERING RATE
usual features that are consistent with experim@gniWhen
the magnetic field and current are parallel to the least-
conducting direction, there is a large positive magnetoresis- If the scattering rate does not vary over the Fermi surface,
tance. This increases with the strength of the cold sgidjs. then the Boltzmann equation can be solved in the relaxation-
When the magnetic field is rotated in thec plane, the re- time approximation to yield Chamber’s formula for the con-
sistivity in the most-conducting direction has an angular deductivity in the presence of a magnetic fiéltVe now con-
pendence qualitatively similar to the background magnetoresider how this is modified in the presence of a scattering rate
sistance of (TMTSF)PFR; at 10 kbar. The resistance is that varies over the Fermi surface. Following Ashcroft and

A. Derivation of the conductivity

024414-2



MAGNETORESISTANCE IN QUASI-ONE-DIMENSIONA . .. PHYSICAL REVIEW B 63 024414

Mermin (p. 246ff, let g(r,k,t) be the nonequilibrium dis- @ vk, ) I/
tribution function that describes the probability of finding the %._ T
electron at with momentunk at timet. P(t,t') denotes the
fraction of electrons that are not scattered between times A
andt’ and satisfies the differential equation . k,
F
d P(tt/)= P(t,t") n cold spot . BA) .
a (t') _n+ - 0 ¥

¢ du one-dimensional metal. For a three-dimensional Fermi surface the
P(t,t")=ex —f —.
' 7(u)
of the cold spots(b) Variation of the scattering rate across the

where 7(t) = 7{k(t)]. Integrating this gives FIG. 1. (a) Cold spots on the intralayer Fermi surface in a quasi-
2) cold spots become cold strips. A magnetic field perpendicular to the
layers causes electrons on the Fermi surface to be swept in and out
The nonequilibrium distribution function can then be written Fermi surface. The strength of the scattering rate at the cold spot is
as

1/7y and increases b at the edges of the Brillouin zone.

. of (v .
g(rkn=T-22| dVE-uP(LL), &) 1 1 (%) ©

) " T Asir? 3
where the first term does not vary over the Fermi surface and
A is the strength of the cold spots. The second term deter-

wheref (E) is the Fermi function and equals the equilibrium
distribution ancE is the electric field. The conductivity then

reduces to mines the periodicity of the spots on the Fermi surfésee
e2 o of(E)\ .. Fig. 1). This is a quasi-one-dimensional version of the model
o :FI vi(k)vj(k)< - ?)d% (4)  considered by loffe and Millig? If the cold spots are due to
™ superconducting fluctuations, then the superconducting
Wherev_j(IZ) is phase would have nodes in the energy gap kgt Kj)
=(*xkg,0).
- . 0 t du . loffe and Millis took the scattering time, to be the sum
vj(k)zf —f W] v[k(t)]dt, (5)  of an impurity part and a temperature-dependent'part
- o7 K(U
- - , , . 1 1 T
and the wave vectdi(t) satisfies the semiclassical equation = (10)
of motion o Timp To
di e whereT, is an energy scale of the order of the Fermi tem-
¥ KX B erature.
T hZVke(k)xB. 6 P
In a quasi-one-dimensional metal the simplest possible C. Zero- and high-field limits

dispersion relation is Zero-field limit: The interlayer conductivity, wheB=0,

. is given b
e(K)=hop(|ky —ke) — 2ty cogbk,) — 2t cogcky), (7) O y
wherev is the Fermi velocitykr is the Fermi wave vector,
andt, andt. are the electron hopping integrals perpendicular
to the chains. For the dispersid#), the interlayer conduc-

e’ . e
Uzz(B=0)=mf Ak Jo(Kv,(k)d%k, (11

tivity given by Eq.(4) reduces to where f(E) is the Fermi function,r(IZ) is the momentum-
9 dependent scattering time, aug(l?) is the electron velocity
€ fm Jh/b 1 (K perpendicular to the layers. Now in zero magnetic field the
Oy 37— dk,(0 dk,(0)v,(k)v,(K), :
v ) 0 y(0)v2(k)o(k) velocities are constant; thus the conductivity becomes

tS)
2

assuming that the temperature is sufficiently low that the o,{B=0)= e_f v,(k,)27(k )5[EF—e(l2)]d3l2
derivative of the Fermi function can be replaced by a delta ‘ 473 S

function at the Fermi energy. 2e2ct§
" . = ﬂ.thU <T>1 (12)
B. Specific model for the scattering rate F

The model scattering rate for a quasi-one-dimensionalvhere(r) is the average of the lifetime of the carriers on the
system that we consider is Fermi surface.
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High-field limit: At high fields (as B—x) the term

obtain

of- -t 42

and, evaluating,(K) [see Eq(5)], we get

g o}

1
(L)

provided that the velocityy Z(IZ), is independent of the time.

The conductivity can then be simplified to

PHYSICAL REVIEW B3 024414

TABLE Il. The temperature dependence of the zero-field resis-
exp{—fg[duh(u)]} in Eq. (5) oscillates rapidly; therefore, we tivity of (TMTSF),X at various pressures. We also show if the
replace the scattering rate term by its average over the Ferrfilgssical angular dependence curve is observed in the particular
surface,(1/7), where(---) denotes the average. Thus we Materials.

X Pressure

ClO, ambient

ClO, 6 kbar
PFs ambient
PFs 6 kbar

PR,  8-11 kbar

Classical angular  p,, Pxx
dependence (B=0,T) (B=0,T)
Yed T2b
Ye$
T2 d Tl.8 d T2 e T1.5f
Yed
Na,h,i -|—2 d,j T h T1'8d

“Reference 25.
bReference 40.
‘Reference 26.
dReference 41.
®Reference 42.

fReference 43.
9Reference 36.
hReference 22.
Reference 35.
'Reference 44.

2e%ct? 1

oAB=)= mh3bve (1/7)°

(15
IIl. INTERLAYER CONDUCTIVITY IN ZERO FIELD

Combining the results for both the high- and low-field limits Substituting the scattering raf8) and the velocity in the

gves z-axis direction,,= (2ct./%)sin(ck,), into the conductivity
p,AB=2) 1 (11), we obtain
L
pZZ(B O) T e2 2th 2
A similar result was obtained by Zheleznyak and 04AB=0)= 4d7hoe\ h
Yakovenko?®
wlc
X sin(ck,)?dk
D. Positive magnetoresistance le/c k) dk,

By using the Cauchy-Schwarz inequality, it can be shown
that the right-hand side of Eq16) must be greater than or
equal to unity. Thus, the saturating value of the magnetore-

sistance is always positive. fi(k) and g(k) are functions
defined on the Fermi surface, we can define an inner produ&

w/b dky
xf - . (20
—alb 1/7o+Asin(bk,/2)?

erforming the integrals gives

- C 2e’ct?r 1
f,g)= J dkf(kK)g(k), 1 =0)= c 9
(f.g)=]_dki(kgk) 7 o,{B=0) by VT A (21)
where the; mtegrgl is over the Fermi surface. The CaUChyénd in the absence of cold spo0) we get
Schwarz inequality implies that
f.9)<lfl [l 18 2€’ctimg
[(f. )=l gl (18) UZZ(A:o):—thb‘;F. (22

where| f| denotes the norm dfdefined by|f| = (f,f)¥2 We

setf(E)= 1/7(k) andg(k) = 1/f(K) and square both sides to |f 1/7,~T2, A is independent of temperature, aAd,>1,
obtain then p,,~T. The different temperature dependences that
have been observed in the Bechgaard salts are summarized in
1 -
1sf szkf 7(k)d?k
Fs7(k) Fs

Table 1.
A\ pudB=2)
_<T(|Z)><T(k)> pAB=0)" 19

This shows that the resistance at high fields will always be We now show how when the field and current are both
larger than the resistance at zero field. Note that this resufiarallel to thec axis that the cold spots produce a positive
does not depend on the particular functional form for themagnetoresistance. For the dispersion relationthe com-
variation of the scattering rate over the Fermi surface. ponents of the group velocity are

IV. THE INTERLAYER CONDUCTIVITY IN THE
PRESENCE OF A MAGNETIC FIELD

A. Magnetic field parallel to the least-conducting axis
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fLUF
- 1. 1 .
v= %Vkez % 2btb S|n(bky)
2ct. sin(ck,)

(23)
The rate of change of the wave vecIZ(r[), in a magnetic
field given byB=(0,0B), is

dk eV <B
dt #2 k€

—2beB{, sin(bk,)/% a

PHYSICAL REVIEW B 63 024414

V= A0)]. (28)

Substitutingk,(t) into Eq.(9) and evaluating the exponential
in Eq. (5), we obtain

v,(K)=v [ ky( 0)]exp{ A sn"[bky(O)]}

ATy+2)t A
J' dte F{( ot2)t A
2(1)0

=_ eveB b (24 X sin bky(0)+ wot] |. (29
0 c
. We introduce the modified Bessel generating funcfidar
In order to calculate the time dependencek(f), we inte-
- A
grate Eq.(24), giving ex;{— Z—wosin(bky(O)wLwot)
kz(t)=k,(0), (25)
A - A
=1 (—— +22, (—DA (——)
ky(t)=k,(0)+ %t, (26) % 2w IZO( Maca| =25,
where xsin{(2k+ 1)[bky(0) + wot]} +2 3, (—1)"1a
ev,:Bb
X ~ 0 cog(2k)[bky(0) + wot]} (30)
is the frequency with which the electron traverses the Fermi “o
surface. Thez component of the group velocity is then and perform the integral overto obtain
. A\ lo(—ARwy)
v(K)=vLky(0)Jexg | — 5—|sin(bk,(0)] || ——=——+23 (~1)"z:1
2w C k=0
><< A ) —(2k+1)wg cog b(2k+ 1)k, (0)]+ C sinb(2k+ 1)k, (0)]
2wq C?+(2k+1)%ws
2k) wgsin b(2k)k,(0)]+C cog b(2k)k,(0
+22( 1>k|2k( A )[( ) wosin b( )y<(>2]k) §b(2K)k,( )]H, a1
wo

whereC=(Ary+2)/271,. A similar substitution can be made 2 shows the dependence of the interlayer resistivity on the
for the exg(A/2wo)sinbk/(0)]} term in Eq(31) by settingt  strength of the magnetic field at various values of the param-
=0 in Eq. (30). Multiplying out all terms, we note that the eterAr,,.

only terms that survive the integral ovéy(0) are those High-field limit: The conductivity, a®\/ wy— 0, is simpli-

whose indicies in the summations are equal. Performing thgied by the limiting form for small arguments of the modified
integrals ink,(0) andk,(0), theconductivity becomes Bessel function

74B) 1
o, AA=0)

(—1)M1(A2w0)?

(1+A70/2) k5= 1+ 4K2wh 5l (2+ Arg)? (D)~ (3
(32) K (k+1)

(k#-1,-2,...) (33)

In the Appendix we present an alternative form for this ex-
pression that is more stable for numerical evaluation. Figureand so thek=0 term dominates Eq32) giving
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T T T T T T T T T T T T T T T After the appropriate substitution for the scattering rate and
z-axis velocity we obtain

— . 2ct.| wgcogck,(0)]—Rsinck,(0)]
v (K)=—— ——————|, (39
. R+ wj
o
Il whereR=1/79+A sir’{blg,(O)/Z]2 and for simplicity here we
SN setb=c, so wo.= wg. The conductivity can then be written
a as
@N e [2ct)?
a 724B)= 47hveb| #
2mlb 2mlc
xf dk,(0) dk,(0)sin ck,(0)]
0 0
7 cog ck,(0)]—Rsinck,(0
0 i Xwof{z()]zn[z()]_ 37
1 1 1 R2+ [OF)
0
0 s mﬂ; 1 2 Performing the integral ovedtk,(0), we obtain
0 0
, o e? 2ct,\?
FIG. 2. Dependence of interlayer resistivity on the strength of ¢,(B)= 12chob\
the magnetic field at various values of the paramatey, which is T Chue

field is perpendicular to the layers and parallel to the current direc-
tion and thec axis (see inset In the absence of cold spot#\ (

=0) the resistivity is independent of the field. As the strength of the
cold spots increases the magnetoresistance increases and is positive
and nonzero. For high magnetic fieldsg>A) the resistivity satu- and integrate to give
rates to a value given by E¢34).

f the st th of th tteri Id ts. Th ti ; 2
a measure o e strengtn o € Scalttering cold spots € magnetic " fzw,bd {1/T0+A5|r[bky(0)/2] }
7 mo+ Asinbk,(0)/2]22+ w}
(38

0,4B)
>A A o,{A=0)
pzAA=0) _sinfarctart /oo 7o) +arctaf (1 +Ag) /wo7o]/ 2}
This agrees with the general res(i6). [1+(wo70) 1Y (1+ A7) 2+ (wo7o) 2] M

(39
B. Magnetic field parallel to the b axis . ) o
) o High-field limit: If wo>1/7y and wy>A, we can expand
Chashechkina and Chaikin found that for (TMTSE)Os i 1/w 1, to second order to obtain

under 6-kbar pressuf8 the interlayer resistivity(for field

directed along théo axis) deviates from the quadratic field o,4B) 2+ATg 1

dependence that is pr_ec_iicted from simple B_oltzmann trans- o, {A=0) T (0o70)2"

port theory. Although it is quadratic at low fields the resis- _ _ R -

tivity becomes approximately linear at higher fields. Thus, at high fields the resistivity is quadratic in field and

Konhler’s rule is obeyed. In contrast, for (TMTSPR; at 10  does not saturate. This is inconsistent with the experimental

kbar the interlayer resistivity saturates above fields of aboutesults on TMTSEX cited above.

2 T353% Low-field limit: Here we expand i, to second order
With a magnetic field given by=(0,8,0) the rate of (0 obtain

change of the wave vector 'd;l?/dt=[2eBcl‘C sin(ck,)/%2,0, .

—eveB/#A]. From this thez-axis velocity is calculated to be Tidworo<l) 1 [8+A7o(8+3A7)]

v,(k,) = (2¢t /%) Sincky(0)— wodt], Where wge=Ccawo/b. In 0 AA=0)  1+A7, 8(1+Amp)°"?

this case, when the magnetic field is parallel to brexis, k, (41)

is constant_and sa is no_t a fgnction of time. Thus the \ynere we can write, after simplifying, the resistivity as
electron trajectories are either in or out of the cold spot re-

gion, but never swept through them. One can write (Bras

(40)

wOTO)zi

[8+ATo(8+3AT) |(woTo)?
8(1+A7)? '

B
M_\/l-l-ATO 1+

] (35) pzAA=0) a

N 0 R
vz(k):fxdtvz[k(t)]ex;{—

7(ky) (42)
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FIG. 3. Field dependence of the interlayer magnetoresistance

when the magnetic field is parallel to theaxis. The exact solu- 10
tion (solid line and the quadratic fit to the low-field magneto- W7,
resistance(dashed ling are compared. The quadratic form, as J1+AT7,

predicted from a simple Boltzmann mo#&toes not fit the exact
form at high fields. This can b6e compared to experimental results £ 4. Kohler's plot of the interlayer magnetoresistance when
on (TMTSF),CIO, at 6 kbar® Deviations from the quadratic e magnetic field is parallel to thie axis. Plots are shown for

form _arise due to the variation of the scattering rate over the,arious values ofA7y, a quantity that can depend on temperature.
Fermi surface. As the strength of the cold spots increases the d§1o horizontal axis is proportional t8/p,(B=0). We see that
viation of the low-field fit from the exact solution increases and they ghier's rule is violated since all the cuzrves do not lie on top of

exact solution becomes increasingly linear at small fields. Also note ;- other. However, the violations are only significant for large
that the quadratic form lies above the exact solution at all values OFnagnetic fields and if the cold spots are sufficiently strong that

Ao. A7o=5.

A comparison of resul{39) with the quadratic form(42)

isshown in Fig. 3, forA7,=1,10. In the absence of cold 0,4 B,ATp)

spots Boltzmann transport theory predicts a quadratic field 4, _(B=0Arg)

dependence for all fields. The plot shows that the quadratic

fit (dashed lingdeviates form the exact solutideolid line) sinfarctari 1/wy 7o) +arctaf(1+Arg)/ wg7o]/2}
at large fields. As the strength of the cold spots increases the = 201 > 214
deviagt]ions increase further, while the exact solution becomes [1+ (0070) T* 1+ (wo70)*/ (1+AT0)°]
increasingly linear at small fileds. Note that the low-field (43
qguadratic fit always lies above the actual result, as is ob-

served in (TMTSR)CIO, at 6 kbar?® _ _ .
Kohler's rule: Equation(39) shows that the resistance de- @nd plot the inverse of this agains7o/ 1+ Ao, because

pends on three parametets;, which is linearly proportional  PzAB=0A70)* y1+A7o/ 7. Figure 4 shows such a plot for
to the magnetic field, the scattering timg, andA, the pa-  various value_s oA_rO. The figure shows t_ha_lt Kohler’s rule is
rameter that determines the strength of the cold spots. Sincéolated at high fields and foA7,=5; if it held, all the
7o and A can both depend on temperature, we can analyz8Urves would collapse onto a single curve.

the temperature and field dependence of the magnetoresis-
tance in terms of Kohler's rul&. Kohler’s rule is known to

hold when there is a single species of charge carrier, and the
scattering timer is the same at all points on the Fermi  For rotations of the magnetic field in tiiec plane experi-
surface”® The dependence of the resistivity on the field in ments on (TMTSF)CIO, at ambiert® and 6-kbaf® pressure

Eq. (39) is contained in the quantityy,7q and the tempera- and (TMTSF),PF; at 6 kbar® find that the angular depen-
ture dependence oAr,. In zero field the conductivity is dence of the interlayer magnetoresistance has dips at the
given by Eq.(21). The field dependence of the magnetore-magic angles superimposed on roughly the angular depen-
sistance, with different scattering times, can be related bylence predicted by semiclassical transport theory. The mag-
scaling the field by the zero-field resistivip, {B=0,A7g). netoresistance is minimum when the magnetic field and the
To obtain a Kohler's plot we plotp,,(B,A7y)/p,AB  current are parallel and a maximum when the field and cur-
=0,A7g) vs B/p,{(B=0,A7p). In order to do this, we rear- rent are perpendicular. This is in contrast to the anomalous
range Eq.(39) to give behavior seen in (TMTSEPR, at 10 kbar?3® where the

C. Magnetic field in the b-c plane
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opposite is observed: the backgrounq magnetore;istance orgy,dv_z(ﬁ), from Eq. (5), can be calculated by making the
depends on the component of the field perpendicular to thgppropriate substitutions for the scattering rate and:thxis
layers, p,,~ (B cos6)™~. velocity, giving

Following a similar procedure as in Sec. IV A, the rate of

change of the wave vector, in a magnetic field givenBy

= (0B sin6,Bcosb), i ()= 2k A qirfbk,(0
_( BS b5 COS )1 S Uz( )_ % ex Z_wBS”{ y( )]
dk e. R 0 _
a:_ﬁVkEXB XfiwdtSIr[Ckz(O)—wct]
- ' Arg+2)t A
2beBy, cosdsin(bk,) a Xex;{—( o+2) — 5—sin bky(0) + wgt]|,
= evefiB cosd b|. (49 279 2wg
—evghBsing c (46)
The velocity in thec direction (z axis) can then be written  where wg=ebBvg coslfi=w,cosH and ¢
oet =ecBvgsinf/f. Substitution of the appropriate modified
c . . . .
vy(k,) = - Csir[ckz(O)— o], (45) Egi?/seel generating functions and performing the integral over

— . 2ct,

A c k,(0)]+Csi k,(O
”Z(k):TeX‘{(_z_%)sirfbky(o)] wscogcky(0)]+Csinck,(0)]

C%+ wg

|~ 7ol
IO _2(,03
C cogcky(0)— (2k+1)bk,(0)]—[(2k+ 1) wg+ w.]sin ck,(0) — (2k+1)bk,(0)]
C?+[(2k+1)wg+ wc]?

w . . A)
+k20( 1)|2k+1( Pon

C cog cky(0)+ (2k+1)bk,(0)]—[(2k+1) wg— w.]sin ck,(0) + (2k+1)bky(0)]
a CZH+[—(2k+ 1) wg+ w. ]
o
B ZwB

C sin{cky(0) + (2K)bk,(0)]+[(2K) wg+ w]cog cky(0) + (2K)bk,(0)]
x CoH [~ (2K wgt w2 ’

C sinck,(0) — (2k)bk,(0)]+[(2k) wg— w.]cog cky,(0) — (2k)bk,(0)]
C?+ (2kwg+ w¢)?

+ 2 (—1)M g
k=1

(47

where C=1/7y,+A/2. Performing the integrals ove«,(0) Due to the alternating sign in the summation, when the index
andk,(0), oneobtains k is even, one expects to see dips, while, wkes odd, one
expects peaks in the resistivity. A plot of the interlayer re-
0,4B) 1 sistivity versus the field tilt angl® is shown in Fig. 5 for
o,{A=0) - AT, several parameter values. It can be seen that onlkthe
+ - resonance is noticeable, and only for very large fields
(wg7o>100). Experimentally, the magic angle effects are
(= D)X [Al2wp]? seen at much lower fields. Furthermore, one always sees dips
and not peaks at the magic angles.

o]

K 1+ 473(kog+ 0o)2(2+Ag)?

(48)
. . . V. CONDUCTIVITY PARALLEL TO THE CHAINS
Based on this expression, we expect to see features in the
angular dependence when Measurements of the resistivity parallel to thexis for
rotations of the magnetic field in tHec plane show similar
k=2 S ne (49 behavior as for the interlayer resistivity2®-?>Magic angle
wg b ' effects are superimposed on a background magnetore-
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(b) FIG. 6. Angular dependence of tlxeaxis (most-conducting di-
25 — — rection resistivity on the direction of the magnetic field in thec
plane. In comparison to experimental data on (TMT$H} at 9.5-
s kbar pressurd>®® we see a similarity in that the interlayer resis-
TR 7] tance only depends on the component of field parallel toctheis
< and decreases with increasing angle. However, no features are
é 15— — present at the magic angles.
~
= A1,=20 2 27l
S . e et I L)
Qﬁ xx 4 ﬁUF 0 z
s
5710 . 27/b A
0T, =10 XJ dky(0)vg ex z—sw[bky(O)]
0 T 1 T 1T T T 1
0 10 20 30 40 5 60 70 80 90 (ATo+2)t A
dt Vg €X
e 27'0 2(,()8
FIG. 5. Ab_sence of magic angle_ effects in the angular depen- X sin bky(0) + wgt]|. (50)
dence of the interlayer magnetoresistance. The dependence of the

interlayer resistivity on the magnetic field directigrotated in the
b-c plang is shown for various values dk7, and two values of Performing the integral and simplifying, we obtain
wq Ty, Which is proportional to the strength of the magnetic fiéld.
is the angle between the most conducting directiomXis) and the
magnetic field see inset ofa)]. In contrast to experimental results
on the quasi-one-dimensional metals (TMT&X)one sees a peak 1
rather than a dip, at taf=b/c. Furthermore, features at higher- =

order magic angles (taf=nb/c, wheren=2,3, .. .) are too small axx(A=0) 1+A7’o/2>
to be visible. %

Oxx

(— D)X [AI2wq cos]?

sistance that has a semiclassical angular dependence for 2 5"
(TMTSF),CIO, and is anomalous for (ngTSE}?IFZ)G at 10 k=== 1+4(k7owo C0S0)™/ (2+ ATo)
kbar. For the latter a power-law field dependence of the (51)
a-axis resistivity was found with the field in theeaxis direc-
tion by Krizaet al,®® p,(B) — pyy(0)*B%?, Note that ford=0 this will give the same field dependence

The conductivity parallel to the chaing{,) is calculated for the conductivity in the least-conducting directiftom-
in a similar manner to the interlayer conductivity, where thepare Eq.(32) and Fig. 2.
magnetic field is rotated in thb-c plane. Calculating the The angular dependence of the resistiviiy,=1/oy
velocity in thex-axis direction ¢,=v¢), we can substitute given by the equation above is plotted in Fig. 6 for two
this and our specific model for the scattering rate into Eqsvalues ofAr, and wgro. We see that some similarities exist
(4) and(5) to obtain between theory and experimental results on (TMTLER
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at 9.5-kbar pressure for rotations of the magnetic field in the e? 2ct, 2 ralc .
b-c plane®*° in that the resistivity is large for magnetic Uzzzm(T) j, /Cdkz(O)sw{ckZ(O)]

field angles close t@=0° and decreases asapproaches
90°. Furthermore, the resistivity only depends on the com- 27/b A

ponent of field perpendicular to the layers; that isg X Jo dky(O)ex;{z—%ar[bky(O)ﬂ
= wqy cosh. We tried fitting the field dependence to a power
law of the formp,,~ (B cosé)* but found this only applied
over very limited field ranges. The calculated angular depen-
dence ofp,, also differs from the observed angular depen-
dence in that no magic angle features are present in the cal- Xex;{
culatedp,,(6).

0
X fﬁ dtsin ck,(0)]

(Amg+2)t A
o 2g SIMbK(0)+ wgt] .

2’7'0

(A1)

Since sifibk/(0)+ wot] is periodic int, we can divide the
range of integration into segments of length/2, and sum

VI CONCLUSION the resulting geometric series giving

2
1
7) 1—exd — m(Arg+2)] woTo]

We have considered a modification of standard Fermi lig- ce? 2t
uid and Boltzmann transport theory in which there are large Uzz:4ﬂ_2ﬁUF<
variations of the quasiparticle scattering rate over a quasi-
one-dimensional Fermi surface. The goal was to see to what 2w/b
extent such a model could explain the anomalous properties Xj

of the magnetoresistance of the quasi-one-dimensional or-
ganic metals, (TMTSE)X. Table | gives a brief comparison 2m d¢p (ATg+2) ¢ A
of the results of our calculations for a cold spots model with X j PR

experimental results. Although the model can explain a num-

ber of unusual features such as having a large magnetoresis- )

tance when the field and current are parallel, there are several Xsin bk, (0)+bde]
important discrepancies. Although the model does give . ) )
magic angle effects, they are orders of magnitude smallefN€re ¢=wot. Shifting the integration overk,(0) by
than is observed experimentally. In particular explaining the~ #/2 and rearranging terms, we obtain

origin of the magic angle effect and why in (TMTSIPF; at ce?

dky(O)eXL{zisir{bky(O)]}

0 o

0 o

: (A2)

2
10 kbar the interlayer resistivity becomes independent of . _ . (ﬁ) 1
field for fields parallel to thé axis remains a considerable — “* 4m“hve\ A | 1—exd — m(A7y+2)/ wo7o]
challenge.

2xlb A )
X fo dky(O)ex;{z—%{sw[bky(O) — ¢l2]
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APPENDIX: ALTERNATIVE EXPRESSION FOR ) A
CONDUCTIVITY XJ "dg |0( 7o sin(¢/2))
0 WoTo
We now derive an alternative expression for E2p) that (Arg+2) ¢
is more stable for numerical evaluation. One can rewrite the X r{— P (A4)
0’0

conductivity in Eq.(4), using Egs(28) and(29), as
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