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Magnetoresistance in quasi-one-dimensional metals due to Fermi surface cold spots
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In a number of quasi-one-dimensional organic metals the dependence of the magnetoresistance on the
direction of the magnetic field is quite different from the predictions of the Boltzmann transport theory for a
Fermi liquid with a scattering rate that is independent of momentum. We consider a model in which there are
large variations in the scattering rate over the Fermi surface. The model is the quasi-one-dimensional version
of the ‘‘cold spots’’ model introduced by Ioffe and Millis to explain anomalous transport properties of the
metallic phase of the cuprate superconductors. The dependence of the resistance, in the most- and least-
conducting directions, on the direction and magnitude of the magnetic field is calculated. The calculated
magnetoresistance has a number of properties that are quite distinct from conventional transport theory, such as
magic angle effects and a significant magnetoresistance when the field and current are both in the least-
conducting direction. However, the model cannot give a complete description of the unusual properties of
(TMTSF)2PF6 at pressures of 8–11 kbar.

DOI: 10.1103/PhysRevB.63.024414 PACS number~s!: 75.70.Ak, 72.80.Le
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I. INTRODUCTION

Many of the electronic transport properties of strong
correlated metals such as cuprate superconductors,1,2 heavy
fermions,3 and organic superconductors4–6 are significantly
different from elemental metals. The transport properties
the latter are adequately described by the Boltzmann tr
port theory, which is based on a Fermi liquid picture,
which there is one-to-one correspondence between the
ementary excitations and those of a noninteracting Fe
gas.7 An important and controversial question is whether,
order to describe strongly correlated metals, one must c
pletely abandon Fermi liquid theory or whether one can j
make modest modifications to the Fermi liquid theory, su
as allowing the scattering rate to vary significantly over d
ferent parts of the Fermi surface. An example of the form
point of view for the cuprates is that of Anderson1 and of the
latter is that of Pines,8 Zheleznyak, Yakovenko, Drew, an
Mazin,9 and Ioffe and Millis.10 For heavy fermions near
quantum critical point,11 the former point of view has bee
advocated by Coleman12 and Smith and Si,13 and the latter
by Rosch.14 The only way to resolve this issue is to perfor
calculations for specific models in order to produce pred
tions that can be used to falsify that model.

The theoretical description of the magnetoresistance
the metallic phase of the Bechgaard salts, (TMTSF)2X
@where TMTSF is the tetramethyl-tetraselenafulvane m
ecule andX is an anion# represents a considerable challeng
The experimental data are briefly summarized below. Stro
Clarke, and Anderson15 and Zheleznyak and Yakovenko16

have argued that the data imply a non-Fermi liquid desc
tion, whereas many others17–21have tried to explain the dat
within a Fermi liquid description. None of these theori
gives a complete description of the experimental data.
purpose of this paper is to calculate the properties of
magnetoresistance within a ‘‘cold spots’’ model~where the
scattering rate varies over the Fermi surface!. This model is
the quasi-one-dimensional version of a model originally p
posed for the cuprates by Ioffe and Millis.10 The model has
0163-1829/2000/63~2!/024414~11!/$15.00 63 0244
f
s-

el-
i

-
t

h
-
r

-

of

l-
.
g,

-

e
e

-

the distinct advantage that it is analytically tractable, allo
ing the calculation of a wide range of properties of the ma
netoresistance that can be compared to experimental res

We now briefly summarize the observed properties of
magnetoresistance of (TMTSF)2X that cannot be explained
by the Boltzmann transport theory with a simple dispers
relation and a scattering rate that is constant over the Fe
surface. The most puzzling data are those of (TMTSF)2PF6
at pressures of about 10 kbar.22 We also note that the mag
netoresistance of the quasi-two-dimensional me
a-(BEDT-TTF)2MHg(SCN)4 @M 5 K,Rb,Tl# also exhibits
unusual temperature and angular dependence.23,24

~1! The magic angle effect. When the magnetic field is
rotated in the plane perpendicular to the most conduc
direction ~i.e., in theb-c plane!, one observes dips in th
resistance versus angle curve at angles~whereu is the angle
between the field direction and thec axis! such that tanu
5nb/c, where b and c are lattice constants andn
51,2, . . . . Thefeatures atn51 and 2 are most prominen

~2! Angular dependence.The simplest Boltzmann trans
port models predict no magnetoresistance when the magn
field and current are parallel and the magnetoresistance
maximum when the field and current are perpendicular. T
is observed in (TMTSF)2ClO4 at ambient and 6-kba
pressure.25,26 However, the opposite is observed
(TMTSF)2PF6 at 10 kbar: the magnetoresistance is mu
larger when the field and current are parallel than when t
are perpendicular.25 Specifically, the background magnetor
sistance~i.e., after the magic angle effect is subtracted o!
only depends on the component of the field perpendicula
the layers. Furthermore, for moderate fields the resistivity
the most-conducting direction,rxx;(B cosu)0.5 and the re-
sistivity in the least-conducting directionrzz;(B cosu)1.3.
Simple Fermi liquid theory would generally not produc
such a noninteger exponent. Note that this means that the
no magnetoresistance for fields parallel to theb axis.

~3! Kohler’s rule. In a conventional metal with a singl
scattering rate this provides a simple way to relate the fi
and temperature dependence of the resistance.
©2000 The American Physical Society14-1
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TABLE I. Comparison of the observed properties of the magnetoresistance of (TMTSF)2X with the
theoretical cold spot model.

Effect
X5ClO4

~ambient!
X5PF6

~9–11 kbar!
Cold spot

model

Magic angle effect inrxx yes yes no
Magic angle effect inrzz yes yes yes: but too weak
Peaks rather than dips for odd integers no no yes
Background magnetoresistance only depends on cosu no yes yes:rxx , no: rzz

Violations of Kohler’s rule no yes yes
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(TMTSF)2ClO4 at ambient pressure27 and at 6 kbar26 this is
satisfied. However, in (TMTSF)2PF6 at 10 kbar there are
large violations.

In order to explain the magic angle effect Chaikin fir
proposed a ‘‘hot spots’’ model, where the scattering rate
significantly larger than elsewhere on the Fermi surfac21

Zheleznyak and Yakovenko did find that the scattering r
due to electron-electron scattering exhibited hot spots. H
ever, these were not of sufficient strength to produce a la
magnetoresistance or the magic angle effect.28

In order to explain the anomalous transport properties
cuprates several authors have considered the effects of
hot spots29–31 and cold spots.9,10,32,33 Zheleznyak, Yak-
ovenko, Drew, and Mazin9 considered a cold spot model th
was consistent with ac magnetotransport data. Ioffe
Millis 10 then considered a similar model where the scatter
rate variation had the same symmetry (d wave! as the super-
conducting order parameter, i.e., the cold spots are assoc
with nodes in the energy gap~or pseudogap! that exists in the
superconducting phase. Although it is not clear what spec
microscopic mechanism produces the cold spots, Ioffe
Millis suggest that they might arise from strong superco
ducting pairing fluctuations. The model provides a sim
explanation of photoemission experiments which show t
in the cuprates the electron spectral function varies sign
cantly over the Fermi surface. Along the zone diagonals
spectral function has a well-defined quasiparticle peak, s
gesting weak scattering; in other regions the spectral fu
tion is broad, suggesting strong scattering. Using this sim
model and a Boltzmann equation analysis, Ioffe and Mi
reproduced quantitatively the frequency and temperature
pendence of the observed dc and ac, longitudinal, and
conductivities in the cuprates. However, the calculated m
netoresistance is much larger in magnitude and has a s
ger temperature dependence than is observed.

In this paper we investigate to what extent such a c
spot model can explain the anomalous magnetoresistan
the quasi-one-dimensional metals, (TMTSF)2X. We find that
the calculated magnetoresistance does have a number o
usual features that are consistent with experiment.~i! When
the magnetic field and current are parallel to the lea
conducting direction, there is a large positive magnetore
tance. This increases with the strength of the cold spots.~ii !
When the magnetic field is rotated in theb-c plane, the re-
sistivity in the most-conducting direction has an angular
pendence qualitatively similar to the background magneto
sistance of (TMTSF)2PF6 at 10 kbar. The resistance
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largest when the field is in the least-conducting directio
Furthermore, it only depends on the component of the fi
parallel to the least-conducting direction.~iii ! Magic angle
effects do occur in the interlayer resistance.

However, there are a number of properties that are inc
sistent with experiment.~a! The magnetoresistance saturat
with increasing field when the magnetic field and current
parallel to the least-conducting direction.~b! No magic angle
effects occur in the resistivity in the most-conducting dire
tion. ~c! For reasonable strengths of the magnetic field
size of the features in the interlayer resistance at the m
angles is much smaller than observed. Further, peaks ra
than dips are predicted at the odd-integer magic angles~d!
When the magnetic field is parallel to theb axis the inter-
layer magnetoresistance increases quadratically with fi
whereas in (TMTSF)2PF6 at 10 kbar, it saturates with in
creasing field. Table I gives a brief summary of the succes
and failures of the cold spot model.

The outline of the paper is as follows. In Sec. II th
Boltzmann equation is solved in the relaxation-time appro
mation for the general case of a scattering rate that va
over the Fermi surface. We introduce the specific model
the momentum dependence of the scattering rate that we
It is shown that in zero field the resistivity is proportional
the inverse of the average of the scattering time over
Fermi surface. In the high-field limit the resistivity is propo
tional to the average of the scattering rate over the Fe
surface. We then show by the use of the Cauchy-Schw
inequality that the resistance at high fields will always
larger than the resistance at zero field. In Sec. III the in
layer conductivity in zero field is explicitly evaluated an
we consider different models for its temperature depende
In Sec. IV the interlayer conductivity is calculated for var
ous directions of the magnetic field. Section V contains
similar calculation for the conductivity in the mos
conducting direction.

II. BOLTZMANN TRANSPORT THEORY WITH A
MOMENTUM-DEPENDENT SCATTERING RATE

A. Derivation of the conductivity

If the scattering rate does not vary over the Fermi surfa
then the Boltzmann equation can be solved in the relaxat
time approximation to yield Chamber’s formula for the co
ductivity in the presence of a magnetic field.7 We now con-
sider how this is modified in the presence of a scattering
that varies over the Fermi surface. Following Ashcroft a
4-2
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MAGNETORESISTANCE IN QUASI-ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 63 024414
Mermin ~p. 246ff!,7 let g(rW,kW ,t) be the nonequilibrium dis-
tribution function that describes the probability of finding t
electron atrW with momentumkW at timet. P(t,t8) denotes the
fraction of electrons that are not scattered between timt
and t8 and satisfies the differential equation

]

]t8
P~ t,t8!5

P~ t,t8!

t~ t8!
, ~1!

wheret(t)5t@kW (t)#. Integrating this gives

P~ t,t8!5expS 2E
t8

t du

t~u! D . ~2!

The nonequilibrium distribution function can then be writt
as

g~rW,kW ,t !5 f 2
] f

]EE2`

t

dt8EW •vW P~ t,t8!, ~3!

wheref (E) is the Fermi function and equals the equilibriu
distribution andEW is the electric field. The conductivity the
reduces to

s i j 5
e2

4p3E v i~kW !v̄ j~kW !S 2
] f ~E!

]E Dd3kW , ~4!

wherev̄ j (kW ) is

v̄ j~kW !5E
2`

0

expF2E
0

t du

t@kW~u!#
Gv j@kW~ t !#dt, ~5!

and the wave vectorkW (t) satisfies the semiclassical equati
of motion

dkW

dt
52

e

h2 ¹W ke~kW !3BW . ~6!

In a quasi-one-dimensional metal the simplest poss
dispersion relation is

e~kW !5\vF~ ukxu2kF!22tb cos~bky!22tc cos~ckz!, ~7!

wherevF is the Fermi velocity,kF is the Fermi wave vector
andtb andtc are the electron hopping integrals perpendicu
to the chains. For the dispersion~7!, the interlayer conduc-
tivity given by Eq.~4! reduces to

szz5
e2

4p3\vF
E

2p/c

p/c

dkz~0!E
0

2p/b

dky~0!vz~kW !v̄z~kW !,

~8!

assuming that the temperature is sufficiently low that
derivative of the Fermi function can be replaced by a de
function at the Fermi energy.

B. Specific model for the scattering rate

The model scattering rate for a quasi-one-dimensio
system that we consider is
02441
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t~ky!
5

1

t0
1A sin2S bky

2 D , ~9!

where the first term does not vary over the Fermi surface
A is the strength of the cold spots. The second term de
mines the periodicity of the spots on the Fermi surface~see
Fig. 1!. This is a quasi-one-dimensional version of the mo
considered by Ioffe and Millis.10 If the cold spots are due to
superconducting fluctuations, then the superconduc
phase would have nodes in the energy gap at (kx ,ky)
5(6kF ,0).

Ioffe and Millis took the scattering timet0 to be the sum
of an impurity part and a temperature-dependent part10

1

t0
5

1

t imp
1

T2

T0
, ~10!

whereT0 is an energy scale of the order of the Fermi te
perature.

C. Zero- and high-field limits

Zero-field limit: The interlayer conductivity, whenBW 50,
is given by7

szz~B50!5
e2

4p3E t@kW~ t !#vz~kW !vz~kW !d3kW , ~11!

where f (E) is the Fermi function,t(kW ) is the momentum-
dependent scattering time, andvz(kW ) is the electron velocity
perpendicular to the layers. Now in zero magnetic field
velocities are constant; thus the conductivity becomes

szz~B50!5
e2

4p3E vz~kz!
2t~ky!d@EF2e~kW !#d3kW

5
2e2ctc

2

p\3bvF
^t&, ~12!

where^t& is the average of the lifetime of the carriers on t
Fermi surface.

FIG. 1. ~a! Cold spots on the intralayer Fermi surface in a qua
one-dimensional metal. For a three-dimensional Fermi surface
cold spots become cold strips. A magnetic field perpendicular to
layers causes electrons on the Fermi surface to be swept in an
of the cold spots.~b! Variation of the scattering rate across th
Fermi surface. The strength of the scattering rate at the cold sp
1/t0 and increases byA at the edges of the Brillouin zone.
4-3
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High-field limit: At high fields ~as B→`) the term
exp$2*0

t @du/t(u)#% in Eq. ~5! oscillates rapidly; therefore, we
replace the scattering rate term by its average over the F
surface,^1/t&, where ^•••& denotes the average. Thus w
obtain

expF2E
0

t

duK 1

t L G5expF2t K 1

t L G , ~13!

and, evaluatingv̄z(kW ) @see Eq.~5!#, we get

E
0

`

dt expF2t K 1

t L G5
1

^1/t&
, ~14!

provided that the velocity,vz(kW ), is independent of the time
The conductivity can then be simplified to

szz~B5`!5
2e2ctc

2

p\3bvF

1

^1/t&
. ~15!

Combining the results for both the high- and low-field lim
gives

rzz~B5`!

rzz~B50!
5^t&K 1

t L . ~16!

A similar result was obtained by Zheleznyak a
Yakovenko.28

D. Positive magnetoresistance

By using the Cauchy-Schwarz inequality, it can be sho
that the right-hand side of Eq.~16! must be greater than o
equal to unity. Thus, the saturating value of the magneto
sistance is always positive. Iff (kW ) and g(kW ) are functions
defined on the Fermi surface, we can define an inner pro

~ f ,g!5E
FS

d2k f~kW !g~kW !, ~17!

where the integral is over the Fermi surface. The Cauc
Schwarz inequality implies that

u~ f ,g!u<i f i igi , ~18!

wherei f i denotes the norm off defined byi f i5( f , f )1/2. We
set f (kW )51/t(kW ) andg(kW )51/ f (kW ) and square both sides t
obtain

1<E
FS

1

t~kW !
d2kE

FS
t~kW !d2k

5K 1

t~kW !
L ^t~kW !&5

rzz~B5`!

rzz~B50!
. ~19!

This shows that the resistance at high fields will always
larger than the resistance at zero field. Note that this re
does not depend on the particular functional form for
variation of the scattering rate over the Fermi surface.
02441
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III. INTERLAYER CONDUCTIVITY IN ZERO FIELD

Substituting the scattering rate~9! and the velocity in the
z-axis direction,vz5(2ctc /\)sin(ckz), into the conductivity
~11!, we obtain

szz~B50!5
e2

4p3\vF
S 2ctc

\ D 2

3E
2p/c

p/c

sin~ckz!
2dkz

3E
2p/b

p/b dky

1/t01A sin~bky /2!2
. ~20!

Performing the integrals gives

szz~B50!5
2e2ctc

2t0

p\3bvF

1

A11At0

~21!

and in the absence of cold spots (A50) we get

szz~A50!5
2e2ctc

2t0

p\3bvF
. ~22!

If 1/t0;T2, A is independent of temperature, andAt0@1,
then rzz;T. The different temperature dependences t
have been observed in the Bechgaard salts are summariz
Table II.

IV. THE INTERLAYER CONDUCTIVITY IN THE
PRESENCE OF A MAGNETIC FIELD

A. Magnetic field parallel to the least-conducting axis

We now show how when the field and current are bo
parallel to thec axis that the cold spots produce a positi
magnetoresistance. For the dispersion relation~7! the com-
ponents of the group velocity are

TABLE II. The temperature dependence of the zero-field res
tivity of (TMTSF)2X at various pressures. We also show if th
classical angular dependence curve is observed in the partic
materials.

X Pressure
Classical angular

dependence
rzz

(B50,T)
rxx

(B50,T)

ClO4 ambient Yesa T2 b

ClO4 6 kbar Yesc

PF6 ambient T2 d T1.8 d, T2 e,T1.5 f

PF6 6 kbar Yesg

PF6 8-11 kbar Noa,h,i T2 d, j, T h T1.8 d

aReference 25. fReference 43.
bReference 40. gReference 36.
cReference 26. hReference 22.
dReference 41. iReference 35.
eReference 42.

j
Reference 44.
4-4
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vW 5
1

\
¹W ke5

1

\S \vF

2btb sin~bky!

2ctc sin~ckz!
D . ~23!

The rate of change of the wave vectorkW (t), in a magnetic
field given byBW 5(0,0,B), is

dkW

dt
52

e

\2
¹W ke3BW

5
1

\ S 22beBtb sin~bky!/\

evFB

0
D S a

b

c
D . ~24!

In order to calculate the time dependence ofkW (t), we inte-
grate Eq.~24!, giving

kz~ t !5kz~0!, ~25!

ky~ t !5ky~0!1
v0

b
t, ~26!

where

v05
evFBb

\
~27!

is the frequency with which the electron traverses the Fe
surface. Thez component of the group velocity is then
e

e

th

x
u

02441
i

vz5
2ctc

\
sin@ckz~0!#. ~28!

Substitutingky(t) into Eq.~9! and evaluating the exponentia
in Eq. ~5!, we obtain

v̄z~kW !5vz@kz~0!#expF A

2v0
sin@bky~0!#G

3E
2`

0

dt expF ~At012!t

2t0
2

A

2v0

3sin@bky~0!1v0t#G . ~29!

We introduce the modified Bessel generating function34 for

expF2
A

2v0
sin~bky~0!1v0t !G

5I 0S 2
A

2v0
D12(

k50

`

~21!kI 2k11S 2
A

2v0
D

3sin$~2k11!@bky~0!1v0t#%12(
k51

`

~21!kI 2k

3S 2
A

2v0
D cos$~2k!@bky~0!1v0t#% ~30!

and perform the integral overt to obtain
v̄z~kW !5vz@kz~0!#expF S 2
A

2v0
D sin@bky~0!#G H I 0~2A/2v0!

C
12(

k50

`

~21!kI 2k11

3S 2
A

2v0
D F2~2k11!v0 cos@b~2k11!ky~0!#1C sin@b~2k11!ky~0!#

C21~2k11!2v0
2 G

12(
k51

`

~21!kI 2kS 2
A

2v0
D F ~2k!v0sin@b~2k!ky~0!#1C cos@b~2k!ky~0!#

C21~2k!2v0
2 G J , ~31!
the
m-

d

whereC5(At012)/2t0. A similar substitution can be mad
for the exp$(A/2v0)sin@bky(0)#% term in Eq~31! by settingt
50 in Eq. ~30!. Multiplying out all terms, we note that th
only terms that survive the integral overky(0) are those
whose indicies in the summations are equal. Performing
integrals inky(0) andkz(0), theconductivity becomes

szz~B!

szz~A50!
5

1

~11At0 /2! (
k52`

`
~21!kI k~A2v0!2

114k2v0
2t0

2/~21At0!2
.

~32!

In the Appendix we present an alternative form for this e
pression that is more stable for numerical evaluation. Fig
e

-
re

2 shows the dependence of the interlayer resistivity on
strength of the magnetic field at various values of the para
eterAt0.

High-field limit: The conductivity, asA/v0→0, is simpli-
fied by the limiting form for small arguments of the modifie
Bessel function

I k~z!;
~ 1

2 z!k

G~k11!
~kÞ21,22, . . . ! ~33!

and so thek50 term dominates Eq.~32! giving
4-5
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rzz~v0@A!

rzz~A50!
511

At0

2
. ~34!

This agrees with the general result~15!.

B. Magnetic field parallel to the b axis

Chashechkina and Chaikin found that for (TMTSF)2ClO4
under 6-kbar pressure,26 the interlayer resistivity~for field
directed along theb axis! deviates from the quadratic fiel
dependence that is predicted from simple Boltzmann tra
port theory. Although it is quadratic at low fields the res
tivity becomes approximately linear at higher field
Kohler’s rule is obeyed. In contrast, for (TMTSF)2PF6 at 10
kbar the interlayer resistivity saturates above fields of ab
2 T.35,36

With a magnetic field given byBW 5(0,B,0) the rate of
change of the wave vector isdkW /dt5@2eBctc sin(ckz)/\

2,0,
2evFB/\#. From this thez-axis velocity is calculated to be
vz(kz)5(2ctc /\)sin@ckz(0)2v0ct#, where v0c5cv0 /b. In
this case, when the magnetic field is parallel to theb axis,ky
is constant and sot is not a function of time. Thus the
electron trajectories are either in or out of the cold spot
gion, but never swept through them. One can write Eq.~5! as

v̄z~kW !5E
2`

0

dt vz@kW~ t !#expF2
t

t~ky!G . ~35!

FIG. 2. Dependence of interlayer resistivity on the strength
the magnetic field at various values of the parameterAt0, which is
a measure of the strength of the scattering cold spots. The mag
field is perpendicular to the layers and parallel to the current di
tion and thec axis ~see inset!. In the absence of cold spots (A
50) the resistivity is independent of the field. As the strength of
cold spots increases the magnetoresistance increases and is p
and nonzero. For high magnetic fields (v0@A) the resistivity satu-
rates to a value given by Eq.~34!.
02441
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After the appropriate substitution for the scattering rate a
z-axis velocity we obtain

v̄z~kW !5
2ctc

\ Fv0 cos@ckz~0!#2R sin@ckz~0!#

R21v0
2 G , ~36!

whereR51/t01A sin@bky(0)/2#2 and for simplicity here we
setb5c, so v0c5v0. The conductivity can then be writte
as

szz~B!5
e2

4p3\vFbS 2ctc
\ D 2

3E
0

2p/b

dky~0!E
0

2p/c

dkz~0!sin@ckz~0!#

3Fv0 cos@ckz~0!#2R sin@ckz~0!#

R21v0
2 G . ~37!

Performing the integral overdkz(0), weobtain

szz~B!5
e2

4p2c\vFb S 2ctc
\ D 2

3E
0

2p/b

dky~0!
$1/t01A sin@bky~0!/2#2%

$1/t01A sin@bky~0!/2#2%21v0
2

~38!

and integrate to give

szz~B!

szz~A50!

5
sin$arctan~1/v0t0!1arctan@~11At0! /v0t0#/2%

@11~v0t0!2#1/4@~11At0!21~v0t0!2#1/4
.

~39!

High-field limit: If v0@1/t0 andv0@A, we can expand
in 1/v0t0 to second order to obtain

szz~B!

szz~A50!
5

21At0

2

1

~v0t0!2 . ~40!

Thus, at high fields the resistivity is quadratic in field a
does not saturate. This is inconsistent with the experime
results on TMTSF2X cited above.

Low-field limit: Here we expand inv0t0 to second order
to obtain

szz~v0t0!1!

szz~A50!
5

1

A11At0

2
@81At0~813At0!#

8~11At0!5/2
~v0t0!2,

~41!

where we can write, after simplifying, the resistivity as

rzz~B!

rzz~A50!
5A11At0S 11

@81At0~813At0!#~v0t0!2

8~11At0!2 D .

~42!
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A comparison of result~39! with the quadratic form~42!
isshown in Fig. 3, forAt051,10. In the absence of col
spots Boltzmann transport theory predicts a quadratic fi
dependence for all fields. The plot shows that the quadr
fit ~dashed line! deviates form the exact solution~solid line!
at large fields. As the strength of the cold spots increases
deviations increase further, while the exact solution becom
increasingly linear at small fileds. Note that the low-fie
quadratic fit always lies above the actual result, as is
served in (TMTSF)2ClO4 at 6 kbar.26

Kohler’s rule: Equation~39! shows that the resistance d
pends on three parameters:v0, which is linearly proportional
to the magnetic field, the scattering timet0, andA, the pa-
rameter that determines the strength of the cold spots. S
t0 and A can both depend on temperature, we can ana
the temperature and field dependence of the magnetor
tance in terms of Kohler’s rule.37 Kohler’s rule is known to
hold when there is a single species of charge carrier, and
scattering timet is the same at all points on the Ferm
surface.23 The dependence of the resistivity on the field
Eq. ~39! is contained in the quantityv0t0 and the tempera
ture dependence ofAt0. In zero field the conductivity is
given by Eq.~21!. The field dependence of the magneto
sistance, with different scattering times, can be related
scaling the field by the zero-field resistivityrzz(B50,At0).
To obtain a Kohler’s plot we plotrzz(B,At0)/rzz(B
50,At0) vs B/rzz(B50,At0). In order to do this, we rear
range Eq.~39! to give

FIG. 3. Field dependence of the interlayer magnetoresista
when the magnetic field is parallel to theb axis. The exact solu-
tion ~solid line! and the quadratic fit to the low-field magnet
resistance~dashed line!, are compared. The quadratic form,
predicted from a simple Boltzmann model26 does not fit the exac
form at high fields. This can be compared to experimental res
on (TMTSF)2ClO4 at 6 kbar.26 Deviations from the quadratic
form arise due to the variation of the scattering rate over
Fermi surface. As the strength of the cold spots increases the
viation of the low-field fit from the exact solution increases and
exact solution becomes increasingly linear at small fields. Also n
that the quadratic form lies above the exact solution at all value
At0.
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szz~B,At0!

szz~B50,At0!

5
sin$arctan~1/v0t0!1arctan@~11At0!/v0t0#/2%

@11~v0t0!2#1/4@11~v0t0!2/~11At0!2#1/4
,

~43!

and plot the inverse of this againstv0t0 /A11At0, because
rzz(B50,At0)}A11At0/t0. Figure 4 shows such a plot fo
various values ofAt0. The figure shows that Kohler’s rule i
violated at high fields and forAt0*5; if it held, all the
curves would collapse onto a single curve.

C. Magnetic field in the b-c plane

For rotations of the magnetic field in theb-c plane experi-
ments on (TMTSF)2ClO4 at ambient25 and 6-kbar26 pressure
and (TMTSF)2PF6 at 6 kbar36 find that the angular depen
dence of the interlayer magnetoresistance has dips at
magic angles superimposed on roughly the angular dep
dence predicted by semiclassical transport theory. The m
netoresistance is minimum when the magnetic field and
current are parallel and a maximum when the field and c
rent are perpendicular. This is in contrast to the anomal
behavior seen in (TMTSF)2PF6 at 10 kbar,22,35 where the

ce

ts

e
e-

e
te
of

FIG. 4. Kohler’s plot of the interlayer magnetoresistance wh
the magnetic field is parallel to theb axis. Plots are shown for
various values ofAt0, a quantity that can depend on temperatu
The horizontal axis is proportional toB/rzz(B50). We see that
Kohler’s rule is violated since all the curves do not lie on top
each other. However, the violations are only significant for la
magnetic fields and if the cold spots are sufficiently strong t
At0>5.
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opposite is observed: the background magnetoresistance
depends on the component of the field perpendicular to
layers,rzz;(B cosu)1.3.

Following a similar procedure as in Sec. IV A, the rate
change of the wave vector, in a magnetic field given byBW
5(0,B sinu,Bcosu), is

dkW

dt
52

e

\2
¹W ke3BW

5
1

\2 S 22beBtb cosu sin~bky!

evF\B cosu

2evF\B sinu
D S a

b

c
D . ~44!

The velocity in thec direction (z axis! can then be written

vz~kz!5
2ctc

\
sin@ckz~0!2vct#, ~45!
t

02441
nly
e

f

and v̄z(kW ), from Eq. ~5!, can be calculated by making th
appropriate substitutions for the scattering rate and thec-axis
velocity, giving

v̄z~kW !5
2ctc

\
expF A

2vB
sin@bky~0!#G

3E
2`

0

dt sin@ckz~0!2vct#

3expF ~At012!t

2t0
2

A

2vB
sin@bky~0!1vBt#G ,

~46!

where vB5ebBvF cosu/\5v0 cosu and vc
5ecBvF sinu/\. Substitution of the appropriate modifie
Bessel generating functions and performing the integral o
t give
v̄z~kW !5
2ctc

\
expF S 2

A

2vB
D sin@bky~0!#G H I 0S 2

A

2vB
D Fvc cos@ckz~0!#1C sin@ckz~0!#

C21vc
2 G

1 (
k50

`

~21!kI 2k11S 2
A

2vB
D FC cos@ckz~0!2~2k11!bky~0!#2@~2k11!vB1vc#sin@ckz~0!2~2k11!bky~0!#

C21@~2k11!vB1vc#
2

2
C cos@ckz~0!1~2k11!bky~0!#2@~2k11!vB2vc#sin@ckz~0!1~2k11!bky~0!#

C21@2~2k11!vB1vc#
2 G

1 (
k51

`

~21!kI 2kS 2
A

2vB
D FC sin@ckz~0!2~2k!bky~0!#1@~2k!vB2vc#cos@ckz~0!2~2k!bky~0!#

C21~2kvB1vc!
2

3
C sin@ckz~0!1~2k!bky~0!#1@~2k!vB1vc#cos@ckz~0!1~2k!bky~0!#

C21@2~2k!vB1vc#
2 G , ~47!
ex

e-

lds
re
dips

ore-
where C51/t01A/2. Performing the integrals overky(0)
andkz(0), oneobtains

szz~B!

szz~A50!
5S 1

11
At0

2
D

3 (
k52`

`
~21!kI k@A/2vB#2

114t0
2~kvB1vc!

2/~21At0!2
.

~48!

Based on this expression, we expect to see features in
angular dependence when

k5
vc

vB
5

c

b
tanu. ~49!
he

Due to the alternating sign in the summation, when the ind
k is even, one expects to see dips, while, whenk is odd, one
expects peaks in the resistivity. A plot of the interlayer r
sistivity versus the field tilt angleu is shown in Fig. 5 for
several parameter values. It can be seen that only thek51
resonance is noticeable, and only for very large fie
(v0t0.100). Experimentally, the magic angle effects a
seen at much lower fields. Furthermore, one always sees
and not peaks at the magic angles.

V. CONDUCTIVITY PARALLEL TO THE CHAINS

Measurements of the resistivity parallel to thea axis for
rotations of the magnetic field in theb-c plane show similar
behavior as for the interlayer resistivity.25,26,22,35Magic angle
effects are superimposed on a background magnet
4-8
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sistance that has a semiclassical angular dependenc
(TMTSF)2ClO4 and is anomalous for (TMTSF)2PF6 at 10
kbar. For the latter a power-law field dependence of
a-axis resistivity was found with the field in thec-axis direc-
tion by Kriza et al.,38 rxx(B)2rxx(0)}B3/2.

The conductivity parallel to the chains (sxx) is calculated
in a similar manner to the interlayer conductivity, where t
magnetic field is rotated in theb-c plane. Calculating the
velocity in thex-axis direction (vx5vF), we can substitute
this and our specific model for the scattering rate into E
~4! and ~5! to obtain

FIG. 5. Absence of magic angle effects in the angular dep
dence of the interlayer magnetoresistance. The dependence o
interlayer resistivity on the magnetic field direction~rotated in the
b-c plane! is shown for various values ofAt0 and two values of
v0t0, which is proportional to the strength of the magnetic fieldu
is the angle between the most conducting direction (c axis! and the
magnetic field@see inset of~a!#. In contrast to experimental result
on the quasi-one-dimensional metals (TMTSF)2X, one sees a pea
rather than a dip, at tanu5b/c. Furthermore, features at highe
order magic angles (tanu5nb/c, wheren52,3, . . . ) are too small
to be visible.
02441
for

e

s.

sxx5
e2

4p3\vF
E

0

2p/c

dkz~0!

3E
0

2p/b

dky~0!vF expF A

2vB
sin@bky~0!#G

3E
2`

0

dt vF expF ~At012!t

2t0
2

A

2vB

3sin@bky~0!1vBt#G . ~50!

Performing the integral and simplifying, we obtain

sxx

sxx~A50!
5S 1

11At0 /2D
3 (

k52`

`
~21!kI k@A/2v0 cosu#2

114~kt0v0 cosu!2/~21At0!2
.

~51!

Note that foru50 this will give the same field dependenc
for the conductivity in the least-conducting direction@com-
pare Eq.~32! and Fig. 2#.

The angular dependence of the resistivityrxx[1/sxx
given by the equation above is plotted in Fig. 6 for tw
values ofAt0 andv0t0. We see that some similarities exi
between theory and experimental results on (TMTSF)2PF6

-
the

FIG. 6. Angular dependence of thex-axis ~most-conducting di-
rection! resistivity on the direction of the magnetic field in theb-c
plane. In comparison to experimental data on (TMTSF)2PF6 at 9.5-
kbar pressure,35,39 we see a similarity in that the interlayer resi
tance only depends on the component of field parallel to thec axis
and decreases with increasing angle. However, no features
present at the magic angles.
4-9
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at 9.5-kbar pressure for rotations of the magnetic field in
b-c plane,35,39 in that the resistivity is large for magneti
field angles close tou50° and decreases asu approaches
90°. Furthermore, the resistivity only depends on the co
ponent of field perpendicular to the layers; that is,vB

5v0 cosu. We tried fitting the field dependence to a pow
law of the formrxx;(B cosu)a but found this only applied
over very limited field ranges. The calculated angular dep
dence ofrxx also differs from the observed angular depe
dence in that no magic angle features are present in the
culatedrxx(u).

VI. CONCLUSION

We have considered a modification of standard Fermi
uid and Boltzmann transport theory in which there are la
variations of the quasiparticle scattering rate over a qu
one-dimensional Fermi surface. The goal was to see to w
extent such a model could explain the anomalous prope
of the magnetoresistance of the quasi-one-dimensional
ganic metals, (TMTSF)2X. Table I gives a brief compariso
of the results of our calculations for a cold spots model w
experimental results. Although the model can explain a nu
ber of unusual features such as having a large magnetor
tance when the field and current are parallel, there are sev
important discrepancies. Although the model does g
magic angle effects, they are orders of magnitude sma
than is observed experimentally. In particular explaining
origin of the magic angle effect and why in (TMTSF)2PF6 at
10 kbar the interlayer resistivity becomes independent
field for fields parallel to theb axis remains a considerab
challenge.
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APPENDIX: ALTERNATIVE EXPRESSION FOR
CONDUCTIVITY

We now derive an alternative expression for Eq.~32! that
is more stable for numerical evaluation. One can rewrite
conductivity in Eq.~4!, using Eqs.~28! and ~29!, as
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szz5
e2

4p3\vF
S 2ctc

\ D 2E
2p/c

p/c

dkz~0!sin@ckz~0!#

3E
0

2p/b

dky~0!expF A

2v0
sin@bky~0!#G

3E
2`

0

dt sin@ckz~0!#

3expF ~At012!t

2t0
2

A

2v0
sin@bky~0!1v0t#G .

~A1!

Since sin@bky(0)1v0t# is periodic in t, we can divide the
range of integration into segments of length 2p/v0 and sum
the resulting geometric series giving

szz5
ce2

4p2\vF
S 2tc

\ D 2 1

12exp@2p~At012!/v0t0#

3E
0

2p/b

dky~0!expF A

2v0
sin@bky~0!#G

3E
0

2p df

v0
expF2

~At012!

2t0

f

v0
2

A

2v0

3sin@bky~0!1bf#G , ~A2!

where f5v0t. Shifting the integration overky(0) by
2f/2 and rearranging terms, we obtain

szz5
ce2

4p2\vF
S 2tc

\ D 2 1

12exp@2p~At012!/v0t0#

3E
0

2p/b

dky~0!expF A

2v0
$sin@bky~0!2f/2#

2sin@bky~0!1f/2#%G E
0

2p df

v0
expF2

~At012!f

2v0t0
G ,

~A3!

which, upon simplification and performing the integratio
over ky(0), gives

szz~B!

szz~0!
5S 1

v0t0
D 1

12exp@2p~At012!/v0t0#

3E
0

2p

df I 0S At0

v0t0
sin~f/2! D

3expF2
~At012!f

2v0t0
G . ~A4!
s.:
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