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Two-dimensional square quantum Heisenberg antiferromagnets with competing interactions up to third
neighbors {;-J,-J; mode) are investigated by using the high-temperature series expansion method. From the
analyses of the wave-vector-dependent susceptibility), we find four kinds of the stable paramagnetic
phases depending on the coupling constants N&l, collinear, and two helical paramagnetic phases,and
H,. They are characterized by the critical wave ve&pr(A=N, C, H,, or H,), at which the functiong (k)
show the maximum value. Except around tHg-H, phase boundary, they are destabilized and show the
intermediate phases in the neighborhood of the phase boundaries, where the relevant critical wak§ igector
not specified uniquely. The analogy between the paramagnetic phase diagram obtained here and the ordered
ones derived by the simple spin wave theory suggests the possibility of the spin liquid state in the intermediate
phase aff =0. The first-order transition occurs betweldn andH, phases, so the intermediate phase is not
seen there. The dynamical spectrum functig(k,w) is calculated in the form of Mori’s continued fraction
with the frequency moments. The dynamical aspects for the stable paramagnetic phases are also characterized
by the critical wave vectoky, . While the side peak or shoulder shape appeais(kf ,w) at T=, the line
shape becomes considerably narrow when decreasing the temperatureThese behaviors are attributed to
the spin flip-flop motion for the former case, and the quasicollective motion for the latter one. In the interme-
diate phase, af =« the line shape undergoes slow change versus the wave \eetarept for the drastic
narrowing arounck=0, due to the absence of the unique critical wave vector. It is found that the high-
temperature dynamical aspect keeps there, even though the temperature is decreased, due to the frustration
effect.
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I. INTRODUCTION high-T superconductor. While the Hamiltonian relevant to it
is known as thet-J model with hole doping, recently the
Frustration in magnetic systems is well known to be re-Ji-J; model was proposed by Doniaehal.® in a semiphe-
sponsible for a number of curious phenomena. One of th@omenlogical fashion, to capture the physics of frustration
more interesting features is the possible existence of the spifduced to the system by hole doping. Morebal. alsd

liquid, in which long-range order at absolute zero tempera—(:c_’trr‘]jer::tlljre(;j that a r?jla;tri]c;]n r‘;\a‘)]/ existdb:etfwe(taﬁtt’den:pdclel
ture is destroyed when the frustration effect is significant /! N0'€ COPING an 17J27J3 Modet for the particular

: . . . . case 0fJ3=J,/2, with J;=1.
For two-dimensiona(2D) square antiferromagnetic Heisen- The aim of this paper is to investigate the frustration ef-

berg magnets composed of first- and second-neighbor intefact on dynamic properties as well as static ones, especially
actions (;-J; mode), there are two contradictory in the critical temperature region. We consider a 2D square
predictions regarding the spin liquid state: One is that therefrystrated quantum antiferromagnet Heisenbe&s 1/2),
exists a disordered phase under a certain value of the seconghich contains up to third-neighbor couplings;{J,-J;
neighbor interactio;? and the other is that the classical- mode). The Hamiltonian is written by
ordered phases are always stable against the frustration and
guantum fluctuation, so the spin-disordered state may not H=J12 S'SﬁJzE 3i.5|+332 S-Sm, )
appear but the first-order transition ddds.addition to these (1) {n (im)
predictions, it has recently been argfigidat the spin liquid  \here Ji, J,, and J; are the first-, second-, and third-
state could survive in thé;-J,-J3 model with proper frus- nearest-neighbor coupling constants, respectively, and all of
tration parameters, where the spin system consists of up 9 (i=1,2,3) are considered to be positive. The notations
third-neighbor interactions. The phase diagram is obtaineglij>, (il'y, and{im) denote the first-, second-, and thina
using spin-wave theory by Moreet al.® and four kinds of pairs of spins, respectively.
ordered phases are clarified. In addition to it, the disordered The wave vector dependence of the static susceptibility
regions are suggested in the vicinity of phase boundary.  x(k) helps us in understanding various critical phenontena.
Besides, the recent discovery of the high-temperaturdhe features of the local order developed at the critical re-
superconductot, such as 2D antiferromagnets in gime can be studied by the analyses of the temperature and
La,_,Sr,CuQ, and YBgCusO,_,, calls ones interest to the the wave-vector dependences of the function. Moreover, it
problem of the disordered frustrated spin systéiecause it leads us to determine the magnetic configuration of long-
is supposed that the frustration effect is related to the dopingange order below the critical point, because it is character-
effect, which is an important issue for the mechanism of thezed by the critical wave vectdk., at which the function
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x(k) shows its maximum value in the paramagnetic phasethe system in the paramagnetic phase, the supersciipt
As for dynamics, the dynamical spectrum functibtk,»)  Omitted hereafter. The time dependence of the ope&or
gives us significant information because it is directly propor-is in the Heisenberg representation, i.e.,

tional to the inelastic diffuse thermal neutron scattering cross

section® Therefore, we can get physical interpretation for the B(t) =exp(iHt)B(0)exp( —iHt), (€)
theoretical results by referring to the related experimental .
data. Under these situations, the studies/@) andF (k, o) and the_ angular bracke;s denote a canonical thermal average
with arbitrary k and o are expected to shed light on the at Kelvin temperaturd, i.e.,

problem of the frustrated spin systems. - T exp(— BH)A]

We calculate these functions by the high-temperature se- (A= i (4)
ries expansion method, i.e., they are expanded in powers of Trlexp(—BH)]
the inverse temperatur®(=J,/kgT). We carry out the ) ) . )
function x(Kk) up to seventh order d®. Using themth fre- [N the high-temperature series expansion expresgit),
quency moments df (k, »), which are calculated up ©°, IS written as

0° 0% and® for m=0, 2, 4, and 6, respectively, the .
ngr:]c;}:]ounelé(fl:;gzisﬁpconstructed through the form of Mori's X(k):[(gMB)Z/‘Jl]nZl Xo(inja: k)@, ®)

The high-temperature series expansion method is a useful
tool to investigate the frustration effect in disordered systemsvherej; and® are defined ag;/J; (i=2,3), and a dimen-
for the following reasons. First, by using this method one carsionless reduced temperatlgl/J,, respectively. The cal-
study various magnetic properties without thinking about theculated coefficientsX(j,,j3;k) are giver* at symmetry
sublattice structure of ordered states in advance. Second,pointI’, X, andM, for 1<n=<7 by puttingS=1/2.
includes all nonlinear effects of thermal fluctuation at the Present treatment for the series expansion corresponds to
corresponding order of expansion, which is ignored in thethe linked-cluster expansion method. It contains up to seven-
mean-field theory. So far, we employed this method to studyond clusters. To count bond clusters, we have to take care
several complex spin systems, such as randomly dilutedf the relative position of two sitekandj. For example,
Heisenberg paramagnets on a Bravais lattice with dhere are two kinds of one-bond cluster, depending on
quenched-site or exchange-bond dilutidnand with a  whether sites andj are the same position or not, &y or
couple of competing interactiot$ These theories give us a 1— dy . As aresult, the numbergm) for m-bond cluster are
proper understanding of the experimental results for various(1)=2, n(2)=4, n(3)=12, n(4)=24, n(5)=54, n(6)
quantities, i.e., the transition temperature, the magnetic con=69, andn(7)=83. When we estimate the quantity pfk),
centration dependence in the specific heat, susceptibility, etfrom this method, we always check the convergence of the
Many other works related to this method have been reviewederies by I plotting. Namely, we draw™ (k), which con-
by Rushbrooke, Baker, and Wodd. tains terms, up to theth order, against b/ Afterward, y(k)

This paper is organized as follows: In Sec. Il, the expresis extrapolated from the mean value @f!(k) and y{"!(k),
sion of the high-temperature series expansion is presented fanlessy[™ (k) shows oscillatory behavior with divergent am-
the static susceptibility(k), and the procedure for estima- plitude as h—0.
tion of the quantities is explained. Especially, we are con-
cerned with the static properties for the 2D square quantum 0.5
J;-J,-J3 Heisenberg antiferromagnets by analyses of the
wave vector and the temperature dependence((&j. The

dynamical spectrum functiofr(k,w) is calculated in the & H,

form of Mori's continued fraction in Sec. Ill. We discuss —r

some peculiarities in spin dynamics of the pres&nt,-Js

model by the studies of); (i=1,2,3) dependence of 0.25
F(k,w). This paper ends with a summary in Sec. IV. L 0

Il. THE STATIC SUSCEPTIBILITY

We analyze the wave-vector-dependent susceptibility . N C
x“4k) in terms of the high-temperature series expansion. L G T T
This function is defined as 0 0.5 j2 1.0

B . . .
z — 2 e (] 7Q7i FIG. 1. Zero-temperature phase diagram$e+1/2 in thej,-j;
XK= (gue) 'BZ,- explik- (1 J)}fo dMS'%(Iﬁ)\»’ parameter space. The solid lines denote the phase boundaries deter-

2 mined by the simple spin-wave thedifgef. 5. The existence of the
spin-liquid phase is suggested in the region surrounded by dotted
whereg is defined by MgT, up is the Bohr magneton, and lines. As will be shown in Sec. II, the present theory indicates the
g the gyromagnetic ratio. Because of the spatial isotropy ofntermediate phase in the shaded areas, which are called domains.
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Before describing the calculated results,
temperature phase diagram %+ 1/2 determined by the lin-

ear spin-wave theoryis presented in Fig. 1. Depending on

parameters, and j;, four distinct phases are seeNeel,
collinear, and two helical configurationsl; and H,. For
convenience, we refer to them hereafteNa<, H,, andH,

the zero-
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respectively. In Fig. 1, the continuous lines denote the
boundaries between two different phases in the classical

phases, respectively. They are characterized by the wavgyit s=«, and the region surrounded by dotted lines indi-

vector
k= (,m), (6a)
¢=(0m) or (m0), (6b)
¢ 4 (21— 1/ 2I2—D
kHl=<cos 1[T},w or (w,cos ! TD
(60)
3kgTmc/2S(S+1)J,
(1-j2—ja)/3
(J2—ja)/3

[ —cosks+1+2j,cosk;—jz(cos X;+1)]/6
[ — cosk$— coski— 2j, cosks coskS—js(cos X:+cos xk{)]/6 forH, phase.
X y X y X y

In Figs. 2a)—2(d), the susceptibilityy(k), which is nor-

cates something like the spin liquid state B+ 1/2 in a
sense of disordered phase in spite of the ground state.

As is well known, 2D isotropic Heisenberg systems have
no finite transition point® Then it is convenient to study the
various features ofy(k) with different coupling constants
ji's on the basis of the reduced temperatilife=T/Tyc),
where Ty ¢ is the transition temperature determined by the
mean-field theory, i.e.,

for N phase (79
for C phase (7b)
for H, phase (70

(7d)

wherej,<0.5, which is the boundary betwe&handH, or

malized by the value at the high-temperature limit, is illus-1y, phasegsee Fig. 1, let us observey(k) along two lines

trated on the K,-k,) plane atT=3.0 for four cases with
parameters J;=1.0 where {,,j3) is (0,0, (2.0,0,

j2=0.5 andj3;=(1-2j,)/4, wherej,<0.5. By fixing the
parameter a$,=0.5, (k) is displayed in Fig. 3 af =3.0

(1.0,0.373, and (0,1.0, respectively. The corresponding_ for (a) js=0, (b) 0.125,(c) 0.25, and(d) 0.5, respectively.

contour plots are also given on the right-hand side. As i
shown in Fig. 1, they are expected to be typically ordere

states namel, C, H;, andH, phases aT =0, respectively.
We can find in Fig. 2 that eaci(k) exhibits a broad maxi-
mum centralized at the proper critical wave veckjr (A

=N, C, Hy, or H,), determined by Eqg6a—(6d), whereas

they have ndk dependence at=«~. We call these paramag-

netic phases, thé paramagnetic phase, jf(k) shows a
broad maximum akj . It is found that the position of the

jzour distinguishable peaks are seenjyitk) at?ﬂlz(l.o

+0.5,1.0) and (1.0,1:60.5) in (b), and at kczz(l.o
+0.4,1.0:0.4) in(d). The former indicates thid; paramag-
netic phase, and the latter indicates thgtype phase. For
the rest, however, we cannot recognize the specific peak po-
sition of x(k); instead,y(k) shows a broad maximum along
the lines ofk,=1.0 andk,=1.0 in (a), which is theN-H;-C

critical wave vectork§ is unchanged at decreased temperalfiple point, and along a ringk§ + k3) = (0.5)? in (c), which
ture, but the shape of(k) becomes gradually sharpened. corresponds to thel;-H, phase boundary. In Fig. 4(k) is
Therefore, the pattern of the local order developed at th@lotted along another lingg=(1—2j,)/4 atT=2.5 for the

critical temperature is characterized kjy, and the ordered

parametersjt,j3), which are(a) (0.1,0.2),(b) (0.25,0.125),

state seems to be inherited from it. In this sense, the analys@and(c) (0.4,0.05), respectively. Each case corresponds to the
of x(k) calculated in terms of the high-temperature seriedN-H, boundary, theN-H,-H, triple point, and the boundary
expansion allows us to study the critical behavior for generabetweenN andH, phases, respectively. For each cagg)

cases with arbitrary parameterg,(j3), and to discuss

displays its maximum over a certain range on thg-K,)

whether the spin liquid state exists or not in the presenplane. In addition to the above casegk) is shown for
J1-J,-J3 model, and what kind of aspect results if it exists. (j,,j;)=(0.75,0.125) in Fig. &) at T=3.0, which corre-

For convenience, we use the reduced wave veciefined
by k/ in the following discussions.

sponds to th&C-H; phase boundary. From these results, one
can find a certain spreading domain on thkeg-K,) plane at

Since the possibility of the spin liquid state is suggeStedthe phase boundary, over whigifk) remains constant with

aroundj;=j,/2, wherej,>0.25 andj;>0.125, which is a
border line betweehl; andH, phases, anfk=(1—2j,)/4,

its maximum value, in contrast to the fact that typibalC,
H,, and H, paramagnetic phases have their own specified
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(a)

peak positions iny(k). We find that the domain varies in
form depending on the parameters and j;. From their
shapes, we refer to these domains appearing in Figsa8d
3(c) as “cross” and ‘ring,” respectively. Other domains in
Figs. 4a)—4(d) are also referred to as “square,” “disk,”
“diamond,” and “rectangular,” respectively.

In Fig. 5 the temperature dependencexgk) is plotted
along theX-M direction for cases bring the following do-
mains: in (a) cross, with {,=0.5,j3=0); (b) ring with
(0.5,0.25, (c) disk with (0.25,0.15, and(d) rectangular with
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FIG. 2. The wave-vector-dependent suscepti-
bility x(k) for S=1/2 is illustrated for stable

paramagnetic phases on thie,k,) plane atT
=3.0. The figures are normalized B&»: (a) N
paramagnetic phase, wijh=j;=0; (b) C para-
magnetic phase with,=2.0 andj;=0; (c) H;
paramagnetic phase, wifa=1.0 andj;=0.375;
and (d) H, paramagnetic phase with=0 and
j3=1.0. The relevant contour map is presented
on the right-hand side.

aroundM in theI'-M direction, as shown in the inset. Figure
5(b) presents two distinguishable peaks near points of (1.0
+0.47,1.0). However, they are not characteristic modes
specifying the ordering type, but they express two sections of
ring [see Fig. &)]. The wave-vector-independent parts are

seen iny(k) around theM point in Fig. 5c) and theX point

in Fig. 5(d), due to the existence of the domain structure.
These situations are confirmed when we plot the wave-vector
dependence of the ground-state eneli) determined by

the spin-wave theorif In that case, the critical wave vector

(0.75,0.12%. Although the temperature is decreased, theyky is determined by minimizindg (k).

show no definite unique critical wave vector but display cu-
rious wave-vector dependence. In Figa)5 y(k) heaps up so
slightly centering around thil point in theX-M direction at

So far, we have been concerned with the featurg (&)
just on the phase boundary; now let us pay our attention to it
in the vicinity of the phase boundary. To do so, it is instruc-

T=1.5 that the difference between the maximum and thdive to trace the peak position af(k), denoted byk? , with
minimum value is less than 7%, whereas it presents a peake variation ofj; (i=2,3). In Fig. 6,kR is plotted for itsx
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(a)

FIG. 3. The susceptibilityy(k) is plotted at
' T=3.0along a line of ,=0.5, with(a) j3=0, (b)
(C) 0.125,(c) 0.25, andd) 0.5, respectively. The rel-
evant contour map is presented on the right-hand

”Ring” side.

AT
(IR 2R
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2
R
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(d)

0

component kR), versus various values gf atT=1.5, (a The former case occurs at thé -H, phase boundary. The
for j,=0.5 and(b) for 0.75, respectively. As for thg, de-  peak position ofy(k) also jumps frorrkE|1 to kpz, or vice

pendence, it is shown in Fig. 7 fea) j3=0.125 and(b) j3  yersa. If the parametejgs depart from the boundary point a
=0.2, respectively. To examine the quantum effect, the COrfye it behaves like the stabld, or H, paramagnetic phase
responding classical valuéwith S=) are displayed. FOr  5; gnce Then this is considered as the first-order phase tran-
reference, Kz), is also drawn. The phase limits determined gjtjon just at the phase boundary, the associated two char-
by the spin-wave theofyare indicated by the arrows. acteristic modes;, and ki, may coexist and stand on a

1 2

From these figures, we find the following facts. R : ) )
(1) In the classical casek}), coincides with k5), on the ~ Circle Ky +ky=(0.5)" for the considered case wify=0.5

whole except in the shaded area; however, non-negligibl@ndjs=0.25. Consequently, the formation of the ring shape
discrepancies between them are seen in the quantal case, i40main is acceptable on théfk,) plane. The latter case

it deviates from the classical ones toward Moint as long  takes place at th&l-H;-H, triple point, and at theH;-C,

as j, and/orj, are smaller than 0.5. This means that theN-H;, andN-H, phase boundaries. It is noteworthy that the
quantal case is influenced by tNeel mode more efficiently. domain structures come out in the vicinity of every phase

(2) Thej; (i=2,3) dependence okf), is classified into boundary between the commensurate and incommensurate

two types: one changes discontinuously at the phase boungaramagnetic phasésee the shaded areas in Figs. 6 ahd 7
ary, while the other varies continuously, but abruptly, thereSince the critical wave vectclm,ﬁl (and/orkﬁ,z) in the incom-
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(a)

1) Square”

FETT T

EEEN

FIG. 4. The susceptibilityy(k) is plotted at
T=2.5 along a line ofj3=(1-2j,)/4 with ap-
propriate parametersj{,j3): (@ (0.1,0.2), (b)
(0.25,0.125), andc) (0.4,0.05), respectively. In
(C) addition to the above cases, it is illustrated at the
C-H; phase boundary withj,=0.75 and j3
=0.125 atT=3.0. The relevant contour map is
presented on the right-hand side.

T
7 reas \\

A1

mensurate paramagnetic phase incorporates suddenly wilfith j,=0.5. Following the first route, one can see thatthe
k§ (or k&) in the commensurate ones near the phase boungsaramagnetic phase is stable for<0.45, whereas th€
ary, the effects of these modes amalgamate with each othghramagnetic phase is stabilized jor>0.55. In the region
anpl contribute to the susceptibilig(k) almogt equalently. 0.45<,=<0.55, y(k) hardly shows the wave-vector depen-
This leads to the appearance of the domain described abovgece along thi-M direction regardiess of the reduction of
Thus, one can say that the second-order phase transition Ogsyherature. In particular, d,=0.52, it remains constant
curs in this case via the intermediate phase bearing the doih jts maximum value along that direction, while it peaks

main structure. Depending on the locations of the relevanét the M point along thel'-M direction in similar form

critical wave vectors, the domain presents rich shapes: it aQYrawn in the inset of Fig. @). This situation can be under-

pears as square, disk, diamond, and rectangular, in the neig food as follows: when the paramefer is increased, the

borhood of theN-H, phase boundary, thel;-H,-N triple . c
point, and theN-H; and C-H; phase boundaries, respec- grlﬂcal wavE vectir Ehanggs frokﬁ-, to ke a: the b(r)kundary
tively. j»=0.52, wherey (k) keeps its maximum value at th§ and

For the neighborhood of thi-H,-C triple point, it de- K¢ modes. Since these modes line up alégg: +1.0 and
mands a careful analysis because there are two different agy=+1.0, the formation of the cross-type domain is ex-
proaches to that point: one is provided by increagingp 0.5  pected. In fact, the phase boundary shifts frpy 0.5 de-
with j3=0 and the other is provided by decreasjado zero  noted by the previous theohas 0.52 because of the pre-
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JyY Y S
©505 ML) (515
tkrky)

() "Disk" ) "Rectangular"

FIG. 5. The susceptibility (k) is presented at various tempera-
tureT=1.5, 3.0, and 5.0, along th&-M direction for several inter-
mediate phases called cross wits=0.5 andj;=0 in (a), ring —

(0.5,0.25) in (b), disk (0.25,0.15) in(c), and rectangular 0 02 04.06 08 1
(0.75,0.125) in(d). In the inset, the temperature dependence of L)
x(K) is plotted alondl’-M direction for cross.

B 1 1l | %

FIG. 7. Thex component of the peak position for susceptibility

. . x(K), (kR) is plotted versus various valuesjofat T=1.5 with the
dominant effect of the N& mode in the quantal case. symbol & for S—1/2 and the symbok for S—c: (a) j,—0.125

Tracing the second route, the critical wave vechTf;plris fixed  and(p) j,=0.2.

by constant (-0.5,1.0) or (1.0:0.5), unlesg3=0. Forj3

>0.125,kf coincides withky, , so that theH; paramag- netic phase is stable; however, in the opposite cage,
<0.125, kE'l goes away fronk°Hl and joins toky, asj;—0.

[ B B A T Correspondingly, th& dependence of(k) is reduced along
@ T=15 1L=0.5 the X-M direction, and approaches that of the cross-type
0.8 ¢ e o 7 domain. This is also interpreted in terms of the predominant
° M effect of the Nel mode in the region foj;<0.125, with
0.6 2 o : j»=0.5.
XX R—R-R Finally, we draw up the domain map with the shaded area
0.4 7 S=1/2¢ 7 in Fig. 1 atT=1.5. It is interesting to note that this domain
S=co x| map is similar to the phase diagrafor S=1/2 in the ground
ARO-Z A Hi Hy state, except for the boundary between tHe and H,

S e Ol v phases. Since the four magnetic configurations of the ordered
e 1) T T T phases and the local order patterns in the critical temperature
~ _(b) T=15 J2=0.7§ region are specified commonly by the critical wave vector
0.8 —c H Ho— %, We can suggest a possibility of the existence of the in-

6 ! 2a zi y termediated magnetic-disordered phasd a0 around the
0. : domain region. And it seems to be closely connected with
i | the spin liquid state, whether it is quantal or classical. Here,
0.4 let us mention that it is found that the first-order phase tran-
i i sition occurs between the,; andH, phases from the analy-
0.2 sis of the domain formation, so the intermediate phase or
L L spin liquid state is not expected around this phase boundary.

0 - :
0 0.1 02.03 04 05
J3 I1l. THE DYNAMICAL STRUCTURE FUNCTION

FIG. 6. Thex component of the peak position for susceptibility ~ In the previous section, we have seen curious features of
x(K), (kB), is plotted versus various valuesjafatT=1.5 with the  the static properties in the frustrated 2p-J,-J; model, and
symbol ¢ for S=1/2 and the symbok for S==: (a) j,=0.5and  clarified that most of them are attributed to the competition
(b) j,=0.75. among three kinds of antiferromagnetic couplings, J,,
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and Js. In this section, we study how such competition af- o [
fects the spin dynamics. The observed spectrum of inelasti- k= j_xdwme(k-w) (14
cally scattered neutrons can be interpreted in terms of the
dynamical spectrum functioR (k,w).° It is given by using i
the spin relaxation functioR(k,t) as :'8_1|Ej explik- (|_j)}(%)
F(k,o)= ifw gt Rl aS(Hm 1
2m) - R(k.0) X< SI(O)’WD (15)
t=0
R(K,w) . .
= (8)  The reduceanth moment is calculated by means of the high-

R(k,0) temperature series expansion, and expressed as

where o

P OP=[1,12 Winn(i2,jsk)® ™. (16)
n=0
R(k,t)= jo d\{(eMS(0)e MS_ (1)) — B(SH{S_ ).

(99 By symmetry, all the odd momen&@2™"(m>0) vanish.
The calculated coefficientd/,,(jo.j3;k) are tabulatetf at
If R(k,t) is taken att=0, it is proportional to the wave- two pointsM and X, for m=2, with 0<n=<5, for m=4,

vector-dependent susceptibiligy(k) as with 0=n=<3, and form=6, with O<n=<1, by puttingS
=1/2 andJ;=1.
(gug)? Following the approximation of a Gaussian termination
x(K)=—5—R(K0. (100 for the continued fraction at the third level, we get
Using the procedure introduced by Mdfithe Laplace E(kiw)= 1 (17)
transform ofF (k,w) is expanded into a continued fraction, ' . 51 '
ie., o+ ———F—
X w
" lw+ 52f2 5T/2>
|“:(k,z)=J dte 2F(k,t)={z+ 8, /[z+ 8,/ (z+-- )]} L. 8
0 (11) where
The co~efficient&5i’s can be related to the reduceth mo- fo(x) = 53—1/2e—x2/2 EW)llz—ifxdye\’Z/Z] (18
ments (', which are the frequency moments B{k,w), 2 0
defined by .
As a result, we can evaluatg k,w) directly from the rela-
" tionship
~;“=f doo™F(k,0)=Q02, (12 i
- F(k,w)=7 'ReF(k,iw). (19
as
A. Four stable paramagnetic cases
d=ajlaj_y, (13

As a first step, let us examine the transfer wave vector and
with the frequency dependence of the dynamical spectrum func-
tion F(k,w) for four stableN, C, H;, andH, paramag-
netic phases. At small wave vectior=0, F(k,w) exhibits a

=1, Lorentzian due to the spin diffusion process, and the sharp
~5 peak ofF(k,w) is expected ato=0 andk=0, which indi-
a, =y, cates the total spin conservation. For the other cases, how-
ever,F(k,w) shows various structures dependinglon
az:ﬁﬁ—(ﬁﬁ){ At the high-temperature limit, with an increasikg/alue,

a broad shoulder appears f{k,w) with width wg,. Fur-
thermore, for some cases, this shoulder turns into a hump
situated at finite frequenay, ask approaches tky . In Figs.
8(a)—8(d), F (K% ,w) is plotted versus the reduced frequency
5(: wlJ,) for the same parameterf,(j3) as those in Figs.

In Eq. (12) Q" is themth frequency moment dR(k, ») and 2(a)—2(_d), resBectiver. Thek dependence of the shoulder
given by width wg, Or w; is illustrated for each case in Figs(a®-

az=Q)—(8,+8,) 05,
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F(ke,®) e [ ) 7™
0.5 T 0.3 i 1 J
(a) (b) 08 N
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0.25 = 0.6 N c
O L i
0.2 0.4 o Peak c c
021/ x Shoulder I?N T ]ic 5
0.15 o— .
(d)
—F=20 0.1 i 1
........ T=co |
0.05 s
f— : 0
(d) 2 03 kfﬂ
04 O X M r X M r
0.3 FIG. 9. Thek dependence of the side peak position(shoulder
width wgy) is plotted with a symbol> (X) atT=o, corresponding
ool 02 to Fig. 8 for(a) N, (b) C, (c) Hy, and(d) H,. The related square root
' ' of the reduced second momeﬁﬁ_ﬁ is illustrated as a function d.
Each quantity is normalized by its maximum value.
0.1 0.1
N The present series expansions for the frequency moments
0o 20 40 60_80 100 120 0 20 40 60_80 100 120 0 QO (m=0, 2, 4, and Bare too short to discuss for the spin

0 w dynamics in the low-temperature region; however, it is ex-
FIG. 8. The dynamical spectrum functigh(k% ) is plotted pected to extract some precursor about it from investigation

versus the reduced frequeney(=w/J;) at T=o and 2.0 for(a) of F(k,w) at the finite temperature. On account of the con-

A=N, (b) A=C, and(d) A=H, paramagnetic phase. For thg  Vergence for such series expansion, the temperature is lim-

paramagnetic phage(kS ,w) is given in(c) at T=x and 7.5. ited~for meaningful discussion t6=2.0 for N, C, andH,,
andT=7.5 for H, paramagnetic phases. In Fig$a8-8(d),

9(d), and compared with the corresponding square root of th& (Ka , @) is presented at the approvable lowest temperature

reduced second momen{(22, which is given atT=c in  [Of €ach case. _ . :
following simple form: The effect of the temperature reduction on spin dynamics

is definitely found, i.e., the line shape becomes considerably
narrowed. To understand this situation, the investigation of
VOE(23;)=[{2—cogk,) —cogk,)} the half-width of F(k,w), Awy(k) is useful. For instance,
o Awy(K) are displayed in Figs. 18 and 1Qb) for theN and
212 cogky+ky) —codky—ky)} H, paramagnetic phases &t=2.0, and compared with the
+j:23{2—cos{ka)—cos{Zky)}]m. (20) correspondlng second moment and the spin-wave exqtatlon
o(K)sp for variousk values. Here, let us remark on the linear

Roughly speaking, theik dependences coincide with each spin-wave dispersion relatidf:

other. From the expression of E@O), it is considered that _

the appearance of g shoulder orgﬁu)fdpmped side pealn @(K)sp= 2‘]18\/3"_(1’ @D

F (k5 ;) is responsible for the spin flip-flop motions gov- with

erned by the critical wave vectaf, .*" In fact, the local spin

flip-flop motions occur rapidly between first, second, and _ ; c s

thFi)rd nl?eighbors at high terr?pe?/ature, so the side peak, etc., is Sk_zl Ji;, (Cosky- & —cosk-4), (223
barely seen irF(k,Z) due to the strong motional narrowing.

However, when the transfer wave vector of incident neu- ) .

trons, for instance, approach&$, it is resonant with the dk:; Ji; cosky- 8(1—cosk- &), (22b
characteristic spin flip-flop motion aé~ w; (or wgp). This '

should create the form of the damped side peak or shouldevhered; is a vector joining a site with thigh nearest neigh-
in the response function. In other words, one can spégjfy bors. Equation21) denotes that there are two kinds of soft
by the measurement of the peak positien or shoulder ~modes, th&k=0 andk=kj, which are consequences of the
width wgy, in the inelastic neutron scattering cross sectionkinematical slowing down and Goldstone theorem. Interest-
even if there is at high-temperature limit. ingly, in the vicinity of ki, the wave-vector dependence of

=
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1) i e R,
L : ' /// \\\"‘. |
O . 8 ',"I // "_‘ '_-' \\l'-‘
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il N "'-. i %
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I Vg %
0.2 kv i
) A — ? :
1 (b) 2 A~ T "\_// i
087 i R\ :
. ) . ) i1
06 - ::;’l “\:.' .-- \.‘”,,u_‘ ‘l::_
H BECH S . kS k
047 ——  Awlk) i 0.2 TN
H A i -
b/ o w(k)sp k ¢ i gle
e T r MooT
Op X M T FIG. 11. Thek dependence of shoulder width,/(wer) max iS

plotted with the symbok at T=c for two intermediate phaséa)
FIG. 10. The half-widthA (k) (solid line) is compared with ~ cross, withj,=0.5 andj;=0 and (b) ring with j,=0.5 andj;

the spin-wave excitatiom(K)s,, (dotted ling described in Eq(21) ~ =0.25. The related square root of the second moment

and the square root second momeff2/(\02) .y (broken ling YOI/ (VOF)max is plotted atT =2 (broken, T=5.0 (dotted, and

for various k values, for(a) the N paramagnetic phase, with T=2.5 (solid ling). Each guantity is normalized by its maximum
=j3=0 and (b) the H, paramagnetic phase wit),=0 and J; value.

=1.0. Here, A means the normalization by, .. i.e., A
=A/Anax-

netic phases, the shoulder appears dependehltaim =oo.

In Figs. 11a) and 11b), w(k)sp is plotted as a functiok for
Awy(K) and the second moment are completely opposite téhe cross and ring cases. The corresponding second moment
that at the high-temperature limit. They seem to be like thdS also plotted. In comparison with the typical stable four
profile of the spin-wave dispersian(k)s,, because it forms ~C€ases, th& variation appears rather sluggish, except for the
a hollow ask—kS , although it remains finite &=kS . This drastic narrowing arounkl—0. This is due to the fact that no
can be explained in terms of the short-range magnetic ordéfnique specm_ed _crltlcal wave vector exists in these cases,
developed at a finite temperatdfe® As the temperature is Put severak’s indicated by arrows in Figs. 14) and 11b)
lowered, the correlation appears among the local situations;an contribute dominantly t6(k,w) [see Eq(20)].

so a certain kind of short-range magnetic order must be de- At a finite temperature, the situations are less clear due to
veloped with temperature-dependent finite sf¢&) and fi-  the limited length of the series for the frequency moments.
nite lifetime 7(T). Since the spin arrangement is consider-However, some dynamical features are captured by the
ably ordered at least inside this short-range order, the modeanalysis of thek dependence of the second frequency mo-
with large enouglk, i.e.,ké>1, behave very much like spin ment 2. The corresponding reduced second moment is
waves for a while, approximately during This spin-wave-  44geq in Fig. 11 4f=5.0 and 2.5. In contrast to the remark-
like mode is usually called a “sloppy spin wave’**These  gpq temperature dependence in the stable paramagnetic

circumstant_:es are reflected_ in the same spectrum as OVBhases, eack dependence changes slightly with a decrease
damped spin wave modes situatedoat ws(k). In contract i the temperature, especially over doméshaded parts in
to this, for the modes with small enoudfhi.e., ké<1, one

/ - Re™ Fig. 11, and keeps the high-temperature dynamical aspect,
cannot expect any oscillatory collective excitation, but thej, "3 sense that a broad maximum stays aroundviheoint.

diffusive behavior in spin propagation, and the spectrumr;s is interpreted that the collective propagationlike mode is

leads to a slight hump with maximum ai=0. At the con- ot expected in these cases due to the frustration effect, and
sidered temperatur@=2.0, there exist so many kinds of the spin-flop motion driven by the dominant &lenode sur-

magnetic short-range orders in several sjzand lifetimer  vives although the temperature is decreased.
that both behaviors, i.e, the quasi-spin-wave modes and the
diffusive modes, are observed in the spectiu(i, w). IV. SUMMARY

B ing the high-temperatur ri xpansion meth
B. Intermediate phases y using the high-temperature series expansio ethod,

static and dynamical properties are investigated for the 2D
We now turn to a discussion on the dynamics in the in-square quantum Heisenberg antiferromagnets with compet-

termediate phases. In a way similar to the stable paramagng interactions up to third neighbotg,-J,-J; mode).

024412-10
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The wave-vector-dependent susceptibilitgk) is calcu-
lated up to the seventh order 6f. Although our series are
not sufficient to give the critical discussion in the low-

PHYSICAL REVIEW B 63 024412

However, such a state is not anticipated aroundHheH,
phase transition, because it is the first-order phase transition.
The dynamical spectrum functidh(k, w) is evaluated in

temperature region, the convergence of the series seems tife form of Mori’s continued fraction by using the approxi-

give us reasonable results foe=2.0 (T=1.5 for some static

mation of a Gaussian termination at the third level. Here, the

properties. Thus we can expect to extract some precursor ofoefficientsW,,(j»,j3;k) defined in Eq(16), are calculated

the peculiarities in the low temperature by analysisy0K)
around the critical temperature regidm=2.0 or so.

We find four kinds of stable paramagnetic phaseseINe
collinear, and two helicaH,; and H, ones in the proper

up to the fifth, third, and first orders & for m=2, 4, and 6,
respectively.

For arbitrary cased; (k,w) shows a sharp peak at=0
andk=0, regardless of the temperature, due to the kinemati-

range of the;-J,-J; space. They are characterized by thec@l slowing down. The dynamical behavior for the four

critical wave vectoky (A=N, C, Hy, or H,), at which the
functions y(k) show their maximum values.

stable paramagnetic phases is also characterized by the criti-
cal wave vectoky : at T=o, the side peak or shoulder shape

Interestingly, thisk$, coincides with the wave vector that appears ak= Ka. due to the local flip-flop motion, and the
specifies the spin configuration in the ordered state. Thiine shape becomes considerably narrow as the temperature
means that there is a similarity between the highly develope@?creases due to the quasicollective motion. In the interme-
magnetic short-range order and the long-range order. Excefffate phase, the line shapeTat - undergoes a slow change
around theH,-H, phase boundary, the four stable typical Versus the wave .vectd( except for the drastic narrowing
paramagnetic phases are destabilized; instead, the interme@-oundk=0. This is due to the absence of the unique critical
ate phases appear in the neighborhood of the correspondiM¢@ve vector, and severals contribute toF(k,w) almost
phase boundary. In the intermediate phase, it remains coduivalently. It is known from the analysis of the second
stant with its maximum value spread over a certain range offeéquency moments that the high-temperature dynamical as-
the (k,-k,) plane, which is referred to here as a domain. It ishect is retgmed even if the temperature is decreased, due to
verified that the frustration effects, attributed to the competihe frustration effect.
ing interactions); (i=1,2,3), are indispensable for such do-
main formation, and the shape varies depending on the kind
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