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Two-dimensional square quantum Heisenberg antiferromagnets with competing interactions up to third
neighbors (J1-J2-J3 model! are investigated by using the high-temperature series expansion method. From the
analyses of the wave-vector-dependent susceptibilityx(k), we find four kinds of the stable paramagnetic
phases depending on the coupling constants, i.e.,Néel, collinear, and two helical paramagnetic phases,H1 and
H2. They are characterized by the critical wave vectorkA

c (A5N, C, H1, or H2), at which the functionsx(k)
show the maximum value. Except around theH1-H2 phase boundary, they are destabilized and show the
intermediate phases in the neighborhood of the phase boundaries, where the relevant critical wave vectorkA

c is
not specified uniquely. The analogy between the paramagnetic phase diagram obtained here and the ordered
ones derived by the simple spin wave theory suggests the possibility of the spin liquid state in the intermediate
phase atT50. The first-order transition occurs betweenH1 andH2 phases, so the intermediate phase is not
seen there. The dynamical spectrum functionF(k,v) is calculated in the form of Mori’s continued fraction
with the frequency moments. The dynamical aspects for the stable paramagnetic phases are also characterized
by the critical wave vectorkA

c . While the side peak or shoulder shape appears inF(kA
c ,v) at T5`, the line

shape becomes considerably narrow when decreasing the temperature atkA
c . These behaviors are attributed to

the spin flip-flop motion for the former case, and the quasicollective motion for the latter one. In the interme-
diate phase, atT5` the line shape undergoes slow change versus the wave vectork except for the drastic
narrowing aroundk.0, due to the absence of the unique critical wave vector. It is found that the high-
temperature dynamical aspect keeps there, even though the temperature is decreased, due to the frustration
effect.

DOI: 10.1103/PhysRevB.63.024412 PACS number~s!: 75.10.Jm, 75.25.1z, 75.40.Gb, 75.50.Ee
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I. INTRODUCTION

Frustration in magnetic systems is well known to be
sponsible for a number of curious phenomena. One of
more interesting features is the possible existence of the
liquid, in which long-range order at absolute zero tempe
ture is destroyed when the frustration effect is significa
For two-dimensional~2D! square antiferromagnetic Heise
berg magnets composed of first- and second-neighbor in
actions (J1-J2 model!, there are two contradictory
predictions1 regarding the spin liquid state: One is that the
exists a disordered phase under a certain value of the sec
neighbor interaction;1,2 and the other is that the classica
ordered phases are always stable against the frustration
quantum fluctuation, so the spin-disordered state may
appear but the first-order transition does.3 In addition to these
predictions, it has recently been argued4 that the spin liquid
state could survive in theJ1-J2-J3 model with proper frus-
tration parameters, where the spin system consists of u
third-neighbor interactions. The phase diagram is obtai
using spin-wave theory by Moreoet al.,5 and four kinds of
ordered phases are clarified. In addition to it, the disorde
regions are suggested in the vicinity of phase boundary.

Besides, the recent discovery of the high-temperat
superconductor,6 such as 2D antiferromagnets
La22xSrxCuO4 and YBa2Cu3O72x , calls ones interest to th
problem of the disordered frustrated spin systems,7 because it
is supposed that the frustration effect is related to the dop
effect, which is an important issue for the mechanism of
0163-1829/2000/63~2!/024412~11!/$15.00 63 0244
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high-Tc superconductor. While the Hamiltonian relevant to
is known as thet-J model with hole doping, recently the
J1-J2 model was proposed by Doniachet al.,8 in a semiphe-
nomenlogical fashion, to capture the physics of frustrat
induced to the system by hole doping. Moreoet al. also5

conjectured that a relation may exist between thet-J model
with hole doping and theJ1-J2-J3 model for the particular
case ofJ35J2/2, with J151.

The aim of this paper is to investigate the frustration
fect on dynamic properties as well as static ones, espec
in the critical temperature region. We consider a 2D squ
frustrated quantum antiferromagnet Heisenberg (S51/2),
which contains up to third-neighbor couplings (J1-J2-J3
model!. The Hamiltonian is written by

H5J1(̂
i j &

Si•Sj1J2(̂
i l &

Si•Sl1J3(
^ im&

Si•Sm , ~1!

where J1 , J2, and J3 are the first-, second-, and third
nearest-neighbor coupling constants, respectively, and a
Ji ( i 51,2,3) are considered to be positive. The notatio
^ i j &, ^ i l &, and^ im& denote the first-, second-, and third-nn
pairs of spins, respectively.

The wave vector dependence of the static susceptib
x(k) helps us in understanding various critical phenomen9

The features of the local order developed at the critical
gime can be studied by the analyses of the temperature
the wave-vector dependences of the function. Moreove
leads us to determine the magnetic configuration of lo
range order below the critical point, because it is charac
ized by the critical wave vectorkc , at which the function
©2000 The American Physical Society12-1
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x(k) shows its maximum value in the paramagnetic pha
As for dynamics, the dynamical spectrum functionF(k,v)
gives us significant information because it is directly prop
tional to the inelastic diffuse thermal neutron scattering cr
section.9 Therefore, we can get physical interpretation for t
theoretical results by referring to the related experimen
data. Under these situations, the studies ofx(k) andF(k,v)
with arbitrary k and v are expected to shed light on th
problem of the frustrated spin systems.

We calculate these functions by the high-temperature
ries expansion method, i.e., they are expanded in power
the inverse temperatureQ([J1 /kBT). We carry out the
function x(k) up to seventh order ofQ. Using themth fre-
quency moments ofF(k,v), which are calculated up toQ6,
Q5, Q3, and Q for m50, 2, 4, and 6, respectively, th
function F(k,v) is constructed through the form of Mori’
continued fraction.10

The high-temperature series expansion method is a us
tool to investigate the frustration effect in disordered syste
for the following reasons. First, by using this method one c
study various magnetic properties without thinking about
sublattice structure of ordered states in advance. Secon
includes all nonlinear effects of thermal fluctuation at t
corresponding order of expansion, which is ignored in
mean-field theory. So far, we employed this method to st
several complex spin systems, such as randomly dilu
Heisenberg paramagnets on a Bravais lattice with
quenched-site or exchange-bond dilution,11 and with a
couple of competing interactions.12 These theories give us
proper understanding of the experimental results for vari
quantities, i.e., the transition temperature, the magnetic c
centration dependence in the specific heat, susceptibility,
Many other works related to this method have been review
by Rushbrooke, Baker, and Wood.13

This paper is organized as follows: In Sec. II, the expr
sion of the high-temperature series expansion is presente
the static susceptibilityx(k), and the procedure for estima
tion of the quantities is explained. Especially, we are c
cerned with the static properties for the 2D square quan
J1-J2-J3 Heisenberg antiferromagnets by analyses of
wave vector and the temperature dependence forx(k). The
dynamical spectrum functionF(k,v) is calculated in the
form of Mori’s continued fraction in Sec. III. We discus
some peculiarities in spin dynamics of the presentJ1-J2-J3
model by the studies ofJi ( i 51,2,3) dependence o
F(k,v). This paper ends with a summary in Sec. IV.

II. THE STATIC SUSCEPTIBILITY

We analyze the wave-vector-dependent susceptib
xzz(k) in terms of the high-temperature series expansi
This function is defined as

xzz~k!5~gmB!2b(
lj

exp$ ik•~ l2 j!%E
0

b

dl^Sl
zSj

z~ i\l!&,

~2!

whereb is defined by 1/kBT, mB is the Bohr magneton, an
g the gyromagnetic ratio. Because of the spatial isotropy
02441
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the system in the paramagnetic phase, the superscriptz is
omitted hereafter. The time dependence of the operatorB(t)
is in the Heisenberg representation, i.e.,

B~ t !5exp~ iHt !B~0!exp~2 iHt !, ~3!

and the angular brackets denote a canonical thermal ave
at Kelvin temperatureT, i.e.,

^A&5
Tr@exp~2bH!A#

Tr@exp~2bH!#
. ~4!

In the high-temperature series expansion expression,x(k)
is written as

x~k!5@~gmB!2/J1# (
n51

`

Xn~ j 2 , j 3 ;k!Q2n, ~5!

where j i andQ are defined asJi /J1 ( i 52,3), and a dimen-
sionless reduced temperaturekBT/J1, respectively. The cal-
culated coefficientsXn( j 2 , j 3 ;k) are given14 at symmetry
point G, X, andM, for 1<n<7 by puttingS51/2.

Present treatment for the series expansion correspond
the linked-cluster expansion method. It contains up to sev
bond clusters. To count bond clusters, we have to take
of the relative position of two sitesl and j. For example,
there are two kinds of one-bond cluster, depending
whether sitesl and j are the same position or not, i.e.,d lj or
12d lj . As a result, the numbersn(m) for m-bond cluster are
n(1)52, n(2)54, n(3)512, n(4)524, n(5)554, n(6)
569, andn(7)583. When we estimate the quantity ofx(k),
from this method, we always check the convergence of
series by 1/n plotting. Namely, we drawx [n] (k), which con-
tains terms, up to thenth order, against 1/n. Afterward,x(k)
is extrapolated from the mean value ofx [6] (k) andx [7] (k),
unlessx [n] (k) shows oscillatory behavior with divergent am
plitude as 1/n→0.

FIG. 1. Zero-temperature phase diagram forS51/2 in the j 2-j 3

parameter space. The solid lines denote the phase boundaries
mined by the simple spin-wave theory~Ref. 5!. The existence of the
spin-liquid phase is suggested in the region surrounded by do
lines. As will be shown in Sec. II, the present theory indicates
intermediate phase in the shaded areas, which are called dom
2-2
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Before describing the calculated results, the ze
temperature phase diagram forS51/2 determined by the lin-
ear spin-wave theory5 is presented in Fig. 1. Depending o
parametersj 2 and j 3, four distinct phases are seen:Néel,
collinear, and two helical configurationsH1 and H2. For
convenience, we refer to them hereafter asN, C, H1, andH2
phases, respectively. They are characterized by the w
vector

kN
c 5~p,p!, ~6a!

kC
c 5~0,p! or ~p,0!, ~6b!

kH1

c 5S cos21F ~2 j 221!

4 j 3
G ,p D or S p,cos21F ~2 j 221!

4 j 3
G D ,

~6c!
s
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kH2

c 5S cos21F 21

~2 j 214 j 3!G , cos21F 21

~2 j 214 j 3!G D , ~6d!

respectively. In Fig. 1, the continuous lines denote
boundaries between two different phases in the class
limit S5`, and the region surrounded by dotted lines in
cates something like the spin liquid state forS51/2 in a
sense of disordered phase in spite of the ground state.

As is well known, 2D isotropic Heisenberg systems ha
no finite transition point.15 Then it is convenient to study th
various features ofx(k) with different coupling constants
j i ’s on the basis of the reduced temperatureT̃([T/TMC),
whereTMC is the transition temperature determined by t
mean-field theory, i.e.,
3kBTMC/2S~S11!J1

55
~12 j 22 j 3!/3 for N phase ~7a!

~ j 22 j 3!/3 for C phase ~7b!

@2coskx
c1112 j 2 coskx

c2 j 3~cos 2kx
c11!#/6 for H1 phase ~7c!

@2coskx
c2cosky

c22 j 2 coskx
c cosky

c2 j 3~cos 2kx
c1cos 2ky

c!#/6 for H2 phase. ~7d!
po-
g

the

ne

ed
In Figs. 2~a!–2~d!, the susceptibilityx(k), which is nor-
malized by the value at the high-temperature limit, is illu

trated on the (kx-ky) plane atT̃53.0 for four cases with
parameters J151.0 where (j 2 , j 3) is ~0,0!, ~2.0,0!,
~1.0,0.375!, and ~0,1.0!, respectively. The correspondin
contour plots are also given on the right-hand side. As
shown in Fig. 1, they are expected to be typically orde
states namedN, C, H1, andH2 phases atT50, respectively.
We can find in Fig. 2 that eachx(k) exhibits a broad maxi-
mum centralized at the proper critical wave vectorkA

c (A
5N, C, H1, or H2), determined by Eqs.~6a!–~6d!, whereas
they have nok dependence atT5`. We call these paramag
netic phases, theA paramagnetic phase, ifx(k) shows a
broad maximum atkA

c . It is found that the position of the
critical wave vectorkA

c is unchanged at decreased tempe
ture, but the shape ofx(k) becomes gradually sharpene
Therefore, the pattern of the local order developed at
critical temperature is characterized bykA

c , and the ordered
state seems to be inherited from it. In this sense, the ana
of x(k) calculated in terms of the high-temperature ser
expansion allows us to study the critical behavior for gene
cases with arbitrary parameters (j 2 , j 3), and to discuss
whether the spin liquid state exists or not in the pres
J1-J2-J3 model, and what kind of aspect results if it exis
For convenience, we use the reduced wave vectork̄ defined
by k/p in the following discussions.

Since the possibility of the spin liquid state is suggest5

around j 3> j 2/2, where j 2.0.25 andj 3.0.125, which is a
border line betweenH1 andH2 phases, andj 35(122 j 2)/4,
-

is
d

-

e

sis
s
l

t
.

where j 2,0.5, which is the boundary betweenN andH1 or
H2 phases~see Fig. 1!, let us observex(k) along two lines
j 250.5 and j 35(122 j 2)/4, where j 2,0.5. By fixing the

parameter asj 250.5, x(k) is displayed in Fig. 3 atT̃53.0
for ~a! j 350, ~b! 0.125,~c! 0.25, and~d! 0.5, respectively.

Four distinguishable peaks are seen inx(k) at k̄H1

c 5(1.0

60.5,1.0) and (1.0,1.060.5) in ~b!, and at k̄H2

c >(1.0

60.4,1.060.4) in ~d!. The former indicates theH1 paramag-
netic phase, and the latter indicates theH2-type phase. For
the rest, however, we cannot recognize the specific peak
sition of x(k); instead,x(k) shows a broad maximum alon

the lines ofk̄x51.0 andk̄y51.0 in ~a!, which is theN-H1-C

triple point, and along a ring (k̄x
21 k̄y

2)>(0.5)2 in ~c!, which
corresponds to theH1-H2 phase boundary. In Fig. 4,x(k) is

plotted along another line,j 35(122 j 2)/4 at T̃52.5 for the
parameters (j 2 , j 3), which are~a! (0.1,0.2),~b! (0.25,0.125),
and~c! (0.4,0.05), respectively. Each case corresponds to
N-H2 boundary, theN-H1-H2 triple point, and the boundary
betweenN andH1 phases, respectively. For each case,x(k)
displays its maximum over a certain range on the (kx-ky)
plane. In addition to the above cases,x(k) is shown for
( j 2 , j 3)5(0.75,0.125) in Fig. 4~d! at T̃53.0, which corre-
sponds to theC-H1 phase boundary. From these results, o
can find a certain spreading domain on the (kx-ky) plane at
the phase boundary, over whichx(k) remains constant with
its maximum value, in contrast to the fact that typicalN, C,
H1, and H2 paramagnetic phases have their own specifi
2-3
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FIG. 2. The wave-vector-dependent suscep
bility x(k) for S51/2 is illustrated for stable

paramagnetic phases on the (kx-ky) plane atT̃
53.0. The figures are normalized atT5`: ~a! N
paramagnetic phase, withj 25 j 350; ~b! C para-
magnetic phase withj 252.0 and j 350; ~c! H1

paramagnetic phase, withj 251.0 andj 350.375;
and ~d! H2 paramagnetic phase withj 250 and
j 351.0. The relevant contour map is present
on the right-hand side.
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peak positions inx(k). We find that the domain varies i
form depending on the parametersj 2 and j 3. From their
shapes, we refer to these domains appearing in Figs. 3~a! and
3~c! as ‘‘cross’’ and ‘‘ring,’’ respectively. Other domains i
Figs. 4~a!–4~d! are also referred to as ‘‘square,’’ ‘‘disk,’
‘‘diamond,’’ and ‘‘rectangular,’’ respectively.

In Fig. 5 the temperature dependence ofx(k) is plotted
along theX-M direction for cases bring the following do
mains: in ~a! cross, with (j 250.5, j 350); ~b! ring with
~0.5,0.25!, ~c! disk with ~0.25,0.15!, and~d! rectangular with
~0.75,0.125!. Although the temperature is decreased, th
show no definite unique critical wave vector but display c
rious wave-vector dependence. In Fig. 5~a!, x(k) heaps up so
slightly centering around theM point in theX-M direction at
T̃51.5 that the difference between the maximum and
minimum value is less than 7%, whereas it presents a p
02441
y
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e
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aroundM in theG-M direction, as shown in the inset. Figur
5~b! presents two distinguishable peaks near points of (
60.47,1.0). However, they are not characteristic mod
specifying the ordering type, but they express two section
ring @see Fig. 3~c!#. The wave-vector-independent parts a
seen inx(k) around theM point in Fig. 5~c! and theX point
in Fig. 5~d!, due to the existence of the domain structu
These situations are confirmed when we plot the wave-ve
dependence of the ground-state energyE(k) determined by
the spin-wave theory.16 In that case, the critical wave vecto
kA

c is determined by minimizingE(k).
So far, we have been concerned with the feature ofx(k)

just on the phase boundary; now let us pay our attention
in the vicinity of the phase boundary. To do so, it is instru
tive to trace the peak position ofx(k), denoted bykA

p , with
the variation ofj i ( i 52,3). In Fig. 6,kA

p is plotted for itsx
2-4
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FIG. 3. The susceptibilityx(k) is plotted at

T̃53.0 along a line ofj 250.5, with~a! j 350, ~b!
0.125,~c! 0.25, and~d! 0.5, respectively. The rel-
evant contour map is presented on the right-ha
side.
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component (kA
p)x versus various values ofj 3 at T̃51.5, ~a!

for j 250.5 and~b! for 0.75, respectively. As for thej 2 de-
pendence, it is shown in Fig. 7 for~a! j 350.125 and~b! j 3
50.2, respectively. To examine the quantum effect, the c
responding classical values~with S5`) are displayed. For
reference, (kA

c )x is also drawn. The phase limits determin
by the spin-wave theory5 are indicated by the arrows.

From these figures, we find the following facts.
~1! In the classical case, (kA

p)x coincides with (kA
c )x on the

whole except in the shaded area; however, non-neglig
discrepancies between them are seen in the quantal case
it deviates from the classical ones toward theM point as long
as j 2 and/or j 3 are smaller than 0.5. This means that t
quantal case is influenced by theNéel mode more efficiently.

~2! The j i ( i 52,3) dependence of (kA
c )x is classified into

two types: one changes discontinuously at the phase bo
ary, while the other varies continuously, but abruptly, the
02441
r-

le
i.e.,

d-
.

The former case occurs at theH1-H2 phase boundary. The
peak position ofx(k) also jumps fromkH1

p to kH2

p , or vice

versa. If the parametersj i ’s depart from the boundary point
little, it behaves like the stableH1 or H2 paramagnetic phas
at once. Then this is considered as the first-order phase
sition. Just at the phase boundary, the associated two c
acteristic modeskH1

c and kH2

c may coexist and stand on

circle k̄x
21 k̄y

2>(0.5)2 for the considered case withj 250.5
and j 350.25. Consequently, the formation of the ring sha
domain is acceptable on the (kx-ky) plane. The latter case
takes place at theN-H1-H2 triple point, and at theH1-C,
N-H1, andN-H2 phase boundaries. It is noteworthy that t
domain structures come out in the vicinity of every pha
boundary between the commensurate and incommensu
paramagnetic phases~see the shaded areas in Figs. 6 and!.
Since the critical wave vectorkH1

c ~and/orkH2

c ) in the incom-
2-5
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FIG. 4. The susceptibilityx(k) is plotted at

T̃52.5 along a line ofj 35(122 j 2)/4 with ap-
propriate parameters (j 2 , j 3): ~a! (0.1,0.2), ~b!
(0.25,0.125), and~c! (0.4,0.05), respectively. In
addition to the above cases, it is illustrated at t
C-H1 phase boundary withj 250.75 and j 3

50.125 atT̃53.0. The relevant contour map i
presented on the right-hand side.
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mensurate paramagnetic phase incorporates suddenly
kN

c ~or kC
c ) in the commensurate ones near the phase bou

ary, the effects of these modes amalgamate with each o
and contribute to the susceptibilityx(k) almost equivalently.
This leads to the appearance of the domain described ab
Thus, one can say that the second-order phase transitio
curs in this case via the intermediate phase bearing the
main structure. Depending on the locations of the relev
critical wave vectors, the domain presents rich shapes: it
pears as square, disk, diamond, and rectangular, in the n
borhood of theN-H2 phase boundary, theH1-H2-N triple
point, and theN-H1 and C-H1 phase boundaries, respe
tively.

For the neighborhood of theN-H1-C triple point, it de-
mands a careful analysis because there are two differen
proaches to that point: one is provided by increasingj 2 to 0.5
with j 350 and the other is provided by decreasingj 3 to zero
02441
ith
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p-

with j 250.5. Following the first route, one can see that theN
paramagnetic phase is stable forj 2,0.45, whereas theC
paramagnetic phase is stabilized forj 2.0.55. In the region
0.45< j 2<0.55, x(k) hardly shows the wave-vector depe
dence along theX-M direction regardless of the reduction o
temperature. In particular, atj 250.52, it remains constan
with its maximum value along that direction, while it pea
at the M point along theG-M direction in similar form,
drawn in the inset of Fig. 5~a!. This situation can be under
stood as follows: when the parameterj 2 is increased, the
critical wave vector changes fromkN

c to kC
c at the boundary

j 250.52, wherex(k) keeps its maximum value at thekN
c and

kC
c modes. Since these modes line up alongk̄x561.0 and

k̄y561.0, the formation of the cross-type domain is e
pected. In fact, the phase boundary shifts fromj 250.5 de-
noted by the previous theory5 as 0.52 because of the pre
2-6
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dominant effect of the Ne´el mode in the quantal case
Tracing the second route, the critical wave vectork̄H1

c is fixed

by constant (60.5,1.0) or (1.0,60.5), unlessj 350. For j 3

.0.125, kH1

p coincides withkH1

c , so that theH1 paramag-

FIG. 5. The susceptibilityx(k) is presented at various temper

ture T̃51.5, 3.0, and 5.0, along theX-M direction for several inter-
mediate phases called cross withj 250.5 and j 350 in ~a!, ring
(0.5,0.25) in ~b!, disk (0.25,0.15) in ~c!, and rectangular
(0.75,0.125) in~d!. In the inset, the temperature dependence
x(k) is plotted alongG-M direction for cross.

FIG. 6. Thex component of the peak position for susceptibili

x(k), (kA
p)x is plotted versus various values ofj 3 at T̃51.5 with the

symbolL for S51/2 and the symbol3 for S5`: ~a! j 250.5 and
~b! j 250.75.
02441
netic phase is stable; however, in the opposite casej 3

,0.125,kH1

p goes away fromkH1

c and joins tokN
c as j 3→0.

Correspondingly, thek dependence ofx(k) is reduced along
the X-M direction, and approaches that of the cross-ty
domain. This is also interpreted in terms of the predomin
effect of the Ne´el mode in the region forj 3,0.125, with
j 250.5.

Finally, we draw up the domain map with the shaded a
in Fig. 1 atT̃51.5. It is interesting to note that this doma
map is similar to the phase diagram5 for S51/2 in the ground
state, except for the boundary between theH1 and H2
phases. Since the four magnetic configurations of the orde
phases and the local order patterns in the critical tempera
region are specified commonly by the critical wave vec
kA

c , we can suggest a possibility of the existence of the
termediated magnetic-disordered phase atT50 around the
domain region. And it seems to be closely connected w
the spin liquid state, whether it is quantal or classical. He
let us mention that it is found that the first-order phase tr
sition occurs between theH1 andH2 phases from the analy
sis of the domain formation, so the intermediate phase
spin liquid state is not expected around this phase bound

III. THE DYNAMICAL STRUCTURE FUNCTION

In the previous section, we have seen curious feature
the static properties in the frustrated 2DJ1-J2-J3 model, and
clarified that most of them are attributed to the competit
among three kinds of antiferromagnetic couplings,J1 , J2,

f

FIG. 7. Thex component of the peak position for susceptibili

x(k), (kA
p)x is plotted versus various values ofj 2 at T̃51.5 with the

symbol L for S51/2 and the symbol3 for S5`: ~a! j 350.125
and ~b! j 350.2.
2-7
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and J3. In this section, we study how such competition a
fects the spin dynamics. The observed spectrum of inela
cally scattered neutrons can be interpreted in terms of
dynamical spectrum functionF(k,v).9 It is given by using
the spin relaxation functionR(k,t) as

F~k,v!5
1

2pE2`

`

dteivt
R~k,t !

R~k,0!
,

5
R~k,v!

R~k,0!
, ~8!

where

R~k,t !5E
0

b

dl^elHSk~0!e2lHS2k~ t !&2b^Sk&^S2k&.

~9!

If R(k,t) is taken att50, it is proportional to the wave
vector-dependent susceptibilityx(k) as

x~k!5
~gmB!2

N
R~k,0!. ~10!

Using the procedure introduced by Mori,10 the Laplace
transform ofF(k,v) is expanded into a continued fractio
i.e.,

F̂~k,z!5E
0

`

dte2ztF~k,t !5$z1d1 /@z1d2 /~z1••• !#%21.

~11!

The coefficientsd i ’s can be related to the reducedmth mo-
ments Ṽk

m , which are the frequency moments ofF(k,v),
defined by

Ṽk
m5E

2`

`

dvvmF~k,v!5Vk
m/Vk

0 , ~12!

as

d i5ai /ai 21 , ~13!

with

a051,

a15Ṽk
2 ,

a25Ṽk
42~Ṽk

2!2,

a35Ṽk
62~d11d2!Ṽk

4 ,

A .

In Eq. ~12! Vk
m is themth frequency moment ofR(k,v) and

given by
02441
ti-
e

Vk
m5E

2`

`

dvvmR~k,v! ~14!

5b21(
l j

exp$ ik•~ l2 j!%S i

\ D
3K FSl~0!,

]Sj~ t !m21

]tm21 G L U
t50

. ~15!

The reducedmth moment is calculated by means of the hig
temperature series expansion, and expressed as

Ṽk
m5@1/J1# (

n50

`

Wmn~ j 2 , j 3;k!Q2n. ~16!

By symmetry, all the odd momentsṼk
2m11(m.0) vanish.

The calculated coefficientsWmn( j 2 , j 3 ;k) are tabulated14 at
two points M and X, for m52, with 0<n<5, for m54,
with 0<n<3, and form56, with 0<n<1, by puttingS
51/2 andJ151.

Following the approximation of a Gaussian termination17

for the continued fraction at the third level, we get

F̂~k,iv!5
1

iv1
d1

iv1d2f 2S v

d3
1/2D

, ~17!

where

f 2~x!5d3
21/2e2x2/2F S 1

2
p D 1/2

2 i E
0

x

dyey2/2G . ~18!

As a result, we can evaluateF(k,v) directly from the rela-
tionship

F~k,v!5p21ReF̂~k,iv!. ~19!

A. Four stable paramagnetic cases

As a first step, let us examine the transfer wave vector
the frequency dependence of the dynamical spectrum fu
tion F(k,v) for four stableN, C, H1, and H2 paramag-
netic phases. At small wave vectork.0, F(k,v) exhibits a
Lorentzian due to the spin diffusion process, and the sh
peak ofF(k,v) is expected atv50 andk50, which indi-
cates the total spin conservation. For the other cases, h
ever,F(k,v) shows various structures depending onk.

At the high-temperature limit, with an increasingk value,
a broad shoulder appears inF(k,v) with width vsh . Fur-
thermore, for some cases, this shoulder turns into a hu
situated at finite frequencyvJ ask approaches tokA

c . In Figs.
8~a!–8~d!, F(kA

c ,v) is plotted versus the reduced frequen

v̄(5v/J1) for the same parameters (j 2 , j 3) as those in Figs.
2~a!–2~d!, respectively. Thek dependence of the shoulde
width v̄sh or v̄J is illustrated for each case in Figs. 9~a!–
2-8
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9~d!, and compared with the corresponding square root of

reduced second momentAṼk
2, which is given atT5` in

following simple form:

AṼk
2/~2J1!5@$22cos~kx!2cos~ky!%

1 j 2
2$22cos~kx1ky!2cos~kx2ky!%

1 j 3
2$22cos~2kx!2cos~2ky!%#1/2. ~20!

Roughly speaking, theirk dependences coincide with eac
other. From the expression of Eq.~20!, it is considered that
the appearance of a shoulder or hump~damped side peak! in
F(kA

c ,v̄) is responsible for the spin flip-flop motions go
erned by the critical wave vectorkA

c .17 In fact, the local spin
flip-flop motions occur rapidly between first, second, a
third neighbors at high temperature, so the side peak, etc
barely seen inF(k,v̄) due to the strong motional narrowing
However, when the transfer wave vector of incident ne
trons, for instance, approacheskA

c , it is resonant with the
characteristic spin flip-flop motion atv;vJ ~or vsh). This
should create the form of the damped side peak or shou
in the response function. In other words, one can specifykA

c

by the measurement of the peak positionvJ or shoulder
width vsh in the inelastic neutron scattering cross secti
even if there is at high-temperature limit.

FIG. 8. The dynamical spectrum functionF(kA
c ,v) is plotted

versus the reduced frequencyv̄(5v/J1) at T̃5` and 2.0 for~a!
A5N, ~b! A5C, and ~d! A5H2 paramagnetic phase. For theH1

paramagnetic phaseF(kA
c ,v) is given in ~c! at T̃5` and 7.5.
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The present series expansions for the frequency mom
Ṽk

m (m50, 2, 4, and 6! are too short to discuss for the sp
dynamics in the low-temperature region; however, it is e
pected to extract some precursor about it from investiga
of F(k,v̄) at the finite temperature. On account of the co
vergence for such series expansion, the temperature is
ited for meaningful discussion toT̃>2.0 for N, C, andH2,
and T̃>7.5 for H1 paramagnetic phases. In Figs. 8~a!–8~d!,
F(kA

c ,v) is presented at the approvable lowest tempera
for each case.

The effect of the temperature reduction on spin dynam
is definitely found, i.e., the line shape becomes considera
narrowed. To understand this situation, the investigation
the half-width ofF(k,v), DvH(k) is useful. For instance
DvH(k) are displayed in Figs. 10~a! and 10~b! for theN and
H1 paramagnetic phases atT̃52.0, and compared with the
corresponding second moment and the spin-wave excita
v(k)sp for variousk values. Here, let us remark on the line
spin-wave dispersion relation:16

v~k!sp52J1SAskdk, ~21!

with

sk5(
i 51

3

j i(
di

~coskA
c
•di2cosk•di !, ~22a!

dk5(
i 51

3

j i(
di

coskA
c
•di~12cosk•di !, ~22b!

wheredi is a vector joining a site with thei th nearest neigh-
bors. Equation~21! denotes that there are two kinds of so
modes, thek50 andk5kA

c , which are consequences of th
kinematical slowing down and Goldstone theorem. Intere
ingly, in the vicinity of kA

c , the wave-vector dependence

FIG. 9. Thek dependence of the side peak positionvJ ~shoulder
width vsh) is plotted with a symbolL (3) atT5`, corresponding
to Fig. 8 for~a! N, ~b! C, ~c! H1, and~d! H2. The related square roo

of the reduced second momentAṼk
2 is illustrated as a function ofk.

Each quantity is normalized by its maximum value.
2-9
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DvH(k) and the second moment are completely opposite
that at the high-temperature limit. They seem to be like
profile of the spin-wave dispersionv(k)sp , because it forms
a hollow ask→kA

c , although it remains finite atk5kA
c . This

can be explained in terms of the short-range magnetic o
developed at a finite temperature.18,19 As the temperature is
lowered, the correlation appears among the local situati
so a certain kind of short-range magnetic order must be
veloped with temperature-dependent finite sizej(T) and fi-
nite lifetime t(T). Since the spin arrangement is consid
ably ordered at least inside this short-range order, the mo
with large enoughk, i.e.,kj.1, behave very much like spin
waves for a while, approximately duringt. This spin-wave-
like mode is usually called a ‘‘sloppy spin wave.’’18,19These
circumstances are reflected in the same spectrum as
damped spin wave modes situated atv;vsp(k). In contract
to this, for the modes with small enoughk, i.e., kj,1, one
cannot expect any oscillatory collective excitation, but t
diffusive behavior in spin propagation, and the spectr
leads to a slight hump with maximum atv50. At the con-
sidered temperatureT̃52.0, there exist so many kinds o
magnetic short-range orders in several sizej and lifetimet
that both behaviors, i.e, the quasi-spin-wave modes and
diffusive modes, are observed in the spectrumF(k,v).

B. Intermediate phases

We now turn to a discussion on the dynamics in the
termediate phases. In a way similar to the stable param

FIG. 10. The half-widthDvH(k) ~solid line! is compared with
the spin-wave excitationv(k)sp ~dotted line! described in Eq.~21!

and the square root second momentAṼk
2/(AṼk

2)max ~broken line!
for various k values, for ~a! the N paramagnetic phase, withj 2

5 j 350 and ~b! the H2 paramagnetic phase withj 250 and J3

51.0. Here, Ā means the normalization byAmax, i.e., Ā
5A/Amax.
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netic phases, the shoulder appears dependent onk at T5`.
In Figs. 11~a! and 11~b!, v(k)sh is plotted as a functionk for
the cross and ring cases. The corresponding second mo
is also plotted. In comparison with the typical stable fo
cases, thek variation appears rather sluggish, except for t
drastic narrowing aroundk→0. This is due to the fact that no
unique specified critical wave vector exists in these cas
but severalk’s indicated by arrows in Figs. 11~a! and 11~b!

can contribute dominantly toF(k,v̄) @see Eq.~20!#.
At a finite temperature, the situations are less clear du

the limited length of the series for the frequency momen
However, some dynamical features are captured by
analysis of thek dependence of the second frequency m
ment Ṽk

2 . The corresponding reduced second momen

added in Fig. 11 atT̃55.0 and 2.5. In contrast to the remar
able temperature dependence in the stable paramag
phases, eachk dependence changes slightly with a decre
in the temperature, especially over domain~shaded parts in
Fig. 11!, and keeps the high-temperature dynamical asp
in a sense that a broad maximum stays around theM point.
This is interpreted that the collective propagationlike mode
not expected in these cases due to the frustration effect,
the spin-flop motion driven by the dominant Ne´el mode sur-
vives although the temperature is decreased.

IV. SUMMARY

By using the high-temperature series expansion meth
static and dynamical properties are investigated for the
square quantum Heisenberg antiferromagnets with com
ing interactions up to third neighbors~J1-J2-J3 model!.

FIG. 11. Thek dependence of shoulder widthvsh /(vsh)max is
plotted with the symbol3 at T5` for two intermediate phase:~a!
cross, with j 250.5 and j 350 and ~b! ring with j 250.5 and j 3

50.25. The related square root of the second mom
AṼk

2/(AṼk
2)max is plotted atT̃5` ~broken!, T̃55.0 ~dotted!, and

T̃52.5 ~solid line!. Each quantity is normalized by its maximum
value.
2-10
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The wave-vector-dependent susceptibilityx(k) is calcu-
lated up to the seventh order ofQ. Although our series are
not sufficient to give the critical discussion in the low
temperature region, the convergence of the series seem
give us reasonable results forT̃>2.0 (T̃>1.5 for some static
properties!. Thus we can expect to extract some precurso
the peculiarities in the low temperature by analysis ofx(k)
around the critical temperature regionT̃>2.0 or so.

We find four kinds of stable paramagnetic phases: N´el,
collinear, and two helicalH1 and H2 ones in the proper
range of theJ1-J2-J3 space. They are characterized by t
critical wave vectorkA

c (A5N, C, H1, or H2), at which the
functionsx(k) show their maximum values.

Interestingly, thiskA
c coincides with the wave vector tha

specifies the spin configuration in the ordered state. T
means that there is a similarity between the highly develo
magnetic short-range order and the long-range order. Ex
around theH1-H2 phase boundary, the four stable typic
paramagnetic phases are destabilized; instead, the interm
ate phases appear in the neighborhood of the correspon
phase boundary. In the intermediate phase, it remains
stant with its maximum value spread over a certain range
the (kx-ky) plane, which is referred to here as a domain. I
verified that the frustration effects, attributed to the comp
ing interactionsJi ( i 51,2,3), are indispensable for such d
main formation, and the shape varies depending on the
of frustration it is concerned with, whether it is quantal
classical. The analogy between the paramagnetic phase
gram obtained here and the ordered one derived by
simple spin-wave theory suggests the possibility that the
termediate phases turn into the spin liquid state asT→0.
h

t

02441
to

f

is
d
pt

l
di-

ing
n-
n

t-

d

ia-
e
-

However, such a state is not anticipated around theH1-H2
phase transition, because it is the first-order phase transi

The dynamical spectrum functionF(k,v) is evaluated in
the form of Mori’s continued fraction by using the approx
mation of a Gaussian termination at the third level. Here,
coefficientsWmn( j 2 , j 3 ;k) defined in Eq.~16!, are calculated
up to the fifth, third, and first orders ofQ for m52, 4, and 6,
respectively.

For arbitrary cases,F(k,v) shows a sharp peak atv50
andk50, regardless of the temperature, due to the kinem
cal slowing down. The dynamical behavior for the fo
stable paramagnetic phases is also characterized by the
cal wave vectorkA

c : at T5`, the side peak or shoulder shap
appears atk.kA

c , due to the local flip-flop motion, and th
line shape becomes considerably narrow as the tempera
decreases due to the quasicollective motion. In the inter
diate phase, the line shape atT5` undergoes a slow chang
versus the wave vectork except for the drastic narrowing
aroundk.0. This is due to the absence of the unique critic
wave vector, and severalk’s contribute toF(k,v) almost
equivalently. It is known from the analysis of the seco
frequency moments that the high-temperature dynamical
pect is retained even if the temperature is decreased, du
the frustration effect.
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