
PHYSICAL REVIEW B, VOLUME 63, 024404
Absence of a metallic phase in random-bond Ising models in two dimensions: Applications
to disordered superconductors and paired quantum Hall states
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When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it
has the same symmetries as an ensemble of random matrices known as class D. A nonlinears model analysis
of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion
eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the
random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound
on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or
spin-polarizedp-wave superconductors and paired fractional quantum Hall states allow a mapping onto an
Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further
argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered
or weak-pairing phase, in which non-Abelian statistics is obtained in the pure case.

DOI: 10.1103/PhysRevB.63.024404 PACS number~s!: 75.10.Nr, 73.20.Fz, 73.43.2f
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I. INTRODUCTION

Ising models with quenched random bonds have b
considered over many years. Negative couplings prod
frustration and this is the starting point for the spin gla
problem.1 A large class of models possess a ‘‘Nishimo
line’’ in their phase diagram, on which the internal energy
analytic,2 and the correlation functions of the Ising spi
obey certain identities.2,3 In two dimensions, the Ising mode
can be represented as a noninteracting fermion prob
even when the bonds are random.4 The problem then reduce
to something similar to a two-dimensional~2D! tight-binding
Hamiltonian with quenched disorder. Properties of the Is
model are then related to those of the fermion system
particular to the fermion Green’s functions corresponding
the ‘‘Hamiltonian,’’ at a fixed ‘‘energy,’’ namely zero~this
‘‘energy’’ is not directly related to the energy in the sense
the Ising Hamiltonian!. Then it is of interest to understan
the properties of the fermion eigenstates near this energ
particular whether they are localized or extended. In this
per, we consider such problems, and in particular argue
a recent proposal5 that there exists a phase of the Ising mod
in which the fermion eigenstates at zero ‘‘energy’’ are e
tended~a ‘‘metallic phase’’! is ruled out. We also apply the
results to paired fermion systems as in superconductors
quantum Hall states, which map onto similar noninteract
fermion problems.

Models of noninteracting fermions can in principle b
considered using the methods of localization theory and
dom matrices. A list of symmetry classes~larger than the
standard list due to Dyson! of ensembles of matrices wa
introduced by Altland and Zirnbauer~AZ!.6 The work of AZ
was motivated by problems of disordered superconduct
Within the mean-field approximation, the fermionic qua
particles of a superconductor are noninteracting, thus ca
described using a single-particle formulation. The latter
0163-1829/2000/63~2!/024404~12!/$15.00 63 0244
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volves a Hamiltonian which in general contains quench
disorder, and could be a tight-binding Hamiltonian in 2D, f
example. The energy levels of this Hamiltonian are the
citation energies of the quasiparticles. Once again, we m
ask questions about the nature of the fermion eigenfunct
and eigenvalues. For superconductor problems, the na
zero of energy is a special point in the spectrum~unlike the
case of a normal metal, for example!.6

Among the symmetry classes found by AZ, one, deno
class D, describes disordered superconductors with bro
time-reversal and spin-rotation symmetries. The symmet
are the same as those of the fermion problem in the t
dimensional~2D! random-bond Ising models~RBIM’s!, and
‘‘energy’’ for the fermions of the Ising model corresponds
excitation energy for the fermions in the superconductor. T
nonlinears model for class D,6 which in effect defines this
ensemble for dimensions greater than zero, has been sh
in the 2D case, to flow under the renormalization group
weaker values of the coupling constant.7,5,8,9 The coupling
constant is related to the inverse of the thermal conducti
of the superconductor, and this flow implies that there i
phase in which there is a nonzero density of extended
mion eigenstates at zero excitation energy, and a super
ductor described by this model would be in a thermal me
phase. We will refer to such a phase simply as a meta
phase. See also Refs. 10 and 11, respectively, for the 1D
3D cases.

Senthil and Fisher5 considered possibilities for the appl
cation~via the fermion mapping! of results for class D to 2D
RBIM’s. One scenario they discussed includes a metallic
gion in the phase diagram, below the Nishimori line, at re
tively strong disorder and low temperature. They sugges
that such a phase would have vanishing expectation va
for both the Ising spin~‘‘order’’ ! and the dual ‘‘disorder’’
variables. Another scenario was that the metallic ph
should be identified with the zero-temperature spin-glass
gion of a RBIM.
©2000 The American Physical Society04-1
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The preceding statements will be formulated more p
cisely in the course of this paper. Here we will begin
writing the Ising model Hamiltonian,

bH52(
i j

Ki j s is j , ~1!

whereb51/T is the inverse temperature, the Ising spinss i
561, i, j label sites of the lattice, andKi j 5Ji j /T is a con-
venient notation for the Ising couplings~bonds!. We will
assume thatJi j is zero unlessi, j are nearest neighbors o
~say! the square lattice, and that there is aT-independent
probability distibution forJi j , such that the different neares
neighbor bonds are statistically independent and identic
distributed. The statistical assumptions are not crucial
could be relaxed further, but we will see that it is importa
that theJi j are real, not complex. The partition function
then

Z5(
$s i %

exp~2bH!, ~2!

where the sum is over all spin configurationss i561 for all
i. We will avoid discussing the boundary conditions on t
lattice, or the thermodynamic limit, since we are mainly co
cerned with averages over the disorder of correlations of
erators at separations that can be held fixed and far from
boundaries as the system size is taken to infinity after
disorder average.

We now recall a trivial fact, which will be central to th
later arguments: the Ising spin correlation function for
fixed set of bondsJi j ,

^s is j&[(
$sk%

s is j exp~2bH!/Z, ~3!

is bounded above by 1 and below by21:

u^s is j&u<1. ~4!

The bound is attained in the zero-temperature limit in pure
unfrustrated models, which include the antiferromagne
models~all Ji j ,0) on a bipartite lattice, as well as ferroma
netic ~all Ji j .0) models. The bound follows from th
Boltzmann-Gibbs probabilities exp(2bH)/Z being positive
~and summing to 1!, due to the reality of the couplingsJi j .

In this paper, we will discuss the statistics of the corre
tion functions in the order and disorder operators in a RB
and in the class D nonlinears model. Our central result is
that in the metallic phase, the moments of either correla
function increase as powers of distance, which for the or
~Ising spin! correlations eventually violates the upper boun
Eq. ~4!. This implies that the metallic phase described by
s model cannot occur in a RBIM as long as the couplin
between the Ising spins are real. Our results apply to b
nonzero and zero temperature in the Ising model. We tr
the difference between the behaviors to differences in
form of the disorder, and suggest that the metallic phase
not after all occur in spinless or spin-polarized supercond
ors, or in paired fractional quantum Hall states with disord
02440
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In the remainder of this paper, we present our results
Sec. II, we show that the Kadanoff-Ceva disorder correlat
function12 in a RBIM has moments bounded below by 1, a
that its logarithm is symmetrically distributed, whenever t
bonds are symmetrically distributed, as in an Edwar
Anderson~EA! spin-glass model. This relatively simple re
sult will serve to illustrate points in the later discussion.
Sec. III, we obtain our central result, that the logarithms
the squared order and disorder correlations in the meta
phase are normally distributed, with mean zero and varia
increasing as the logarithm of the distance, and hence
even moments of the correlations increase as powers of
tance. Several steps are involved to set this up. An impor
point that arises along the way is that the distinctions
tween ensembles D, B, and BD, introduced in Ref. 9, are
important for local properties, such as these correlations
Sec. IV, we consider another model, the O~1! model, and
show that both its order and disorder correlations have pr
erties like those in Sec. II. This model is most likely in th
metallic phase. The crucial difference between such a mo
and the RBIM, is that~in network model13 language, dis-
cussed in Sec. III! the disorder addsp fluxes or vortices on
one sublattice in the RBIM, but on both in the O~1! model; in
Ising model language, the O~1! model corresponds to a
Ising model with some couplings being complex. We a
obtain the exact exponent for the mean order and diso
correlations at the critical point in another network mod
the class C, or spin quantum Hall, model of Ref. 14. In S
V, we consider applications of our results to spinless or sp
polarizedp-wave superconductors or paired fractional qua
tum Hall effect ~FQHE! states. We show that independe
insertion of vortices on a single sublattice corresponds to
RBIM situation, and cannot produce a metallic phase, at le
at low densities. We argue that such ‘‘vortex disorder’’ d
stroys the Ising low-temperature ordered, or weak-pair
phase. For correlated vortices, the latter phase can occur
there may be transitions in the universality classes found
the RBIM, rather than an intermediate metallic phase. S
tion VI is the conclusion.

II. DISORDER CORRELATIONS FOR A SYMMETRIC
DISTRIBUTION OF BONDS

Our first result concerns the dual correlations in the E
spin glass case where the mean ofJi j is zero. The two-point
correlation of the Kadanoff-Ceva disorder variablema is de-
fined in the following way~adapted from the pure case.12!
The disorder variables are associated with sitesa of the
~graph-theoretic! dual lattice, that is, plaquettes of the orig
nal lattice. Given a choice of two such sitesa, b, we take
the Hamiltonian~1! and modify it by reversing the sign o
the Ji j ’s on the links of the lattice crossed by a path on t
dual lattice that runs froma to b. We can then construct th
corresponding modified partition functionZmod. Then we
define

^mamb&[Zmod/Z. ~5!

This definition is independent of the choice of path froma to
b, because ofZ2-gauge properties of the Ising model. No
4-2
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ABSENCE OF A METALLIC PHASE IN RANDOM-BOND . . . PHYSICAL REVIEW B63 024404
that ^mamb&.0 when theJi j ’s are real.
Now we consider the statistical properties of the disor

correlation function. We denote the average over the rand
bonds by an overbar, for example^mamb&. We again make
use ofZ2 gauge properties, this time of the distribution fun
tion for Ji j . There is a statisticalZ2 gauge invariance if the
distribution is symmetric,P(Ji j )5P(2Ji j ) for each i, j.
However, such reversed bonds were exactly what was u
in the definition of the disorder correlation. The set of bon
used inZmod occurs with the same probability, or probabili
density, as those inZ. Also, interchanging the original with
the modified bonds exchangesZmod with Z. Hence ln̂mamb&
is symmetrically distributed, and

~ ln^mamb&!m50 ~6!

for m odd, while

~ ln^mamb&!m>0, ~7!

for m even. For the correlation function itself, we have

^mamb&5Zmod/Z5
1

2
~Zmod/Z1Z/Zmod!>1. ~8!

The same argument works for any moment of the correla
function,

^mamb&m>1, ~9!

for any positive or negative integerm. The bounds are at
tained in the high-temperature limit, where^mamb&51.

We can predict how the disorder correlation functi
would behave in some well-known phases. In the param
netic phase, wherês is j&→0 asr i j ~the distance betweeni
and j ) goes to infinity, we expect that the mean disord
correlation goes to a constant at large distances, as in
pure case, and as in the high-temperature limit. The cons
must be>1, and it appears that it will increase with decrea
ing temperature. We also expect that the width of the dis
bution of the logarithm of the correlation goes to a consta
A finite-temperature spin-glass phase is believed not to oc
in 2D, but if it did we would predict that the distribution o
ln^mamb& would have a width that goes as (C1r ab

u 1C2)/T at
low temperature, whereC1 , C2 are positive constants, andu
is an exponent that characterizes the spin-glass phase15 as
follows. In the spin glass, the insertion of the disorder va
ables induces a domain wall terminating ata and b. The
wall is a fractal object, with a fractal dimension less than
and its free energy, which is random and can be positive
negative, scales asr ab

u .15 This exponent is believed to be th
same one that enters the effect of reversing the boun
conditions, from periodic to antiperiodic, in one direction
a finite system of sizeL; the change in free energy scales
Lu. The exponentu must be positive if the spin-glass pha
is to be stable at finiteT; it is found numerically to be nega
tive, for continuous~e.g., Gaussian! distribution ofJi j , indi-
cating that no finiteT spin-glass phase exists in 2D.1 For
some special discrete distributions, such as the bimodal6J
distribution ~which has many degenerate ground states, g
ing an extensive entropy atT50), u is small and negative
02440
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or possibly zero.16 Finally, for a critical point, r i j
u in the

width should be replaced by lnrij to a power>1/2, but,1,
when certain conditions hold, or most generally a function
r i j that is smaller than lnrij as r i j →` ~these follow from
general results in Ref. 17!.

The result Eq.~9! is in stark contrast to the Ising~order!
correlations. With a symmetric probability distribution, th
odd moments of̂ s is j& vanish, and the even moments a
<1. These opposite inequalities illustrate the extremelack
of duality for a symmetric probability distribution. If a me
tallic phase did occur in the RBIM, it would have to be du
to frustration, as recognized in Ref. 5. It would then naive
be expected to occur for a symmetric distribution of bon
We have now shown that the idea of a phase in which
mean disorder correlation tends to zero is untenable in
RBIM with a symmetric distribution of bonds.

What has happened to the duality present in the pure
Ising model? Kramers and Wannier showed that the Is
model on the square lattice can be reformulated as a
model on the dual lattice, with Ising spinsma561, and dual
couplingsK̃. If the disorder variables become Ising spin
why does one not again obtain a correlation less than one
the pure case, of course, one does. But the general rela
between the original couplingsKi j and the corresponding
K̃ab is

exp~22K̃ab!5tanhKi j . ~10!

For Ki j ,0, K̃ab has an imaginary partip/2 ~modulo a mul-
tiple of ip). The Boltzmann-Gibbs weights of the dual sp
configurations become complex in general. However,
weights for a given nearest-neighbor bonda, b for the two
values ofmamb561 differ simply by a sign. The disorde
correlation for fixedJi j ’s then becomes a weighted avera
of mamb ~for arbitrarya, b) with weights that sum to 1 bu
can be positive or negative. Hence the disorder correla
can be larger than 1. Put another way,Z may be smaller than
Zmod, unlike the pure case.

For more general distributions, including those with
nonzero mean forJi j ~which we can take to be positive with
out loss of generality!, we cannot obtain a general result s
easily. It is clear that when the disorder is weak~say, the
standard deviation is small compared with the mean!, there
will be a ferromagnetically ordered Ising phase, as in
pure Ising model, and in this the disorder correlation goes
zero at large distances. In order to rule out the existence
metallic phase in the intermediate region with nonzero m
Ji j , another approach is needed.

III. SPIN CORRELATIONS IN THE METALLIC PHASE

Now we turn to our second result, which directly concer
the metallic phase in the nonlinears model for class D. We
ask the question: if such a phase occurs in a random M
rana fermion model, what will be the behavior of the ord
and disorder correlations? We note immediately that
phase, as discussed in Refs. 5 and 8, is intermediate betw
two localized phases that would be identified with the pa
magnetic and ferromagnetic Ising phases, which are still
4-3
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proximately dual to each other as in the pure Ising mod
Then the intermediate metallic phase maps to itself un
duality, and should treat the order and disorder correlati
on an equal footing. The asymptotics of the two correlat
functions should be similar.

In Sec. III A, we discuss the representation of the Is
model as a lattice free fermion quantum field theory,
relation of this to a network model, and the representation
order and disorder correlations in this language. In Sec. II
we describe the nonlinears model that is used to define th
metallic phase. We argue that the distinctions between
sembles D, B, and BD,9 that differ globally, are not impor-
tant for local correlations. In Sec. III C, we introduce th
‘‘twist operators’’ that represent the order and disorder o
erators in the nonlinears model. Then in Sec. III D, we
show that the statistics of the order correlations is incomp
ible with a RBIM with real bonds, but compatible with othe
models that violate the latter condition.

A. Fermion representation

The metallic phase in the nonlinears model for class D
describes Majorana fermions, so we must consider the
mion representation of the Ising model. This can be set u
a variety of ways. The details are not in fact all that impo
tant here. The important points are that in fermion langua
duality becomes rather self-evident, and both the order
disorder variables are represented as modifying the part
function by inserting an additionalZ2 fluxes or vortices seen
by the fermions. A fermion propagating around a vort
picks up a phase factor21. The difference between the tw
operators is in the locations on the lattice at which they
cur. The duality is most evident if the fermions are cons
ered as moving on the ‘‘medial graph’’ of the original squa
lattice,18 as shown in Fig. 1 for a simply connected clust
The medial graph of a given planar graph possesses
sublattices of plaquettes, on one of which each plaquette

FIG. 1. Relation of the Ising model and the network mod
Ising spins are located at the open circles, and bonds are sh
dotted. Solid lines with arrows form the ‘‘medial graph,’’ on whic
the network model is defined. Examples of nodes on each of
two sublattices, corresponding to the horizontal and vertical bo
are labeledA, B, respectively. Note the form of the edge of th
cluster.
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closes a site of the original lattice, and on the other of wh
each plaquette encloses the center of a plaquette of the o
nal lattice~i.e., a site of the dual lattice!. The medial graph of
the square lattice is another square lattice, as shown, an
consider only square-lattice clusters from here on. Note
we view the corners outside the cluster as nodes, so tha
total number of links in the medial graph is a multiple of

The square of the Ising model partition functionZ can be
represented as a six-vertex model on the medial graph,
free-fermion values of the parameters at each node.18 ~There
are also many other ways to represent the Ising model
noninteracting fermion field theory on a decorated version
the square lattice. One such approach was used in pionee
work by Blackman and Poulter4 on the RBIM.! This free-
fermion system is also equivalent to a~second-quantized rep
resentation of! the Chalker-Coddington network model,13 as
has been emphasized recently.19,20In other words, the single-
particle model underlying the fermion field theory is a ne
work model. We omit a complete description of these mo
els since they have been discussed so frequently in re
years, but an outline of the main points is as follows. T
links of the medial graph square lattice are viewed as
rected with an arrow on each link; the arrows circula
around the plaquettes, which implies that they circulate
opposite ways for the two sublattices of plaquettes~see Fig.
1!. The particle propagates on the links of this medial gra
in the direction of the arrows, picking up amplitudes th
depend on the original random bondsJi j . The amplitudes for
each time step, during which the particle must move ‘‘fo
ward,’’ following the arrows, to an adjacent link consiste
with the arrows on the network, are elements of a unitary~S!
matrix assigned to each node. Thus the time evolution
described by a unitary matrixU, that is real in the presen
case, and has size a multiple of 4. The sign of the produc
amplitudes picked up by the particle propagating on
around a plaquette determines whether aZ2 flux or vortex
~we use these terms, orp flux, interchangeably! is present; a
vortex is present when the sign is21. In the pure Ising
model, such a vortex~a flux of p) is present on every pla
quette. The insertion of negativeJi j in the Ising model intro-
duces an additional pair ofZ2 fluxes on the plaquettes of th
medial graph that enclose the plaquette centers of the o
nal lattice of the two plaquettes that are adjacent to the b
in question.4 When we speak of adding vortices or fluxes
plaquettes, the fluxes add mod 2p, since the net phase
picked up by the particle is what really counts; the gau
choices involved will not matter. The effect of negativeJi j ’s
in the Ising model is thus to add vortices, butonly on one of
the two sublattices of plaquettesof the medial graph net-
work. By duality, vortices can also be produced in simi
pairs on the other sublattice, by adding an imaginary te
ip/2 to Ki j ~see Sec. II!.

The squared partition function of the Ising model,Z2, is
now given by the second-quantized version of the networ20

The partition function for noninteracting fermions is gene
ally a determinant of the inverse fermion propagator; in
present case, the propagator between two links is a sum
paths, given by the corresponding matrix element of 11U
1U 21•••5(12U)21, so we haveZ2}det(12U). Note

.
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that, unlike many other representations of the Ising mode
a fermion field theory, in our case the matrix 12U is not
antisymmetric, so we cannot say thatZ is the Pfaffian of the
same matrix.

BecauseU is unitary, its eigenvalues lie on the unit circ
and may be writtene2 i e, where the eigenvaluese of i ln U
play the role of excitation energy eigenvalues, even tho
they are defined only mod 2p. It is clear that for the long-
time properties, such as the partition function, the import
part of the spectrum ofe is neare50. SinceU is real, its
complex eigenvalues come in complex conjugate pa
while 1 and21 are possible and will usually be nondege
erate. Also, since the network has a two-sublattice prop
~the particles hop from one type of link to the other alte
nately!, the eigenvalues come in pairse2 i e, 2e2 i e. This
implies that if 1,21 are present, then so arei, 2 i , since the
total number of eigenvalues is a multiple of 4. Thus w
could restrict attention to the range2p<e<p, which rep-
resents2` to ` in a continuum model. For the RBIM, th
pair 1, 21 does not occur, det(12U).0, and the square
root can be taken to obtainZ.0.4 The case without the
quadruplet 1,21, i, 2 i ~i.e., when detU51) corresponds
to random matrices in class D, while the case with that q
druplet, detU521, corresponds to those in what has be
termed class B.9 These random matrix ensembles are of m
trices in the Lie algebras of SO(2N), SO(2N11) ~for some
N), respectively.6,9 Matrices found in class B possess at le
one, and typically only one, exact zero eigenvalue.

We now consider the calculation of the moments of
two-point functions of the order and disorder variables in
metallic phase of the nonlinears model for class D in 2D. In
terms of the medial graph or network model, the order a
disorder operators are both represented as the ratio
modified to the unmodified partition function, where ord
variables are represented by modifying the partition funct
by inserting vortices on the sublattice of plaquettes that c
respond to the sites of the original lattice, and the disor
variables are vortices on the plaquettes that correspond to
plaquettes of the original lattice. Either partition functio
when squared, is given by det(12U). As a check on the
formulas, we can consider the order and disorder correlat
in the pure case. An isolated vortex on a site of the origi
lattice carries a zero eigenvaluee50 in the high-, but not in
the low-temperature phase. For two vortices, the zero mo
can mix and split away from zero, by an amount exponen
in the separation when the latter is greater than the corr
tion length. At such large distances, the other eigenva
tend to nonzero constants, so the behavior of the ratio
products of eigenvalues of 12U is determined by the eigen
values that tend to zero. Hence the correlation function te
to zero exponentially with distance in the high-T phase, but
goes to a constant in the low-T phase. For the disorder co
relation, the situation is reversed.

The average over the disorder of the ratio of determina
is performed by using either the replica method, withn
copies of the system andn→0, or the supersymmetry
method, where 2n copies of the system are supplemented
2n copies of the system with a certain kind of boson in pla
of the fermions, and non→0 limit. In the supersymmetry
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method, the bosons cancel the fermion determinants, as
as they are all unmodified. We will use the replica meth
but the same results can easily be obtained with supers
metry. For technical reasons, it is easiest to consider only
moments withm5even of the correlation functions. The
we need to average the ratio of themth power of the modi-
fied partition function to the unmodified partition function
Therefore we will modify the network form copies of the
fermions so that they pick up an additional factor21 on
propagating around either vortex~we can take these on th
positions of the original sites, so as to obtain the spin-s
correlation function, but the disorder correlation is simila!.
The remaining 2n2m fermions are unmodified. Whenn
→0, the partition function of the latter yields the division b
Zm. Thus in the average, the moment of the correlation fu
tion is simply the partition function of the replicated syste
at n50, that is51 when unmodified, but is not whenm of
the Majorana fermions have been modified. That is

~^s is j&!m5~Zmod/Z!m5 lim
n→0

Z(m) /Z, ~11!

whereZ stands for the partition function of the replicate
and averaged system, lim

n→0
Z51, and the subscript indi-

cates thatm components have been modified.
As we will discuss further below, the nonlinears model

for the metallic phase in class D requires us to introduce
infrared regulatorh.0 which can be viewed as an imag
nary part of the energy~the real part being50) at which we
calculate the fermion Green’s functions, or as a correspo
ing shift in the energy eigenvalues. This is necessary in r
dom fermion problems when the mean density of states
e50 is nonzero, so in general it can be included as a p
caution. In the network model, it can be included by repla
ing U by Ue2h. We will need, first, to take moments in
finite size system withh.0, then take the system size t
infinity, then leth→0. Some preliminary investigation sug
gests that for the moments of the ratio of determinants
consider, with finite separation ofi and j ~or a andb), this
will give the same result as takingh50 from the beginning,
which is the strict definition for Ising models. This is for
fixed nonzero Ising temperatureT. However, if one tries to
take the temperature to zero beforeh→0, problems may
arise. The reason is that, in theT→0 limit, the fermions
circulate around the plaquettes of the original Ising latti
with amplitudes 1~for h50). The eigenvalues ofU 4 are
then determined by the flux, either 0 orp, on those pla-
quettes. Hence the eigenvaluese tend to either 4e50 ~mod
2p) or 4e5p ~mod 2p), and when the RBIM has a finite
probability for any given plaquette to be frustrated, a fin
fraction of eigenvaluese ~and also the corresponding eige
values of 12U) tend to zero asT→0.4 In the modified par-
tition function needed to obtain the spin correlation squar
the number of eigenvaluese that tend to zero is the same a
in the unmodified partition function, since otherwise the sp
correlation will go to zero or infinity, which is not the cas
It is only these eigenvalues that are important in determin
the spin correlation in theT→0 limit. When the partition
function is regulated withh, the corresponding eigenvalue
4-5



of
o

s
e
ar
-

old

.

et
le
t

da
t
th
is
l

he
ex
od
ro
d

io
e-
e
d

f
no
th

re
el.

m-
the

se,
r
all
D
s
en

uch
lls
that
he
g-

r
on

h

a
like

e the

hat

n-
in

ed

f

ds
of
at

in

e

-
d

et-

N. READ AND ANDREAS W. W. LUDWIG PHYSICAL REVIEW B63 024404
of 12Ue2h tend toh, independent ofe, and the squared
spin correlation goes to 1. This is expected in the case
continuous distribution of random bonds, but definitely n
for a bimodal (6J) distribution, where theT50 spin corre-
lation should be nontrivial. Thus the order of limitsT→0,
h→0, makes a difference in this case.

B. Nonlinear s model

The claim about the metallic phase is that, in that pha
the partition functionZ, and correlation functions, can b
represented at large distances by those of the nonlines
model for class D.7,5,8 In replica language, this model con
tains a field that takes values in the target manif
O(2n)/U(n). This may be parametrized by a 2n32n com-
plex matrix Q, which obeys Q5Q†, Q25I 2n , and Qt

52LxQLx , wheret denotes transpose, andLx5I n^ tx (tx
is a 232 Pauli matrix!. In terms ofn3n blocks, the top
right blockV of Q is ann3n antisymmetric complex matrix
~A different parametrization is used in Ref. 5.! The symme-
try operations areQ→OQO†, where in our basis, a matrixO
is in O(2n) if O215O†5LxO

tLx @and in SO(2n) if also
det O51#. Q can be written asQ5ULzU

21 for U in
O(2n), whereLz5I n^ tz (U should not be confused with
U). This represents the coset space O(2n)/U(n) becauseQ
is invariant whenU→Ug, whereg is in the U(n) subgroup
of SO(2n) parametrized in our basis asg5diag(u,u* ),
whereu is a n3n unitary matrix@thus, in U(n)#, andu* is
the complex conjugate ofu.

In Ref. 9, it was emphasized that O(2n)/U(n) has two
disconnected components, corresponding to whether dU
561. For a zero-dimensional system, the other ensemb
termed classes B and BD, can be obtained by treating
component with detU521 differently.9 These correspond
to the existence of a single exact zero mode,e50, in a finite
size system, with probability 1~for class B! or 1/2 ~for class
BD!. Some network models~still with real U) possess such
zero modes, namely whenever detU521, and this can oc-
cur, depending on what fluxes are present, and the boun
conditions. We can avoid them by making appropria
choices of the latter. Even when present, they cancel in
regularized (hÞ0) ratios of determinants we consider in th
paper. The reason is that when we insert two additionap
fluxes on the same sublattice, the determinant ofU does not
change.~However, an exact zero mode could still affect t
other eigenvalues through level repulsion effects, for
ample.! While the presence or absence of such a zero m
may be important in random matrix ensembles for ze
dimensional systems, or for global properties in higher
mensions, we do not expect it to play a role inlocal proper-
ties in more than zero dimensions, such as the correlat
we consider here.~This applies to localized, as well as m
tallic, phases.! Therefore we expect that the distinctions b
tween the nonlinears models should not be important, an
we will refer to class D/B/BD when this is so.

For dimensions larger than zero, a precise prescription
handling the two components of the target manifold has
been given. One would expect there could be domains of
two ‘‘phases’’ ~in which the fieldQ is on one or other of the
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two components of the target manifold!. The domain walls
would likely cost some action per unit length, and therefo
additional parameters will be needed to specify the mod
We would expect that there will then be a regime of para
eters in which domain walls are costly and all domains of
‘‘opposite’’ phase are small. Then theQ field would essen-
tially be globally on one component or the other. In that ca
calculations can be done without domain walls as in othes
models, but with a sum over the two phases. In fact,
existing proposals for a metallic phase in class D/B/B
~Refs. 7, 5, and 8! neglect domain walls. Alternative phase
where domain walls proliferate may exist, but have not be
identified, and may not be metallic. In the absence of s
proposals, we will consider the system without domain wa
as defining the metallic phase we consider here. We note
the results in Ref. 20 give a way to handle, in effect, t
different components of the target manifold in a stron
coupling situation in dimensions<2.

We further argue that the regulatorh which we introduce
suppresses the second component. In the nonlinears model,
it introduces a term in the action of the form
2h*d2r tr2nLzQ, where tr2n denotes a trace ove
2n-dimensional space. This term has to be minimized
each component to find the saddle point~s! about which per-
turbative fluctuations are expanded. We find that at sucQ
values for the two components, whereQ5Lz , Q
5OLzO

21, respectively, andO represents a reflection in
hyperplane, the second component has relative weight
e2hL2

compared with the first, whereL2 is the area of the
system. Since we takeL2→` beforeh→0, we find that the
second component is suppressed. This does not chang
partition functionZ51 atn50 for h50, since forh50 the
functional integral over the first component gives 1, and t
over the second component gives 0.~The use of just the first
component, which includesU5I 2n , corresponds strictly to
class BD.9! Therefore, we drop the second component e
tirely, and no difference between the metallic phases
classes D, B, and BD will be seen in local correlations.~In
the total density of states in the ‘‘ergodic’’ regime discuss
in Ref. 9, smearing by energy resolutionh makes all three
classes the same whenh is greater than the level spacing, o
orderL22, consistent with this conclusion.!

C. Twist operators

From a perturbative point of view,Q arises from bilinears
in the underlying Majorana fermions, which naturally lea
to antisymmetric matrices. To obtain the correct structure
Q, it is essential that we start from the correct vacuum
weak coupling, represented byQ5Lz , which is invariant
under the U(n) subgroup introduced above. The basis
which we gaveQ corresponds to the use ofn complex Fermi
fields c in place of the 2n Majoranasj. The diffusing
~Goldstone! modes of the model involve only modes of th
form cc or c†c† ~the indices are suppressed!, which corre-
spond to the two off-diagonal blocks.~Goldstone modes cor
responding to 2n32n real antisymmetric matrices woul
give class DIII,6 in which time reversal is unbroken.! This
parametrization can also be arrived at using the O(1) n
4-6
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work model, which in first-quantized form is a single partic
propagating on the medial graph network with fixed nodes
a standard form,13 and picking up61 factors~with indepen-
dent probabilities 1/2) on each link. Averaging over t
group O(1)>Z2 in a replicated second-quantized repres
tation leads to propagating Goldstone modes, and this m
is in class BD, as described in Refs. 9 and 21.

In general, the modified partition function of the model
defined by the presence of a ‘‘twist’’ in theQ field. The twist
is a boundary condition at the points corresponding toi, j,
that is obtained from the fact thatm of the Majorana fermion
fields pick up a21. Sincem is even, this corresponds to
proper rotationO in SO(2n). We can choose them compo-
nents of the fermions that are modified to be the real
imaginary parts of the firstm/2 of the complex fermions tha
define our basis forQ. ThenO is represented by a matrix i
the same U(n) subgroup mentioned above, withO
5diag(u,u* ), and u5diag(21,21, . . .,1,1 . . . ) with 21
appearingm/2 times. Hence the modified partition functio
Z(m) is defined as the usual one but with the condition on
Q fields at the pointsi, j, that on making a circuit around
these points theQ field is not periodic but changes asQ
→OQO†, using the sameO.

D. Result at weak coupling

As mentioned above, the nonlinears model for class
D/B/BD flows ~whenn50) to weak coupling. Accordingly
we can compute the spin correlation function in the we
coupling limit. To leading order, the action can be appro
mated as Gaussian for smallV,

S5
1

2g2E d2r trn¹V¹V†, ~12!

where the trace is over then3n matricesV, andg2 here is
the coupling constant squared, proportional to the invers
the thermal conductivitykxx .5,8 We have neglected the to
pological (u) term, since it plays no role in the following
calculation. We have also omitted the leading nontrivial p
of the h term,h*d2r trnVV† with h.0. The limit h→0 is
taken after the thermodynamic limit, because massless s
fields in an infinite 2D system are problematic. In the wea
coupling limit, the twist operators take a simple form, sin
the operation described by our choice ofO acts linearly onV;
V transforms as the antisymmetric second-rank tensor re
sentation of U(n). The condition onV on going around the
points i, j is that the components corresponding to comp
fermions that are both modified or both unmodified are p
odic, but those corresponding to one modified and one
modified fermion pick up21. Thusm(2n2m)/4 distinct
~complex! components ofV pick up a21 on going aroundi
or j, and the remainder of the totaln(n21)/2 pick up11
~are periodic!.

We now need the ratio of the modified to unmodifi
partition functions for theV field with n→0. This has the
form of a standard problem in conformal field theory22 ~the
Gaussian theory is conformal since the couplingg does not
get renormalized!. A twist operator of a single real massle
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scalar field, defined as a ratio of partition functions as he
has conformal weight 1/16, and so its left-right symmet
correlation function decays asr 21/4. The exponent is
doubled for a complex scalar, both of whose components
twisted. Multiplying these for ourm(2n2m)/4 complex
components, we obtain

~^s is j&!m;r i j
2m(2n2m)/8 , ~13!

which is the central result of this paper. Note that this res
is independent of the couplingg. When n→0, we obtain
r m2/8, a positivepower of distance. In the full nonlinears
model, g2 approaches zero logarithmically with distan
whenn50.7,5,8 From standard perturbative renormalizatio
group ~RG! arguments, we expect that the nonconstancy
the coupling produces at worst a factor of the for
exp@C8(m)(ln rij)

a(m)# on the right-hand side, wherea(m)
,1 is anm-dependent exponent. If the twist operator do
not mix with any other operator in the RG, then the factor
only anm-dependent power of lnrij .

In general at a random critical point, the logarithm of a
correlation function is expected to have mean and varia
depending logarithmically on the distance; the coefficients
these logarithmic dependences are universal. This arises
cause each extra factor of~say! 2 in distance is expected t
contribute identically distributed, essentially independe
factors to the correlation function. The central limit theore
then applies to the distribution asr i j →`. @Here we assumed
the moments exist. If the distribution of the logarithm of th
factors in the correlation function is too broadly distribut
for this to hold, then there is still a limiting distribution with
universal properties, in particular the mean~or center! of the
distribution varies as lnrij , and the width increases as a un
versal power, between 1/2 and 1, of lnrij , both with univer-
sal coefficients. For a more general discussion of the sca
forms, not assuming the product ansatz, see Ref. 17.# In our
weakly-coupled Gaussian field theory, the moments in
~13! have the form we would obtain by assuming the log
the squared correlation function is Gaussian-distributed;
mean and variance we would obtain are

ln~^s is j&!25O~@ ln r i j #
a8!,

@ ln~^s is j&!2#25 ln r i j 1O~@ ln r i j #
a9!, ~14!

where a8, a9 ~both ,1) are again some exponents. Th
these resemble the results for a random critical point, if
ignore the possible subleading corrections. Although it
well known that the log-normal distribution is not unique
defined by its moments, it is plausible that in the pres
problem the distribution is indeed asymptotically log-norm
Some consideration of diagrams for directly disord
averaging powers of the logarithm of the ratio of determ
nants in some models, using the self-consistent Born
proximation to obtain weak coupling, also suggests that
is correct~the normal distribution is uniquely defined by i
moments!. Note that strictly we considered the limitg2→0
~or r i j →`) for eachm; this suffices to obtain ‘‘weak con
4-7
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vergence’’ of the distribution. At fixedg2 or r i j , high mo-
ments, or the tails of the distribution, may not conform to t
~log-! normal form.

The fact that Eq.~13! eventually exceeds 1 implies tha
this behavior is impossible in any RBIM with positiv
Boltzmann-Gibbs weights. The metallic phase in clas
D/B/BD cannot occur in such a model. Instead, there
presumably be only gapped or localized phases and cri
points between them~and possibly critical phases, meanin
regions with scale invariance but described by a nontriv
fixed-point field theory, not a weakly coupled nonlinears
model!—unless some other, so far unknown, stable meta
phase with the symmetries of the RBIM exists, that avo
the contradiction found here. This applies to the zero, as w
as the nonzero, temperature region. As we saw, the regu
spin correlation goes to one asT→0, for any distribution of
bonds. Even though this is not the same as the correch
50, correlation for certain bond distributions, it is still i
disagreement with the metallic phase.

We emphasize that results of a similar form can be
tained for the moments of the twist correlations in a vari
of other metallic regimes in different ensembles, since th
are by definition regions of diffusive behavior that can
described by a nonlinears model at weak coupling. This is
true even in systems that do not renormalize towards w
coupling, on length scales shorter than that for the crosso
to strong coupling. Two other cases, class DIII and the sy
plectic ~e.g., spin-orbit scattering! case of the Wigner-Dyson
ensembles, both of which possess Kramers degeneracy
to time-reversal symmetry, flow to weak coupling in 2D lik
the class D/B/BD case considered here. However the ph
cal significance of the Ising order correlation is less clea
these systems. Another case of interest is a family of non
ear s models with target space SO(2n11)/U(n), which
with n→0 arose in connection with the Nishimori line.20 The
m5even moments of̂s is j& can be considered in this cas
also. The twist operator has the same form, but the t
number of Goldstone modes is different: because SOn
11)/U(n) is the same, as a manifold, as SO(2n12)/U(n
11), it is as above but withn→1, not 0. The family of
models with SO(2n11) symmetry has two coupling con
stants in place ofg2,20 but these do not enter the twist co
relation at the Gaussian level. Thus the above result~13! can
be used withn→1, and the moments go as;r i j

m(m22)/8. For
m.2, these increase withr i j , eventually exceeding 1, re
quiring that^s is j&

2.1 with nonzero probability. Thus the
weak-coupling region of this family ofs models is inacces
sible in a RBIM with real couplings. There might in princip
be metallic regimes in other weakly coupled nonlinears
models in which the original Ising correlations are rep
sented by a different sort of twist operator that gives a d
ferent result, but we are unaware of any at present.

According to recent work, certain network models are b
lieved to possess a metallic phase.21 The model of Cho and
Fisher23 is equivalent to an Ising model with couplings6K
on horizontal links~see Fig. 1!, andK, K1 ip/2 on vertical
links,20 with independent probabilities 12p, p (K is posi-
tive, andp was denotedW in Ref. 23!. From our remarks in
02440
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Sec. III A, this can also be rephrased by saying that in
Cho-Fisher model,p fluxes are added randomly in pairs, on
above the other in Fig. 1, onbothsublattices of plaquettes.23

On thep51/2 line, the Cho-Fisher model is equivalent by
gauge transformation to the O~1! model described in Sec
III C above.21 @The equivalence holds in the bulk but brea
down when we consider the boundary conditions; for cert
boundary conditions, the Cho-Fisher model has the sym
tries strictly of class D (12U has no exact zero eigenva
ues!.# In Ref. 21, the Cho-Fisher model was reexamined
merically, and metallic behavior was found in a regio
including the whole of thep51/2 line. We expect therefore
that that model flows to the weak-coupling regime of t
class D/B/BDs model, and then the above result applie
Hence we see that this does not contradict our claim tha
metallic phase can occur in RBIM’s with positiv
Boltzmann-Gibbs weights. The result for the O~1! model is
not really surprising, in view of the behavior seen above
the dual of the RBIM, in which the Kramers-Wannier spi
ma have couplingsK̃ab with imaginary parts, and the mo
ments of their correlations can be larger than 1.

IV. CORRELATIONS IN THE O „1… MODEL

Our final result is for the O~1! model, already introduced
in Sec. III C. We will argue that it is never in the ordered
disordered phases of the Ising model, by showing that
moments of the squared order and disorder correlations
both bounded below by 1. We also point out that the lat
behavior is found in the other network models, in classes
C. In the class C~spin quantum Hall! case, we find the exac
exponent for the mean order and disorder correlations
criticality.

In the O~1! model, or the Cho-Fisher model atp51/2,
each plaquette of the network model~medial graph of the
Ising model square lattice! encloses a flux of either 0 orp
with independent probabilities 1/2~up to some boundary ef
fects!. We consider the order or disorder correlation fun
tions, defined as before in fermion language. Like the dis
der correlations in the RBIM with symmetric distribution o
Ji j ’s, the logarithm of either squared correlation is sym
metrically distributed, and the even moments of the corre
tions are bounded below by 1. Note that this behavior is
consistent with our results in Eq.~14!, if the error term in
ln(^sisj&)

2 is zero. This means that if the O~1! model really
does flow to the metallic phase, then these universal cor
tion terms, and all higher-order analogs, in the nonlineas
model, must be zero.

Now we compare this with the behavior expected in t
localized phases. Such phases occur at weak disorder~small
p) in the RBIM and Cho-Fisher models. Like the two phas
of the pure Ising~massive Majorana field theory! model, one
or other mean~and mean square! correlation is supposed to
decay to zero, and the other to go to a constant, at la
distance. Hence the O~1! model is definitely not in either
such phase. It is tempting to conclude that it must theref
be in the metallic phase, though this is not really prove
some other localized phase may not be ruled out. As m
tioned above, numerical work21 led to the hypothesis of me
4-8
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ABSENCE OF A METALLIC PHASE IN RANDOM-BOND . . . PHYSICAL REVIEW B63 024404
tallic behavior everywhere in the O~1! model.
The reason for caution about the last point is obtained

considering other network models for other ensembles.
two models in question are defined similarly to the O~1!
model, but in the first, the particles pick up independe
uniformly distributed U(1) phases on the links, and in t
second they pick up SU~2! matrices instead~the latter re-
quires two-component wave functions for the particle!.
These are, respectively, the Chalker-Coddington model
the integer quantum Hall transition~class A!,13 and the Ka-
galovsky et al. model for the spin quantum Hall transitio
~class C!.14 Both models possess localized phases away f
their critical points. We now consider twist~‘‘order’’ or
‘‘disorder’’ ! correlations, defined as the ratio of modified
unmodified partition functions~fermion determinants! as be-
fore. First we note that for the class A model,U is a 4N
34N unitary matrix, its eigenvalues come in pairse2 i e,
2e2 i e, and det(12U) is in general complex. For class C,U
is an 8N38N symplectic matrix, and its eigenvalues com
in quadruplets,e2 i e, 2e2 i e, ei e, 2ei e, similar to class D;
hence det(12U) is real and positive. This applies to both th
modified and unmodified partition functions, and we see t
in the U(1) ~class A! case we should consider the modul
square correlations, while for the SU~2! ~class C! case we
can consider the correlations themselves, which are real
positive. The uniform distributions imply independent un
form distributions for the flux@in U~1! or SU~2!, respec-
tively# through each plaquette in these models. Multiplyi
these fluxes~as group elements! by 21 ~for the twist inser-
tion operation! leaves the distributions unchanged, and he
again the logarithm of the@modulus squared in the U~1!
case# order or disorder correlations in these models are s
metrically distributed, and the moments of the@mod-squared
for U~1!# correlations are bounded below by 1,even in the
localized phases.

Thus it appears that these localized phases behave d
ently from those in the RBIM and Cho-Fisher models, a
cannot be distinguished by Ising order or disorder variab
This may be connected with the continuous distributions
the flux in the plaquettes in these models, as opposed to
discrete distributions for the flux~which was either 0 orp)
in the O~1! model. However, we may also point out that t
localized phases in the RBIM and Cho-Fisher models, l
the localized phases of a Majorana Fermi field with a wea
random mass, are expected to have a vanishing densi
states ate50, at least at weak disorder. In contrast, there
a possibility of a localized phase with the statistics of cla
D/B/BD, and the meanlocal density of states~which is in-
dependent of system size! neare50 would be expected to b
nonvanishing@as in the localized phase in the U~1! network
model, which is in the unitary~class A! ensemble, though
not the SU~2! model which is in class C# and smoothly vary-
ing. Further, it would probably have ane dependence like
that for class D in Ref. 9, including a peak ate50, but with
the energy scale for such structure proportional to
inverse-square localization length. Although the existence
such a localized phase was predicted in, for example, Re
it has not so far been demonstrated to occur in practice in
model. In fact, given the symmetries of the problem, it is n
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clear why such behavior does not occur in the localiz
phases of the RBIM, or for the Majorana fermion with ra
dom mass. Perhaps such a phase would be consistent
the above form of probability distribution, and have neith
order nor disorder correlations decaying to zero. If so
may, like the metallic phase, be inconsistent with the Is
correlations in a RBIM.

Since we have been discussing the class C~spin quantum
Hall! network model,14 we also include here a result for th
critical correlations of the Ising order and disorder operat
in that model. We can obtain a result only for the me
values,^s is j& and ^mamb&. Each of these is defined by
twist of each of the two components of the wave function
a single copy of the system. It will be necessary here to
the supersymmetry method, in which the division by the u
modified partition function for a single copy is represent
by a single two-component boson field.24,25 The partition
function of the unmodified supersymmetrized system has
persymmetry osp(2u2)>sl(2u1),24 and is equal to 1. The
mean of either correlation is represented by a modified p
tition function, in which two twist operators have been i
serted. The partition function, like the unmodified one, ha
graphical expansion as a sum over coverings by nonin
secting loops on the network model~medial! graph, with
certain weights. States of the fermions and bosons fl
around the loops; there are only three possible states, w
can be labeled by the number of fermions they contain, eit
0, 1, or 2.24,25 In the unmodified partition function, eac
loop is weighted with a factor 1, because the singly occup
state contributes21, and the other two states11 each.~In
Ref. 24, this mapping was constructed and used to show
several exponents for the spin quantum Hall transition
given by percolation, which has the identical loop expa
sion.! Because the original twist weights a fermion of eith
component that propagates once around the twist with a
tor of 21, the singly occupied state picks up a21 and the
others are unchanged. That is, a loop that encircles one o
twist insertions and not the other is now weighted by a fac
3, not 1; the other factors which occur at the nodes24 are
unchanged. It follows that either mean correlation is grea
than 1, as we proved by another method already. Since
maximum number, and the typical number, of such loo
will increase with the separation, without limit in the critica
case, we expect that either correlation increases as;r 22x,
wherex,0 is the scaling dimension of the twist operator.
the loop model description, the twist operator has exactly
form recently considered by Cardy26 for percolation and
other problems. Making use of his Eq.~1!, x5(x82

2x2)/(2g), with g52/3, x51/3 for percolation, and
2 cospx853 for our twist, we obtain

x52
1

12
2

3 ln2@~31A5!/2#

4p2
.20.154. ~15!

It is implicit in this result that we chose the branch for th
logarithm such thatx is real. With this choice, Cardy’s gen
eral formulas imply thatx is negative whenever the factor fo
loops that enclose exactly one twist operator is larger t
that, 2 cospx, for the unmodified loops.
4-9
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V. APPLICATIONS TO SUPERCONDUCTORS
AND PAIRED FQHE STATES

Paired states of fermions with complex~time-reversal vio-
lating! pairing of spinless or spin-polarized particles, or sy
tems with broken time-reversal symmetry and spin-or
scattering, have the same symmetries as class D/B/BD.5,8 We
will consider only one-component systems such as spin
or spin-polarized fermions withp-wave pairing, which are
the simplest, and begin with the pure case. We will th
argue that their phase diagrams are more like that of
RBIM than has previously been recognized. For a RBIM
which frustrated plaquettes~of the Ising model lattice! are
introduced independently, with some density, we argue
the Ising ordered phase is destroyed atT.0 for an arbitrarily
small density of frustrated plaquettes~vortices!. In the
FQHE, this implies that the weak-pairing~non-Abelian sta-
tistics! phase is destroyed by weak disorder.

It was important in Ref. 8 for the discussion of no
Abelian statistics that vortices carry a Majorana fermion z
mode when they occur in the so-called weak-pairing pha
but not in the strong-pairing phase. These phases occu
the two sides of the transition at which the mass of the M
jorana fermions changes sign; the weak-pairing phase co
sponds to the Ising ordered~low-T) phase. The notion of a
dual ~in the Ising sense! vortex with the opposite
properties—i.e., carrying a fermion zero mode only in t
strong pairing phase—was implicitly discarded. The tw
types of vortices correspond in the network model to the t
sublattices of plaquettes on which vortices~or fluxes! may be
added to those already present in the pure model. The
type corresponds to adding a vortex on the network mo
plaquettes that correspond to plaquettes of the Ising mo
In a continuum model, only the first type of vortex was co
sidered because it was argued that in the physical situati
vortex should effectively have a region of strong-pairi
phase, or vacuum~which was argued to be effectively th
same thing in a ‘‘topological’’ sense!, at its core.

The argument can be made essentially rigorous by c
sidering a tight-binding Bogoliubov Hamiltonian on a lattic
with a finite numberN of sites, with an edge, not periodi
boundary conditions. Such a Hamiltonian corresponds t
2N32N matrix, which is in the Lie algebra of SO(2N), and
its eigenvalues come in pairse,2e, so that it never has an
odd number of exact zero eigenvalues. A vortex can be g
erally defined as an object which, far from its core, a
proaches a singular gauge transformation that describes
insertion of a fluxp into the system without the vortex; thi
means that both the phase of the gap function, and the ve
potential exhibit the winding byp. If we insert one of the
postulated dual vortices in the strong-pairing phase with
other vortices present, then it is supposed to carry a z
energy mode. There are no other zero modes with whic
can mix, as we know because far from the vortex, we can
our understanding of the low-energy properties. In particu
there is no chiral spectrum of edge excitations in the stro
pairing phase. Hence it must be an exact zero mode, whic
impossible for this Hamiltonian. A similar argument can
given in the weak-pairing phase, where the dual vortex d
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not carry a zero mode, but induces one on the edge
encloses it. We conclude then that no such dual vortices
exist, and there is only one type of vortex. Clearly we m
take a continuum limit and draw the same conclusion. T
means that Kramers-Wannier duality does not apply in s
Hamiltonian models.

Turning to quenched disorder, it was shown in Ref. 8 t
randomly-inserted vortices in independent positions are a
evant perturbation of the pure Ising~Majorana! fixed point
theory.27 It was pointed out that such disorder always occ
in the applications to FQHE systems, where underlying
tential disorder can induce vortices, because they
charged.~In the RBIM, it is well known that the vortices ar
correlated in pairs.! It seemed natural to expect such disord
to cause a flow to the metallic phase in class D/B/BD. N
if we assume that all the vortices are of the first type defin
above, then we can construct network models of this sit
tion by addingp fluxes independently, all on the same su
lattice, with some densityp. This can be described as a
Ising model with bond disorder that is not independent
each bond, but the bonds are still real, and of fixed mag
tude. This will accurately model the low-energy properties
the vortices are dilute~note that we assume the penetrati
depth and coherence length of the pure system stay finit
the transition!. The results of this paper show thatsuch a
model cannot have the metallic phase in class D/B/BD.

In fact, such a model may not have a phase transit
either. Introducing frustrated plaquettes into the Ising mo
independently tends to destroy Ising long-range ord
though the discussion is complicated by the gauge cho
needed in placing the strings of negative bonds that
needed to produce the frustrated plaquettes. We can a
this difficulty by considering the spin-glass order parame
or correlations instead. Because the bonds are6J, there will
be ground-state degeneracy. Ground states can be re
sented by lines of frustrated bonds that join the frustra
plaquettes in pairs, chosen so as to minimize the ene
Distinct ways of dividing the frustrated plaquettes into pa
will frequently be exactly degenerate, and reconnecting
lines of frustrated bonds means reversing the spins in s
domain. A condition that plausibly is necessary, but may
be sufficient, for the absence of long-range order atT50,
and hence of a finiteT phase transition, is that, in a groun
state in the thermodynamic limit, any given spin lies, w
probability 1, in a finite domain that can be flipped with ze
energy cost. Heuristic considerations of sufficiently large d
mains suggest that any spin does lie in at least one s
flippable domain~the probability for a domain, formed by
reconnections of lines of frustrated bonds between nea
frustrated plaquettes, to have zero energy cost decreases
power of the length of its boundary, while the number
such domains is exponential in this length!. Hence we sus-
pect that there is no ordering even at zero temperature in
model, for any nonzero density of the frustrated plaque
~however, the zero-temperature state may be critical, as
of the usual6J EA model may be also!. This means that the
model atT.0 is presumably in the paramagnetic phase, a
all fermion eigenstates are presumably localized. The mo
can be generalized by introducing a continuous distribut
4-10
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for the magnitudes of theJi j , and will then order atT50,
but a similar argument for the free energy at finiteT suggests
that it will still not order atTÞ0.

A stronger argument can also be given. The mean grou
state energy is a function of the densityp of frustrated
plaquettes, and is extensive, and varies smoothly withp ex-
cept atp50. Increasingp slightly means frustrating a sma
number of previously unfrustrated plaquettes. Thus frust
ing one additional plaquette changes the mean total en
by an amount of order 1. Yet this forces a domain wall fro
the plaquette to the edge of the system, along which the l
of frustrated bonds have been reconnected. The only rea
able conclusion is that the mean energy of the minim
energy domain wall is zero, except for a finite effect fro
around the added frustrated plaquette. This is the same
havior as in an EA spin-glass model. A similar conclusi
holds for two added frustrated plaquettes, and may be c
pared with the discussion in Sec. II~but note that there the
operation also unfrustrated originally frustrated plaquet
so that for a symmetric distribution of bonds the mean f
energy change was exactly zero!. We have no information
about the width of the distribution of the domain wall ene
gies, but we can expect that, like the usual short-range
2D spin-glass models, there will be no finiteT transition.~A
finite T transition can occur in a 2D spin glass with suf
ciently long-range power-law random bonds, but we have
reason to expect this to be realized here.!

Intuitively, the independently inserted vortices appe
similar to a random magnetic field, though the relation is
exact. However, it is a field that couples to the dual variab
ma , and further it has a uniform component. The latter is
most important effect. A uniform magnetic field in a ferr
magnetic Ising model destroys the transition, and the res
ing phase has correlations like those in the ordered phas
the spin to which the field couples. In the present case
would lead to the high-temperature paramagnetic phase
agreement with our conclusion.

The conjecture that vortex disorder destroys the Ising
dered phase has a dramatic consequence for applicatio
spinless or spin-polarized FQHE paired states. The param
netic phase corresponds to the disordered version of
strong-pairing phase; the weak-pairing phase has been
stroyed. The weak-pairing or Moore-Read phase was s
posed to be the basis for non-Abelian statistics.8 We are ar-
guing that this behavior, including the chiral Majoran
fermion edge modes, is destroyed by any weak vortex~i.e.,
potential! disorder.

In models, such as the tight-binding Bogoliubov Ham
tonian, in which the vector potential and gap function ea
has only short-range correlations, vortices will tend to
produced only in pairs, and again can be of only one ty
Thus these one-component models appear similar to
RBIM, and may have a similar phase diagram, in which
weak-pairing phase occurs at weak but not at strong disor
At the transition, the critical behavior may be that of eith
the pure Ising model~up to logarithms! or the low-T phase
boundary in the~frustrated! RBIM. Thus the latter universal
02440
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ity class could be realized in one-component supercond
ors. We conclude~in contrast to Refs. 5 and 8! that, in at
least some models of superconductors or FQHE paired s
with the symmetries of class D/B/BD, and with only on
type of vortex present, there may not be a metallic ph
after all, but there may instead be a transition in a disti
universality class from the pure system for some types
disorder.

Clearly, similar possibilities should be explored in co
nection with other ensembles, which can occur when m
components are present, but will not be considered furt
here. We point out, however, that the case of pairing of sp
1/2 fermions, with spin-orbit scattering and a general rand
mass, which has the symmetries of class D/B/BD, cor
sponds to multicomponent models considered in Ref.
where it is argued that a metallic phase is produced. Re
ence 9 also argued that the metallic phase would not occu
the one-component case in the absence of vortex disor
but did not consider vortex disorder as fully as we ha
Also, models of superconductors as disordered grains~each
described by a random matrix from class D!, coupled by
weak hopping, appear similar to multicomponent mode
and may have a metallic phase, as a mapping to a we
coupled nonlinears model would suggest.

VI. CONCLUSION

The main point to emerge from this study is that the i
portant difference between the RBIM and the~one-
component! models which possess a metallic phase is tha
the former the added vortices, in network model langua
occur on one sublattice only, but on both in the latter. T
appears to be a necessary condition for the existence o
metallic phase. If the vortices are correlated in pairs, su
ciently strong disorder will be required to produce the m
tallic phase. This result casts some doubt on whether
metallic phase will occur in applications to one-compone
2D superconductors and paired FQHE systems, beca
these possess only one type of vortex, corresponding to th
on only one sublattice in the network. On the other hand
vortices of only one type are present, but are uncorrela
this may lead to the destruction of one of the phases,
hence of the phase transition. If such vortices are correla
in pairs, the phase diagram may resemble that of the RB
It would be interesting to test this numerically, both on mo
els defined by a Hamiltonian, such as tight-binding mode
and on network models, and also for other symmetry clas
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