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When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it
has the same symmetries as an ensemble of random matrices known as class D. A nemtindat analysis
of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion
eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the
random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound
on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or
spin-polarizedp-wave superconductors and paired fractional quantum Hall states allow a mapping onto an
Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further
argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered
or weak-pairing phase, in which non-Abelian statistics is obtained in the pure case.
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I. INTRODUCTION volves a Hamiltonian which in general contains quenched
disorder, and could be a tight-binding Hamiltonian in 2D, for
Ising models with quenched random bonds have beegxample. The energy levels of this Hamiltonian are the ex-
considered over many years. Negative couplings produceitation energies of the quasiparticles. Once again, we may
frustration and this is the starting point for the spin glassask questions about the nature of the fermion eigenfunctions
problem! A large class of models possess a “Nishimori and eigenvalues. For superconductor problems,'the natural
line” in their phase diagram, on which the internal energy isZ€ro of energy is a special point in the spectrimlike the
analytic? and the correlation functions of the Ising spins c@se of a normal metal, for exampfe
obey certain identitie4? In two dimensions, the Ising model  AMOng the symmetry classes found by AZ, one, denoted
can be represented as a noninteracting fermion problen’?lass D, describes disordered superconductors with broken

even when the bonds are rand8fibe problem then reduces time-reversal and spin-rotation symmetries. The symmetries

. - ) . . L are the same as those of the fermion problem in the two-
to So_mem'”g s_|m|Iar to atwo-gllmensmr(alD) tlght-blndlng . dimensional2D) random-bond Ising model®kBIM’s), and
Hamiltonian with quenched disorder. Properties of the Isin

) .g‘energy” for the fermions of the Ising model corresponds to
mod_el are then relat_ed fo those of the fermion syste_:m, sxcitation energy for the fermions in the superconductor. The
particular to the fermion Green'’s functions corresponding 10 onlinears model for class 15, which in effect defines this
the “Hamiltonian,” at a fixed “energy,” namely zeréthis  onsemble for dimensions greater than zero, has been shown,
“energy” is not directly related to the energy in the sense ofi, the 2D case, to flow under the renormalization group to
the Ising Hamiltoniah Then it is of interest to understand \yeaker values of the coupling constdnt® The coupling
the properties of the fermion eigenstates near this energy, ifonstant is related to the inverse of the thermal conductivity
particular whether they are localized or extended. In this paof the superconductor, and this flow implies that there is a
per, we consider such problems, and in particular argue thgshase in which there is a nonzero density of extended fer-
a recent proposathat there exists a phase of the Ising modelmion eigenstates at zero excitation energy, and a supercon-
in which the fermion eigenstates at zero “energy” are ex-ductor described by this model would be in a thermal metal
tended(a “metallic phase’) is ruled out. We also apply the phase. We will refer to such a phase simply as a metallic
results to paired fermion systems as in superconductors arghase. See also Refs. 10 and 11, respectively, for the 1D and
guantum Hall states, which map onto similar noninteracting3D cases.
fermion problems. Senthil and Fishérconsidered possibilities for the appli-
Models of noninteracting fermions can in principle be cation(via the fermion mappingof results for class D to 2D
considered using the methods of localization theory and ranRBIM’s. One scenario they discussed includes a metallic re-
dom matrices. A list of symmetry classéarger than the gion in the phase diagram, below the Nishimori line, at rela-
standard list due to Dysorof ensembles of matrices was tively strong disorder and low temperature. They suggested
introduced by Altland and Zirnbau¢AZ).® The work of AZ  that such a phase would have vanishing expectation values
was motivated by problems of disordered superconductorgor both the Ising spin*“order”) and the dual “disorder”
Within the mean-field approximation, the fermionic quasi-variables. Another scenario was that the metallic phase
particles of a superconductor are noninteracting, thus can k&hould be identified with the zero-temperature spin-glass re-
described using a single-particle formulation. The latter in-gion of a RBIM.
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The preceding statements will be formulated more pre- In the remainder of this paper, we present our results. In
cisely in the course of this paper. Here we will begin by Sec. I, we show that the Kadanoff-Ceva disorder correlation
writing the Ising model Hamiltonian, function?in a RBIM has moments bounded below by 1, and

that its logarithm is symmetrically distributed, whenever the
_ bonds are symmetrically distributed, as in an Edwards-
BH= _izj Kijoioy, (@) Anderson(EA) spin-glass model. This relatively simple re-
sult will serve to illustrate points in the later discussion. In
where 3=1/T is the inverse temperature, the Ising spins  Sec. IIl, we obtain our central result, that the logarithms of
=*1,1, ] label sites of the lattice, and;;=J;; /T is a con-  the squared order and disorder correlations in the metallic
venient notation for the Ising couplingdonds. We will  phase are normally distributed, with mean zero and variance
assume thaf;; is zero unless, j are nearest neighbors on increasing as the logarithm of the distance, and hence the
(say the square lattice, and that there isTandependent even moments of the correlations increase as powers of dis-
probability distibution forJ;; , such that the different nearest- tance. Several steps are involved to set this up. An important
neighbor bonds are statistically independent and identicallpoint that arises along the way is that the distinctions be-
distributed. The statistical assumptions are not crucial anédveen ensembles D, B, and BD, introduced in Ref. 9, are not
could be relaxed further, but we will see that it is importantimportant for local properties, such as these correlations. In
that theJ;; are real, not complex. The partition function is Sec. IV, we consider another model, thé1Pmodel, and

then show that both its order and disorder correlations have prop-
erties like those in Sec. Il. This model is most likely in the
_ B metallic phase. The crucial difference between such a model,
Z_{;‘} exp— BH), @ and the RBIM, is that(in network model® language, dis-

cussed in Sec. llIthe disorder addsr fluxes or vortices on
where the sum is over all spin configuratians= =1 for all  gne sublattice in the RBIM, but on both in théXPmodel; in
i. We will avoid diSCUSSing the boundary conditions on the|sing model |anguage, the (O model Corresponds to an
|attice, or the thermodynamic I|m|t, since we are mainly Con'|sing model with some Coup"ngs being Comp|ex_ We also
cerned with averages over the disorder of correlations of oppbtain the exact exponent for the mean order and disorder
erators at separations that can be held fixed and far from theyrrelations at the critical point in another network model,
boundaries as the SyStem size is taken to |nf|n|ty after thg‘]e class C’ or spin quantum Ha”, model of Ref. 14. In Sec.
disorder average. V, we consider applications of our results to spinless or spin-
We now recall a trivial faCt, which will be central to the po'arizedp_wa\/e Superconductors or paired fractiona| quan_
later arguments: the Ising spin correlation function for aiym Hall effect (FQHE) states. We show that independent
fixed set of bondd;; insertion of vortices on a single sublattice corresponds to the
RBIM situation, and cannot produce a metallic phase, at least
L \— . _ at low densities. We argue that such “vortex disorder” de-
<0'UJ>_{;k} oi0) exi -~ FHIZ, @ stroys the Ising low-temperature ordered, or weak-pairing
phase. For correlated vortices, the latter phase can occur, and
there may be transitions in the universality classes found in
the RBIM, rather than an intermediate metallic phase. Sec-
tion VI is the conclusion.

The bound is attained in the zero-temperature limit in pure or
unfrustrated models, which include the antiferromagnetic 1l. DISORDER CORRELATIONS FOR A SYMMETRIC
models(all J;;<0) on a bipartite lattice, as well as ferromag- DISTRIBUTION OF BONDS

netic (all J;;>0) models. The bound follows from the

Boltzmann-Gibbs probabilities exp(8H)/Z being positive spin glass case where the mearJgfis zero. The two-point

(and summing to 1 du_e to the reality of .th? couplingh; correlation of the Kadanoff-Ceva disorder variajplg is de-
In this paper, we will discuss the statistics of the correla-

tion functions in the order and disorder operators in a RBIMfll_?édd'g;:‘;eioggw;%?engd;ggg;trggq vtvri]ti F;l:;reeg?ﬁ%e-
and in the class D nonlinear model. Our central result is

that in the metallic phase, the moments of either correIatioIggrf’lph'theoretmOlual lattice, that is, plaquettes of the origi-

function increase as powers of distance, which for the orde hag Iggﬁﬁioﬁ:\5/1?1?1?:nh;ﬁ%giff;\,\iltobsuf:vzlrtgi B ,thv(\a/eSitaereof
(Ising spin correlations eventually violates the upper bound, y 9 g

Eq. (4). This implies that the metallic phase described by thein€ Ji;’s on the links of the lattice crossed by a path on the

o model cannot occur in a RBIM as long as the couplingsdual lattice _that runs from to 5. We can then construct the
orresponding modified partition functiof,,q- Then we

between the Ising spins are real. Our results apply to botg .

nonzero and zero temperature in the Ising model. We trac efine

the difference between the behaviors to differences in the okt 5)=Zmodl Z. (5)
form of the disorder, and suggest that the metallic phase may a8 mod

not after all occur in spinless or spin-polarized superconductT his definition is independent of the choice of path fraro
ors, or in paired fractional quantum Hall states with disorder,8, because oZ,-gauge properties of the Ising model. Note

is bounded above by 1 and below byl :

[(oiop)|<1. 4

Our first result concerns the dual correlations in the EA
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that (u,ug)>0 when thel;;’s are real. or possibly zerd® Finally, for a critical point,rﬁ- in the
Now we consider the statistical properties of the disordefvidth should be replaced by fy to a power=1/2, but<1,
correlation function. We denote the average over the randomhen certain conditions hold, or most generally a function of
bonds by an overbar, for examplg,ug). We again make ry; that is smaller than In; asrj;—o (these follow from
use ofZ, gauge properties, this time of the distribution func- general results in Ref. 17
tion for J;; . There is a statisticaZ, gauge invariance if the The result Eq(9) is in stark contrast to the Isin@rdep
distribution is symmetric,P(J;;)=P(—J;;) for eachi, j.  correlations. With a symmetric probability distribution, the
However, such reversed bonds were exactly what was useatid moments of ojc;) vanish, and the even moments are
in the definition of the disorder correlation. The set of bonds<1. These opposite inequalities illustrate the extrdask
used inZ,,,,q 0ccurs with the same probability, or probability of duality for a symmetric probability distribution. If a me-
density, as those id. Also, interchanging the original with tallic phase did occur in the RBIM, it would have to be due
the modified bonds exchang&g,.q with Z. Hence Iqu,ug  to frustration, as recognized in Ref. 5. It would then naively

is symmetrically distributed, and be expected to occur for a symmetric distribution of bonds.
We have now shown that the idea of a phase in which the
(In{ o p))™=0 (6)  mean disorder correlation tends to zero is untenable in any

RBIM with a symmetric distribution of bonds.

for modd, while What has happened to the duality present in the pure 2D

(Il w-uN"=0 7 Ising model? Kramers and Wannier showed that the Ising
(IN(pamp)™=0, @) .

model on the square lattice can be reformulated as a dual
for m even. For the correlation function itself, we have model on the dual lattice, with Ising spips,= *+ 1, and dual

1 couplingsK. If the disorder variables become Ising spins,
(Matp)=Zmosl Z= E(Zmod/z“'Z/Zmod)? 1. (8)  why does one not again obtain a correlation less than one? In
the pure case, of course, one does. But the general relation
The same argument works for any moment of the correlatiolPetween the original couplingk;; and the corresponding
function, Kap is

(Barp)=1, 9 expl — 2K ,5) =tanhK; . (10)

for any positive or negative integen. The bounds are at-

ForK; <0, K,z has an imaginary paitr/2 (modulo a mul-
tained in the high-temperature limit, whefg ,uz)=1. J p ginary p (

; : / .__tiple of i7). The Boltzmann-Gibbs weights of the dual spin
We can pre_dlct how the disorder correlation 1Eun‘:t'onconfigurations become complex in general. However, the
would behave in some well-known phases. In the paramagyeights for a given nearest-neighbor bamd 3 for the two
netic phase, whergw;o;)—0 asr;; (the distance between 5 )0q ofu,ug=*1 differ simply by a sign. The disorder
and j) goes to infinity, we expect that the mean disorder; ro|ation for fixedd;;’s then becomes a weighted average
correlation goes to a constant at large distances, as in t ftatsp (for arbitrary e, ) with weights that sum to 1 but

pure case, and as in the high-temperature limit. The constant, )e”hositive or negative. Hence the disorder correlation

must be=1, and it appears that it will increase with decreas;-Can be larger than 1. Put another waymay be smaller than
ing temperature. We also expect that the width of the distri~Z 4, unlike the puré case
mod: .

bution of the logarithm of the correlation goes to a constant. For more general distributions, including those with a
A finite-temperature spin-glass phase is believed not to ocCY onzero mean fad; (which we can take to be positive with-

in 2D, but if it did we wquld predict that theadlstrlbutlon of out loss of generality we cannot obtain a general result so
IN{xqrp) would have a width that goes a€{r,s+Co)/Tat  gagjly It is clear that when the disorder is weiaiay, the

low temperature, wher€,, C, are positive constants, amd  giandard deviation is small compared with the mesmere

is an exponent that characterizes the spin-glass phase _will be a ferromagnetically ordered Ising phase, as in the

follows. In the spin glass, the insertion of the disorder vari-p e |sing model, and in this the disorder correlation goes to
ables induces a domain wall terminating@tand 8. The  z¢g at large distances. In order to rule out the existence of a

wall is a fractal object, with a fractal dimension less than 2, metallic phase in the intermediate region with nonzero mean
and its free energy, which is random and can be positive ogij , another approach is needed.

negative, scales ag ;.* This exponent is believed to be the
same one that enters the effect of reversing the boundary, g\ cORRELATIONS IN THE METALLIC PHASE
conditions, from periodic to antiperiodic, in one direction in

a finite system of siz&; the change in free energy scales as  Now we turn to our second result, which directly concerns
LY The exponen® must be positive if the spin-glass phase the metallic phase in the nonlinearmodel for class D. We

is to be stable at finitd; it is found numerically to be nega- ask the question: if such a phase occurs in a random Majo-
tive, for continuouge.g., Gaussigndistribution ofJ;; , indi-  rana fermion model, what will be the behavior of the order
cating that no finiteT spin-glass phase exists in 20For  and disorder correlations? We note immediately that the
some special discrete distributions, such as the bimadhl phase, as discussed in Refs. 5 and 8, is intermediate between
distribution (which has many degenerate ground states, giviwo localized phases that would be identified with the para-
ing an extensive entropy dt=0), 6 is small and negative, magnetic and ferromagnetic Ising phases, which are still ap-
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closes a site of the original lattice, and on the other of which
each plaguette encloses the center of a plaquette of the origi-
nal lattice(i.e., a site of the dual lattigeThe medial graph of

the square lattice is another square lattice, as shown, and we
consider only square-lattice clusters from here on. Note that
we view the corners outside the cluster as nodes, so that the
total number of links in the medial graph is a multiple of 4.

The square of the Ising model partition functidrcan be
represented as a six-vertex model on the medial graph, with
free-fermion values of the parameters at each rfBd€here
are also many other ways to represent the Ising model as a
noninteracting fermion field theory on a decorated version of
the square lattice. One such approach was used in pioneering
work by Blackman and Poultéon the RBIM) This free-

FIG. 1. Relation of the Ising model and the network model. fermion system is also equivalent t¢second-quantized rep-
Ising spins are located at the open circles, and bonds are showigsentation ofthe Chalker-Coddington network modélas
dotted. Solid lines with arrows form the “medial graph,” on which has been emphasized recertfly’In other words, the single-
the network model is defined. Examples of nodes on each of thparticle model underlying the fermion field theory is a net-
two sublattices, corresponding to the horizontal and vertical bondsyork model. We omit a complete description of these mod-
are labeledA, B, respectively. Note the form of the edge of the els since they have been discussed so frequently in recent
Cluster. years, but an outline of the main points is as follows. The

links of the medial graph square lattice are viewed as di-
proximately dual to each other as in the pure Ising modelrected with an arrow on each link; the arrows circulate
Then the intermediate metallic phase maps to itself undearound the plaquettes, which implies that they circulate in
duality, and should treat the order and disorder correlationgpposite ways for the two sublattices of plaquette=e Fig.
on an equal footing. The asymptotics of the two correlationl). The particle propagates on the links of this medial graph
functions should be similar. in the direction of the arrows, picking up amplitudes that

In Sec. lll A, we discuss the representation of the Isingdepend on the original random bonjs. The amplitudes for
model as a lattice free fermion quantum field theory, theeach time step, during which the particle must move “for-
relation of this to a network model, and the representation oward,” following the arrows, to an adjacent link consistent
order and disorder correlations in this language. In Sec. Ill Bwith the arrows on the network, are elements of a unit&yy
we describe the nonlinear model that is used to define the matrix assigned to each node. Thus the time evolution is
metallic phase. We argue that the distinctions between ersiescribed by a unitary matri, that is real in the present
sembles D, B, and BB that differ globally, are not impor- case, and has size a multiple of 4. The sign of the product of
tant for local correlations. In Sec. Il C, we introduce the amplitudes picked up by the particle propagating once
“twist operators” that represent the order and disorder op-around a plagquette determines whethez aflux or vortex
erators in the nonlineas- model. Then in Sec. Il D, we (we use these terms, ar flux, interchangeablyis present; a
show that the statistics of the order correlations is incompatvortex is present when the sign is1. In the pure Ising
ible with a RBIM with real bonds, but compatible with other model, such a vortexa flux of =) is present on every pla-
models that violate the latter condition. quette. The insertion of negatig in the Ising model intro-
duces an additional pair &, fluxes on the plaquettes of the
medial graph that enclose the plaquette centers of the origi-
nal lattice of the two plaquettes that are adjacent to the bond

The metallic phase in the nonlinearmodel for class D  in questior? When we speak of adding vortices or fluxes to
describes Majorana fermions, so we must consider the feplaquettes, the fluxes add modr2 since the net phase
mion representation of the Ising model. This can be set up ipicked up by the particle is what really counts; the gauge
a variety of ways. The details are not in fact all that impor-choices involved will not matter. The effect of negatiygs
tant here. The important points are that in fermion languagein the Ising model is thus to add vortices, tautly on one of
duality becomes rather self-evident, and both the order anthe two sublattices of plaquetted the medial graph net-
disorder variables are represented as modifying the partitiowork. By duality, vortices can also be produced in similar
function by inserting an additional, fluxes or vortices seen pairs on the other sublattice, by adding an imaginary term
by the fermions. A fermion propagating around a vortexim/2 to K;; (see Sec. )i
picks up a phase facter 1. The difference between the two ~ The squared partition function of the Ising modgf, is
operators is in the locations on the lattice at which they ocnow given by the second-quantized version of the netvidrk.
cur. The duality is most evident if the fermions are consid-The partition function for noninteracting fermions is gener-
ered as moving on the “medial graph” of the original squareally a determinant of the inverse fermion propagator; in the
latticel® as shown in Fig. 1 for a simply connected cluster.present case, the propagator between two links is a sum over
The medial graph of a given planar graph possesses twpaths, given by the corresponding matrix element efld
sublattices of plaquettes, on one of which each plaquette enr2/2+ .- . =(1—1) %, so we havezZ?xdet(1-1{). Note

A. Fermion representation
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that, unlike many other representations of the Ising model amethod, the bosons cancel the fermion determinants, as long
a fermion field theory, in our case the matrix-4/ is not  as they are all unmodified. We will use the replica method,
antisymmetric, so we cannot say ttais the Pfaffian of the but the same results can easily be obtained with supersym-
same matrix. metry. For technical reasons, it is easiest to consider only the
Becauseé/ is unitary, its eigenvalues lie on the unit circle moments withm=even of the correlation functions. Then
and may be writtere™'¢, where the eigenvaluesof i InZ/  we need to average the ratio of theh power of the modi-
play the role of excitation energy eigenvalues, even thouglied partition function to the unmodified partition function.
they are defined only mod+2 It is clear that for the long- Therefore we will modify the network fom copies of the
time properties, such as the partition function, the importanfermions so that they pick up an additional facterl on
part of the spectrum oé is neare=0. Sincel/ is real, its  propagating around either vortéwe can take these on the
complex eigenvalues come in complex conjugate pairspositions of the original sites, so as to obtain the spin-spin
while 1 and—1 are possible and will usually be nondegen-correlation function, but the disorder correlation is similar
erate. Also, since the network has a two-sublattice propertffhe remaining 2—m fermions are unmodified. When
(the particles hop from one type of link to the other alter-—0, the partition function of the latter yields the division by
nately, the eigenvalues come in paies'¢, —e™'c. This  Z™. Thus in the average, the moment of the correlation func-
implies that if 1,— 1 are present, then so dtre-i, since the tion is simply the partition function of the replicated system
total number of eigenvalues is a multiple of 4. Thus weatn=0, that is=1 when unmodified, but is not when of
could restrict attention to the rangew< e<, which rep- the Majorana fermions have been modified. That is
resents—oc to « in a continuum model. For the RBIM, the

pair 1, —1 does not occur, detldi)>0, and the square (o))"= (Zmoa! 2)"= 1M Z/ Z, (11
root can be taken to obtai#>0.* The case without the n—0
quadruplet 1,—1, i, —i (i.e., when det/=1) corresponds

10 random matrices in class D. while the case with that qua\_/vhereZ' stands for the partition function of the replicated
druplet, det/= —1, corresponds to those in what has beenand averaged system, IMOZZL and the subscript indi-

termed class B.These random matrix ensembles are of ma-cates thatm components have been modified.

trices in the Lie algebras of SO, SO(2N+1) (for some As we will discuss further below, the nonlinearmodel
N), respectively’ Matrices found in class B possess at leastfor the metallic phase in class D requires us to introduce an
one, and typ|ca||y on|y one, exact zero eigen\/a|ue_ infrared regulatorn>0 which can be viewed as an Imagl-

We now consider the calculation of the moments of thenary part of the energgthe real part being=0) at which we
two-point functions of the order and disorder variables in thecalculate the fermion Green’s functions, or as a correspond-
metallic phase of the nonlinearmodel for class D in 2D. In  ing shift in the energy eigenvalues. This is necessary in ran-
terms of the medial graph or network model, the order andlom fermion problems when the mean density of states at
disorder operators are both represented as the ratio of €= 0 is nonzero, so in general it can be included as a pre-
modified to the unmodified partition function, where ordercaution. In the network model, it can be included by replac-
variables are represented by modifying the partition functioring & by t/e”7. We will need, first, to take moments in a
by inserting vortices on the sublattice of plaquettes that corfinite size system withyp>0, then take the system size to
respond to the sites of the original lattice, and the disordeinfinity, then let—0. Some preliminary investigation sug-
variables are vortices on the plaquettes that correspond to ttgests that for the moments of the ratio of determinants we
plaquettes of the original lattice. Either partition function, consider, with finite separation efandj (or « and ), this
when squared, is given by det(Z{). As a check on the Will give the same result as taking=0 from the beginning,
formulas, we can consider the order and disorder correlationghich is the strict definition for Ising models. This is for a
in the pure case. An isolated vortex on a site of the originafixed nonzero Ising temperatufie However, if one tries to
lattice carries a zero eigenvalee=0 in the high-, but not in  take the temperature to zero before-0, problems may
the low-temperature phase. For two vortices, the zero modedrise. The reason is that, in tlle—0 limit, the fermions
can mix and split away from zero, by an amount exponentiatirculate around the plaquettes of the original Ising lattice,
in the separation when the latter is greater than the correlawith amplitudes 1(for »=0). The eigenvalues d#* are
tion length. At such large distances, the other eigenvaluethen determined by the flux, either O ar, on those pla-
tend to nonzero constants, so the behavior of the ratio ofjuettes. Hence the eigenvaluesend to either 4=0 (mod
products of eigenvalues of-1l/ is determined by the eigen- 2m) or 4e== (mod 2), and when the RBIM has a finite
values that tend to zero. Hence the correlation function tendgrobability for any given plaquette to be frustrated, a finite
to zero exponentially with distance in the highphase, but fraction of eigenvalueg (and also the corresponding eigen-
goes to a constant in the loWphase. For the disorder cor- values of 1) tend to zero a§—0.% In the modified par-
relation, the situation is reversed. tition function needed to obtain the spin correlation squared,

The average over the disorder of the ratio of determinantthe number of eigenvaluesthat tend to zero is the same as
is performed by using either the replica method, with 2 in the unmodified partition function, since otherwise the spin
copies of the system and—O0, or the supersymmetry correlation will go to zero or infinity, which is not the case.
method, where & copies of the system are supplemented bylt is only these eigenvalues that are important in determining
2n copies of the system with a certain kind of boson in placethe spin correlation in thd—0 limit. When the partition
of the fermions, and nm—0 limit. In the supersymmetry function is regulated withy, the corresponding eigenvalues

024404-5



N. READ AND ANDREAS W. W. LUDWIG PHYSICAL REVIEW B63 024404

of 1—Ue " tend to », independent ok, and the squared two components of the target manifpld’he domain walls
spin correlation goes to 1. This is expected in the case of would likely cost some action per unit length, and therefore
continuous distribution of random bonds, but definitely notadditional parameters will be needed to specify the model.
for a bimodal ¢-J) distribution, where th@ =0 spin corre- We would expect that there will then be a regime of param-
lation should be nontrivial. Thus the order of limits—0,  €tersin which domain walls are costly and all domains of the
n—0, makes a difference in this case. “opposite” phase are small. Then ti@ field would essen-
tially be globally on one component or the other. In that case,
calculations can be done without domain walls as in other
models, but with a sum over the two phases. In fact, all
The claim about the metallic phase is that, in that phaseexisting proposals for a metallic phase in class D/B/BD
the partition functionZ, and correlation functions, can be (Refs. 7, 5, and Bneglect domain walls. Alternative phases
represented at large distances by those of the nonlimear where domain walls proliferate may exist, but have not been
model for class 0:>2 In replica language, this model con- identified, and may not be metallic. In the absence of such
tains a field that takes values in the target manifoldproposals, we will consider the system without domain walls

B. Nonlinear o model

O(2n)/U(n). This may be parametrized by aa& 2n com-
plex matrix Q, which obeysQ=Q", Q?=I,,, and Q'
=—A,QA,, wheret denotes transpose, ang=1,® 7, (7y
is a 2x2 Pauli matriy. In terms ofnXxn blocks, the top
right blockV of Q is ann X n antisymmetric complex matrix.
(A different parametrization is used in Ref) The symme-
try operations ar@—OQO', where in our basis, a matr@
is in O(2n) if O"'=0T=A,0'A, [and in SO() if also
det O=1]. Q can be written asQ=UA,U" ! for U in
0O(2n), whereA,=1,® 7, (U should not be confused with
U). This represents the coset space @(2(n) because)
is invariant wherld —Ug, whereg is in the U(n) subgroup
of SO(2n) parametrized in our basis ag=diag(u,u*),
whereu is anXn unitary matrix[thus, in Un)], andu* is
the complex conjugate af.

In Ref. 9, it was emphasized that Q(2U(n) has two

as defining the metallic phase we consider here. We note that
the results in Ref. 20 give a way to handle, in effect, the
different components of the target manifold in a strong-
coupling situation in dimensions:2.

We further argue that the regulatgrwhich we introduce
suppresses the second component. In the nonlimeaodel,
it introduces a term in the action of the form
—nfd?rtr,,A,Q, where tp, denotes a trace over
2n-dimensional space. This term has to be minimized on
each component to find the saddle p@nhabout which per-
turbative fluctuations are expanded. We find that at <Qch
values for the two components, wher®=A,, Q
=0A,0 1, respectively, and® represents a reflection in a
hyperplane, the second component has relative weight like
e~ 7% compared with the first, where? is the area of the
system. Since we take?— o before»—0, we find that the

disconnected components, corresponding to whethetJdet second component is suppressed. This does not change the
==1. For a zero-dimensional system, the other ensemblegartition functionZ=1 atn=0 for =0, since fory=0 the

termed classes B and BD, can be obtained by treating thinctional integral over the first component gives 1, and that

component with det) = —1 differently® These correspond
to the existence of a single exact zero mogle 0, in a finite
size system, with probability {for class B or 1/2 (for class
BD). Some network modeléstill with real /) possess such
zero modes, namely whenever @&t — 1, and this can oc-

over the second component gives(The use of just the first
component, which included =1,,,, corresponds strictly to
class BD?) Therefore, we drop the second component en-
tirely, and no difference between the metallic phases in
classes D, B, and BD will be seen in local correlatiofis.

cur, depending on what fluxes are present, and the boundatife total density of states in the “ergodic” regime discussed
conditions. We can avoid them by making appropriatein Ref. 9, smearing by energy resolutionmakes all three

choices of the latter. Even when present, they cancel in thglasses the same whepis greater than the level spacing, of
regularized ¢+ 0) ratios of determinants we consider in this orderL ~2, consistent with this conclusion.

paper. The reason is that when we insert two additianal
fluxes on the same sublattice, the determinariif afoes not

C. Twist operators

change(However, an exact zero mode could still affect the
other eigenvalues through level repulsion effects, for ex- From a perturbative point of viev@ arises from bilinears
ample) While the presence or absence of such a zero modi the underlying Majorana fermions, which naturally leads
may be important in random matrix ensembles for zeroio antisymmetric matrices. To obtain the correct structure of
dimensional systems, or for global properties in higher di-Q, it is essential that we start from the correct vacuum at
mensions, we do not expect it to play a rolddeal proper-  weak coupling, represented §y=A,, which is invariant
ties in more than zero dimensions, such as the correlationgnder the Uf) subgroup introduced above. The basis in
we consider herg(This applies to localized, as well as me- which we gaveQ corresponds to the use nicomplex Fermi
tallic, phases. Therefore we expect that the distinctions be-fields ¢ in place of the & Majoranasé. The diffusing
tween the nonlinear models should not be important, and (Goldstong¢ modes of the model involve only modes of the
we will refer to class D/B/BD when this is so. form sy or ' y" (the indices are suppressedhich corre-

For dimensions larger than zero, a precise prescription fospond to the two off-diagonal block&oldstone modes cor-
handling the two components of the target manifold has notesponding to 8X2n real antisymmetric matrices would
been given. One would expect there could be domains of thgive class DIII® in which time reversal is unbrokenThis
two “phases” (in which the fieldQ is on one or other of the parametrization can also be arrived at using the O(1) net-
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work model, which in first-quantized form is a single particle scalar field, defined as a ratio of partition functions as here,
propagating on the medial graph network with fixed nodes ohas conformal weight 1/16, and so its left-right symmetric
a standard form? and picking up+ 1 factors(with indepen-  correlation function decays as Y% The exponent is
dent probabilities 1/2) on each link. Averaging over thedoubled for a complex scalar, both of whose components are
group O(1x=Z, in a replicated second-quantized representwisted. Multiplying these for oum(2n—m)/4 complex
tation leads to propagating Goldstone modes, and this modebmponents, we obtain
is in class BD, as described in Refs. 9 and 21.

In general, the modified partition function of the model is erim(Zn—m)/S, (13)
defined by the presence of a “twist” in th@ field. The twist
is @ boundary condition at the points corresponding, 10 which is the central result of this paper. Note that this result
that is obtained from the fact that of the Majorana fermion s independent of the coupling. Whenn—0, we obtain
fields pick up a—1. Sincem is even, this corresponds to a
proper rotationO in SO(2n). We can choose thea compo-
nents of the fermions that are modified to be the real an

rmz’s, a positive power of distance. In the full nonlinear
model, g? approaches zero logarithmically with distance
$henn=0.75% From standard perturbative renormalization-

imaginary parts of the firan/2 of the complex fermions that
. ; ) 't group (RG) arguments, we expect that the nonconstancy of
define our basis foQ. ThenO is represented by a matrix in coupling produces at worst a factor of the form

the same U{) subgroup mentioned above, witl® exg C'(m)(In rij)a(m)] on the right-hand side, where(m)

=diag(y,u*), qndu=diag(—1,—1, ) '.'21’1' e ) .With _1_ <1 is anm-dependent exponent. If the twist operator does
appearingn/2 times. Hence the modified partition function o iy with any other operator in the RG, then the factor is

Z(m) Is defined as the usual one but with the condition on th%nly anm-dependent power of Iry .

Q fields at the points, j, that on making a circuit around 1, yeneral at a random critical point, the logarithm of any
these pgmts_theQ field is not periodic but changes &  (qrelation function is expected to have mean and variance
—0QO/, using the sam®. depending logarithmically on the distance; the coefficients of
these logarithmic dependences are universal. This arises be-
D. Result at weak coupling cause each extra factor (fay) 2 in distance is expected to
As mentioned above, the nonlinear model for class contribute identically distributed, essentially independent

D/B/BD flows (whenn=0) to weak coupling. Accordingly, factors to the correlation function. The central limit theorem

we can compute the spin correlation function in the weakinen applies to the distribution a§—c-. [Here we assumed
coupling limit. To leading order, the action can be approxi-the moments exist. If the distribution of the logarithm of the
mated as Gaussian for sma) ’ factors in the correlation function is too broadly distributed

for this to hold, then there is still a limiting distribution with
1 universal properties, in particular the me@n centey of the

S= _f d?r tr,VVVVT, (12)  distribution varies as In;, and the width increases as a uni-
2¢° versal power, between 1/2 and 1, ofrjn both with univer-

g
_ . ) ) sal coefficients. For a more general discussion of the scaling
where the trace is over thexXn matricesV, andg“ here is forms, not assuming the product ansatz, see Ref.lfifour

the coupling constant .squar5eg, proportional to the inverse Qfeakly-coupled Gaussian field theory, the moments in Eq.
the thermal conductivity,, .>° We have neglected the to- (13) have the form we would obtain by assuming the log of

pological (9) term, since it plays no role in the following he squared correlation function is Gaussian-distributed; the
calculation. We have also omitted the leading nontrivial part,ean and variance we would obtain are

of the  term, 7/ d?r tr,VV' with >0. The limit 7—0 is
taken after the thermodynamic limit, because massless scalar
fields in an infinite 2D system are problematic. In the weak-
coupling limit, the twist operators take a simple form, since
the operation described by our choice®#cts linearly orV; [In({o, g'j>)2]2: Inri;+O([Inr; ]a"), (14
V transforms as the antisymmetric second-rank tensor repre-
sentation of UQ). The condition onV on going around the wherea’, «” (both <1) are again some exponents. Thus
pointsi, j is that the components corresponding to complexhese resemble the results for a random critical point, if we
fermions that are both modified or both unmodified are periignore the possible subleading corrections. Although it is
odic, but those corresponding to one modified and one unwell known that the log-normal distribution is not uniquely
modified fermion pick up—1. Thusm(2n—m)/4 distinct  defined by its moments, it is plausible that in the present
(complex components o¥ pick up a—1 on going around  problem the distribution is indeed asymptotically log-normal.
or j, and the remainder of the tota(n—1)/2 pick up+1 Some consideration of diagrams for directly disorder-
(are periodig. averaging powers of the logarithm of the ratio of determi-
We now need the ratio of the modified to unmodified nants in some models, using the self-consistent Born ap-
partition functions for theV field with n—0. This has the proximation to obtain weak coupling, also suggests that this
form of a standard problem in conformal field the@rithe s correct(the normal distribution is uniquely defined by its
Gaussian theory is conformal since the couplindoes not moment$. Note that strictly we considered the lingf— 0
get renormalized A twist operator of a single real massless (or rij—) for eachm; this suffices to obtain “weak con-

In((0,))2=O([Inr;;1%),
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vergence” of the distribution. At fixed)? or rij, high mo-  Sec. lll A, this can also be rephrased by saying that in the
ments, or the tails of the distribution, may not conform to theCho-Fisher modelr fluxes are added randomly in pairs, one
(log-) normal form. above the other in Fig. 1, dooth sublattices of plaquettes.
The fact that Eq(13) eventually exceeds 1 implies that On thep=1/2 line, the Cho-Fisher model is equivalent by a
this behavior is impossible in any RBIM with positive gauge transformation to the(9 model described in Sec.
Boltzmann-Gibbs We|ghtsThe metallic phase in class I c abOVE.Zl [The equivalence holds in the bulk but breaks
D/B/BD cannot occur in such a model. Instead, there carflown when we consider the boundary conditions; for certain
presumably be only gapped or localized phases and criticgloundary conditions, the Cho-Fisher model has the symme-
points between therfand possibly critical phases, meaning tries strictly of class D (H_/I has no exact zero elg_enval—
regions with scale invariance but described by a nontrivial'®9-] In Ref. 21, the Cho-Fisher model was reexamined nu-
fixed-point field theory, not a weakly coupled nonlinear _mencglly, and metallic behawo_r was found in a region
mode)—unless some other, so far unknown, stable metalli Ecludr:ng thedwlh?lle of thep; 1/2 l'nk6' We lgxpect Fheref?ri
phase with the symmetries of the RBIM exists, that avoids IZ;st S/IB;%ODE mcc))V(;/ZI tc;r: dethvéiatr;go;l?c;cg rrgglljrlrt]zgplite:
g‘setﬁg?gﬂggﬂ;ﬁgggﬁ; ;regi)ﬁpxléevsvéosg]ﬁ ztﬁrao;eagsu\llgta nce we see that this does not contradict our claim that no

. i oo T etallic phase can occur in RBIM's with positive
spin correlation goes to one ds-0, for any distribution of g1t ann-Gibbs weights. The result for thélPmodel is

bonds. Even though this is not the same as the corrgct, ot really surprising, in view of the behavior seen above in
=0, correlation for certain bond distributions, it is still in the dual of the RBIM, in which the Kramers-Wannier spins

disagreement with the metallic phase. h > . .
- . have couplingX ,; with imaginary parts, and the mo-
We emphasize that results of a similar form can be ob-’u PINGSR.ap gihary p

) ) ) : _~~'ments of their correlations can be larger than 1.
tained for the moments of the twist correlations in a variety
of other metallic regimes in different ensembles, since these
are by definition regions of diffusive behavior that can be
described by a nonlinear model at weak coupling. This is  Our final result is for the @) model, already introduced
true even in systems that do not renormalize towards weaj Sec. Ill C. We will argue that it is never in the ordered or
coupling, on length scales shorter than that for the crossovefisordered phases of the Ising model, by showing that the
to strong coupling. Two other cases, class DIl and the symmoments of the squared order and disorder correlations are
plectic (e.g., spin-orbit scatteringase of the Wigner-Dyson poth bounded below by 1. We also point out that the latter
ensembles, both of which possess Kramers degeneracy dgghavior is found in the other network models, in classes A,
to time-reversal symmetry, flow to weak coupling in 2D like C. In the class Gspin quantum HaJlcase, we find the exact
the class D/B/BD case considered here. However the physexponent for the mean order and disorder correlations at
cal significance of the Ising order correlation is less clear ircriticality.
these systems. Another case of interest is a family of nonlin- |n the (1) model, or the Cho-Fisher model pt=1/2,
ear o models with target space SQ{2 1)/U(n), which  each plaquette of the network modehedial graph of the
with n— 0 arose in connection with the Nishimori lif&The  |sing model square lattigeencloses a flux of either 0 ar
m=even moments ofo;o;) can be considered in this case with independent probabilities 142ip to some boundary ef-
also. The twist operator has the same form, but the totafects. We consider the order or disorder correlation func-
number of Goldstone modes is different: because 8O(2 tions, defined as before in fermion language. Like the disor-
+1)/U(n) is the same, as a manifold, as S@¢22)/U(n  der correlations in the RBIM with symmetric distribution of
+1), itis as above but witm—1, not 0. The family of J;’s, the logarithm of either squared correlation is sym-
models with SO(2+ 1) symmetry has two coupling con- metrically distributed, and the even moments of the correla-
stants in place 0§2,%° but these do not enter the twist cor- tions are bounded below by. Note that this behavior is
relation at the Gaussian level. Thus the above rd¢d@jtcan  consistent with our results in Eq14), if the error term in
be used witm— 1, and the moments go asr ™. For In((a;07))? is zero. This means that if the(D model really
m>2, these increase with;, eventually exceeding 1, re- does flow to the metallic phase, then these universal correc-
quiring that(c;oj)>>1 with nonzero probability. Thus the tion terms, and all higher-order analogs, in the nonlinear
weak-coupling region of this family of models is inacces- model, must be zero.
sible in a RBIM with real couplings. There might in principle ~ Now we compare this with the behavior expected in the
be metallic regimes in other weakly coupled nonlinear localized phases. Such phases occur at weak dis¢sdell
models in which the original Ising correlations are repre-p) in the RBIM and Cho-Fisher models. Like the two phases
sented by a different sort of twist operator that gives a dif-of the pure Isingmassive Majorana field theorynodel, one
ferent result, but we are unaware of any at present. or other mear(and mean squayeorrelation is supposed to

According to recent work, certain network models are be-decay to zero, and the other to go to a constant, at large
lieved to possess a metallic ph&$elhe model of Cho and distance. Hence the (@ model is definitely not in either
Fishef® is equivalent to an Ising model with couplingsK  such phase. It is tempting to conclude that it must therefore
on horizontal links(see Fig. 1, andK, K+i#/2 on vertical  be in the metallic phase, though this is not really proved;
links,2° with independent probabilities-4p, p (K is posi- some other localized phase may not be ruled out. As men-
tive, andp was denotedV in Ref. 23. From our remarks in tioned above, numerical wotkled to the hypothesis of me-

IV. CORRELATIONS IN THE O (1) MODEL
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tallic behavior everywhere in the(® model. clear why such behavior does not occur in the localized
The reason for caution about the last point is obtained byhases of the RBIM, or for the Majorana fermion with ran-
considering other network models for other ensembles. Thdom mass. Perhaps such a phase would be consistent with
two models in question are defined similarly to th¢10 the above form of probability distribution, and have neither
model, but in the first, the particles pick up independentorder nor disorder correlations decaying to zero. If so, it
uniformly distributed U(1) phases on the links, and in themay, like the metallic phase, be inconsistent with the Ising
second they pick up Si) matrices insteadthe latter re- ~ correlations in a RBIM.
quires two-component wave functions for the particles  Since we have been discussing the clags@n quantum
These are, respectively, the Chalker-Coddington model foHall) network modef* we also include here a result for the
the integer quantum Hall transitidielass A,'% and the Ka- critical correlations of the Ising order and disorder operators
galovsky et al. model for the spin quantum Hall transition in that model. We can obtain a result only for the mean
(class . Both models possess localized phases away fromvalues,(oio;) and (u,ug). Each of these is defined by a
their critical points. We now consider twidt‘order” or twist of each of the two components of the wave function in
“disorder”) correlations, defined as the ratio of modified to a single copy of the system. It will be necessary here to use
unmodified partition functionéfermion determinanjsas be- the supersymmetry method, in which the division by the un-
fore. First we note that for the class A modal,is a 4N  modified partition function for a single copy is represented
X 4N unitary matrix, its eigenvalues come in paes', by a single two-component boson figftf> The partition
—e '€, and det(+-1) is in general complex. For class @, function of the unmodified supersymmetrized system has su-
is an @\ x 8N symplectic matrix, and its eigenvalues come persymmetry osp(i2)=sl(2|1),>* and is equal to 1. The
in quadrupletsg™'¢, —e~i¢, e'¢, —e', similar to class D; mean of either correlation is represented by a modified par-
hence det(+ %) is real and positive. This applies to both the tition function, in which two twist operators have been in-
modified and unmodified partition functions, and we see thaserted. The partition function, like the unmodified one, has a
in the U(1) (class A case we should consider the modulusgraphical expansion as a sum over coverings by noninter-
square correlations, while for the 8) (class Q case we secting loops on the network modéhedia) graph, with
can consider the correlations themselves, which are real argertain weights. States of the fermions and bosons flow
positive. The uniform distributions imply independent uni- around the loops; there are only three possible states, which
form distributions for the fluxin U(1) or SU2), respec- can be labeled by the number of fermions they contain, either
tively] through each plaquette in these models. Multiplying0, 1, or 224?%In the unmodified partition function, each
these fluxegas group elementdy — 1 (for the twist inser-  loop is weighted with a factor 1, because the singly occupied
tion operation leaves the distributions unchanged, and hencétate contributes-1, and the other two states1 each.(In
again the logarithm of th¢modulus squared in the (W) Ref. 24, this mapping was constructed and used to show that
casg order or disorder correlations in these models are symseveral exponents for the spin quantum Hall transition are
metrically distributed, and the moments of flmeod-squared given by percolation, which has the identical loop expan-
for U(1)] correlations are bounded below by éen in the sion) Because the original twist weights a fermion of either
localized phases component that propagates once around the twist with a fac-
Thus it appears that these localized phases behave diffeter of —1, the singly occupied state picks up-dl and the
ently from those in the RBIM and Cho-Fisher models, andothers are unchanged. That is, a loop that encircles one of the
cannot be distinguished by Ising order or disorder variablesiwist insertions and not the other is now weighted by a factor
This may be connected with the continuous distributions for3, not 1; the other factors which occur at the nédese
the flux in the plaquettes in these models, as opposed to thechanged. It follows that either mean correlation is greater
discrete distributions for the flugwhich was either 0 orr)  than 1, as we proved by another method already. Since the
in the Q(1) model. However, we may also point out that the maximum number, and the typical number, of such loops
localized phases in the RBIM and Cho-Fisher models, likewill increase with the separation, without limit in the critical
the localized phases of a Majorana Fermi field with a weaklycase, we expect that either correlation increases as?,
random mass, are expected to have a vanishing density @fherex<0 is the scaling dimension of the twist operator. In
states at=0, at least at weak disorder. In contrast, there isthe loop model description, the twist operator has exactly the
a possibility of a localized phase with the statistics of clas§orm recently considered by Carfyfor percolation and
D/B/BD, and the mearocal density of stategwhich is in-  other problems. Making use of his Eql), x=(x'?
dependent of system sizeeare=0 would be expected to be —x?)1(29), with g=2/3, y=1/3 for percolation, and
nonvanishindas in the localized phase in thg1) network 2 cosmwy’ =3 for our twist, we obtain
model, which is in the unitaryclass A ensemble, though
not the SW2) model which is in class £and smoothly vary- 1 3In7(3+ \/E)IZ]
ing. Further, it would probably have andependence like X=~ 13~ T:_O-lm- (15
that for class D in Ref. 9, including a peaket 0, but with
the energy scale for such structure proportional to thet is implicit in this result that we chose the branch for the
inverse-square localization length. Although the existence ofogarithm such thax is real. With this choice, Cardy’s gen-
such a localized phase was predicted in, for example, Ref. &ral formulas imply thak is negative whenever the factor for
it has not so far been demonstrated to occur in practice in anlpops that enclose exactly one twist operator is larger than
model. In fact, given the symmetries of the problem, it is notthat, 2 cosry, for the unmodified loops.
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V. APPLICATIONS TO SUPERCONDUCTORS not carry a zero mode, but induces one on the edge that
AND PAIRED FQHE STATES encloses it. We conclude then that no such dual vortices can
exist, and there is only one type of vortex. Clearly we may
take a continuum limit and draw the same conclusion. This
means that Kramers-Wannier duality does not apply in such

Paired states of fermions with compléme-reversal vio-
lating) pairing of spinless or spin-polarized particles, or sys-
tems with broken time-reversal symmetry and spin-orbit o

: . Hamiltonian models.
scattering, have the same symmetries as class D/BfBNe

: : . Turning to quenched disorder, it was shown in Ref. 8 that
will consider only one-component systems such as spinless ! : - o
. . . : = i randomly-inserted vortices in independent positions are a rel-
or spin-polarized fermions witlp-wave pairing, which are

. o _ evant perturbation of the pure Isinylajorana fixed point
the simplest, and begin with the pure case. We will thery,q .27 \yas pointed out that such disorder always occurs

argue that their phgse diagrams are more like that of t_hfn the applications to FQHE systems, where underlying po-
RBIM than has previously been recognized. For a RBIM inyentia| disorder can induce vortices, because they are

which frustrated plaquette®f the Ising model latticeare  charged(In the RBIM, it is well known that the vortices are
introduced independently, with some density, we argue thagorrelated in pair.lt seemed natural to expect such disorder
the Ising ordered phase is destroyed at0 for an arbitrarily  to cause a flow to the metallic phase in class D/B/BD. Now
small density of frustrated plaquettgsortices. In the if we assume that all the vortices are of the first type defined
FQHE, this implies that the weak-pairiigon-Abelian sta- above, then we can construct network models of this situa-
tistics) phase is destroyed by weak disorder. tion by addings fluxes independently, all on the same sub-
It was important in Ref. 8 for the discussion of non- lattice, with some densityp. This can be described as an
Abelian statistics that vortices carry a Majorana fermion zerdsing model with bond disorder that is not independent for
mode when they occur in the so-called weak-pairing phasesach bond, but the bonds are still real, and of fixed magni-
but not in the strong-pairing phase. These phases occur dnde. This will accurately model the low-energy properties if
the two sides of the transition at which the mass of the Mathe vortices are diluténote that we assume the penetration
jorana fermions changes sign; the weak-pairing phase correlepth and coherence length of the pure system stay finite at
sponds to the Ising orderdgtbw-T) phase. The notion of a the transitiof. The results of this paper show thstich a
dual (in the Ising sense vortex with the opposite model cannot have the metallic phase in class D/B/BD
properties—i.e., carrying a fermion zero mode only in the In fact, such a model may not have a phase transition
strong pairing phase—was implicitly discarded. The twoeither. Introducing frustrated plaquettes into the Ising model
types of vortices correspond in the network model to the twandependently tends to destroy Ising long-range order,
sublattices of plaquettes on which vortides fluxes may be  though the discussion is complicated by the gauge choices
added to those already present in the pure model. The firsteeded in placing the strings of negative bonds that are
type corresponds to adding a vortex on the network modeheeded to produce the frustrated plaquettes. We can avoid
plaquettes that correspond to plaquettes of the Ising modethis difficulty by considering the spin-glass order parameter
In a continuum model, only the first type of vortex was con-or correlations instead. Because the bondstale there will
sidered because it was argued that in the physical situationtze ground-state degeneracy. Ground states can be repre-
vortex should effectively have a region of strong-pairingsented by lines of frustrated bonds that join the frustrated
phase, or vacuunwhich was argued to be effectively the plaquettes in pairs, chosen so as to minimize the energy.
same thing in a “topological” senggat its core. Distinct ways of dividing the frustrated plaquettes into pairs
The argument can be made essentially rigorous by conwill frequently be exactly degenerate, and reconnecting the
sidering a tight-binding Bogoliubov Hamiltonian on a lattice lines of frustrated bonds means reversing the spins in some
with a finite numberN of sites, with an edge, not periodic domain. A condition that plausibly is necessary, but may not
boundary conditions. Such a Hamiltonian corresponds to &e sufficient, for the absence of long-range ordeil &0,
2N X 2N matrix, which is in the Lie algebra of SO), and  and hence of a finitd phase transition, is that, in a ground
its eigenvalues come in paies— €, so that it never has an state in the thermodynamic limit, any given spin lies, with
odd number of exact zero eigenvalues. A vortex can be gerprobability 1, in a finite domain that can be flipped with zero
erally defined as an object which, far from its core, ap-energy cost. Heuristic considerations of sufficiently large do-
proaches a singular gauge transformation that describes thmeains suggest that any spin does lie in at least one such
insertion of a fluxs into the system without the vortex; this flippable domain(the probability for a domain, formed by
means that both the phase of the gap function, and the vectoeconnections of lines of frustrated bonds between nearby
potential exhibit the winding byr. If we insert one of the frustrated plaguettes, to have zero energy cost decreases as a
postulated dual vortices in the strong-pairing phase with ngower of the length of its boundary, while the number of
other vortices present, then it is supposed to carry a zercsuch domains is exponential in this lengthlence we sus-
energy mode. There are no other zero modes with which ipect that there is no ordering even at zero temperature in this
can mix, as we know because far from the vortex, we can usmodel, for any nonzero density of the frustrated plaguettes
our understanding of the low-energy properties. In particular(however, the zero-temperature state may be critical, as that
there is no chiral spectrum of edge excitations in the strongef the usuat-J EA model may be algoThis means that the
pairing phase. Hence it must be an exact zero mode, which imodel atT>0 is presumably in the paramagnetic phase, and
impossible for this Hamiltonian. A similar argument can beall fermion eigenstates are presumably localized. The model
given in the weak-pairing phase, where the dual vortex doesan be generalized by introducing a continuous distribution
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for the magnitudes of thé;; , and will then order al =0, ity class could be realized in one-component superconduct-
but a similar argument for the free energy at finitsuggests ors. We concluddin contrast to Refs. 5 and)&hat, in at
that it will still not order atT#0. least some models of superconductors or FQHE paired states

A stronger argument can also be given. The mean groundwith the symmetries of class D/B/BD, and with only one
state energy is a function of the densipyof frustrated type of vortex present, there may not be a metallic phase
plaquettes, and is extensive, and varies smoothly pigx-  after all, but there may instead be a transition in a distinct
cept atp=0. Increasing slightly means frustrating a small universality class from the pure system for some types of
number of previously unfrustrated plaquettes. Thus frustratdisorder.
ing one additional plaquette changes the mean total energy Clearly, similar possibilities should be explored in con-
by an amount of order 1. Yet this forces a domain wall fromnection with other ensembles, which can occur when more
the plaquette to the edge of the system, along which the linesomponents are present, but will not be considered further
of frustrated bonds have been reconnected. The only reasohere. We point out, however, that the case of pairing of spin-
able conclusion is that the mean energy of the minimuml/2 fermions, with spin-orbit scattering and a general random
energy domain wall is zero, except for a finite effect frommass, which has the symmetries of class D/B/BD, corre-
around the added frustrated plaquette. This is the same beponds to multicomponent models considered in Ref. 9,
havior as in an EA spin-glass model. A similar conclusionwhere it is argued that a metallic phase is produced. Refer-
holds for two added frustrated plaquettes, and may be conmence 9 also argued that the metallic phase would not occur in
pared with the discussion in Sec.(but note that there the the one-component case in the absence of vortex disorder,
operation also unfrustrated originally frustrated plaquettesbut did not consider vortex disorder as fully as we have.
so that for a symmetric distribution of bonds the mean freeAlso, models of superconductors as disordered gréash
energy change was exactly zgroVe have no information described by a random matrix from clasg, @oupled by
about the width of the distribution of the domain wall ener-weak hopping, appear similar to multicomponent models,
gies, but we can expect that, like the usual short-range EAnd may have a metallic phase, as a mapping to a weakly
2D spin-glass models, there will be no finiteransition.(A coupled nonlineasr- model would suggest.
finite T transition can occur in a 2D spin glass with suffi-
ciently long-range power-law random bonds, but we have no VI. CONCLUSION
reason to expect this to be realized hgre.

Intuitively, the independently inserted vortices appear

similar to a random magnetic field, though the relation is notpOm onentmodels which possess a metallic phase is that in
exact. However, it is a field that couples to the dual variable P P P

M., and further it has a uniform component. The latter is the he former the added vortices, in network_model Ianguag_e,
most important effect. A uniform magnetic field in a ferro- occur on one sublattice only, but on both in the latter. This

magnetic Ising model destroys the transition, and the resul2PPears to be a necessary condition ior the existence of t.he
etallic phase. If the vortices are correlated in pairs, suffi-

ing phase has correlations like those in the ordered phase fglently strong disorder will be required to produce the me-

The main point to emerge from this study is that the im-
ortant difference between the RBIM and th@ne-

the spin to which the field couples. In the present case, i lic phase. This result casts some doubt on whether the
would lead to the high-temperature paramagnetic phase, i p : : ; D
metallic phase will occur in applications to one-component

agreement with our conclusion. )
The conjecture that vortex disorder destroys the Ising or—2D superconductors and paired FQHE systems, because

dered phase has a dramatic consequence for applications%ese possess only one type of vortex, corresponding to those

spinless or spin-polarized FQHE paired states. The parama n only one sublattice in the network. On the other hand, if

netic phase corresponds to the disordered version of th prtices of only one type are present, but are uncorrelated,

strong-pairing phase: the weak-pairing phase has been dpgl_ls may lead to the destruction of one of the phases, and

- ence of the phase transition. If such vortices are correlated
stroyed. The weak-pairing or Moore-Read phase was sup-~ . .
posed to be the basis for non-Abelian statistit¥e are ar- In pairs, the phase diagram may resemble that of the RBIM.

guing that this behavior, including the chiral MajoranaltWOUId be interesting to test this numerically, both on mod-

. . ! els defined by a Hamiltonian, such as tight-binding models,
fermion edge modes, is destroyed by any weak voftex,
potentia) disorder. and on network models, and also for other symmetry classes.

In models, such as the tight-binding Bogoliubov Hamil-
tonian, in which the vector potential and gap function each
has only short-range correlations, vortices will tend to be We are grateful to I. A. Gruzberg, J. T. Chalker, M. R.
produced only in pairs, and again can be of only one typeZirnbauer, and D. S. Fisher for discussions. N.R. is grateful
Thus these one-component models appear similar to th® David Gross and the staff of the Institute for Theoretical
RBIM, and may have a similar phase diagram, in which thePhysics, University of California, Santa Barbara, for their
weak-pairing phase occurs at weak but not at strong disordehospitality while this paper was being written. This work
At the transition, the critical behavior may be that of eitherwas supported by the NSF under Grant No. DMR-98-18259
the pure Ising mode{up to logarithmg or the lowT phase (N.R.. The work of N.R. at the ITP was partially supported
boundary in thefrustrated RBIM. Thus the latter universal- by the NSF, under Grant No. PHY94-07194.
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