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Atomic clusters in icosahedralF-type quasicrystals
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We present a detailed study of the geometry of the atomic clusters encountered in icoskHggel
quasicrystals using the cell decomposition of the prototypic atomic surfaces introduced several years ago for
modelingi-AlCuFe. This includes an exhaustive and quantitative characterization of the geometrical features
of the two major(Bergman- and Mackay-typetomic clusters usually considered as the building blocks of
these structures together with a study of the extended Bergman cluster proposed by M. [@inst&us in
Quasicrystalsto be published in the Proceedings of the 7th International Conference on Quasicrystals, Stut-
tgart, Sept. 1999as a template of self-overlapping atomic clusters describing all atoms of the structure and
show that this large cluster splits into a total of ten different configurations.
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I. INTRODUCTION « a substantial fraction of atom®ften called the “glue
atoms”) are not taken into account although they are of a
Stable icosahedral quasicrystals have been discovered Ilgyeat importance for the understanding of the dynamical
Tsai and co-workels in the (Al,Cu,Fe and(Al,Pd,Mn) ter-  properties of the structure;
nary systems a few years after the observation of metastable * none of the basic properties like density, composition,
icosahedral structures in rapidly quenctigdiMn) alloys by and diffr_action spectra can be easily computed out of this
Shechtmaret al3. Extensive efforts have been since devotedSimple picture; ) _ )
to decipher the atomic structure of these phases by means of * it gives the impression of a structure being frozen with
single grain x rays and neutron-diffraction technigsee, for unalterable atomic entities forming sort of an immutable mo-
instance, Refs. 497Experimental results agree on the basic/ecular framework. o
fact that these stable quasicrystals are well defined long- Because of these restrictions, we perform here a cluster
range-ordered solids with respect to Bragg diffractisae, analysis starting from the six-dimension@D) model pro-
for instance, Refs. 8—12the diffraction instruments with POsed several years ago by two Ofl‘rl_‘for describing the
the best available resolution show that quasicrystals have &omic structure of-AlCuFe. Our goal is twofold:
spatial coherent length close to that of standard silicon * guantitatively and exhaustively identify in details what
samples, thus ranking them among the best scatterering sd¥Pe of atomic clusters develop with what frequency and
ids, far above the usual intermetallic compounds. This justi’oW they connect and/or overlap; _
fies describing quasicrystals, in a first approach, as perfect * Perform the complete decomposition of the three main
objects in the same spirit as describing perfect crystals. Thigtomic surfaces of the model into cells characteristic of each
is the ideal quasicrystal model that we take as the only focugonfiguration for distributing the atomic species on the vari-
of the present paper. ous sites Qf the cIus}ers Wlth re;pe.cy to their local configura-
The present work is an additional contribution to previoustions consistently with quasiperiodicity.
works by Katz and GratiaS;'®> Cockayne'® Elser!®'”  The paper is organized as follows.
Krameret al,'® Papadopolos and co-workéf&%and, more We first recall shortly the main physical and geometrical
recently, Duneatt in the quantitative characterization of the reasons for choosing the three main atomic surfaces that are
geometrical features of the two major atomic clust@srg-  the basis of our model and the cell decomposition technique
man and Mackay typeusually considered as the building that is used all along the paper for characterizing the real-
blocks of these structures. We designate as atomic clustergpace description. We then discuss the geometric properties
set of close atoms distributed on fully occupied high symme-of the two major kinds of generated atomic clusters similar
try orbits and that can be considered as typical of the structo BergmaRi* and Macka$® clusters(noted, respectivelyB
ture in the sense that they are found at a high frequency iandM) before extending the analysis to the cluster template
the solid. This cluster idea was the aim of the pioneer workgnotedXB) recently proposed by Dunedtiwe finally show
on quasicrystalline structures of Guyot and Autfieand  that this template cluster splits into ten different configura-
Elser and Henley? It gives a simple intuitive idea of what tions of the standard canonical triacontahedron.
the quasicrystal looks like at atomic scale but it is, of course,
a simplified view of the atomic structure of quasicrystals and Il. BASIC MODEL
if taken alone suffers severe deficiencies:
« it contains no information of how these units connect or We use the cut methdd; > for describing the atomic
overlap and how they develop quasiperiodically in space; structure of quasicrystals. In that scheme, the structure is
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represented by a periodic object inNe>3D space where (Y
atoms are defined by atomic surfacetso called acceptance
windows periodically distributed through aN-dimensional ! ) ‘
lattice. For the case of the icosahedraAICuFe and
i-AlIPdMn phases, this configurational space is of dimension
6 and the structure is described by Rtype (face-centered
lattice (subset of nodes of the primitive 6D lattice with the (b)
sum of indices evenand 6D space groupm35 or F235.
The atomic surfaces are 3D volumes aligned along a 3D |
subspace, callelt, that is perpendicular to the physical 3D
subspace called;. The real 3D structure is obtained by r
cutting the 6D object by any 3D subspace parallelEjo w0000 A T
Atoms are generated ik at the 3D locations where the bD 0,001,104~ b?
atomic surfaces intersect the cut subspace. I/ [ 1 I‘\
We use the 6D indexing scheme of Cadtral3” and label l \ K1k / AT
the F-lattice nodes with respect to the underlying primitive  (0,1,1,1,1,-1) TN \
6D lattice. To define a rational node of the hyperlattice, we (1,1,1,0,0,0)
use the full notation of Cahat al. in including the numbers
N and M characteristics of the lengths of the projected 3D
vectors inE; and E, : a 6D vectorx=[N,M]:(ny,n,,
N3,N4,Ns5,Ng) projects onE; and E; as 3D vectors with (d) (e)
lengths, respectively, |x||=ACY(N+M7) and [x,]
=AKJ7(N7—M) where £ is a geometric constaniC n(n') .
=1/\2(2+ 7)(~0.371 748) and\ is the 6Dprimitive lattice o
parameter.
A convenient and simple modélfor F-type icosahedral ©0,0,1,0,1,0) ©,0,1,0,1,0)
phases consists in choosing three main atomic surface
bounded by mirror planes:
(i) one attached to the even nodes (0,0,0,0,0,0);
(ii) a second attached to the odd nodés-(1,0,0,0,0,0);
(i) a third one at the odd body centetsc=1/2
(-1,1,1,1,1-1). () (2)
The three atomic surfaces that agree well with the diffrac-
tion data, density, and stoichioméetry*®are a large triacon-
Ejéilgéﬂsen; r:N?[thtTﬁeeg!rrr]n;gg:?ogtgﬁggfgﬁ-rdt,oOafvsgznzh?; =(0,0,0,0,0,0) (b) a large truncated triacontahedrﬁjn, of volume
. , . n 5+67 located an’=(1,0,0,0,0,0), andc) a small triacontahedron
dius at the odd nodes’, and a small triacontahedrdn, at T, of volume 1 located abc=(—1,1,1,1,1-1)/2. The total vol-
the odd bodycentersee Fig. 1 This choice fulfills the con-  yme of the atomic surfaces is +1.47 leading to a density of sites
dition of existence of local rulé&*® and easy phason g in real space ofl(XA)3= (11+ 147)/[4(3+47)]~0.8882.(bot-
relaxatiot*~*" during growth(see, for instance, a discussion tom) 2D cut of the 6D space alongl) fivefold, (e) threefold, and
in Ref. 48. (f), (g) twofold planes: the traces of the three basic polyhedra rep-
We characterize the polyhedral atomic surfaces by a set aksenting the atomic surfaces are line segments parall@, to
triangular facets in the elementary sector of the icosahedralompleted with segments parallelp, they represent 2D sections
symmetry. Each triangle is defined by three vector€in  of the 6D hyperprisms defining the cell decomposition. The gray
that are projections of rational 6D lattice nodes. For examplegareas represent the cut of the hyperprisms corresponding to the unit
the triacontahedrof,, is defined by one facet that is the 6D cell.
perpendicular projection of the three 6D nodas[7,
-4]:(-1,-1,1,1,3,1)/2,b=[5,—-3]:(0,—2,1,0,2,1)/2 and
c=[6,-3]:(0,—1,1,0,1,0). For the unit lengths i&, and The F-type icosahedral phases are often designated as
E), we choose the triacontahedrdp. as the unit volume in  “Mackay-type” structures(see for instance, Ref. 4@s op-
E, andKA as the unit length il . This gives a normalized posed to “Bergman-type” structures like AlLiC(see, for

description of the icosahedral phases independent on thastance, Refs. 50 and 51As already discussed by Katz and
chemical nature of the alloy. With these notations, the 3DGratias® Elser’®, Kramer et al,'® and Papadopolos and

R
(1,1,0,0,0,0) (1,1,0,0,0,0)

FIG. 1. (top) The three main atomic surfaces of the model in
E, : (a) a large triacontahedrom,, of volume 5+ 87 located amn

Ill. ATOMIC CLUSTERS

(]

Penrose canonical triacontahedron has volume23 and,  co-workers'®?° these structures can Keoughly) described
for the present modeT,, has volume 587, T, 5+67,and by two kinds of intricated clusters that are reminiscent of
Ty, Of course, 1. The total volume of the model is 11 Bergman's(designated here b cluster$ and Mackay’s
+147. clusters(designated here byl clusters. Our aim is to fully
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TABLE |. The principal short interatomic distances and their origins in 6D space. The parallel and
perpendicular distancel andd, are given in nm for the specific case of AICuFe calculated with a 6D-lattice
paramete A= 0.63146 nm(multiply by 1.0357 fori-AIPdMn).

Type Sym(lattice) 6D vector dj(nm) d, (nm)

-n’ 20(P) [6,—3]:(1,0,0,-1,—-1,0) 0.251286 1.06446

n—bc 12(1) [3,-1]:(1,1-1,1-1,1)/2 0.275958 0.722468
-n 30(F) [8,—4]:(0,—1,1,0,1,1) 0.29016 1.22914
n—n’ 60(P) [14,-7]:(1,0,-1,1,0,2) 0.383845 1.62599
n'—bc 20(1) [3,01:(-1,1,1,1,1,1)/2 0.406589 0.657874
n—n’ 12(P) [2,1]:(0,0,1,0,0,0) 0.44651 0.44651
n—n 30(F) [4,0]:(0,1,0,0--1,0) 0.469488 0.759648
n—bc 60(1) [7,-1]:(1,—-1,1,1,1,3)/2 0.544584 1.04834
n—n 12(F) [12-4]:(1,1-1,1~1,1) 0.551916 1.44494

n—n 60(F) [12,—4]:(—1,0,2,0,1,0) 0.551916 1.44494
n’—bc 60(1) [7.0:(—-1,1,3~-1,—1,—1)/2 0.621074 1.00492

n—n’ 60(P) [6,1]:(0,1,0,1,0,1) 0.647912 0.881156
n—bc 20(1) [3,3]:(1,1,1-1,—-1,1)/2 0.657874 0.406589
n—n 60(F) [8,01:(1,0,1~1,—1,0) 0.663956 1.0743

n'—bc 12(1) [3,4]:(1,1,1,1-1,1)/2 0.722468 0.275958
n—n 30(F) [4,4]:(0,0,1,0,0,1) 0.759648 0.469488
n'—bhc 120() [11,0]:(3,—1,1,-1,—1,3)/2 0.778558 1.25973

n—n’ 60(P) [10,1]:(0,0,2,-1,0,0) 0.800131 1.1634

n—bc 60(1) [7,3:(—-1,1,3,1,1,1)/2 0.808219 0.861614
n-n 60(F) [12,0:(1,0,0,1,0,2) 0.813177 1.31575
n—n 20(F) [12,00:(—1,1,1,1,1,1) 0.813177 1.31575
n'—bc 60(1) [7,4]:(—1,3,1,1-1,1)/2 0.861614 0.808219
n—n’ 60(P) [6,5]:(0,1,1,0--1,0) 0.881156 0.647912
n—n 12(F) [8,4]:(0,0,2,0,0,0) 0.893019 0.893019
n—n 60(F) [8,4]:(1,1,0,0--1,1) 0.893019 0.893019
n—n’ 120(P) [14,1]:(0,0,1,1,1,2) 0.9277 1.38945
n—bc 60(1) [11,3]:(3,1,1-1,-3,1)/2 0.934685 1.14867

n—bc 60(1) [11,3]:(1,—-1,3-1,1,3)/2 0.934685 1.14867
n—n 120(F) [16,0:(1,—-1,2,-1,0,1) 0.938976 1.5193

n—n 30(F) [16,0]:(0,2,0,0;-2,0) 0.938976 1.5193

n’—bc 60(1) [11,4]:(1,—-1,3,1,1,3)/2 0.981223 1.10918
n—n’ 60(P) [10,5):(1,0,1-1,—1,1) 0.998426 0.998426
n—n’ 12(P) [10,5):(1,1,0,1~1,1) 0.998426 0.998426
n—bc 60(1) [7,71:(1,1,1,1-1,3)/2 1.00492 0.621074

quantify the relative frequencies of these clusters and classif{lines) of the atomic surfaces in the five-, three-, and two-
their intersections using our previous model as basic generdeld 2D planes of the 6D space as shown in Fig. 1 and
tor for the cut method. Instead of generating any portion ofdirectly visualize the basic intersections between neighbor
the quasicrystal with arbitrary size using the cut algorithm,atomic surfaces.

we should analyze the atomic local configurations directly in
E, where all the geometrical environments have a finite-size
image that can be calculated exactly. This is the®teit As shown on Table | and Fig.1, the three first atomic
KlGtze*** decomposition that is based on the simple ideadistances are, respectivelgg=/6—37 along the threefold

that two actually present atoms in the structure are issueddirections(dodecahedron of radius 0.251 nm feAlCuFe),

from two atomic surfaces the projectionti) of which have Rg;=/3— 7 along the fivefold direction§icosahedron of ra-

a non empty intersectionThus we study how atomic sur- dius 0.275 nm foi-AlCuFe), and finallyR,=\/8—4r along
faces projected ific, intersect each others suffices to deter-the twofold directions(icosidodecahedron of radius 0.290
mine what kind of clusters are present in the real structurenm for i-AlCuFe). The next distance is much farther away
This work is considerably simplified by the fact that the main (/14— 77 in mirror planeg so that these three first distances,
first interatomic distancegsee Table )l are along three-, being close to each other, can reasonably be considered as
five-, and two-fold directions. Hence we can draw the traceshe first coordination shell.

A. First coordination shell

024202-3



GRATIAS, PUYRAIMOND, QUIQUANDON, AND KATZ

Y
e
4

n,n' ¢

PHYSICAL REVIEW B 63 024202

TABLE Il. The coordination numberg for the first coordina-
tion shell decomposition of, (see Fig. 2 The average coordina-
tion number isZ,=(76+887)/(5+87)~12.17.

n
A - k}‘t ‘52(:"‘" 3
“ @ £ SRS
5 6 7 8 9

nl

FIG. 2. First neighbor cell decomposition faf, and T,/ (see
Tables Il and 11). The four first cells are common B, and T, .

The computatiol? of the corresponding cells decomposi-

Total VA VA Z Z

Cell Volume at.% (threefold (fivefold) (twofold) total
C; -3+27 0.701 7 0 0 7

C, 13—-87 0.1656 7 0 1 8

C; —42+267 0.2047 7 0 2 9

C, 26— 167 0.3312 7 0 3 10
Cs 68—42r 0.1265 7 0 3 10
Cs —42+267 0.2047 7 0 4 11
C; —16+10r 0.5359 7 0 5 12
Cg —55+34r 0.0391 6 0 4 10
Cy 13—-87 0.1656 5 1 5 11
Cio 13-87 0.1656 6 0 5 11
Cy;  13-87 0.1656 5 1 6 12
Ci, 36—227 1.1983 6 0 6 12
Cy;3 —14+167 35.327 5 1 7 13

Cis 8—47 45401 5 0 6 11
Cys —6+4r 1.403 5 0 7 12
Cis 7—4r 1.5685 6 0 5 11
C,; —16+107r 0.5359 5 0 5 10
C;g 10-67 0.867 4 0 5 9

Ci,y —8+67 5.076 4 0 6 10

The average radii of the first coordination shells §r,e

=[(32+367)Ry+ 12R5+(32+527)R,]/(76+88r) for T,
Ry =[(32+367)Ry+ (38+247)R,]/(70+607) and, of

course Ry.=+3— 7. The global average radius iR

tion leads to a total of 34 local configurations distributed=0_2756 nm fori-AICuFe (0.2854 nm foii-AIPdMn). These

according to 19 fofT,, 14 for T,;, as shown on Fig. 2 and
only one for T, (not shown. The characteristic environ-
ments along three-, five-, and twofold directions are given i
Tables Il and Il

The first coordination shell fof,, decomposes according
to

. fo)=(32+36r)/(5+87)~5.03 average atoms along
the threefold directions &g,

. _5,5)=12/(5+ 87)~0.67 average atoms along the five-
fold directions atRs,

« and Z\Y=(32+527)/(5+87)=47~6.47 average at-
oms along the twofold directions &.

For T,/ , we obtain

. 253)=(32+ 367)/(5+67)~6.136 atoms along the
threefold directions aR;

« and 2= (38+ 247)/(5+ 67)~5.224 atoms along the
twofold directions aR,.

Finally, for Ty, we findZ,.= 12 atoms along the fivefold
directions(a full icosahedropat Rs.

The average coordination numbers for each atomic sur=1°

face arez,=(76+887)/(5+87)~12.17 forT,, Z,=(70
+607)/(5+67)~11.36 forT,, and, of courseZ,.= 12 for

Tpe. This leads to a total average coordination number ofC}3
- 14

Z+=(158+ 1487)/(11+ 147)~11.81.

n

values are much closer to those usually encountered in
simple fcc metals(for instance, in aluminunZ=12, Ry,
=0.28 nm) than those encountered in amorphous metals or
semiconductors: the present model is a compact structure.

TABLE lll. The coordination numberZ for the first coordina-
tion shell decomposition of ,, (see Fig. 2 The average coordina-

tion number forT,, is Z,,=(70+607)/(5+67)~11.36.

Cell Volume Total at. % Z(threfold) Z(twofold) Z total
C;  —3+2r 0.701 7 0 7
C, 13—-87 0.1656 7 1 8
C; — 42+ 2671 0.2047 7 2 9
C, 26— 167 0.3312 7 3 10
Cs 26— 167 0.3312 7 3 10
Cg —16+107r 0.5359 7 4 11
c; 47 19.2323 7 5 12
Cg 1 2.9715 6 5 11
Cq 14—-87 3.137 5 6 11
C; —16+10r  0.5359 5 5 10
1, —8+67 5.076 4 6 10
Ci, 10-67 0.867 4 5 9
C —6+4r7 1.403 6 5 11
6—27 8.213 6 6 12

024202-4



ATOMIC CLUSTERS IN ICOSAHEDRALF-TYPE . ..

I
n /
]k |
(1,000.00)f “ ke L1

PHYSICAL REVIEW B 63 024202

TABLE IV. B-cluster basic decomposition an, and T, (see
Fig. 3 and correspondence with Elser’s notations. The €¢ltor-
responds to a fraction only of thel, sites of frequency {12

{ n : +87) suggested by Elsdsee discussion
1 |+ W@ -
A TET \ Cell Elser notations Volume Total at. %
‘”"J“:\l‘)' : | \ ‘ ‘ 1 2 3 OnT, (n1)
% Cy P —2+27 3.67304
C, Bs 12 35.6586
Cs Mj —5+67 13.9907
(a) On Tn’ (nO)
Ci My —6+4r 1.40298
| -n’' C, B3 unshared 1667 0.867086
n C3 B3 shared 4 19.2323
| )< % & ﬁg c, B unshared 1027 20.0994
w00 fLf” 5 5 Cs M3 —-9+67 2.10446

A
(1,1,1,0,0,0)

nate this 13-atom clusterBicosahedron. Conversely, look-
ing atT, (see Fig. 3, we see that 12 atomic surfacgg; fall

1
g inside T, and adjust each other with no overlap. Therefore
2 5 any point of T, inside one of these small triacontahedra gen-
erates a site ifg that belongs t@ne and only one Bosa-

(b) hedron: theB icosahedra do not overlap. The fractionTgf
ssites which are taken into account in tBeicosahedron is
given by the ratio of the volumes of the T2 divided by
the volume ofT,, i.e. 12/(8+5)~66.87%: two-thirds of
the T,, sites belong to & icosahedron.

None of the two other distances of the first neighbor co-
ordination shell lead to possible intersections. The next dis-
tance around dc site is along the threefold directions at
[3,0]:(—1,1,1,1,1,1)/2 corresponding, By, to a dodecahe-
dron of radiusy/3 (0.406 nm fori-AlCuFe). Here again, we

As shown on Fig. 2, there are only three cells with full observe thafl,,. falls entirely insideT, . Eachbc site is
icosahedral symmetry: a small triacontahedfgn(cells C;,  surrounded by a complete dodecahedron that we designate as
andC} in Tables Il and II) of volume 2r— 3, centered an & B dodecahedron. However, contrary to the previous case,
andn’ and T, (volume 1 that forms a unique cell by itself. the Tpc polyhedra overlap each other by pairs. Their inter-
Studying these three cells leads us to decipher which kind c§ections are shown on Fig.(8ell C3): a certain fraction of
high-symmetry atomic clusters are present in the structurd s Sites belong simultaneously two B dodecahedra. To
and how they distribute in space with respect to each othefind how they are connected we consider the symmetry ele-
as will be discussed next. ments of any pair of interpenetrating,.'s. The symmetry
group ismmm and share &im with T, . Hence theB
dodecahedra are connected two (the order ofmmm in
2mmis 2) vertices forming aredgeof the B dodecahedron.

We characterize the body center configuration by projectwe designate b dodecahedrdid) (B; unshared in Elser’s
ing together inE, , T,., and the nearby atomic surfaces notationg the vertices of the dodecahedron that belong to
along two-, three-, and fivefold directions. The global de-one only dodecahedron and ¥ dodecahedra@) (Bj
composition is shown on Fig. 3 and Table IV. We first ob- shared in Elser’'s notatiohsthose that belong to two adja-
serve from Fig. 1 that there are no perpendicular projectiongent ones.
of Ty, that intersect along the twofold direction at short dis-  The fraction ofT,, sites which belong to on@t least B
tances. On the contrary, the projectionkn of T, trans-  dodecahedron is given by the volume of the union of the
lated by[3,—1]:(1,1,-1,1-1,1)/2 in a fivefold direction interpenetratingT,., i.e., 20-4r so that (20-47)/(67
with respect tdTl, falls entirely into the projection of ,: if +5)~91.97% of theT,,, sites belong to & dodecahedron.

E, passes througfh,, it necessarilypasses through,, and  The fraction ofT,, sites that form the connected edges be-
all other polyhedra of the same orbit aroumd This makes tween theseB dodecahedra is given by the volume of the
a total of 12 intersections defining 12 atomic sites surroundintersection two by two of thd@ . which is 4r. Therefore
ing the central site issued froify,.. They form a complete 47/(67+5)~47.84% of theT, sites are involved in the
icosahedron of radiuRs (0.275 nm for AICuFg We desig- dodecahedron-dodecahedron connections.

FIG. 3. B-cluster cell decomposition and associated volume
(see Table IV. (a) the atomic surfacdy, located af 3,—1]:(1,1,
—1,1,-1,1)/2 (fivefold direction projected ontdl,,. The cellC,
corresponds to the twelvé,, that fall inside T, generating the
B-icosahedron irE;; (b) the atomic surfacd, located at 3,0]:
(—1,1,1,1,1,1)/athreefold directiomontoT,,. . The cellsC;, C3,
andC, correspond to the 20, falling inside T, thus generating
the B dodecahedron if; .

B. B clusters generated byT
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TABLE V. The coordination numberZg for the B clusters
network(see Figs. 5 and)6TheB clusters connect i only along

\

“ Er twofold directions at distancd$=2 from center to center and share
( V an edge of the external dodecahedron. A small fraditef C,) of
\"’(),/‘)! 1.3155% of theB clusters have no connections with the others; they
. / are the centers offull) icosidodecahedra of radit®=2+2 of B
\\f
clusters.
Cell Volume B cluster % Zg(twofold)
a b
( ) ( ) C, — 55+ 347 1.3155 0
FIG. 4. (a) 33 atomsB cluster; (b) 50 atomsM cluster (the ~ C2 233- 1447 0.31056 1
central dodecahedron contains only seven ator@bserve that Cg — 754+ 4667 0.38387 2
these two clusters are only similar to the Bergman and MackayC, 466—288r 0.6211 3
clusters encountered in several complex intermetallic phases. Cs 1220~ 754+ 0.2372 3
Ce — 754+ 4667 0.38387 4
Together,B icosahedra and dodecahedra define a 33- ¢, —987+610r 0.0733 4
atom cluster, shown in Fig.(d), that we call 8B cluster asit ¢, 233 1447 0.3106 5
is reminiscent of the Bergman polyhedron encountered ins — 288+ 178r 1.005 5
certain complex intermetallic phases. Edgb site of the ClO 644— 398F 22472 6
real-space structure is the center dB aluster. 233— 144r 0.3106 6
The B clusters are connected together along twofold d|— 233 1445 0.3106 5
rections (icosidodecahedrgnby [4,4](1,1,0,0,0,0) transla- 420+ 260r 68.8837 7
tions at distance®=27 (0.759 nm fori-AlCuFe). The de- 13 '
mposition ofTy. by itself (see Fig. 5 and TableMor this - 16 10r 18.034 0
composition ofT . by itself (see Fig. 5 a able )Mor this Cre 13-87 55728 5

translation leads to 15 cells that are identical to those ob-
tained for the first neighbors shell between tWgs trans-
lated from each other by8,—4](1,1,—1,0,—1,0) [compare —7)/2 (19.1%) forS. This feature is of greatest importance
Figs. Xf) and(g)], but with an overalllinean scaling factor  to understand the sequence in the terrace steps observed in
of 2—7in E, and7+1 in E;. The average coordination scanning tunnel microscop{STM) studies of quasicrystal
number isZg=471~6.4721. Hence thé clusters connect surfaces?
together in the same way ds, atomic sites do, but with a
length scaler? larger. 5-fold
As already noted by Els¥t!” and Krameret al. 8 they T
distribute on the even nodes of :ascaled canonical 3D-
Penrose tiling. When observed in Fig. 6 along a direction
perpendicular to a fivefold direction, they appear as layers of
three alternating thicknessds=A\2(r+1)/(7+2), L/t
and S=L/7? following a quasiperiodic sequence. This se-
quence can be generated by copyifg on the nodes of the
2D lattice defined by (5;1,-1-1,-1,1)/5 and
(0,2,2,2,2-2)/5 that results from the projection onto the

fivefold 2D plane of the 6D structure. Each length appears % L
with frequencies 1/2 foM, (7—1)/2 (30.9%) forL and (2 L
8 € & & & S
1 2 3 4 5 i
. L
& o o Bn o
7 8 9 10
. . \" 74 ’/v;
11 12 13 14 15
FIG. 5. Cell decomposition ofT,. by itself translated by FIG. 6. B clusters network irE|. These clusters are stacked in

[4,4](1,1,0,0,0,0)(see Table V. These 15 cells are directly calcu- flat layers perpendicular to the fivefold directions of thicknéss
lated from those obtained by the first neighbors shell of fiyo ~ =A\2(7+1)/(7+2), L/7 andS=L/? distributed according to a
displaced by{8,—4](1,1,-1,0,—1,0) and rescaling by 2 7. Fibonacci-like sequence.
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To compute how much of the atomic structure is de-
scribed by theB clusters, we sum up all volumes that have
been explored in constructing the cluster. These are the vol- n' |
ume of Ty (1) plus a volume of 12 if,, and a volume of e
20—47in T,/ . Hence the total fraction of explored sitesis .|}~ "/ E ’/‘
(1+12+20-47)/(11+147)~78.83% of the total number /
of sites in the structure. k

\
—
\

—~—~—al
(1,1,1,0,0,0)
C. M clusters generated byT, at n

Similarly to the previous section, we search for projec-
tions in E, of the atomic surfaces that have a nonempty
intersection withT, located at the even nodes. (a)

From Fig. 1 and as shown in Fig. 7, we find a honempty
intersection betweeiiy and T, displaced by the threefold
translation[6,—3]:(1,0,0,-1,—1,0) thus defining theM
dodecahedron of radiuR; (0.251 nm fori-AlCuFe). As
shown on Fig. 7), this intersection is only partial: the 2Q, . n
aroundn’ give a total intersection volume of 72 3) in- e
stead of 20(2— 3) if they would be fully embedded im,, . 7 “ T
This means that thé/ dodecahedron of the coordination \"/

1,1,1,-1)

shell around am site generated by, is occupied by 7 atoms

0.1,

only over the 20 vertices of the dodecahedron. This is con- 1R

sistent with the fact that the edges of the dodecahedron have

a too short length for being physically acceptable as inter-

atomic distance$0.175 nm fori-AlCuFe). These seven at-

oms distribute on the dodecahedron such as never occupying (b)

simultaneously first neighbor sites and opposite sites. As

shown by Lyonnarcet al,>® there are 100 possibilities that

group into two prototypes with respect to icosahedral sym-

metry, one with local symmetry 3 of multiplicity 40 and one n

with a mirror of multiplicity 60. BT n
The next intersection corresponds to translating by ¢ t

[2,1]:(0,0,1,0,0,0) along a fivefold direction, defining the

M-icosahedron inE; of radius y2+7 (0.4465 nm for (1,1,0,0,00) 1 2

i-AlCuFe). As shown on Fig. () It leads to a full immer- f;

sion of Ty in T,/ , exactly like for the case of the full icosa-

hedron of theB clusters but deflated by a facter Node sites

generated byl have a full icosahedral shell issued frarh (C)

sites. Atoms on thidvl icosahedron belong to one and only - )
one such shell. FIG. 7. M-clusters cell decomposition: thé cluster consists of

The next nonempty intersection is found wilhy being sevgn fatom$a) .among thg 20 of a dodef:ahedron issued from the
translated along twofold direction bi4,0]:(0,1,0,0~ 1,0) partial mterse_ctlons ofy wnh theT,, atomic surfaces)L 12 atoms,
defining theM icosidodecahedron i of radius 2(0.469 (b) on a ful 'Cos.ahe.dron issued fro.m”’ atomic surfacgﬁ 20
nm for i-AICuFe). Here agair{see Fig. 7c)], To is entirely atoms,(c) on an icosidodecahedron issued frdmand T, itself.
contained into the projection of, thus leading to a fully The M clusters are disconnected from each other but they
occupied icosidodecahedron. significantly intersect withB clusters. This can be quantified

Together these shells form a cluster of 50 atbhisee by examining the intersections i, between the cells of the
Fig. 4(b)], that we call aM cluster as it is reminiscent of the B clusters and those of thil clusters: all seven atoms of
Mackay polyhedron. The fraction of atoms belonging tla their inner dodecahedra are commonBalodecahedra, 11
cluster is calculated by summing the volumes of the atomi@toms over 12 of th& icosahedra belong 8 dodecahedra,
surfaces that have been explored:23 for the central atom, and 21 atoms of th# icosidodecahedra belong Bicosa-
7(27—3) for the atoms of the partial dodecahedron,hedra.
12(27—3) for the icosahedron, and 30f23) for the
icosidodecahedron: 50¢2-3). This represents a fraction
of 50(27—3)/(14r+11)~35.0744% of the atoms of the The very same analysis can be performed starting figm
structure. located onn’ instead ofn. The decomposition leads to the

D. M’ clusters generated byT, at n’
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same polyhedra as those of theclusters by exchanging
andn’ leading toM’ clusters identical taM clusters with

respect to their geometry. They represent the same fractiol N (4 ”L k(
of the atoms of the structure. B/M = A Vp
The crucial difference betwedvi and M’ clusters is the %
way they intersect with thé clusters’ The cells corre- 1 2 3 4
sponding to the partially occupied inner dodecahedfég.
7(a)] have empty intersection with the cells of tBeclusters / ~ R
onn': the atoms of théV’ dodecahedron do not belongBo , ¢ ry N
clusters. On the contrary, eight atoms among 12 of\He B/M \ .)/
icosahedra belong tB clusters. The atoms of tHd '’ icosi- "’

2 3

A

dodecahedron distribute according  to: 1Br 1

(=12.7639) being common to B dodecahedron on sites

that are not linking twdB clusters and 19 27 (~15.7639) M/B M’/B

on sites that connect twB clusters. Finally only—5+4r

(=~1.472 14) sites of th&1’ icosidodecahedra do not belong A\ §

to B clusters. Hence most atoms of thE icosidodecahedra ‘ 6; '

are atoms of thé dodecahedra. Loosly speaking, tNg 1 2 3

clusters can be seen as complementary taBtlotusters. . - o -
Each of the two familieM andM’ clusters, taken alone, 1 Y- @4\ fc N

is a set of disconnected clusters. Together, they have inter & %/ Ne’

sections that can be analyzed as follows. The three basi 4 5 6

cells of the decomposition shown in Fig. 7 have no intersec-

tion because the decomposition corresponding to the icosi-

dodecahedron and the initi@}, cells are on one atomic sur-  FIG. 8. Cell decomposition foB-/M(M’) clusters connections
face[Fig. 7(c)] and those corresponding to the icosahedror{see Table V). On top:(upper ling the cells of the four configura-
and the partial dodecahedron on the otfigs. 7a) and tions of M clusters around & cluster, (lower ling) the existence
(b)]. Grouping the two families is equivalent to merging all domains of the three configurations Mf clusters around 8 clus-
cells on a same atomic surfa®e or T, . Then, some cells ter. On bottom:(left) the cell of the unique configuration &
intersect and define new existence domaing jirthat corre- clusters around aM cluster;(right) the cells of the six configura-
spond to sites that are common to both types of clusters. Théns of B clusters around aM’ cluster.

cell Ty, corresponding to the centers of thkandM’ clus-

ters, intersect the cell corresponding to the outer icosahedigusters along the threefold directions according to four dif-

of, respectivelyM’ andM clusters, forming 12 small caps ferent configurations as shown on Fig. 8 and Table VI. The
with volume (34-217)/6 each. This, in turn, intersects the average number of intersectig clusters isZE,,:S—ZT

one of the cell corresponding to the icosidodecahedron of th . : ) . :
other cluster in 60 identical small caps, which, finally, inter- ?1'Zﬁi)tevlygri]n?err“s%itfirne;uBeZI(LysIg; tr_}iggrgl'g:tgtéogr‘év't;;vyo

sects the periphery cell of the partial dodecahedron, thus add! , . S
ing 60 new small caps to the common intersection. Thidrected toM ' clusters(along fivefold directionsand share a

leads to a total of (1260+60)=132 intersections per (Ul pentagonal face. The average number of adjadént

atomic surfacen andn’ with a total volume of 2 132(34 clusters is Z‘,a,: —148+927 (0.859) and 36227

—217)/6 (=0.93659): a small fraction of 2.78% of the at- (40.325% of B clusters have no adjaceit’ clusters.

oms of the structure are commonkbandM’ clusters. The same analysis leads M clusters having a unique
We observe that thé(M’) clusters generate cells that configuration withz¥ =7 intersecting clusters distributed

) , 3if the same way as the atoms of thedodecahedron with
into each other betwee andM" cells (see Fig. 7. On the the configuration of multiplicity 6@mirror symmetry. This

contrary, t_heB-cIusters cel_ls are very compact an_d describe %onfiguration corresponds to fi\g clusters distributed on a
large portion of the atomic surfaces with an unique overlap

onn’ (see Fig. 3 This makes the terminology of Mackay- pentagf)n land t\Nod_out.ng the plaﬂgfe a stqne throlwer)..
type structures, often used to designate Faype icosahe- The M’ clusters distribute e}ccor ing to six configurations
dral phases, somewhat questionable in front of the presefith an average number @y =12-2r (8.764) adjacenB
geometrical analysis. The-type structures can equally well clusters. As shown on Table VI, there are two major configu-
be viewed—and even better with respect to compacity of theations with same frequency, one with 12 neighboridg
clusters, frequencies, connectivity, and cells geometry irtlusters and the other with 8.

E, —as a connected network 8fclusters rather than accre-

tion of M(M') clusters.

F. CompleteB, M, and M’ decomposition
E. B, M, M’ cluster connections

As already mentionedB clusters distribute on the even We_now analyze the_three kinds of glusters t_ogether. This
nodes of a 3D Penrose tiling scaled byThey intersecM is achieved by computing the mutual intersections between
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TABLE VI. The coordination numberZ,, v, and Zg corre-
sponding to the local surrounding Bfclusters byM (M’) clusters
and vice versdsee Fig. 8

B/M cells Volume B-cluster %  Z&(threefold
C, 26— 167 11.1456 0

C, — 42+ 267 6.89 1

Cy 4-27 76.39 2

Cy 13-87 5.573 3
B/M' cells Volume B-cluster % Z,%I,(fivefold)
C} 36— 227 40.325 0

(o ~113+70r 26.238 2

C3 78— 487 33.437 1

M/B cell Volume M-cluster %  ZJ (threefold
C, —3+27 100 7
M'/B cells Volume M'-cluster % Z’é"’(ﬁvefmd)
o 13-87 23.607 12

(034 —55+34r 5.573 10

C3 68— 427 18.034 9

C, 13-87 23.607 8

C¢ —110+681 11.146 7

Cs 68— 427 18.034 6

PHYSICAL REVIEW B 63 024202

6 s ( «";"» 1.
¢ = B @ 3]
1 2 3 i 4 5

"glue" atoms

"glue" atoms

all the cells discussed in the previous sections. The results

are given on Fig. 9 and Tables VIl and VIII. The first column

FIG. 9. Complete cell decomposition wiyy M, andM’ clus-

in these tables defines the cell number, the second colunif's (see Tables VIl and VIt (top) for T, leading to 13 cells,
gives its volume which, divided by the total volume of the (botto_n‘b for T, leading to 16 cells. On the right the existence
atomic surfaces gives, in the third column, the global condomains of the “glue” atomgatoms of the model that belong to
centration in at. % of the atoms generated by the cell. Th&0Ne of these clusters

last column gives a short description of the geometrical prop-

erties of the atoms generated by the cell with respect to thghe atomic surfaces and on intermediate internal regions sur-

three clusters. For example, the c€l} on T,, generates at-

oms that simultaneously belong to Baicosahedron, av
icosidodecahedron, andM’ icosahedron; similarlyCg on
T, generates atoms that belong to tBalodecahedréi.e.,
on the vertices of the pairs that link twB clusterg, a M
icosahedron and #' icosidodecahedron. Both kinds of boundary of an atomic surface changes the way the clusters
atomic sites represent a concentration of 0.6325% of the atonnect. Most of the “glue” atoms form partial clusters that
oms of the structure.

Using Tables VIl and VIII leads to a possible tailorization ing clusters. Those disappear to the benefit of the new ones.
of the crystallochemistry of the three kinds of clusters. WeHence the glue atoms are sort of “transient sites,” a reser-
can ad libidum decorate the cells for obtaining whatever voir for virtual clusters, and are very important in both the
cluster chemical decoration we wish in a way that is consisdynamics and the configurational entropy of the clusters that
tent with quasiperiodicity and overlaps.

Regrouping the cells associatedBandM (M ") clusters
configurations leads to describing roughly 95% of the wholgumps. Because the cells defining tM{M') clusters are
structure. The remaining cellS;, Cs, andC,;, on T,, and
C3, Ci6, OnT, generate the so-called “glue atoms” that do the B clusters, the average fluctuation dynamics of cluster
not belong to either of the basic clusters. These cells have @arrangement should be higher for €M ') clusters than
total volume of 484-298r (~1.82587). They are shown on for the B clusters. To that aspect, thH clusters could be
the right side of Fig. 9. They are located at the periphery oftonsidered as more “stable” than ti(M’) clusters.

rounding the central cells. An example of the complete net-
work of B, M, andM"' clusters is shown on Fig. 10.

These “glue” atoms play a central role in the way the
clusters rearrange under a translation of the cuEjnas
illustrated on Fig. 11. A translation iR, passing through a

can be completed through a few atom jumps from the exist-

should be viewed, at high enough temperatures, as dynami-
cal entities that form and deform through individual atom

smaller and more scatteredin than those corresponding to
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TABLE VII. Complete cell decompositiofsee Fig. 9 of T,, with respect tdB, M, andM' clusters.

Cell Volume Total at. % Type of environment

C, — 71+ 447 0.575 M center

C, 68—427 0.1265 M center+ M’ icosahedron

Cs 81-50r 0.2921

Ca —64+40r 2.1435 M’ icosahedron

Cs —16+ 107 0.5359

Cs — 380+ 2367 5.5153 B icosahedrort- M’ icosahedron

C, 340-210r 0.6325 B icosahedron+ M icosidodecahedron
+M' icosahedron

Csg 455—-278r 15.42 B icosahedron

Co — 403+ 252r 141 B icosahedron+ M icosidodecahedron

Cio —367+228r 5.681 M icosidodecahedron

Cn 383—2367 3.399

Ci 340-210r 0.6325 M icosidodecahedror- M’ dodecahedron

Cis — 361+ 2247 4.278 M’ dodecahedron

G. ExtendedB cluster (XB) [7,01:(-1,1,3,-1,-1,-)/2;

triacontahedronbc—n at [3,3]:(1,1,1,-1,-1,1/2 and bc
Dunead! recently proposed to extend the size of the clus-— ' at [3,4]:(1,1,1,1,-1,12.

ters in a search for including all atoms of the model in a The two first shells correspond to ttR cluster already
unique description. He showed that an economical extensiogiscussed.

is obtained from theéB cluster by addlng the four next dis- The two next She”S, noted W|thk), Correspond to the
tances around thiec sites(see Table I, leading to a clus-  orhits TI and T1’ of multiplicity 60 that arepartially occu-
ter, notedXB for short, with six shells shown in Flg 12 and p|ed [as the inner dodecahedra of '[M(M ’) C|uster§ as

defined by shown on Fig. 13 and Tables X and XI. The average number
icosahedronbc—n at[3,-1]:(1,1,-1,1,-1,112; of atoms isZy,= — 15+ 247 (23.83) for Tl and Zy, =181
dodecahedrorbc—n’ at[3,0:(-1,1,1,1,1,1/2; —-98r (22.43) for TI' in agreement with Duneau’s
truncated icosahedron 1: T() (*): bc—n at calculationd (except forTI’ where Duneau finds 22.36 in-

[7,-1:(1,-1,1,1,1,92; stead of 22.43 as found hér&hese two orbits have strong

truncated icosahedron 2: T(’) (*): bc—n’ at overlaps with the neighboring clusters.

TABLE VIII. Complete cell decompositiofisee Fig. 9 of T, with respect taB, M, andM' clusters.

Cell Volume Total at. % Type of environment

Ci —T71+44r 0.575 M’ center

C; 68—427 0.1265 M’ center+ M icosahedron

C3 658—427 0.1265

C, 13-87 0.1656 B dodecahedrgi)

C¢ —T71+44r 0.5750 M icosahedron

Cé —3+27 0.7015 B dodecahedrdii) + M icosahedron

C; — 370+ 2307 6.382 B dodecahedrag®) + M icosahedron

Cq 340-210r 0.6325 B dodecahedrdi) + M icosahedron
+M’' icosidodecahedron

C4 457—-282r 2.123 B dodecahedra)

Cio — 427+ 266r 10.09 B dodecahedrdi2) + M’ icosidodecahedron

Cn 397- 2447 6.5368 B dodecahedran)

Cis — 366+ 2287 8.6524 B dodecahedrdd) + M’ icosidodecahedron

Cis 23— 147 1.033 M’ icosidodecahedron

Cis 340-210r 0.6325 B dodecahedrgd) + M dodecahedron
+M' icosidodecahedron

Cis —361+224r 4.278 B dodecahedrqd) + M dodecahedron

Cie —32+20r 1.072
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TABLE IX. Summary of the definitions of the basic clusters and
their extensions. The symbél designates a partial orbit and a bold
number designates a full orbit.

Type Synilattice) 6D vector
B cluster (origin atbc)
bc—n 12(1) [3,-1]:(1,1-1,1-1,1)/2
bc—n’ 20(1) [3,0:(—1,1,1,1,1,1)/2
Extended(Duneau
bc—n 604 (1) [7,~1]:(1,-1,1,1,1,3)/2
(a) (b) bc—n’ 60(1)  [7,01:(-1,1,3-1—1,—1)/2
FIG. 10. (@) A portion of the full network ofB, M, and M’ bc—n, 20(1) [3,3:(1,1,1~-1,-1,1)/2
clusters;(b) a typical slab of these clusters perpendicular to a five-0C—N 12(1) [34:(1,1,1,1-1,1)/2
fold axis showing howM andM’ clusters intersedB clusters. Next . . .
bc—n’ 120°(1) [11,0]:(3,-1,1-1,—-1,3)/2
The orbit TI contains a fraction of 65.164%(12 pe—n 60°(1)  [7,3:(—1,1,3,1,1,1)/2
—57)/6] of the atoms of thé icosahedra and'|’ contains  pc—p’ 60°(1)  [7.4]:(—1,3,1,1~1,1)/2
70.02%[ (3+47)/(20—47)] of the atoms of thé8 dodeca- ._p 60*(1) [11,3:(3,1,1-1,—3,1)/2
hedra. The orbi| gives three different configurations with p._ 60(1)  [11,3:(1,—1,3-1,1,3)/2
22 to 24 atoms. The configuratid®, corresponding to the . 60°(1)  [1L1,4):(1,—13,1,1,3)/2
maximum number of atom&4) has by far the highest fre- be—n 60(1) [7.7:(L1,1,1- 1,3)/2

guency(88.85% of theXB clusters. The atoms of th@'|l of
a givenXB cluster belong in average simultaneously to 1.88
otherq (—25+307)/(19—47)]. They represent a fraction of

M (M) cluster [origin atn (n")]

69.81%] (19—47)/(5+87)] of the atoms generated &y, . :::, E:,::; ig;g;) Egig(]o(olfggé)_lo)
The orbitT1" gives six different configurations with 20 to n—n (n'—n’) 30(F) [4.0]:(0.1.0.0—1.0)

23 atoms(see Fig. 13 and Tables X and)XHere also, the
configurationC; , corresponding to the maximum number of Extended(Duneai

atoms has the highest frequen®p.25%. Atoms of TI’ of n—n’ (n'—n) 60*(P) [14,—7]:(1,0-1,1,0,2)
a givenXB cluster belong in average to 2.19 othg{s=10 n—n’ (n'—n) 60*(P) [6,1]:(0,1,0,1,0,1)
+207)/(—6+107)]. They represent a fraction of 69.21%

[(—6+107)/(5+67)] of the atoms generated by, . Next. ..

The last shel—containing a fivefold and a threefold "~ PC¢ 20°()  [3.31:(1,11~-1,-11)/2
orbit—is the canonical triacontahedron of the primitive Pen-"—"n (n"=n’) 60*(F)  [8,01:(1,0,1~1,-1,0)
rose 3D and is fully occupietB2 atoms. The corresponding N' —P¢ 1250 [341:(11,1,1-1,1)/2
decomposition is shown on Table XII and Fig. 14. It over-n—n (n"—n’) 30(F)  [4.41:(0,0,1,0,0,1)
laps with the neighborin@® clusters in the following way.  n—n’ (n"—n) 60*(P) [10,1:(0,0,2-1,0,0)

The threefold orbit of the triacontahedron containsn—n’ (n"—n) 60(P)  [6,5:(0,1,1,0-1,0)
46.06%][ (3— 7)/3] of the atoms of thé8 icosahedra and the n—n 12(F) [8,4]:(0,0,2,0,0,0)
fivefold orbit contains 26.499%4 (23— 127)/(20—47)] of n'—n’ 12*(F)  [8,4]:(0,0,2,0,0,0)
those of theB dodecahedra. Th&, is decomposed into 12 n—n (n'—n’) 60" (F) [8,4]:(1,1,0,0-1,1)
cells[see Fig. 14a)] by the threefold orbit, the last on€,,, n—n’ (n’—n) 60*(P) [10,5:(1,0,1-1,—1,1)
corresponding to atoms that do not belong to any triacontan’ —n 12*(P) [10,9:(1,1,0,1-1,1)

hedron of theXB cluster. Hence a fraction of 39.32p620

—87)/(5+87)] of the atoms generated by, belong to at
\ : least one triacontahedron. Each of these atoms belongs to
C ) 2.736 [(—26+287)/(20—87)] XB clusters in average.
.l

rC " /CQ‘ /':.:. J .

k%( L"j o5 \‘%{CE L’j <> \v%g L"j Also, 10.45%[ (31— 187)/(5+67)] of the atoms generated
,, rel ‘ ./'{‘1. . / S .:
( - \

by T, belong simultaneously to &l and a threefold orbit of
the triacontahedron.
The fivefold orbit splitsT,, into 13 cells, the last one
FIG. 11. From left to right: when the cut is translatedgin glue (C19) corresponding to atoms that do not belong to any tria-
atoms become part & or M(M’) clusters; the clusters rearrange contahedron of theXB cluster. The atoms of the fivefold
in space through a relatively few number of atom jumps. ObserveQrbit represent 27.57%(17—187)/(5+67)] of the atoms
on the right, how some glue atoms are arranged in clusters thgenerated byl,,, . Each of these atoms belong to 3.0®
preclude the formation of eithdd or M(M’) clusters. +27)/(17—87)] XB clusters in average. Atoms generated
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TABLE X. Cell decompositiorfsee Fig. 18)] of Ty, by T,, at
[7-1]:(1,—1,1,1,1,3)/2 and byT, at[7,0]:(-1,1,3~1,—1,
—1)/2 corresponding, respectively, Td andTI'.

Cell Volume B-cluster%  Number of atom@ver 60

Th
C, —25+167 88.8544 24
C, 13-8r7 5.57281 23
Cs 13-8r7 5.57281 22

Tn/
(a) (b) C,  —22+14r 652476 23
FIG. 12. The extendeXB cluster proposed by Dunegief. Cé 26— 167 11.1456 22
21) in the complete 112 atoms cluster corresponding to the mairt3 68—427 4.25725 22
configuration(cell C, in Table XII). (a) Balls and sticks view C, —42+267 6.88837 21
showing the various orbitgb) space filling view showing in fronta Cg —110+ 687 2.63112 20
large portion of an adjaceM cluster. Cs 81507 9.83006 21

by T,,, never belong simultaneously toTd and a fivefold

orbit of the triacontahedron.

diagonal facets of the triacontahedron in the standaratio

The T1 orbit distributes inside the triacontahedron alongbetween the two Opposite vertices of the facets. The whole
threefold directions of the closest atoms of the fivefold orbitx B cluster can be decomposed with the standard set of pro-

of the triacontahedron. THEl’ orbit distributes on the main

- 4 ke
% 2 4 5o
L e 1 ?-2;4 w;'
@ @& %9 o
EXS P %
1 ) 3 o e f"‘ :
6

(b)

late and oblate rhombohedra of the canonical 3D Penrose
tiling with additional atoms decorating some of the facets
and threefold axes. We obtain a total of six different decora-
tions of the oblate rhombohedron and 14 of the prolate.

Regrouping the cells generated by all six shells ofXHg
cluster leads to a full covering of the basic atomic surfaces:
the XB cluster defines a template cluster with an average
number of 111.265 (231747) atoms(ranging from 109 to
112). As already mentioned by Dune&tany atom of the
structure belongs to one at least such template centered on
bc site(s) [see Fig. 18)].

Performing the complete cell decomposition in projecting
all six orbits of atomic surfaces properly located in 6D space
onto Ty, leads to the ten cells of Table Xl and shown in

TABLE XI. Cell decompositionsee Figs. 1®) and(c)] of T,

andT,, by T,. complementary to Table X giving the numbenoB
clusters intersecting the atoms of thé's of a givenXB cluster.

Cell Volume Total at. %  Number of intersectingB’s
Ta
C; —14+ 127 16.0951 0
C, 55-32r 9.577 1
C, —14+ 107 6.479 2
C, 23— 147 1.033 3
Cs —25+ 167 2.640 3
Cs —-3+27 0.7015 4
(o —17+14r 16.797 2
Th
C; 11-4r 13.455 0
C, 24— 147 4.00 1
o C; —66+427 5.816 2
FIG. 13. Cell decompositions @8 Ty, (b) T,,, and(c) T, for C, 10-4r~ 10.483 2
the two partialTI’s orbits of the extende® cluster(see Tables X C; 26— 147 9.947 3

and XI).
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TABLE XII. Cell decomposition(see Fig. 14of T,, andT,, by
Tpe at, respectively/3,3]:(1,1,1-1,—1,1)/2 and[3,4]:(1,1,1,1,
—1,1)/2 corresponding to the triacontahedron of ¥t cluster.

Cell Volume Total at. % Number of intersectingB’s
Tn

C, 36— 227 11.983 7
C, —16+10r 0.5359 6
Cs — 42+ 267 0.2047 6
Cy 26— 167 0.3312 5
Cs —6+47 14.03 4
Ce —16+107 0.5359 4
C, 46— 2871 2.065 5
Cs —110+687 0.078 4
Co 124-767 9.00 3
Co — 66+ 427 5.8166 2
Cyy 44— 267 5.738 1
Cy, —15+167 32.356 0
To

C} 13—-87 0.1656 12
C; —55+34r 0.0391 10
C; 68—427 0.1265 9
C, — 42+ 267 0.2047 8
C¢ 13-87 0.1656 7
Cé -3+2r7 0.70149 6
C; 13-87 0.1656 6
Cq —3+27 0.70149 5
Cs —6+4r1 14.03 4
Cho 46— 281 2.065 3
Cn —96+ 607 3.215 2
Cl, 69— 42r 3.098 1
Cis —12+14r 31.654 0

PHYSICAL REVIEW B 63 024202
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FIG. 14. Cell decompositions af) T,, and (b) T, for the
external (canonica) triacontahedron of th&XB cluster (see Table
XIl).

cause it has several configurations this cluster is not a cov-
ering clusterstricto sensusince its local atomic decoration

Fig. 15b). The XB cluster has therefore ten different con- varies(although these configurations share 109 ajoftesn
figurations(irrespective of the point symmetry operatians gite to site on the two partiallf! andT1’ orbits. It is not to
where the most importaritvith almost 60%, associated to o compared with the covering cluster discussed by
cell C, contains the maximum number of 112 atoms. Be-Gymmelt® for Penrose tilings. This latter is unique and sat-

TABLE XIlII. Cell decompositionsee Fig. 1&)] of Ty, leading
to the ten configurations of théB cluster. Any atom of the struc-
ture belongs to one or more of these ten configurations.

Total number

Cell Volume XB-cluster % Zy,  Zqp» of atoms
C, 20—-127 58.3592 24 23 112
C, —110+ 687 2.63112 23 23 111
Cs 68— 427 4.25725 22 23 110
Cy — 42+ 267 6.88837 24 22 111
Cs —55+ 34~ 1.31556 22 22 109
Cs 123-76r 2.94169 23 22 110
(oF 68— 427 4.25725 24 22 111
Cs — 42+ 267 6.88837 24 21 110
Co —110+ 687 2.63112 24 20 109
Cio 81-50r 9.83006 24 21 110

isfies specific overlap rules—equivalent to matching rules—

that insure the tiling to be quasiperiodic if they are satisfied

everywhere. In our present case, the template cluster is not
unique and no covering rules, if any, can be deduced from

our simple geometrical analysis.

IV. DISCUSSION

The present geometrical analysis of the three main atomic
clustersB, M(M'), andXB has been derived from the basic
fully deterministic model shown in Fig. 1. Models where a
fraction of the atomic sites have partial occupancy factors
because of too short atom pairs have been proposed that
correspond to increasing the size of the atomic surfdges
andT, of Fig. 1.

The first model is due to Els&r”and can be obtained by
increasingT,, with small polyhedra(of total volume —3
+27) at the periphery of the fivefold cups @f,, as shown
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% i ‘l:;xe" ‘;a‘ i}%é? ’o( v (®)
T ® VeV Gid ‘e’ ) ) .
FIG. 16. (a) 1: The simplest atomic surfacesraandn’ consis-

1 2 3 4 tent with Elser's mode(Ref. 16 (after Ref. 20; (a) 2: correspond-

- . . N ing overlap regions generating short distances along fivefold direc-
e,} 4»’ ;‘o’«[ K‘—’t'.‘ [él»‘} tions; (b) 1: the large atomic surfaces of Krametral. (Ref. 18; (b)
Ves LV e s 2: corresponding overlap regions generating short distances along

both fivefold and twofold directions.
6 7 8 9 10

b
( ) ing to theM (M) clusters. Hence, if we consider the com-
FIG. 15. (@) A portion of the network oXB clusters represented plete set of atomic sites found by Krametral 18 as the host
by their external triacontahedré) the complete cell decomposi- gtomic network for theF-type structures, we conclude that
tion of T, defining the existence domains of the ten configurationshe geometric randomization induced by short distance ex-
of the XB cluster(see Table XIl). clusions fully preserves the integrity of the B clusters and is
essentially located on the TI and Torbits of the XB clus-
ter. This is in excellent agreement with the very recent
in Fig. 16@ 1. This leads to an overall volume oft8l67.  results—published during the writing of the present
This increase in volume generates short distances of lengifaper—of Quandt and Elsérof ab initio calculations for
V18— 117 along the fivefold directions betwedn, and T, modelingi-AlPdMn: they found theB clusters as the basic
so that two new cells appear, shown in Fig(d&, with an  dominant elements of the structure.
occupancy factor of 1/2. In Elser's notations, this corre- More generallyB clusters are extremely robust features:
sponds to flipping a fractior- 3+27 of M, with M3 atoms  any model based on two main atomic surfaces on n dnd n
(see Table 1V. and a small surface at bc generate B clusters as a natural
The second model, due to Krametrall® and Papadopo- consequence of the geometry of the 6D lattitgs distribu-
los and co-workers'?°in a search for decorating oblate and tion of scattering matter in 6D is indeed the main result
prolate standard rhombohedra of the 3D Penrose tiling conshared by all the available diffraction data of these structures.
sistently with theF character of the 6D lattice. They obtain Of course, the details of the relative frequencies and connec-
the atomic surfaces shown on Fig.(t61 for T, andT,, of  tion modes between the clusters depend on the actual shapes
volumes, respectively—16+267 and —10+167. These of the atomic surfaces, from rather complicated distributions
atomic surfaces overlap significantly along fivefold,(T,) for spherical models down to very simple ones as those ob-
and twofold (T,,/T,, andT,, /T,) directions[see Fig. 16) tained here with polyhedral models.
2], thus generating too short distances at, respectiyéy, Hence, in summary, these studies all converge to enforce
—-11](1,1,-2,1-1,1) (0.1054 nm fori-AlCuFe) and[20, the idea that thd=-type icosahedral quasicrystals based on
-12](0,2,-1,0,-2,—1) (0.1793 nm fori-AlCuFe). This three atomic surfaces af n’, andbc are best characterized
implies attributing partial occupancy factors for large por-by a network ofB clusters attached on the even nodes of a
tions of the atomic surfaces. The corresponding decomposi-scaled primitive 3D Penrose tiling and connected together
tion is given by Papadopolos and co-work&t8’ The re- by edges(only 1.3% of theB clusters are isolatgdrather
maining parts of the atomic surfaces that have occupancthan a set of isolated or weakly connectddM’) clusters.
factor equal to 1 correspond to the external facets of the cell$he B clusters are the center part of tiB clusters that
C, andCj, of Fig. 3. These are the definition domains of the cover the overall structure in ten slightly different configu-
B clusters! In other words, the perfectly ordered part of therations of theTI—TI’ partial orbits. On the contrary, the
structure, in this picture, is the network Bfclusters and the M (M) clusters appear as labile entities—especially in their
fivefold orbit of the external triacontahedron of th@ clus-  partially occupied inner dodecahedron orbit—and are less
ters. The other atoms distribute on flipping sites that belongignificant for characterizing these kinds of structures. To
to TI and TI’ and a fraction of the threefold orbit of the our opinion, theB clusters are definitely the best candidates
canonical triacontahedron. Those are mainly atoms belonder identifying the mean structural features of these solids,
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